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OPTIMALITY CONDITIONS FOR SOME NONQUALIFIED
PROBLEMS OF DISTRIBUTED CONTROL*

F. ABERGEL AND R. TEMAM:I:

Abstract. This article determines the necessary and sufficient optimality conditions for some nonqualified
problems of optimal control, in the case of a distributed control for a system governed by a second-order
elliptic partial differential equation. The authors study both bilateral and unilateral constraints on the state
of the system.
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Introduction. One of the main difficulties in the study of optimal control problems
is to give some necessary and sufficient conditions of optimality. For nonqualified
problems, there is no standard way, even in the convex case, to give such conditions
[L]. Nevertheless, the method developed by one of the authors for the study of
variational problems in continuum mechanics IT] turns out to be very fruitful in the
field of optimal control.

In this article we consider the following problems:

(P) Find (z, v) in L2(fl)x L2(fl) minimizing the cost function

(1.1.1) J(z, v)=(-) I vZ dx+( fa [Z--Zd[2 dx

with (-Az + z) v in O., z 0 on 0f, Izl <- a almost everywhere in f.

The corresponding unilateral constraint problem reads"

(R) Find (z, v) in L2(D) x L(12) minimizing the cost function

(2.1.1) K(z, v)= (-)I v: dx+() I [z-zd[ dx

with (-Az + z) v in f, z 0 on 0f, z <-- a almost everywhere in .
a and r/ are two strictly positive real numbers and Zd is given in LZ(). In the case
where f is a subset of the/-dimensional Euclidean space RI, 1, 2, 3, Problems (P)
and (R) correspond to the optimal heating of f: z is the temperature, v is the volumic
heating (produced, for instance, by a laser beam), and Zd is the desired temperature.
The constraint on z is a technological constraint, which can be easily interpreted as a
no-burning condition.

In order to derive the system of optimality conditions for (P) and (R), we
reformulate them as convex optimization problems in H2()0 H(f), as follows. We
let j, k be defined, respectively, as follows:

+c otherwise,

[-Az + zl2 dx if z H2(f) (q H(f),

Izl <= a a.e. in ,
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k(z)

+c otherwise.

Therefore, (P) and (R) respectively, are equivalent to

(P) (i) Inf {j(z)}
H2(n)Cq

and

(n)

if z H2(a) H(a),

if z -< c a.e. in ,

and

(R*) (ii’)

where

S

I( }Sup z dx + za dx O. (-Az + z + za dx

2

O,(s) s- ifs__<c
S

a (s-) elsewhere.

The crux of the matter is that neither (P*) nor (R*) is coercive on the natural space
X H2(II)f’l H(I)). Thus we must investigate the existence of solutions to (i’) and
(ii’) in a larger space than X, in order to recover coercivity.

For (i’), the natural space is BLo(f) {u e L2(ft), (-Au + u) is a bounded measure
on 1), u =0 on 01)} due to the linear behaviour of 4’, at infinity. We prove that (P*)
has (generalized) solutions in BLo(), and extend the classical optimality conditions
to them.

As for (ii’), the problem is slightly more delicate, for (R*) cannot be extended to
the whole space BLo(f), due to the quadratic part in ff,. However, we prove that such
an extension is possible if we restrict ourselves to the functions u in BLo(f/) such that
(-Au+u) is in a convex cone of the space of bounded measures on 1). We then
establish the system of optimality conditions.

We use the following classical notation: W"’P()) for the Sobolev space of order
m on LP(I)), W’’p for the closure in W"P() of the Schwartz class @(f), and @’(f)
for the dual space of the latter; we also classically write Hm() for W"’2(f), and
M(a) for the space of bounded measures on 12 (see [Ad], [LM], [B]).

where

(ii) Inf {k(z)}.
H2(n)CI H)(n)

If we wish to use the duality methods of convex analysis to derive the optimality
conditions for (i), (ii), then we are led to the following dual problems of maximization"

Io }(P*) (i’) Sup z dx + za dx t), (-Az + z + Za) dx
H2(a)rlH(n)
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I. A distributed control problem with bilateral constraints.
I.I. Variational formulation. Let be an open bounded set ofN, whose boundary

F is a compact C, (N- 1)-dimensional manifold,
We want to study the following problem of optimal control.

(P) Find (z, v) in L2(’) L2(-) minimizing the cost function

(1.1.1) J(z’ v)=(-) I v: In IZ--Zd[: dx

z being such that (-Az + z)= v in

Zd is given in L2(fl), and a, r# are two strictly positive real numbers. The conditions
on z imply that it belongs to H2(II)f’] H(fl) [LM] and the variational formulation of
(P) is then

(1.1.2) (P) Inf {j(z)},
H(n)Cq()

the functional j being defined by

(1.1.3) j(z)=
ifzX=HZ(f)f3H(O), [zl<-_a a.e. onf,

otherwise.

We have Proposition 1.1.1 below (see [ET]).
PROPOSITION 1.1.1. There exists a unique optimal state z for Problem (P), which is

the only solution of (P).
We are now going to give the expression of the dual problem (P*) of (P), in

order to study the system of optimality conditions for Problem (P).

1.2. Duality. We shall use the duality methods described in [ET].
Let Y be the space (L2(f))z; we define the operator/, from X into Y, by

(1.2.1) Az:(z,-az+z).

Problem (P) has the following form:

(1.2.2) (P) Inf {F(z) + G(Az)}
zX

where F, G are defined as follows: F0; G(p)= G(p)+Gz(p2), with

IS, ,pl-zai2dx if ipli-<cea.e, on12,
(1.2.3) O,(p,)

otherwise,

(1.2.4) G2(p) --- [pzl dx.

The dual problem (P*) of (P) is then

(1.2.5) (P*) Sup {-F*(/*q)- G*(-1)},
qY

F* (respectively, G*) being the convex conjugate function of F (respectively, G), and
*, the transposed operator of/.
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Remark 1.2.1. Y is identified with its conjugate Y*, thanks to its Hilbertian
structure.

Let us now compute the expression of F* and G*. For G*, we easily find

G*(p) G* (p,) + G2*(P2)(1.2.6)

where

(1.2.7) G* (p,) -- Zd dx + *.(p, + Zd) dx,

(1.2.8) G2* (Pz) Ip212 dx,

and the function xlt is defined by

s/2 iflsl <_- c,
(1.2.9)

For F*, we write

(1.2.10)

F*(A*p Sup p,/k z)
zEX

ze()

0 if -p+p -p in

+ otherwise.

If p is such that (-p+p) belongs to L(), we can define its boundary values
(p, p/v) as distributions on F (see [LM]). Moreover, the following Green formula
holds for z in H():

(1.2.11) (--ZZ + g) P2 dx (-Ap2 +p2)" z dx v p2- \-v : z dr

(the integral on F being, in fact, a duality product in the suitable distributions spaces
on r).

From (1.2.11), we easily deduce the expression of F*:

0 if -Ap2+P2=0inl),
(1.2.12) F*(A*p)

+c otherwise.

p2=O on F,

After eliminating p, we find the following for (P*):

Io(1.2.13) (P*) Sup p2 dx + Zd dx- "tlro(-Ap+p+ Zd) dx
pEX

By lack of coercivity (see the definition of ), we do not know whether Problem
(P*) has a solution in X. In the following sections, we shall show how it is possible
to overcome this difficulty, by extending the class of admissible elements for Problem
(P*). We shall also give the necessary and sufficient conditions for an admissible state
z, for problem P, to be the optimal state z.

For the moment, we give the following comparison result.



NONQUALIFIED DISTRIBUTED CONTROL PROBLEMS 5

PROPOSITION 1.2.1. The extrema of (P) and (P*) are equal:-< Sup (P*) Inf (P).

The proof is omitted. We show that Problem (P) is normal lET].

1.3. The generalized problem. Definition (1.2.9) of . shows that it is natural to
look for solutions of (P*) in the space BLo(ll) defined by

(1.3.1) aLo(l) { u L(f), (-Au + u) M(1), u 0 on F}

where M(f) is the space of bounded measures on f (BL stands for "Bounded
Laplacian"; the index 0 refers to the Dirichlet conditions on F). BLo(f) is a Banach
space for the norm

(1.3.2) Ilull , o.  -
Moreover (see [M]), the space BLo(f) is continuously imbedded in the space

N
W"(f) for =< s <

N-1

In order to extend Problem (P*) to BLo(f), we need to define ,(/z), when/z is a
bounded measure, and , is defined by (1.2.9). We shall refer extensively to the results
of [DT1], [DT2], IT], and recall what will be useful to us in Proposition 1.3.1.

PROPOSITION 1.3.1. Let xI be a convex function of one real variable, let * be its
conjugate function, and let be. its asymptotic function. We suppose that

(i) There exists C, such that for all s, I(s)l _-< C(1 /lsl);
(ii) * is bounded on its domain K;
(iii) => 0, (0) 0.

Let tx be a bounded measure having the decomposition tx h. dx + 0. with respect
to the Lebesgue measure dx, I. singular with respect to dx [B]. The measure (tz) is
then defined as follows"
(1.3.3) (/x) (oh). dx+’(O).

Furthermore, we have the duality formula

(1.3.4) ’Co(,) (*(/x),*)=Sup{I*.gd/x-I .**(g) dx},
the supremum being taken for g Co(f), *(g) L(12); and relation (1.3.4) is still valid
for (), >-0.

It is now obvious how to formulate the generalized problem (Q*)"

(1.3.5) (Q*) Sup u: dx+ Zd dx- ,(--Au+U+Zd)
BLo(f)

In the expression above, (-Au + u + Zd) represents the total mass of the bounded
measure (-Au + u + Zd). We obviously have the following inequality:

(1.3.6) Sup (P*)-< Sup (Q*).

In 4 we shall introduce a generalized duality, between (P) and (Q*), that will
enable us to prove that (1.3.6) is, in fact, an equality, and will also give the system of
optimality conditions for Problem (P).

1.4. Generalized duality. Our purpose in this section is to give meaning to the
expression "(-Au + u) z" when z is in X, u is in BLo(f), and z is admissible for (P).
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Actually, we are going to prove that (-Au / u) ."z can be defined as a bounded measure
on fl, and that there exists a generalized Green formula for z and u. More precisely,
we have the following result.

PROPOSITION 1.4.1. Let (z, u) belong to X BLo(12), z being admissiblefor Problem
(P). We can define a distribution, denoted (-Au+ u)" z,.by the following formula:

(1.4.1) V(I)(12) <(-Au+u). z,) [-A(z.cI))+z.(i)]. udx.

The distribution defined by (1.4.1) satisfies the following:
(i) (-Au + u z is a bounded measure on. 12.
(ii) We have the equality

(1.4.2) (-Au + u)" z (-Az + z)" u dx.

Proof. We first remark that the right-hand side of (1.4.1) makes sense for u in
L2(I) and z in X H2(1)(3 H(). Let us now choose a sequence zn of smooth
functions approximating z in the following sense"

(1.4.3) z, tends to z in X,

(1.4.4)

Such a sequence is classically obtained, for instance, by solving the following problem
associated to the heat equation:

Ov/Ot-Av 0 in 12 x ]0, c[,

(1.4.5) v 0 on F x ]0, c[,

v(x, O)= z(x) inf,,

and setting zn v(., t,), t, being a sequence of strictly positive real numbers converging
to zero. Frequently (1.4.4) is then a consequence of the maximum principle for
second-order parabolic equations.

We now set T, (-Au + u). z,; T, is a bounded measure satisfying

(1.4.6) Ilzll  (  ,
Moreover, Tn obviously converges to (-Au+u). z in @’(f), and this proves

assertion (i). We also remark that T converges to (-Au + u). z in the sense of the
tight convergence of measures. That is true because the sequence (Tn) satisfies the
Prokhorov condition [B]:

(1.4.7) ’e>0 ::lg Vn f IT, l<e
\Ke

where K is a Borel subset of fl. As a matter of fact, (-Au + u) is a bounded measure,
and the functions z are uniformly bounded on fl. Therefore, the sequence T is
relatively compact for the topology of the tight convergence in M(fl).

To prove (ii), let us now choose a function in c(); thanks to the results of
[LM], we have the Green formula

(1.4.8)
,(-au+u).

z,. = f [-a(z,. )+z,. ]. udx-(ou/ov, z,. )(r)’(r)

/(U, O(Znf)/OP)(I’),(I").
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Taking into account the conditions (u 0 on F) and (z, 0 on F), we obtain

(1.4.9) Vnt, Vc(I)) f(-Au+u).z,,.=f [-A(z,.)+z,.].udx.
J J

Assertion (ii) is then proved by letting n tend to in (1.4.9), with 1, and using
the tight convergence of T, to (-Au + u).z. [3

1.5. Existence of solution of (Q*) in BLo(I); system of optimality conditions for
(P). In this section, we give our final results for the study of Problem (P), namely,
the existence of an adjoint state in BLo(gl) for the optimal state z, and the system of
optimality conditions related to that problem.

We start with a lemma.
LEMMA 1.5.1. Let J* be the functional defined on BLo(I) by

(1.5.1) J*(u)=--
Then we have the following:

(i) J* is lower semicontinuous on BLo(l)) for the weak topology z(u, u for zl

if u, - u in L2() weakly and (-Au, + u.) - (-Au + u) in M() vaguely).
Moreover, any bounded set of BLo(I)) is relatively compact for the rl topology.
(ii) If (z, u) belongs to X BLo(fl), z being admissible for Problem (P), we have

(1.5.2) (-J*(u))<=j(z)
1

(-Az+z)+u dx.

Proof We first notice that (i) is a consequence of the definition of BLo(f) and
the properties of (/)[DT1 ].

For (ii), we use the sequence z, above and the duality formula (1.3.4) to derive
the following inequalities"

>_ ror,i,,(s)=- s,Vse, lsl<=

zndx> (-Au+u+z)’z" -=> (for T, converges tightly to (-Au + u). z)

>= (-Au + u + Zd) Z--- dx.

We now use the Green formula (1.4.2) to obtain

J*(u) >=- dx -- Zd dx --q _1 (-z + z) + u dx,-J’z’+2( n
and Lemma 1.5.1 is proved.
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Its fundamental importance is due to the fact that it makes possible the use of
the standard method of calculus of variations to study Problem (Q*) in BLo(I)). Our
results are summed up in Theorem 1.5.2.

THEOREM 1.5.2.
(i) We have the equality Inf (P) Sup (Q*).
(ii) There exists, in BLo(I)), an adjoint state for the optimal state z: it is a solution

of Q*).
(iii) The necessary and sufficient conditionsfor a couple (z, u) ofadmissible elements

for (P) and Q*) to be an optimal couple are:

(1.5.3) ,(--Au+u+zd)= (--AU+U+Zd)" Z--- Z dx,

1
(1.5.4) u (-Az + z) a.e. in 2.

Proof Theorem 1.5.2 follows directly from Lemma 1.5.1. [3

2. A distributed control problem with a unilateral constraint. The purpose in 2
is to extend our results to the unilateral case, where the constraint on the state z has
the form (z-< a almost everywhere on f). The main differences with the bilateral
problem P come from the fact that an admissible state z no longer belongs to L(f),
and that the analogue of the function , (1.2.9) does not satisfy condition (i) of
Proposition 1.3.1, i.e., that it be at most linear at infinity. Nevertheless, we shall see
that it is-possible to overcome these new difficulties, with appropriate methods, and
to prove a result as complete as Theorem 1.5.2.

2.1. Variational formulation. Primal and dual problems. The geometrical assump-
tions being as in 1, we turn to the study of the following problem.

(R) Find (z, v) in L2(f)x L2(f) minimizing the cost function

(2.1.1) K z, v f- dx +- dx

z being such that (-hz + z)= v in , z 0 on F, z-< a almost everywhere
on f.

Zd is given in L2(f), and a, 8 are two strictly positive real numbers. The variational
formulation of (R) is

(2.1.2) (R) Inf {k(z)}
zcX

where the functional k is defined by

(2.1.3) k(z)
()I 1 ft [2Iz-z l dx+ I-Az+z dx

otherwise.
if zX, z<-a a.e. on f,

As in the bilateral case, we easily see the following [ET].
PROPOSiTiON 2.1.1. There exists a unique optimal state z’ for R; it is the minimizer

of(R).



NONQUALIFIED DISTRIBUTED CONTROL PROBLEMS 9

The dual problem (R*) of (R) is obtained by the same methods as before, and
its formulation is

(2.1.4) (R*) Sup p2 dx+- Zd dx- O,(--Ap+p+zd) dx

where the function O, is defined by

(2.1.5) O,(s) ( s2/2
c(s- c/2)

We can show that the extrema of (R) and (R*) are equal, but we do not know whether
Problem (R*) has a solution in X.

We want to extend Problem (R*) to BLo(f), and the new difficulty is that we
cannot define O,(ix) for any bounded measure Ix, due to the quadratic behaviour of
(R), at infinity. We recall in the following proposition the results of [DT2] that are
necessary to extend Problem (R*) to BLo(f/).

PROPOSITION 2.1.2. Let (R) be defined as in (2.1.5), and Ix be a bounded measure
on 1). We suppose that tx admits the Lebesgue decomposition Ix h. dx + 0..
singular with respect to the Lebesgue measure and such that

(i) Ix. is positive i.e., 0.. =- 1 in f).
(ii) h- -Inf (h, 0) is in

Then the bounded measure (R),,(ix) is defined by

(2.1.6) O(ix)(Ooh). dx+O,(O.).
with O,(s) 0 if s < O, and + if s >- O, and we have the duality formula

(2.1.7) Vo() (O,(ix),)=Sup(I’g’dix-f’O*(g)’dx),
the supremum being taken for g Co(f), g <-_ ct in . It/toreover, relation (2.1.7) is still
valid for dp dp >= 0 in f.

(These results come from Theorem 2.1 of [DT2].)
Remark 2.1.1. In this particular case, the expression of O(ix) is

(2.1.8) oo(,) (Ooh)- dx+,. .
We define the set M()={IX Mr(f/), Ix satisfies (i) and (ii)). One of its main
properties [DT2, Lemma 3.2.1] is the following.

(A) If IX, is a sequence in M’ (f) such that O, (ix) is bounded, and if Ix converges
vaguely to a measure Ix, then Ix belongs to M(f). Furthermore, we have

(R)(IX) <_- li (.).

We can now give the expression of the generalized problem (S*):

(2.1.9) (S*) Sup u2 dx +- Zd dx- (R)(-Au + u + Zd)

where the supremum is taken for u BLo(f), (-Au + u + Zd) M (f).
Obviously we have

(2.1.10) Inf (R) <_- Sup (S*).

Our purpose in the next section will be to define a generalized duality between (R)
and (S*), so as to give the system of optimality conditions for Problem (R).
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2.2. Green’s formula and duality. If z and u are admissible, respectively, for (R)
and (S*), we can see that it is no longer possible to define (-Au + u) z as a bounded
measure by using the method of Proposition 1.4.1, for z is not bounded in 12. However,
we can prove a very similar result.

PROPOSITION 2.2.1. Let (z, u) be a couple of admissible elements, respectively, for
R and S*). The distribution (-Au + u) z is a bounded measure in f, and the Green

formula (1.4.2) still holds.
Proof. Let us admit for the moment the following result.
LEMMA 2.2.2. Let y, v) belong to X BLo(12), such that (-Av+ v) is a positive

measure; then the distribution (-Av + v) y defined in (1.4.1) is a bounded measure, and
we have the equality

(2.2.1) f (-Av+v) y= I (-Ay+ y)

We can now prove Proposition 2.2.1. We write u ul- u2, where ul and u2 are
obtained by solving the Dirichlet problems corresponding, respectively, to (-Au + u +
Zd)/ and((--AU+U+Zd)-+Zd). Then (-Au+ u) z is defined as a measure by using
Lemma 2.2.2, (-Au2 + u2) z has a natural meaning (thanks to the assumptions on u),
and the Green formula comes from (2.2.1) and the classical formula in X. That proves
Proposition 2.2.1.

Proof of Lemma 2.2.2. We start with the case where y has a constant sign, say
y-< 0, and use a sequence y,, of smooth functions satisfying the following conditions"

(i) y, converges to y in X;
(ii) For all n , 0 >_- Yn >- Inf y in f.

Such a sequence is obtained in exactly the same way as the sequence zn of Proposition
1.4.1. We set T’, (-Av + v) .y; T’, is a bounded negative measure (for y, is smooth
in f), and we have the equality

(2.2.2) fa(-Av+v)" y= f (-Ay,,+ y,,)" vdx

(see the proof of Proposition 1.4.1). The right-hand side of (2.2.2) has a limit because
of (i); moreover, due to the assUmptions on the signs of (-Av + v) and yn, the left-hand
side of (2.2.1) is the opposite of the norm of (-Av+ v) y, in M(f). Hence, we can
ensure that the sequence T’, is bounded in M(f). Therefore, (-Av + v) y is a bounded
measure on f, as the limit in ’(f) of a bounded sequence in M(f).

Now one thing is left to prove, namely, the tight convergence of T’, to (-Av + v) y.
As a matter of fact, that will be sufficient to prove (2.2.1). Let us consider the linear
functional T’,’, defined on c(f) by

(2.2.3) (T, )= [-Av+v]y,,. q.

For the same reasons as in Proposition 1.4.1, we have, for

(2.2.4t (T, )= f [-A(y,,. b)+ y,," ] v dx.

Hence, (T’,’)n is a sequence of negative linear functionals on c(12), which is bounded
in [c(12)]’ (use (2.2.4) with = 1). Thus, there exists a subsequence, still denoted by
T’,’, which is vaguely convergent to a functional T" in c(12)]’. As f is compact, the
vague and tight convergences are equivalent, for positive measures on f. We now use
this result from [B]"
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Result. The canonical injection from the positive cone of Ml(- onto its image
in [c(f)], is a homeomorphism when each space is endowed with the topology of
tight convergence.

As we obviously have i(T’,)= T, the tight convergence of T’, to [-Av+ v].y is
proved.

We now return to the general case: when y is in X, we can always write it as the
difference of two positive elements of X. For instance, we can solve the Dirichlet
problems relative to the positive and negative parts of (-Ay+y). Thanks to the
maximum principle, the corresponding functions Yl and Y2 are positive, and we
obviously have y=yl-y; we then set [-Av+v]. y=[-Av+v], yl--[--Av+v]’y2
and, using the results above, define [-Av + v]. y as a bounded measure. This definition
of [-Av+ v].y is independent of the decomposition of y as the difference of two
positive functions in X; that is a consequence of (2.2.4), and of the density of cgoo(O)
in (1)). Hence Lemma 2.2.2 is proved.

Remark 2.2.2. The application y [-Av + v].y, for fixed v, is continuous from
X endowed with its strong topology, into M(f) endowed with the topology of tight
convergence. That is also a consequence of (2.2.4), and ofthe density of (f) in

We now have all the technical elements required to solve Problem (R) completely.
Before giving our final results, we state a lemma.

LEMtA 2.2.3. Let K* be the functional defined in BLo(f) by

(2.2.5) K*(u) ifuBLo(ll),(-Au+u+za)M"(O),
+oo otherwise.

K* enjoys the following properties"
(i) If (z, u) is a couple ofadmissible elements respectively, for (R) and (S*), we have

(2.2.6) (-K*(u)) <= k(z)--
(ii) Any sequence un in BLo(I)) such that K*(un) is bounded has a cluster point u

for the ’ topology of BLo(f), and we have

(2.2.7) K*(u) <= lirn (K*(u.)).

Proof. The proof is omitted. It is definitely similar to that of Lemma 1.5.1 because
of the duality formula (2.1.7) and Proposition 2.2.1.

We now conclude the study of the optimality system for Problem (R).
THEOREM 2.2.4. (i) The extrema of (R) and (S*) are equal.
(ii) There exists a solution of Problem (S*) in BLo(12).
(iii) The necessary and sufficient conditionsfor a couple (z, u) ofadmissible elements

to be an optimal couple are

z2 dx,(2.2.8) (R),(-au+u+za)= (-Au+u+za)" z -in f.

Proof The proof is the same as that of Theorem 1.5.2.
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CONVERGENCE OF SQP-LIKE METHODS FOR CONSTRAINED
OPTIMIZATION*

STEPHEN WRIGHTS"

Abstract. The problem of constrained optimization

min f(x) s.t. x 12

is sometimes solved by an iterative method, in which 12 is replaced by some other set 12(xk) with simple
geometry at each iteration xk. Sequential quadratic programming methods for nonlinear programming are
the most obvious examples of this. The convergence behavior of such methods is examined by comparing
the sequence of iterates {x} with a sequence {y} of local minimizers for f in 12(xk). Issues of active
constraint identification are also discussed in terms of the geometry of the sets 12(x); conditions are given
for x/l and yk to lie on the same face of i(xk).

Key words, constrained optimization, sequential quadratic programming, local convergence

AMS(MOS) subject classifications. 49D37, 90C30.

(1.1)

1. Introduction. We consider the problem

min f(x) s.t.

where 12 c En and f: I --> [ is twice continuously differentiable. This problem has been
analysed extensively by numerous authors (see, for example, the recent work of Dunn
[5]-[7], Dunn and Sachs [8], Sachs [14], Calamai and Mor6 [3], and Burke and Mor6
[2]). Projected gradient, conditional gradient, and Newton-like methods have been
proposed for its solution. In all these methods, it may be necessary at some stage to
project a vector x [ onto 12, that is, to find

(1.2) arg min {11 x z III z }.

When 12 is geometrically simple (e.g., a disk, a cone, or a Cartesian product of these
objects) or when l-I is defined by a set of linear equalities and inequalities, (1.2) may
be computationally reasonable. However, when 12 is more complicated, it is impractical
to repeatedly compute the projection (1.2). An example is when 12 is defined by a set
of nonlinear equalities and inequalities, that is,

(1.3) 12={z[cj(z)>--_O,j 1,’’’, m,, ei(z)=O, i= 1,..., mE}.
A popular approach for such problems is known as sequential quadratic programming
(SQP). At each iterate xk, a "local linear approximation" f(xk) to 12 is formed. A
quadratic function is then minimized over this simpler set to obtain the next iterate
x+l. This approach appears to have been originally suggested by Wilson [17].

The local convergence behavior of such methods is fairly well understood when
"nondegeneracy" and "strict complementarity" conditions are satisfied at the solution
x*. Nondegeneracy conventionally refers to linear independence ofthe active constraint
gradients at x*, namely,

(1.4a) {Ve(x*), i= 1,..., mE, Vc.i(x*),j
where

(1.4b) *-- {jlc.(x*)--o} {1, , m,}.

* Received by the editors March 23, 1987" accepted for publication (in revised form) March 1, 1988.
? Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205.
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14 STEPHEN WRIGHT

Strict complementarity means that the Lagrange multipliers satisfying the Kuhn-Tucker
conditions, that is,

(1.5) Vf(x*) . Vei(x*) + hj Vci(x*),
i=1 ja*

are nonzero (in the case of the ) and strictly positive (in the case of the ). In this
paper, we are concerned with local convergence when these assumptions are relaxed.
In particular, when f is defined by (1.3), it is not assumed that the active constraint
gradients are independent at x*. A weaker nondegeneracy condition due to Dunn [7]
is assumed instead. We examine the convergence of the sequence of iterates {xk} relative
to a sequence {y}, where each y is a minimizer off(x) on the set O(x). (Of course,
yk is not computed.) Results concerning the convergence of {xk} to x* are-not obtained
directly--these depend on the rate of convergence of {y} to x*, which may be linear
when the constraint gradients are linearly dependent.

In 2, we restate some definitions, due to Burke and Mor6 [2] and Clarke [4],
which describe the geometry of sets in Nn, the tangent and normal cones for such sets,
and special subsets known as faces. The basic quadratic-programming subproblem is
defined in 3. Also, since the sequence of linear approximations {f(x)} does not
generally converge to f, it may be that the SQP method will not converge to a solution
of (1.1). Some sufficient conditions that ensure the limit point x* does solve (1.1) are
also discussed in 3. In 4, two theorems relating to the convergence are presented.
Each uses a different approach, and makes different assumptions about the sequence
of minimizers {yk} and the behavior off in a feasible neighbourhood of the solution.
Finally a discussion of possible choices of g/(x) appears in 5.

2. Definitions and notation. Here we restate some of the definitions of Clarke [4]
and Burke and Mor6 [2], particularly those concerning faces of a convex set in

For a general set f c Nn, the tangent cone T(x; gt) at a point x is defined as "the
set of vectors u e t such that for every sequence w in f converging to x and every
sequence ti in (0, oe) converging to 0 there is a sequence u converging to u such that
wi + tiu f for all i" (Clarke [4]). When f is convex this definition is equivalent to
"the set ofvectors u such that there is a sequence wi in 12 such that (w- x)/llwi-
converges to u Ilu II." The normal cone can be defined by polarity:

N(x; f)= T(x; f)= {vl(u, v}=<0 Vu e T(x; f)}.

In the case of 1) convex,

N(x; f)={vl(v, z-x> <-O Vz e l2}.

The projection operator Pn relative to 11 is

Pa x arg min z x III z
Clearly this is a contraction operator when f is convex, that is,

(see Calamai and Mor6 [3]).
The affine hull att (S) of a set S c " is the smallest affine set that contains S, and

we use ri (S) to denote the interior of S relative to att (S). Using these definitions,
we can state the first-order necessary conditions for a point x* 12 to be optimal in
problem (1.1).

DEFINITION 2.1. X*e f is said to be a stationary point for (1.1) if

(2.1) -V/(x*) 6 N(x*;
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THEOREM 2.2 (Clarke [4]). Condition (2.1) is a first-order necessary condition for
x* to be optimal for (1.1).

Dunn’s [7] nondegeneracy condition then follows.
DEFINITION 2.3. A stationary point x* is said to be nondegenerate if

-Vf(x*) ri (N(x*; O)).
Consider now a convex set O, c Nn. There is a special class of subsets of O.

known as faces, that can be defined as follows (see Burke and Mot6 [2, Thm. 2.1],
Rockafellar 12]).

DEFINITION 2.4. A convex subset OF of O, is a face of , if, for all convex
F f, such that ri (F) meets OF, we have F

A face Oe , is said to be exposed if

fF arg max {b (x)l x O,}
where th is some linear functional. It is proved in Burke and Mor6 [2] that the normal
and tangent cones to f are the same for all x ri (OF); hence we can use the notation
N(OF; O.) instead of N(x; O,), where x ri (OF).

A face 12F is referred to as a quasi-polyhedral face of O, if

aft (OF) x + lin (T(x)),

for any x OF, where the lineality lin (T(x)) is defined by

lin (T(x)) T(x) f) (- T(x)).

Some examples of such faces are given by Burke and Mor6. In the special case of
polyhedral, all faces are quasi-polyhedral. The definition above is closely related to
that of an open facet, as proposed by Dunn [7].

An important result regarding quasi-polyhedral faces is proved in [2].
THEOREM 2.5 [2, Thm. 2.8]. Let OF be a nonempty face of a convex set 2,. Then

OF is a nonempty quasi-polyhedral face if and only if OF+ N(OF; O,) has an interior.
When this is true,

int (OF+ N(OF; f,)) ri (OF) +ri (N(OF; O,)).
IffF is a quasi-polyhedral face such that x* ri (OF), and if x* is a nondegenerate

stationary point, that is, -Vf(x*) ri (N(OF; 12,)), then it follows from Theorem 2.5
that

x*- Vf(x*) int (OF + N(OF; f,)).
This observation is used by Burke and Mor6 to obtain results concerning the iden-
tification of active constraints, and will be used here in subsequent sections.

Throughout this paper we use B to denote the closed unit ball in N" and I1" to
denote the Euclidean norm.

3. SQP methods--optimality conditions and active constraint identification. In this
section we consider sequential quadratic programming methods for solving (1.1), in
which the sequence {Xk} is generated according to the following scheme:

At Xk, solve

min (pg, Vf(Xk))q-1/2(pk, BkPk)
Pk

(3.1)
s.t. Xk+Pk O(Xk);
set Xg+ =xg+pk.

Here {Bk} is a bounded sequence of symmetric matrices and f(. can be regarded as
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a multifunction that maps n to subsets of ". Previous work by Dunn [5], [6], Burke
and Mor6 [2], Sachs [14], and others has dealt with the case fl(Xk)=[l. That is, all
iterates Xk are feasible with respect to the original feasible set II. If, as is usual in these
papers, II is assumed to be convex, then Xk + hpk [l for all h [0, 1], and so a line
search can be used in such a way as to ensure global convergence of the method. This
is not appropriate in (3.1), as it is possible that Xk + hpk -f(Xk) for all h [0, 1). Hence
we are only concerned here with issues of local convergence, and we assume that the
full step Pk is taken at each iteration.

In the remainder of the paper we use the following assumptions.
Assumption 3.1. (i) [l(x) is closed and convex for all x
(ii) If {Xk} converges to x*, then fl(Xk) converges in the Kuratowski sense to

some convex set fl. c 1". That is,
(a) All sequences {Yk} with Yk l’l(Xk) have all their accumulation points in

(b) For all y ll. there is a sequence {Yk} with Yk II(Xk) such that lim Yk Y.
Assumption 3.2. Algorithm (3.1) generates a sequence {Xk} that converges to a

point x* l) which is a nondegenerate stationary point off in fl.. (Note that x*
follows from (3.1) and Assumption 3.1.)

Notes. (i) Kuratowski convergence of sequences of sets is discussed in more detail
in Salinetti and Wets 15] and Attouch 1 ]. For further information on convex multifunc-
tions of the form fl(Xk), see Robinson [11] and Rockafellar [13]. Assumption 3.1(ii)
is weaker than any of the variants of Lipschitz continuity of multifunctions discussed
in Rockafellar [13]. Note also that we do not assume above that fl. II(x*).

(ii) Assumptions of the form 3.2 are usually made when the local convergence
properties of a method are being studied. The purpose of a global convergence analysis
is to show that convergence to a stationary point occurs from any given starting point.
Since substantial modifications are usually required to ensure global convergence of
SQP methods, we do not perform a global analysis here.

We do not assume that x* is stationary with respect to ll, and the following
example shows that this does not generally follow from Assumption 3.2.

Example 3.3. Consider

minx s.t. c(x) x >- O.

Applying the usual SQP algorithm starting at the point Xo 1, with Bk =- 0 and

a(x) {z Iv c(x)(z x) + c(x) >- 0}

{z Zxz x >-_ 0},
we obtain the sequence Xk 2-k which converges to x* 0. For this problem f f(0), but f, +. The point x* is optimal in l, but is not even a stationary point in 1).

The following theorem gives a sufficient condition for x* to be a stationary point
of (1.1).

THEOREM 3.4. Suppose x* is a stationary point offin ,. If T(x*; f) T(x*; ,)
then x* is also a stationary point off in .

Proof The proof follows from N(x*; f,) N(x*; f).
To find situations in which the condition of Theorem 3.4 holds, consider the

nonlinear programming problem in its standard form:

minf(x)

(3.2) s.t. cj(x) >- O, j 1,. ., mx,

ei(x) 0, i= 1,...,
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Here the feasible set 12 is given by (1.3). The functions f, cj, and ei are assumed to be
twice continuously ditterentiable. The multifunction 12(x) is usually generated by
linearization of the constraints about x:

def{ <Z--X, VCj(X))"’Cj(X)O, j=l,...,m,}(3.3) f(x)=A(x) z
(z-x, Ve,(x))+e(x)=O, i=1, ,me

An often-used sufficient condition for a stationary point x* of f in 12 to be a Kuhn-
Tucker point for problem (3.2) is that

{ (u’vc(x*))>-O’ ja’*
(3.4) T(x*;12)= T(x*; A(x*))= u

(u, Ve,(x*))=0, i=l,..., me
where z* is defined in (1.4b). This is referred to as the Guignard constraint qualification
(see Gould and Tolle [10] and Fletcher [9]).

The conditions T(x*; f)c T(x*; 12.) and (3.4) are not equivalent, nor does one
imply the other. In Example 3.3, clearly T(0; 12.)=+ and T(0; f)=, but f(0)=
A(0) , and so (3.4) is satisfied. On the other hand, we have in the following example
that T(x*; 12)c T(x*; 12.), but (3.4) is not satisfied.

Example 3.5. The problem

min z s.t. Z2 0, Z2 Z31
z

has solution x*= 0. From (3.3)

A(z)= {y ly_>-_ O, y2<= 3z2y, 2z3a}.

If the starting point Xo (1, 0)7‘ is used, the method (3.1) with Bk =0 generates the
sequence xk ((), 0) . Clearly 12. {(y, 0) 7-lY e R+} and T(0; 12.) 12.. However,

A(0) {(y,, 0) 7‘ lY, e [},

and so condition (3.4) is not satisfied.
The following result gives sufficient conditions for both T(x*; 12,) T(x*; 12) and

(3.4), in some familiar cases.
THEOREM 3.6. Consider problem (3.2) and assume that the c, e are all twice

continuously differentiable. Suppose x* 12, and let {Xk} be any sequence converging to
x*. Assume also that f(x) A(x) (from (3.3)). Then sufficient conditionsfor T(x*; 12)
T(x*; 12.), and condition (3.4), are the following:

(a) cj(x), j 1,. ., mr and ei(x), 1,. ., me are linear functions;
(b) The set {Ve(x*), i= 1,..., me, Vcj(x*),j z*} is linearly independent.
Proof (a) The proof follows from the fact that A(x) 12 12. for all x, and since

f is polyhedral, (3.4) holds for all feasible x*.
(b) The inclusions T(x*; 12) T(x*; A(x*)) and T(x*; 12.)c T(x*; A(x*)) fol-

low from the assumed continuity properties of the cj and ei, and Assumption 3.1.
Linear independence is not needed here. The reverse inclusion T(x*; A(x*))
T(x*; 12) is proved in Fletcher [9, Lemma 9.2.2] using the linear independence
assumption.

We complete the proof by showing that T(x*; 12) T(x*; 12.). Choose u
T(x*; f)\{0} and assume without loss of generality (since T(x*; 12) is a cone) that
u 1. Then there are sequences u,, u and t,, $ 0 such that

cj(x* + tu,,) >= O, j 1,.

ei(x* + t,,u,,) O, 1,. , mz.
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Hence

(3.5)
Cj(Xk)+<VCj(Xk), X* + tmUm --Xk)+

ei(x)+(Ve(x), x* + t,,u,, -x)+

where ][d’)ll O([]x* + t,,u -x][) [[dl2)]l. Now it f611ows from the linear indepen-
dence assumption and the fact that x-.x* that Vc3(x), j* and Ve(x), i=
1,. ., mz are linearly independent for k sufficiently large. Hence for such k there is
a vector g, that satisfies

(VCj(Xk), gkm)-- d.l l), j *,

(Vei(xk), gk,) =ui i=1,’’.,

gkm o(llx / t,Um

Hence from (3.5),

C.i(Xk)+(VC.i(Xk),X*+ tmU,+gkr--Xk)>--O, j*,
(3.6)

ei(xk)+(Vei(xk), x* + t,u, + gk, --xk) =0, i= 1," ",

Note that the inactive inequalities in (3.5) will always be satisfied for all k, rn sufficiently
large. Now from (3.6) we have that

x* + t,u,, + gkm A(Xk),

so choosing a subsequence in k if necessary and taking the limit as k- oo we obtain
by Assumption 3.1 that

(3.7) x* + t,,u,, + ,,
where , limk gk O(t). Defining

we have from (3.7) that x*+t,,a,,,f,, and that a,u, t,,$0. Hence u
T(x*; .).

The following result discusses a less familiar situation in which the condition of
Theorem 3.4 holds. We make use of functions h2 that provide general measures of the
curvature of the constraint functions near x*. The result shows that when 1 is an
intersection of convex sets, at least locally, then T(x*; 1) T(x*; .).

THEOREM 3.7. Suppose is defined by (1.3) with only inequality constraints (me
0). Let x* 1 be such that each c.i is twice continuously differentiable at x*. For each
active constraint j * define the function

h(v) c(x* + v)- (Vc(x*), v),

and the set

N./= {u [lull 1, u T(x*; f) and (u, Vc(x*)) 0}.

Assume that, for each j *, either Ci is a linear function or there exist constants 6 > 0
and T> 0 such that if N. is not empty,

(3.8) h( tv) < O for all (O, T], v e N + 6B.

Then if {Xk} is any sequence converging to x*, and f(x)=A(x), then T(x*;
T(x*; f,).
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Proof Take u T(x*; O)\{0} and assume without loss of generality that Ilull-
Then there are sequences u, - u, tm $ 0 such that x* + t,,u,, , that is,

cj(x* + t,u,) >- O, j 1,. ., m.
We aim to show that x* + t,,u, A(Xk) for rn sufficiently large, and for k >= kin, where
k,, is a positive integer to be defined. That is,

(3.9) Cj(Xk)-]-(VCj(Xk),X*Af tmUm--Xk)O j= 1,." ", mr.
This will ensure that x*+ t,um f,. Clearly (3.9) will be satisfied by the linear
constraints, and will eventually be satisfied by the inactive constraints j ,z*. For j
we have

c.i(x* + tmU,,) >= O,

(3.10) :> (V cj (x*), tmu,)>=-h(t,.u,.),
:> C(Xk + (V Ci(Xk ), t,.u,) >-- h(tum + c(xk + (Vc(x Vc(x*), t,Um).

By taking the limit in k in (3.10) and noting that h(t,u,)= O(t), we obtain

(vc.(x*), u) >_- 0.

If this inequality is strict then (VC(X*), u,,)> 0 for sufficiently large m, and then k
can be chosen large enough to ensure (3.9). Otherwise u N/, and so by the assumption
of the theorem hi(tmUm) < 0 for rn sufficiently large. If we choose k,, large enough so
that

c(x) + (v c(x) v c(x*), tu.)l <-_ -1/2h(tmUm),
I(V C(X), X* X)] <= -1/2h( tmU,)

for all k_-> kin, (3.9) follows from (3.10).
Example 3.8. Let- {X e 2 el(X X XI

K 0, C2(X X -1
t. X 0, C3(X X 0}

where K is some positive integer, at least 2, and let x*= (0, 0). Then

A(x) {y 2 Y2 >- Kx-’yl K 1)x, Y2 + Yl--> 0, y2 _-> 0}

and clearly, for any sequence converging to x*,

12, A(x*) {y =]y= / Yl 0, Y2 => 0},

T(x*; a)= r(x*; a,).
By the definitions of Theorem 3.7,

N, {(1, 0) r} and h,(tv)=-tU’v,
and condition (3.8) can be satisfied by choosing any 8 with 0< 6 < 1, and any T>0.
Note that the conditions of Theorem 3.6 do not apply.

Note that a more intuitive, but more restrictive, condition than (3.8) would be that

(u, V2c(x*)u) <= -a < 0 for all u N.
This condition implies (3.8) since

h(tv)=1/2tz(v, V2Cj(X*)V)’t O(t3)
<_ -1/4t-. <_ o

for 6, T sufficiently small, and [0, T].
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In the case in which fl is defined by (1.3), the issue of active set identification
consists of finding those indices j 1,.-., ml for which c(x*)=0, before x* itself
has been identified exactly. This is usually done by checking the sign of the Lagrange
multipliers at each iterate Xk, and by finding the linearized constraints from the previous
iteration with respect to which Xk is active. Using the general formulation (3.1), we
can instead state this issue in terms of finding the face of f. on which x* lies,
and determining whether this face can be "predicted" by the face of f(Xk) on which
Xk+ lies.

In the subsequent discussion, let be the face of 2. for which x* ri (fF). The
next results show how the faces of fl(Xk) are related to fF.

THEOREM 3.9. Let {Xk} be a sequence ofpoints converging to x*, with Xk+ f(Xk),
and suppose that the sequence {f(Xk)} satisfies Assumptions 3.1. Let fF be the face of
fl, for which x* ri (fF). Suppose {Yk} and {Vk} are two sequences such that Yk f(Xk).
Vk N(yk; f(Xk)), with Vk --) V* N(fF; f,). Then any accumulation point y* of {Yk}
satisfies

def

Y*fv. argmax{(p*,x)lxf.} and fFc
Proof. Clearly, by the assumptions on ,* and x*, the last part ofthe theorem is true.
By Assumptions 3.1, y* f.. Assume without loss of generality that Yk --) Y*. If

y* Oz, then there isome point z f/. such that

,*, z y*) > O.

Defining the sequence Zk Pa(xk)(z), we have that zk z, and hence that (,*, zk-y*) > 0
for k sufficiently large. In fact, by continuity, (vk, zk- Yk)> 0 for k sufficiently large,
which contradicts the assumption that Vk N(yk’, (Xk)). [’]

The inclusion fvc fe can be strict unless fF is quasi-polyhedral and
ri (N(12F; f/,)), as the following result shows.

THEOREM 3.10. Suppose there is a nonempty quasi-polyhedralface l-IF of the convex
set , and an element v* N(’F’, ’,). Define the face 12 as in Theorem 3.7. If
v* ri (N(’F; ’,)), then fe =IF; otherwise it is possible that the inclusion ’FC’E
is strict.

Proof Assume v* ri (N("F; ’,)). We need only prove the inclusion fz
Choosing points x0ri (fF) fe and x fe, we have for all h [0, 1] that

x, (1 h )Xo + hxl f

Also ,* e N(lIe; lI.),-.and so

Va,(x; + ’*) x;.

However, since Xo+ ,* e int (fF+ N(fF; f,)) (by Theorem 2.8 of Burke and Mor6
[2]) we have for some small positive )t that

x + ,* e int (fe + N(f; a,)).
Hence

xa Pn,(xa + v*) ri

and so by Definition 2.4, x fF, giving the first result.
For the second part, consider the example

Then

a {x e 21x O, x x2}.
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COROLLARY 3.11. Suppose the assumptions of Theorem 3.10 are satisfied, and that
{Yk} and {’k} are defined as in Theorem 3.9 with ,* ri (N(12F; f,)). Then all accumula-
tion points of the sequence {Yk} lie on 12F. I-I

The assumption that OF is quasi-polyhedral certainly holds when 12(Xk)= A(Xk)
(see (3.3)). Then each 12(Xk) is a polyhedron, and hence 12, is also polyhedral. In this
case all faces of , are quasi-polyhedral.

4. Convergence of SQP methods. Some results concerning the convergence of
algorithm (3.1) are presented in this section. For the case of standard nonlinear
programming (3.2), the convergence behavior is well known when the active constraint
gradients are linearly independent at x*. Here we establish results for the convergence
of {Xk} when this is not necessarily true.

It is assumed throughout that x* is an isolated local minimizer off in 12,, that is,
there is R > 0 such that

(4.1) f(x*) <f(x) for all x e f. f’l (x* + RB).

Convergence results are obtained by comparing the sequence {Xk} with a sequence
{Yk} consisting of local minimizers off in f(xk). Lemma 4.1 shows that it is possible
to choose the sequence {yk} such that Yk X*.

The result makes use of the concept of epiconvergence of a sequence of functions,
as discussed by Attouch [1, p. 26]. Briefly, we say that a sequence of functions
is epiconvergent if for all x e

sup lim inf inf Fk(u) sup limsup inf Fk(u)
V,/f(x) k V V./V’(x) V

where 3C(x) is the set of all open neighbourhoods of x in Nn. For e > 0 we need to
define the set

e -arg min G= {x[ G(x) <- -1/e or G(x) -<_ infun,, G(u)+ e}.

The lim sup of a sequence of sets {Sk} is defined similarly to Assumption 3.1(ii)(b),
that is,

S lim sup Sk
k

if each : e S is an accumulation point of a sequence {Xk} with Xk Sk. Finally, define
the indicator function of a set S as

0, xeS,I’(xlS)= +oo, xS.

LEMMA 4.1. Suppose Assumptions 3.1 and 3.2 are satisfied, and x* is an isolated
local minimizer of some twice continuously differentiable function f in ,. Then there
exists a sequence Yk such that Yk 12(Xk) is a local minimizer off in 12(Xk), and Yk x*.

Proof. Let R >= 0 be chosen to satisfy (4.1). Define a sequence of functions

F(xl f(x) + q(xla(x)) where R(Xk) (Xk) l"l (x* + RB).

By Theorem 1.39 of Attouch [1], Kuratowski convergence of the sequence {12R(Xk)}
(which follows from our Assumptions 3.1) implies epiconvergence ofthe corresponding
indicator functions. Hence the sequence {Fk} is epiconvergent, with a limiting function

F,(x)=f(x)+’I(xlf,) with

Now Proposition 2.9 of Attouch [1] states that for any positive sequence ek O,

(4.2) lim sup (ek-arg min Fk)C arg min F,.
k
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Since 12 R (Xk) is closed, Fk takes on its minimum value at some point Yk E R (XR), and

Yk E ek- arg min Fk.
Since arg min F. {x*}, then by (4.2) all accumulation points of {Yk} are x*, and since
by definition Yk X*W RB (a closed set) for all k, we have

lim Yk X*,
as required.

Each iteration of (3.1) entails the minimization of a quadratic approximation of
f(x) over a convex set f(Xk). Since the true minimizer off on this set is yk,it seems
appropriate to establish a relationship between IlXk--Ykll and Ilx+-yll.

THEOREM 4.2. Suppose 12(Xk) Nn is a convex set and Yk is a local minimizer of a
twice continuously differentiablefunctionfin I(Xk ). Let Xk+ be generated by the algorithm
(3.1). Suppose I)kF is the face of f(Xk) for which yg ri (fkP), and that 2kp is quasi-
polyhedral. Then there is a small positive number ek such that if
(4.3) (l,BklX)>--ak(tZ, tx) foralllz6lin (T(OkV;12(Xk))) andsomeak>O,

and IlXk --Ykll <= ek, then Xk+ ri (’kF)"
(Note. This result is similar to Theorem 4.1 of Burke and Mot6 [2]. However, we

state a proof below that will be useful in subsequent discussions.)
Proof We first seek a solution Pk of (3.1) such that Xk/ Xk q-Pk aft (kF)" Then

it is shown that IlPk[[ O([IXk--Ykl]) O(ek), and hence that IlXk+--Yk]I O(ek). Since

Yk ri (fk), it then follows that xg+ ri (fk) for ek sufficiently small.
Since we are assuming Xk + Pk aft (12kZ), and since Yk kP aft (fkV), we have

(4.4)
(Xk + pg Yk, t’) O,

:(Pk, l)=(yg--Xk, P) forall ,E N(12gz; 12(Xk)).
Using the optimality conditions for (3.1), we have

--Vf(Xk)- BkPk N(OkF; f(X)),
and hence

<Vf(x) + Bkp, z,- y>=O
for all z, e aft (fz). A similar equation holds for Vf(yk), by the optimality of y in
n(x):

(Vf(y), z-y)=O for all z aft (fv).
Since kV is quasi-polyhedral,

att (fkv)= y + lin (T(v; f(x))),
and so, from the two previous equations,

(4.5) <Bp,/z> <Vf(yk) Vf(x), Ix) for all /x e lin (T(f:; f(x))).
From Theorem 2.5, the vectors , and/x in (4.4) and (4.5) span [n. In addition, (4.3)
implies that p is uniquely determined by (4.4) and (4.5), and from the right-hand
sides of these equations we have that

Note that the second-order sufficient conditions for Pk to be a minimizer of (3.1) are
satisfied because of (4.3). So we have found Xk+=Xk+Pk such that Xk+lEaff(fkp)
and Ilx./-y.[[-- O(llx.-Y.II)-- O(.). Since Yk ri (fkF) and ri (fkF) is the interior
of fkV relative to aff(fkF), it follows that Xk+lri(fkF) for ek sufficiehtly
small.
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In the proof above it is not necessary for Yk to be a nondegenerate minimizer in
fi(Xk), nor is it assumed that Xk fi(Xk).

THEOREM 4.3. Let f be twice continuously differentiable, and suppose that the
sequence {Xk} generated by (3.1) with Bk =V2f(Xk) converges to x*, an isolated local
minimizer off in fi.. Suppose Assumptions 3.1 and 3.2 are satisfied, and let {Yk} be
chosen as in Lemma 4.1, so that Yk - X*.

For some k sufficiently large, assume that theface fig,=Of fi(Xk) for which Yk ri (fkz)
is quasi-polyhedral, and that

(4.6) (l, V2f(x*)lx)>-_bk(iX, lx) for some bk >O, and all/xlin (T(fikF; fi(Xk))).

Then there is ek > 0 such that if

then

Xk+, ri (fikF) and IIx+,-Y, II-- O(llx,-Y, ll).

Proof Set ak =1/2bk and Bk V2f(Xk). Then for k sufficiently large, (4.6) implies
(4.3). Hence from Theorem 4.2 there is ek >0 such that x +Pk fikV. Further, from
(4.5) with Bk V2f(Xk), we find that

(V2f(Xk)(X, +Pk--Yk), /X)= O(llx. y.l[) for all/x lin T(fikF; fi(Xk))).

Combining this with (4.4), we obtain

IIx, +p,-y, II- o(llx,

The result above follows from the analysis of Newton’s method on a convex set
(see, for example, Dunn [6], Dunn and Sachs [8], Sachs [14], and the references cited
in these sources). It is shown in those papers that conditions other than (4.6) can be
used to obtain convergence results. Below, the analysis of Sachs [14] is used to prove
a variant of Theorem 4.3 in which the assumption of quasi-polyhedrality of -kF is not
required, and an alternative to (4.6) is used. We show subsequently that the alternative
condition is neither weaker nor stronger than (4.6).

We start by defining a function that gives a measure of the increase of a quadratic
approximation to f in a feasible neighbourhood of a given point :. Let V be a closed
bounded set in " and suppose V. Define

c(o-; , V) inf
xEV

(x- , Vf()) + 1/2(x :, Vf()(x

In the following result we make use of the sets ’R(Xk) and ’R*, as defined in the
proof of Lemma 4.1, and show how the function c(tr; x*, fR*) is related to a perturbed
version c(tr; yk,-R(Xk)). Recall that R is chosen so that x* is the unique global
minimum of f in fiR*.

LEMMA 4.4. Letfbe twice continuously differentiable. Suppose Assumptions 3.1 and
3.2 are satisfied, and that the sequence {Yk} is chosen as in Lemma 4.1. Define

/x (k) max {lly, x* II. V/(y,) f(x*)II, IIvf(yg v2f(x*) 11},

/x2(k) inf {r [a(x.) a,. + rS}.

Suppose that, for some a > 0 and ce [2, 3),

c(tr; x*, fiR.) >---- act for all cr > O.
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Then for each (0, a) and 6. > 0 there is a that satisfies 0< < 6. such that if
/zl(k) +/x2(k) <= 6 then

c(o-; Yk, fR(Xk)) >---- aO" for all tr > 6.

Proof. The proof follows from Theorem 3.1 of [14] and Theorem 1 of [8].
LEMMA 4.5. Suppose the assumptions of Lemma 4.4 hold. Then for each (0, a)

and each 6. > 0 there is an integer K (a, 6.) such that for all k >-K (a,

c(tr; Yk, fR(Xk)) >---- 0"’ for all tr > 6..

Proof. By Assumption 3.1, /2(k)0 as k-c, and by the continuity properties
off and the fact that Yk X*, also/x(k) 0 as k . The result follows from Lemma
4.4 by choosing K(a, 6.) so that/x(k)+/x2(k) =< 8 for all k>=K(a, 6.).

These results show that, outside of a small ball around Yk, the increase rate of
c(o-; Yk, fR(Xk)) matches that of c(tr; X*,fR*). Finally we use this fact to find a
relationship between IIx. y, and t[Xk+i-- Yk I1"

THEOREM 4.6. Suppose the assumptions of Lemma 4.4 hold, and that the sequence
{Xk} is generated by (3.1) with Bk V2f(Xk). Thenfor each 6. > 0 there is an integer
such that for k >- K (6.),

Xk +1 Yk <- 3’ Xg Yk 2/(-,,
provided

where e and T are positive constants that do not depend on 6..

Proof. Choose K(6.)=K(a/2,6.). Then by Lemma 4.5, C(O’;yk, fg(Xk)) >-

(a/2)o" for all tr> 6.. The result then follows directly from Theorem 2.3 of [14].
The assumption (4.7) may preclude the use of Theorem 4.6 when the convergence

of Yk to X* is slow. This is because, by the conditions of Lemma 4.4,

IIx*-Yk ,(k) _-< < 6.,

and so (4.7) certainly cannot apply if

(4.8) Xk Yk X*

Finally, we give examples to show that the assumptions of Theorems 4.3 and 4.6
are independent.

Example 4.7. (i) The problem

minz s.t. z2->z, z2->-z
has solution x* (0, 0) . Assume f(x)= A(x), and so f(Xk)---- f= {yly2 >- Yl, Y2 ->- -Y},
and Yk 0. Then lin (r(yk; (Xk))) {(0, 0) r} for all k. Also (0, 0) r is a quasi-polyhe-
dral face of Ft(Xk) and so the conditions of Theorem 4.3 are trivially satisfied. Clearly
f. f and so from the definition of c,

c(tr; O, a,) infllxll_>,,x* (Vf(O), x) + 1/2(x, V-f(O)x) O;

therefore the conditions of Theorem 4.6 cannot be met.
(ii) Consider

min (-cos

The solution is again x*= (0, 0) . Define

s.t. z2>---[ZI[4/3.

f(z) {y ly -z+ ly14/3}.



CONVERGENCE OF SQP-LIKE METHODS 25

Denote the components of the current iterate Xk by Xk, and Xk,2. The subproblem in
(3.1) at Xk with Bk V2f(Xk) is

min (sin Xk,2)(Xk+,2- Xk,2) +1/2(COS Xk,2)(Xk+,2- Xk.2)2
Xk+l,2

s.t. Xk+l,2 >
2 14/3--Xk,2 -Jr- IXk+,

So if we set Xo. =0, Xo.z small, the sequence generated by (3.1) satisfies

Xk+l, 0, Xk+l,2 --Xk,2

Also x*=(0,0) T is always feasible, and so we can choose yk---- (0, 0) T. Then
lin T(yk; 12(Xk))) =R", but clearly (4.6) is not satisfied. However, since F(Xk) f(O)
f, Assumption 3.1 holds. Also c is defined by

c(r;0, f)= inf 2

ilxll>=

The infimum is clearly attained when z Izl4/3, and z+ z= tr2; hence

z/ [zl8/3-  = lz,I for small o-.

Hence

c(r; 0, f) 1/2/,
and so the condition on c can be satisfied for some choice of a > 0, a e (2, 3), R > 0.
Also note that for the sequence generated above, IIx*-y.II--0, and so no problems
of form (4.8) arise. Hence the conditions of Theorem 4.6 hold.

5. Discussion. The weakness of the assumptions on the sequence of sets f(Xk)
(Assumptions 3.1) gives rise to consideration of some alternatives to the standard
choice A(Xk), which is often used in algorithms for problem (1.1)-(1.3). For instance,
instead of forcing a linearized equality constraint to hold exactly, as in

(z-x,, Ve,(xk))+ e,(Xk)=O,

we could instead allow some "slack," as in

(Z--Xk, Vei(Xk))+ei(Xk)>=--’Oik, (Z--Xk, Vei(Xk))+e,(Xk)<=rlk

where rl,k>=O and r/k-->0 as k-->m. If ,-le,(x)l with ’ke(0,1), then (5.1) is
enforcing a "linearized reduction" in e. Similarly, we may allow some "slack" in the
linearized inequalities, as in

(z- x, vc(x)) + c(x) >--where )2 _-> 0 with
The use of an active set strategy, in which l(xk) is defined as

(Z--Xk, VC.j(Xk))-l Cj(Xk)=0, j .ZTb kl)(xk)= z
(Z--Xk, Vei(Xk))+ ei(Xk)=O, i=l,...,m’

also satisfies Assumption 3.1, provided that the sequence of active sets k only changes
finitely often. In a similar vein we could use the definition

f(Xk) Z
(Z--Xk, Ve(x))+ ei(Xk) =0, i= 1," ", me

where h, c {1,. ., m} excludes those constraints that obviously will not be active at
x* (thereby saving the cost of evaluating these constraints and their gradients).
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The case in which TCj(Xk) and Vei(Xk) are approximated rather than calculated
exactly is also covered, provided that the approximations are asymptotically exact as
k-* . For example, to avoid recalculation of V ei and V cj at every step, the same
values might be used for more than one iteration. Finite-difference approximations
might also be considered where appropriate.

A final possibility is the use of a trust region bound on the step size at each
iteration, as in

f(Xk) A(Xk) fq (Xk + RkB)

where Rk > 0. It is clear that O(Xk) may be empty if Rk is too small and Xk f(Xk).
Hence in Yardi 16] this is combined with the use of slackness in the equality constraints
of the form

(z-x, Ve(x)) + ae(x)=0
where a (0, 1], to produce a globally convergent SQP method. This overall strategy
is also covered by our earlier analysis.

Acknowledgment. I wish to acknowledge the detailed comments of a referee which
greatly improved the paper.

REFERENCES

[1] H. ATTOUCH, Variational convergence offunctions and operators, in Research Notes in Mathematics,
Pitman, London, 1985.

[2] J. V. BURZE AND J. J. MORg, On the identification of active constraints, SIAM J. Numer. Anal., 25
(1988), pp. 1197-1211.

[3] P. H. CALAMAI AND J. J. MOR, Projected gradient methods for linearly constrained problems, Math.
Programming, 39 (1987), pp. 93-116.

[4] F. H. CLARKE, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[5] J. C. DUNN, Newton’s method and the Goldstein step-length rule for constrained minimization problems,

SIAM J. Control Optim., 18 (1980), pp. 659-674.
[6] Global and asymptotic convergence rate estimates for a class of projected gradient processes,

SIAM J. Control Optim., 19 (1981), pp. 368-400.
[7] On the convergence of projected gradient processes to singular critical points, J. Optim. Theory

Appl., 55 (1987), pp. 203-216.
[8] J.C. DUNN AND E. SACHS, The effect ofperturbations on the convergence rates ofoptimization algorithms,

Appl. Math. Optim., 10 (1983), pp. 143-157.
[9] R. FLETCHER, Practical Methods of Optimization, Vol. 2: Constrained Optimization, John Wiley, New

York, 1981.
[10] F. J. GOULD AND J. W. TOLLE, A necessary and sufficient qualification for constrained optimization,

SIAM J. Appl. Math., 20 (1971), pp. 164-172.
11 S. M. ROBINSON, Regularity and stability for convex multivaluedfunctions, Math. Oper. Res., (1976),

pp. 130-143.
[12] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[13] , Lipschitzian properties of muir(functions, Nonlinear Anal., 9 (1985), pp. 867-885.
[14] E. SACHS, Newton’s method for singular constrained optimization, Appl. Math. Optim., 11 (1984),

pp. 247-276.
[15] G. SALINETT AND R. J.-B. WETS, On the convergence of sequences of convex sets in finite dimensions,

SIAM Rev., 21 (1979), pp. 18-33.
[16] A. VARD, A trust region algorithm for equality constrained minimization: convergence properties and

implementation, SIAM J. Numer. Anal., 22 (1985), pp. 575-591.
[17] R. B. WILSON, A simplicial algorithm for concave programming, Ph.D. thesis, Graduate School of

Business Administration, Harvard University, Cambridge, MA, 1963.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 27, No. 1, pp. 27-42, January 1989

(C) 1989 Society for Industrial and Applied Mathematics

003

THE REGULAR FREE-ENDPOINT LINEAR QUADRATIC PROBLEM
WITH INDEFINITE COST*

HARRY L. TRENTELMAN

Abstract. This paper studies an open problem in the context of linear quadratic optimal control, the
free-endpoint regular linear quadratic problem with indefinite cost functional. It is shown that the optimal
Cost for this problem is given by a particular solution of the algebraic Riccati equation. This solution is
characterized in terms of the geometry on the lattice of all real symmetric solutions of the algebraic Riccati
equation as developed by Willems [1EEE Trans. Automat. Control, 16 (1971), pp. 621-634] and Coppel
[Bull Austral. Math. Soc., 10 (1974), pp. 377-401]. A necessary and sufficient condition is established for
the existence of optimal controls. This condition is stated in terms of a subspace inclusion involving the
extremal solutions of the algebraic Riccati equation. The optimal controls are shown to be generated by a
feedback control law. Finally, the results obtained are compared with "classical" results on the linear
quadratic regulator problem.
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1. Introduction. In this paper we are concerned with regular, infinite-horizon
linear quadratic optimal control problems in which the cost functional is the integral
of an indefinite quadratic form.

In most of the existing literature on the regular linear quadratic (LQ) problem, it
is explicitly assumed that the quadratic form in the cost functional, apart from being
positive definite in the control variable alone, is positive semidefinite in the control
and state variables simultaneously. In fact, under this semidefiniteness assumption the
LQ problem has become quite standard and is treated in many basic textbooks in the
fieldof systems and control [1], [2], [9], [21]. Often a distinction is made between
two versions of the problem, the fixed-endpoint version and the free-endpoint version.
In the fixed-endpoint version it is necessary to minimize the cost functional under the
constraint that the optimal state trajectory should converge to zero as time tends to
infinity, while in the free-endpoint version it is.only necessary to minimize the cost
functional. For the case that the quadratic form in the cost functional is positive
semidefinite both versions of the regular LQ problem are well-understood and
completely satisfactory solutions of these problems are available.

Surprisingly, however, for the most general formulation of the regular LQ problem,
that is, the case that the quadratic form in the cost functional is indefinite, a satisfactory
treatment does not yet exist. In this case we can again distinguish between the
fixed-endpoint version and the free-endpoint version. While for the fixed-endpoint
version a complete solution has been described in 17] (see also 14]), the free-endpoint
version has only been considered in 17] under a very restrictive assumption. Thus we
see that, up to now, the free-endpoint regular LQ problem with indefinite cost functional
has been an open problem. In the present paper we shall fill up this gap and present
a fairly complete solution to this problem.

It is well known [12], [19] that for the free-endpoint regular LQ problem with
positive semidefinite cost functional, the optimal cost is given by the smallest positive
semidefinite real symmetric solution of the algebraic Riccati equation. We will see that
this statement is no longer valid in general if the cost functional is the integral of an
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indefinite quadratic form. It will be shown, however, that in this case also the optimal
cost is given by a solution of the algebraic Riccati equation. This particular solution
will be characterized in terms of the geometry on the set of all real symmetric solutions
of the algebraic Riccati equation as described in [17] and [4].

Another well-known fact is that, for the free-endpoint regular LQ problem with
positive semidefinite cost functional, the existence of optimal controls is never an issue"
under the assumption that the underlying system is controllable, for this problem
unique optimal controls always exist for all initial conditions. This is in contrast with
the fixed-endpoint LQ problem, where the existence of optimal controls for all initial
conditions depends on the "gap" of the algebraic Riccati equation (i.e., the difference
between the largest and smallest solutions of the Riccati equation). In this paper we
will see that also, for the free-endpoint regular LQ problem with indefinite cost
functional, optimal controls no longer need to exist for all initial conditions! Moreover,
we will establish a necessary and sufficient condition in terms of the "gap" of the
algebraic Riccati equation for the existence of optimal controls for all initial conditions.
We will show that for the particular case that the cost functional is positive semidefinite
this condition is always satisfied, thus explaining the fact that in this special case
optimal controls always exist. Finally, we will show that also in the indefinite case the
optimal controls for the free-endpoint regular LQ problem, if they exist, are given by
a feedback control law.

The outline of this paper is as follows. In the remainder of this section we will
introduce most of the notational conventions that will be used. In 2 we give formula-
tions of both the free-endpoint and fixed-endpoint regular LQ problems that we shall
be dealing with. In 3 we will briefly recall the most important facts that we need on
the geometry of the set of all real symmetric solutions to the algebraic Riccati equation
as developed in [17] and [4]. In 4 we will state the solution to the fixed endpoint
regular LQ problem with indefinite cost as established in [17]. Also, we will state its
(incomplete) counterpart, the solution to the free-endpoint regular LQ problem with
positive semidefinite cost functional. Then in 5 we will state and prove our main
theorem, a solution to the free-endpoint regular LQ problem. In order to establish a
proof of this theorem we will state and prove a series of smaller lemmas. In 6 we
will show how the "classical" results on the free-endpoint regular LQ problem with
positive semidefinite cost functional can be reobtained as a special case of our general
solution. We will close this paper in 7 with some concluding remarks.

We use the following notational conventions. For a given n x n matrix A its set
of eigenvalues will be denoted by o-(A). If V is a subspace of R" and A is an n x n
matrix then AI v will denote the restriction of A to V. V will be called A-invariant if
AVc V. In this case tr(AI v) will denote the set of eigenvalues of A V and tr(Al"/ v)
will denote the set of eigenvalues of the mapping induced by A in the factor space
ffn/V (see [21]). We will denote subsets of C by C-:={sClRes=0}, CO:
{s CIRe s =0}, and C/ := {s CIRe s > 0}. Given a real monic polynomial p there is
a unique factorization p p_ "Po’P/ into real monic polynomials with p_, Po, and p/

having all roots in C-, C, and C/, respectively. If A is a real n x n matrix and if p
denotes its characteristic polynomial then we define X-(A):= kerp_(A), X(A):
ker po(A), and X/(A):= ker p/(A). These subspaces are A-invariant and the restriction
of A to X-(A)(X(A), X/(A)) has characteristic polynomial P-(Po, P/).

A subset Cg of C will be called symmetric if a + bi Cg :> a bi Cg. If Cg is
given then we define Ch := C\Cg. If A is a real n x n matrix and if p is its characteristic
polynomial then, again, p can be factored uniquely into p =pg’pb, where pg and pb

are real monic polynomials with all roots in Cg and Cb, respectively. We denote
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Xg(A) := ker pg(A) and Xh(A):= ker ph(A). Again these subspaces are A-invariant and
the restriction of A to Xg(A)(Xb(A)) has characteristic polynomial pg(pb). In fact, the
subspace Xg(A)(X(A)) is equal to the linear span of all generalized eigenvectors of
A corresponding to its eigenvalues in Cg(Cb). Alternatively, Xg(A)(Xh(A)) is equal
to the largest A-invariant subspace V of" such that tr(A[V)c C(C).

If, in addition to A, a real p x n matrix C is given, then we denote

(ker CIA):= f k Cai-’,
i=1

the unobservable subspace of (C, A) [21, 3.2]. Given a symmetric subset C of C we
denote

Xdet := (ker CIA) Xb(A),

the undetectable subspace of (C, A) with respect to Cg. The pair (C, A) is called
detectable with respect to C if A is (Cg_) stable on the unobservable subspace of
(C, A), i.e., if

(ker CIA)c Xg(A)

(see [21, 3.6]). It is easy to see that (C, A) is detectable if and only if Xdet 0. Also,
(C, A) is detectable if and only if for all h C we have ker (A-hi) f3ker C =0 (see
[15]).

In order to be rigorous on the interpretation of the cost functionals that will be
considered in this paper, we will now explain what we mean by the statement that the
limit of a function exists in e. Let R := U {-oo, +oo}. Given f: we say that
lim,_.f(t) exists if it is equal to a real number in the usual sense. We say that
lim,_.f(t) =-o(+o) if for all re there exists TR such that > T implies f(t) <-

r(>-r). Then we say that lim,_f( t) exists in R if it exists, is equal to -c, or is equal
to +.

If M is a real n n matrix and V is a subspace of ", then we define M-V:=
{x "lMx V}. If V is a subspace of [" then V- denotes its orthogonal complement
with respect to the standard Euclidean inner product.

Finally, we will denote by L2,oc(R+) the spae of all measurable vector-valued
functions on + that are square integrable over all finite intervals in I1+. L2(+) denotes
the space of all measurable vector-valued functions on + that are square integrable
over +. Finally, L(+) denotes the space of all measurable vector-valued functions
on + that are essentially bounded on +. Here, + := {t lt => 0}.

2. The regular LQ-problem. Consider the finite-dimensional linear time-invariant
system

(2.1) Ax + Bu, x(O) Xo.

Here, x and u are assumed to take their values in Rn and R", respectively. A and B
are real n x n and n x rn matrices, respectively. It will be a standing assumption that
(A, B) is controllable. We shall consider optimization problems of the type

(2.2) inf to(x, u) dt,

where to(x,u) is a real quadratic form on InXl defined by to(x,u):=
u TRu + 2u rSx + x TQx. Here R, S, and Q are assumed to be real matrices such that
R Rr and Q Q. As in [17], no a priori definiteness conditions are imposed on
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the form to. For a given control function u L2,oc(E+), let X(Xo, u) denote the state
trajectory of (2.1) and if T_>- 0 let

IoJr(xo, u):= to(X(Xo, u)( t), u( t)) dt.

We now explain how (2.2) should be interpreted. First, we specify two classes of
control functions with respect to which the infimization in (2.2) should be performed.
Define

U(xo) := {u L2,.oc(+)] lirn Jr(xo, u) exists in e},

U,.(Xo) := {u U(xo)llirn X(Xo, u)(t)= 0}.

Note that, due to the assumption that (A, B) is controllable, we have U(xo)# and
U,.(Xo) for all Xo ". For u U(xo) we define

(2.3) J(xo, u):= lim J-(Xo, u).
Tx

We note that J(xo, u) R e. Now, define

(2.4a) V.(Xo) := inf {J(xo, u)[u U(xo)},

(2.4b) V+(xo) := inf {J(xo, u)[ ]u U(xo)},

the optimal cost for the free-endpoint problem and fixed-endpoint problem, respec-
tively. By the fact that (A, B) is controllable we have that V.;:.(Xo), V+(xo)
for all x0 [". Following [17], we want to exclude the situation that for certain initial
conditions Xo the values (2.4a) or (2.4b) become equal to -. It can be shown that a
necessary condition for V.;:.(Xo)>- and V+(xo)>- for all Xo to hold is that R _->,0

(see [17], [12]). In this paper a standing assumption will be that R > 0. Under. this
assumption the LQ problems defined by (2.4) are called regular.

The fixed-endpoint regular LQ problem, defined by (2.4b), was completely resolved
in [17] (see also [14]). There, a satisfactory characterization was given for the optimal
cost, necessary and sufficient conditions were given for the existence of optimal controls
for, all initial conditions, and these optimal controls were given in the form of a
state-feedback control law. The problems of how to calculate the optimal cost for.the
free-endpoint regular LQ problem (2.4a), to state necessary and sufficient conditions
for the existence of optimal controls, and to calculate these optimal controls have up
to now been open. In this paper we will consider these problems..

3. Geometry of the algebraic Rieeati equation. A central role in infinite horizon
regular linear quadratic control problems is played by the algebraic Riccati equation
(ARE)

(3.1) ArK/KA/Q-(KB/Sr)R-(BK/S)-O.
Let F denote the set of all real symmetric solutions of the ARE. It was shown in [17]
that if F is nonempty then it contains a unique element K/ and a unique element K-
such that

r(A- BR-’(BTK + + S))m C-Id C,
r(A- BR-I(BTK + S)) C+ L3 C.

Moreover, K+ and K- have the additional property that they are the extremal solutions
of the ARE in the sense that if K F then K--<_ K K+.
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Let A:= K/-K -. Denote A-BR-(BTK++S) and A-BR-(BTK-+S) by A/

and A-, respectively. If K F define AK := A- BR-(BTK + S). Note that X+(A+) 0
and X-(A-)=0. Let denote the set of all A--invariant subspaces contained in
X+(A-). The following basic theorem is a generalization by Coppel [4] of a theorem
that was originally proven by Willems in [17] (see also [16], [10]).

THEOREM 3.1. Let (A, B) be controllable, and assume that F is nonempty. If V is
an A--invariant subspace of X+(A-) (that is, if V) then n= VA- V+/-. There
exists a bijection y" --> F defined by

y(V) := K-Pv + K+(I- Pv),

where Pv is the projector onto V along A- V-. If K y(V) then

X+(AK V,

X(AK ker A,

X-(AK X-(A+) CI A- V-.
Among other things, the result above states that there exists a one-to-one correspon-

dence between the set of all real symmetric solutions of the ARE and the set of all
A--invariant subspaces of X+(A-). Following [3], if K 3’(V) then we will say that
the solution K is supported by the subspace V. The next theorem from [4] states that
this one-to-one correspondence in fact respects the partial orderings on the sets F
and .

THEOREM 3.2. Let (A, B) be controllable and assume that F is nonempty. Let KI
and K2 be solutions to the ARE supported by V and V2, respectively. Then K1 <- K2 if
and only if V2 c V.

From the above it follows, for example,that K- is supported by X+(A-) and
that K + is supported by 0.

4. Classical results. In the present section we briefly summarize the solution of
the fixed-endpoint regular LQ problem with indefinite cost functional as outlined in
[17]. Subsequently, we will state the well-known result on the free-endpoint regular
LQ problem with positive semidefinite cost functional. Finally, we will discuss some
of the difficulties that can be expected in trying to generalize the latter result to the
case that the semidefiniteness assumption is dropped.

Consider the infimization of (2.3) over the class of inputs U(xo). For a given Xo
an input u* is called optimal if u* U(xo) and J(xo, u*)= V+(xo). The following was
proven in 17].

THEOREM 4.1. Let (A, B) be controllable and assume that R > O. Then we have the
following"

(i) V+(xo) is finite for all XoE if and only if the ARE has a real symmetric
solution (i.e., F ).

(ii) lf F then for all Xo, V+(xo)= xK+xo.
(iii) If F thenfor all Xo there exists an optimal input u* ifand only if A > O.
(iv) If F # and A> 0 then for each Xo there is exactly one optimal input

u* and, moreover, this input u* is given by the feedback control law u*=
-R-(BrK++S)x.

As already mentioned, an analogue of the latter theorem for the free-endpoint
case, up to now, has only been available for the case that the quadratic form w(x, u)
is positive semidefinite, i.e., for the case that w(x, u)>=O for all (x, u)[" m. In the
sequel,, let F+ := {K 6 FIK ->_ 0}. It is well known [8], 12] that if to _>- 0 and if (A, B) is
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controllable, then the ARE has a smallest.positive semidefinite real symmetric solution.
More precisely, there exists a (unique) K such that

(4.1) / F+,

(4.2) K F+ =:> K _<- K.

The solution K characterized by (4.1) and (4.2) plays the central role in the solution
of the free-endpoint regular LQ problem with positive semidefinite cost. In the follow-
ing, for a given Xo an input u* is called optimal if u* U(xo) and J(xo, u*) V+.(Xo).

THEOREM 4.2. Assume that (A, B) is controllable, that R > O, and that to(x, u)>-0
for all (x, u) ’. Then we have the following:

(i) For all Xo ", V.(Xo) x(Xo.
(ii) For each Xo, there is exactly one optimal input u*, and moreover, this input

u* is given by the feedback control law u* -R-(BT( + S)x.
Proof. This follows, for example, by combining 12, Thin. 8] and the results from

[1, p. 36] (see also [19]).
We note that in this theorem the existence of optimal controls is no issue. In

contrast with the fixed-endpoint problem, the positive semidefiniteness assumption
assures that in the free-endpoint problem for every initial condition there exists an
optimal control.

In trying to generalize the latter theorem to the case that w is an arbitrary indefinite
quadratic form in (x, u) (with of course, as usual, R > 0), the following aspects should
be considered. First, due to the indefiniteness of to, the optimal cost Vf(Xo) no longer
needs to be finite. In this paper we want to restrict ourselves to the case that V(xo)
is finite for all Xo. In order to establish a condition assuring this, we state the following
well-known result. For v 0, denote vl] := vrRv.

LEMMA 4.3. Let K F. Then for all u L2,1oc(+) and for all T >= O, we have

Jr(xo, u)= Ilu(t)+R-’(BK+S)x(t)[12n dt+xroKxo-xT(T)Kx(T).

Here, we have denoted x(t) := X(Xo, u)(t).
Proof For a proof, refer to [2] or 17].
In the sequel, let F_ := {K FIK =< 0}. From the previous lemma the following is

immediate.
LEMMA 4.4. Let (A, B) be controllable and R > O. If F_ then V(xo) is finite

for all Xo ".
Proof. I’_ implies that K-=< 0. Applying the previous lemma to K- yields

JT(Xo, tl) xoK-xo for all u and T=> 0.
Remark 4.5. In [17] it is suggested that the converse of the above lemma also

holds, i.e., that finiteness of V.(Xo) for all Xo implies that F_ . We were able neither
to establish a proof nor to construct a counterexample to this assertion. We were,
however, able to relate the condition F_ to an equivalent one in terms of the
quantities JT(Xo, U) in a slightly different way. Indeed, if (A, B) is controllable and
R > 0 then the following equivalence can be proven:

(4.3) F_ # :> inf{liminfJT(Xo, u)lu L2,toc(+)} is finite for all Xo i".
Tco

Note that if we could prove the above equivalence with L2,oc(+) replaced by U(xo)
we would be done. Indeed, for uU(xo) we have liminfT-ooJT(Xo, U)=
IimT-JT(Xo, U)--J(xo, u), so the infimum in (4.3) would then be equal to V(xo).
We close this remark by concluding that finding tractable necessary and sufficient
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conditions for the finiteness of V. remains a difficult open problem (see also [18],
[11], and [13]).

A final point we want to make here is that for the free-endpoint problem with
indefinite cost, even if the optimal cost is finite for all initial conditions, it is not true
in general that optimal controls exist for all initial conditions. We will illustrate this
in the example below. It should therefore be clear that part of our problem is to
formulate necessary and sufficient conditions for the existence of these optimal controls
(as was also done in Theorem 4.1 (iii)).

Example 4.6. Consider the controllable system -x + u, x(0) Xo with indefinite
cost functional

J(xo, u) -x( t)2 + u( t) dt,

that is, take A 1, B 1, Q =-1, S 0, and R 1. The corresponding ARE is given
by-2K-K2-1 =0. Consequently, K-=K/=-I. We claim that V.]:-(Xo)=-Xo. We
will show this "from first principles." Let u E L.loc(R/). For every T-_>0 we have

x + u2 dt (x u) dt + 2 x(-x + u) dt

(x-u) dr+2 xdt= (x-u dt+x (T)-x.

Consequently, J(xo, u)-x for all u U(xo). On the other hand, for e >0 define
u (1 e)x. Then ex and

It follows that Vj(xo)=inf{J(xo, u)lu e U(xo)} -xg. Thus, we see that the optimal
cost is finite (as could also be deduced from the Nct that K-=-1 NO). We claim,
however, that no opimal control exiscs Indeed, assume u* is optimal. Let x* be the
corresponding trNectory. We have

-xg J(xo, u*) -xg+ lira (x* u*) dt + x*( T)
T

From this it follows that Io (x*-u*) dt 0 and that, consequently, u* x* However,
using this feedback control law yields J(xo, u*) 0. If xo 0 this yields a contradiction.

5. The free-endpoint regular LQ-problem with indefinite cost. In this section we
will resolve the free-endpoint version of the regular LQ problem with indefinite cost
functional. In the sequel, an important role will be played by the subspace

(5.1) N := (ker K-IA-> X+(A-).
By definition of A- it is immediately clear that, in fact,

(5.2) N (ker K-[A-BR-S)f’IX+(A-BR-S).
Obviously, N is equal to the undetectable subspace of (K-, A-) with respect to the
stability set Cg C- t.J C. We also note that N is an A--invariant subspace of X/(A-).
By Theorem 3.1, N corresponds to a real symmetric solution ),(N) of the ARE. Let
PN be the projector onto N along A-N. Then this solution 3,(N) is given by

(5.3) K:= "y(N) K-PN + K+(I- P).
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It will turn out that K.t+., the solution of the ARE supported by the subspace N, is the
bottleneck in the problem we want to resolve. We will show that the optimal cost for
the free-endpoint problem is obtained from K+

.r and that the optimal controls if they
exist, are given by the feedback control law u =-R-(BTK+.r + S)x. Before stating the
exact result we first give an intuitive argument as to exactly why the subspace N given
by (5..1) is the "right" supporting subspace. The argument is as follows. First recall
that if w >= 0, then the optimal cost for the free-endpoint problem is obtained from the
smallest positive semidefinite solution of the ARE (see Theorem 4.2). Now, it can be
shown that, again if to >= 0, K 3’(V) is positive semidefinite if and only if V c ker K-
(see Theorem 6.2). Consequently, if to _-> 0 then the optimal cost is obtained from the
smallest solution K y(V) of the ARE such that V c ker K- Now, our choice to
consider exactly the subspace N given by (5.1) is based on the guess that the latter
statement is also valid if to is indefinite. Note that K +

.r is indeed the smallest solution
of ARE for which its supporting subspace is contained in ker K-" if K y(V) is such
that Vc ker K- then, since V is A--invariant, .we must have V c (ker K-]A-) (the
latter being the largest A--invariant subspace in ker K-). Also, V c X+(A-). Thus,
Vc N. Then it follows from Theorem 3.2 that K + < K. The following theorem is the
main result of this paper.

THEOREM 5.1. Let (A, B) be controllable and assume that R > O. Then we have the
following"

(i) V.;.(Xo) is finite for all XoR if the ARE has a negative semidefinite real
symmetric solution (i.e., F_ # ).

(ii) If F_ (g then for all Xo ", V+ T +.(Xo) Xo K.t. Xo.
(iii) If F_ then for all Xo " there exists an optimal input u* if and only if

ker A c ker K-
(iv) If F_ (g and if ker A ker K-, then for each XoN" there is exactly one

optimal input u* and, moreover, this input is given by the feedback control law u*=
_R-’(BTK +.. + S)x.

In the remainder of this section we will establish a proof of this theorem. In order
to streamline this proof, we will state some of the most important ingredients as separate
lemmas. In the first two lemmas, we will formulate some general structural properties
of linear systems.

LEMMA 5.2. Consider the system 2 Ax + ,, y Cx. Assume that C, A) is observ-
able. Let , L2(+), y Lo(R+). Then for every initial condition Xo we have x L(N+).

Proof Since (C, A) is observable there exists a matrix L such that o’(A + LC) C-
Obviously, x satisfies the differential equation

2 (A + LC)x Ly + ,, x(O) Xo..

Using the variations of constants formula, together with some straightforward estimates,
it is then easily verified that x

Using the previous lemma we arrive at the following result that will be one of the
main instruments in the proof of Theorem 5.1.

LEMMA 5.3. Consider the system Ax + ,, y Cx. Let C g be a symmetric subset
of C. Assume that (C, A) is detectable with respect to Cg. Let the state space be
decomposed into Nn X X2, where X1 is A-invariant. In this decomposition, let x ().
Assume that cr(A[X) Cg and o(AIN"/X)c Cb Then for every initial condition Xo we
have" if , L2(N+) and y L(N+) then x2 Lo(N+).

Proof We claim that, in fact, X1 Xg(A). Indeed, the fact that X Xg(A) is
immediate. Denote ro:=r(A]Xg(A)/X). Then CroCr(AlXg(A))cC. Also, roC
o’(AIN /X) c C b- This can only be the case if O-o or, equivalently, if X Xg(A).
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By the fact that (C, A) is detectable with respect to Cg we may therefore conclude that
(ker C[A)c Xt. Decompose X XX2, with Xll := (ker CIA) and X12 arbitrarily.
Accordingly, let xl=(’,, We then have Rn=XX2X2 with x=(x,x2, x[) rXI21,

In this decomposition, let

tAl A,2 A3/A A22 A23 C--(0, C2, C3) P P12
0 A33/ P2

Obviously, the system

C), (A22 A23
0 A33])

is observable. Moreover,

(2,2"] =(A22 / 0 A33,] \ x2 ] P2
y (C2, C3)( P12.2 /

It thus follows from Lemma 5.2 that (X12’C L(R+) which of course implies that
x2 e Loo(N+). E1

Another important instrument in the proof that we will establish is the following
result.

LEMMA 5.4. Consider the system 2 Ax + Bu, x(O) Xo. Assume that (A, B) is
controllable and o’(A) c C- U C. Then for all e > 0 there exists a control u L2(+) such
that Io Ilu(t)ll dt<e and X(Xo, u)(t)-O(t).

Proof For the given system consider the fixed-endpoint regular LQ problem

inf { f llu( t)l[2 dt]u L(+) and x(xo, u)( t) O, c}.
It is well known (see also Theorem 4.1) that the above infimum is equal to xK+xo,
where K/ is the maximal solution to the ARE: ArK + KA--KBBrK. We claim that
K/= 0. Assume K/ 0. Since K 0 is a solution to the ARE, we must have 0 =< K /.
So, K+-> 0 and K+ 0. Consequently, there exists an orthogonal matrix S such that

with K > O. Denote / := SK+S, := SAS r, :0 := SB. Then we have r/ +//
KBB rg. Decompose

A2 A22] B2

It is easily seen that A(.K+KA=KBIBK. Also, KIA2--0. Since K>0, this
implies A2=0. Define P:= K-. Then P>0 and satisfies the Lyapunov equation
PA +AP BB(. Since (A, B) is controllable, this implies o-(A) C+ (see, e.g.,
[21, Lemma 12.2]. This, however, contradicts the fact that tr(Al) tr(A) tr(A) C- LJ
C. We conclude that the above infimum is zero. El

We have now collected the most important ingredients we need in the proof of
our main theorem. In order to give this proof, we shall make a suitable direct sum
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decomposition of the state space. Let K+
.l be the solution of the ARE (3 1) defined by

(5.3) Denote A; := A BR-(B’K+
.f + S). By Theorem 3.1 we have

X+ +(A,.) N,

X(A].) ker A,

X-(A-;) X-(A+) fq A-’N-.
Define X, := X+(A) X2 := X(A-), and Xs := X-(A+.f) Then X1 X2Xs. Since

XI is A--invariant and since X2 is also A--invariant (ker z X(A:) for all K F)
we have

(5.4) A- A22 A23
0 A33

for given matrices Ai2. We also have K+.rx K-x for all x N, andhence A;[X, A-IX,.
Also, since kerAcA-N+/- and therefore kerAckerPN, for all xkerA we have

Kx K+x K-x. Hence A;[X: A-[X2. Consequently,

0

(5.5) A; A22

for a given matrix A3. Note that g(A)m C+, (A::) C and (A3) C-. Since

X ker K- and K- is symmetric,

0

(5.6) g-= g K5

Furthermore, we claim that A has the form

A- 0

0 A33

Indeed, by Theorem 3.1 we have X2@ X3 zX-X +/- and therefore we must have A13--0o
The other zero blocks are caused by the fact that X2 ker and by the symmetry of. Combining the representations for K- and , we find

+ 0 011

K + 0 K + +
22 K23

0 K+23 K33
+ +for given matrices K + (note that, in fact, K:3 K3 and K22 K2). Combining all

this, we find that

0

(5.7 * ;3j- K

We now proceed with the following lemma, which states that K gives a lower
bound for the optimal cost of the free-endpoint regular LQ problem.
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LEMMA 5.5. Assume that (A, B) is controllable, R > 0, and F_ # (. For all Xo n
and for all u U(xo) we have

/ Io(5.8) J(xo, u)>=xoK.rxo + ]]u(t)+R-’(BK+
f + S)x(t)[] dt.

Here we have denoted x( t) := X(Xo, u)( t).
Proof Since F_ we have K-0. Let u U(xo). It follows from Lemma 4.4

that J(xo, u) is either finite or equal to +. Indeed, J(xo, u)=- would imply
V+.t.(Xo) =-, which would contradict F_ # . Of course, if J(xo, u)=+ then (5.8)
holds trivially. Now assume that J(xo, u) is finite. By the fact that K-0 it follows
from Lemma 4.3 that for all T 0

]]u(t)+R ’(BK +S)x(t)[[ dtJv(xo, u)-xoK Xo.
0

Denote (t) := u(t)+R-’(BK-+S)x(t). It then follows that o [(t)]] 2R dt < +, and
hence that L2(+). Again using Lemma 4.3 and the fact that -K- 0, we find that
this implies limwX(T)K-x(T) exists (and is finite). Thus K-x must be bounded
on +. Denote y(t):= K-x(t). Since Ax + Bu, we have that x, u, and y are related
by the equations

A-x + Bu, y K-x.
Now let " be composed into "=XX2X3 as introduced above. Write K-=
(O,K,Kf), B=(B(,Bf, Bf) and x=(x(,x[,x[) Since X,= N is the undetect-
able subspace (with respect to C-U C) of (K-, A-), it is easily verified that the pair

K, g ),
0 A3/

is detectable (with respect to C- U C). Since (A-) c C+ U C and since X X(A-),
it can be verified that

0 A
c

Hence, (A)c C and (A)c C+. Also, we have

B

Since u L(R+) and y L(R+), by Lemma 5.3 (applied with C =C-U C) we have
that x e L(R+).

Again by applying Lemma 4.3, this time with K Kj., we find that for all T 0

(5.9) JT(Xo, u)= Ilu(t) + R-,(BTK+ T + T.. +S)x(t)l[ dt+xoKxo-x (T)Kfx(T).

Denote w(t) := u(t)+ R-(BTK+
f + S)x(t) Combining (5.6), (5.7) and (5.9) we obtain

that for all T 0
T

T +(5.a0) JT(Xo, U)= Ilw(t)ll dt+xoK..Xo- xf(T)x(T)-xT(T)K-x(T).

Recall that limT JT(Xo, U) was assumed to be finite. Thus, JT(Xo, U) is a bounded
function of T. Since also x3(T) and xT(T)K-x(T) are bounded functions of T, (5.10)
implies that o IIw(t)ll dt. It follows that w L(N+).
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We again consider (5.10). Since now Jr(xo, u), Io IIw(t)[l dt and xT(T)K-x(T)
converge for T- oe, it follows that limr_, xr(T)33x3(T) exists. Since 33 > 0 this
implies that 1123(T)1 converges as r . Now, since 2 Ax + Bu, the variables x and
w are related via 2 Afx + Bw, and hence (see 5.5) 2 A;3x + B3w. Since w e L2(N+)
and (A;3) c C- we have that x3 L2(+). Afortiori, since [[x3(/)ll converges as ,
this yields lim, x3(t) 0. Using this, and the fact that -K- 0, it then follows from
(5.10) that (5.8) holds. S

Our next lemma states that, by choosing the control properly, the difference
between K+

f and the value of the cost functional can be made arbitrarily small.
LEMMA 5.6. Assume that (A, B) is controllable, R > O, and F . en for all

T +
Xo N andfor all e >0 there exists an input u U(xo) such that J(xo, u) N Xo Kf xo + e.

Proo Again, let N" be decomposed as above. It follows from (5.7) and (5.9) that
for all u L,o(+) and for all T 0

r + -(x(T),x(T)) K:? K33] xg(T
(s.) J(xo, )= ll(t)ll dt+xoK..Xo +

Here, w := u + R-(BrK+
f + S)x. Since 2 Ax + Bu, the variables x and w are related

by 2= Ax+ Bw, and hence (see (5.5))

Note that (Ae) c C, (A;3 c C- and that this system is controllable. Now let e > 0.
It follows from Lemma 5.4 that there exists a control wL(N+) such that

Io [[w(t)lldt< and such that x(T)O and x3(T)0 as T. Define u:=
_R-I(BrK +

f + S)x + w. Then we have

T + T +J(xo, u)= lim Jr(xo, u)= Ilw(t)ll dt+xoK .Xo  +xog. .Xo.
T

We will now prove our main theorem.
Proof of Theorem 5.1. (i) This proof was already stated separately in Lemma 4.4.
(ii) Lemma 5.5 yields J(xo, u) > r +

-Xo Kr Xo for all u U(xo). Together with Lemma
5.6 this implies Vt+- (Xo) xrK+

f Xo for all Xo.
(iii) Assume F_ # . (3) Assume that for all Xo there exists a control u* U(Xo)

such that J(xo, u*) Vf.(Xo) T +=XoKrXo. Let XoR be arbitrary and let u* be the
corresponding optimal control. Denote x* := X(Xo, u*). By Lemma 5.5

T + =J(xo, u*= T + *( TK+xoKfxo )>xoKfxo+ Ilu t)+R- (B f +S)x*(t)llat.

It follows that u* must be given by the feedback control law u* R-I(B rKf/ + S)x*.
This implies that x* satisfies the equation 2*= Af.x*. In terms of the decomposition
introduced above, this of course yields 22* =A22x*2 and 23* *A33x (see 5.5). Since
o’(A3 c C- we must have x3*(t) - 0(t --> oo). By (5.10)

J-r(Xo, u*) T +
Xo Kfxo x*3r(T)A3x*3(T)-x*r(T)K-x*(T).

T +By the fact that Jr(xo, u*)- Xo Kfxo we obtain that x*
Since K- is semidefinite, afortiori this implies K-x*(T)-O (T- oo). Using (5.6) this
yields

K2x’2(T) + K3x3"(T) ---> 0 (To oo).
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Since x*3(T)O (T-->) the latter implies K2x*2(T)-->O (T-->o) or, equivalently,

K2 exp (A22T)x2(O)->O (T-->). Now, x2(0) was completely arbitrary and therefore
we find that

K,2 eA22 T --> 0 T -->

Consequently, K2(Is-A22)-1 has all its poles in C-. On the other hand, however,
since or(A22) c C, it has all its poles in C. Thus, K2(Is Az)-1 0, and hence Kz 0.
Since K- is semidefinite this implies K-3 0. It follows that ker A X2 c ker K-.

() Conversely, assume ker A ker K-. Then K=0 and K3 =0. Define u

-R-(BTKf+S)x. We claim that this feedback law yields an optimal u. Indeed,
by (5.11)

J(Xo, u) +xoKyxo x(T) +K33X3(Z).

Moreover, 23 At33x3 Since o’(A3 c C- we have x3(T) - 0 (T--> c). Thus J(xo, u)
T + +

Xo K.t Xo V.f (Xo), so u is optimal.
(iv) The fact that u*---R-(BrK. + S)x* is unique was already proven in (iii)

(3). This concludes the proof of our theorem. E]

Remark 5.7. At this point we would like to mention that, in addition to the option
we have chosen in 2, there is still another very natural and appealing way to formulate
the regular LQ problem. Instead of restricting the class of controls to U(xo) in order
to guarantee that the indefinite integrals in (2.2) are well-defined, it is also possible to
choose L2.1oc(R/) for the class of admissible controls and to consider the following
cost functional:

,(Xo, u):= lim sup J-(Xo, u).
Tx

Obviously, on the subclass U(xo)C Lz,oc(R+) the functionals J(Xo,’) and J(xo,’)
coincide. Corresponding to this choice of cost functional, we can now consider the
following version of the free-endpoint regular LQ problem:

’f.(Xo):= inf {J(Xo, u)lu L2,1oc([+)}.

As it turns out, we can develop around this version of the problem a theory completely
parallel to the one we developed in this section. In fact, Theorem 5.1 remains valid if
in its statement we replace V/.t by Q+.t. In particular, both problems yield the same
optimal controls u*. Consequently, if u* is optimal for the problem with functional
J(Xo," ), then in fact u* U(xo) and 9i.(Xo)= J(Xo, u*)= limT-_ JT-(Xo, u*). Similar
remarks hold for the fixed-endpoint problem.

6. Comparison and special eases. In this section we will discuss some questions
that arise if we compare the optimal costs and optimal closed loop systems resulting
from the free-endpoint and fixed-endpoint problem, respectively. In particular, we will
establish conditions under which the respective optimal costs are the same. Also,
conditions will be found under which the free-endpoint optimal closed loop system is
asymptotically stable. Finally, we will show how our general results can be specialized
to reobtain the most important results on the free-endpoint regular LQ problem with
positive semidefinite cost functional. First, we have the following theorem.

THEOREM 6.1. Assume that (A, B) is controllable, R > O, and F Q. Then we have
the following:

(i) K.)+:= K / if and only if the pair (K-, A-BR-*S) is detectable with respect to
the stability set C- [_J C.
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(ii) o-(A.-)c C- if and only if the pair (K-, A-BR-S) is detectable with respect
to C- and A > O.

Proof (i) By (5.2), N is equal to the undetectable subspace of (K-, A-BR-1S)
with respect to C-U C. Since K+ is supported by the zero subspace, by Theorem 3.1

+ g+we have Ks if and only if N 0.
(ii) (=) Detectability with respect to C- implies detectability with respect to

+ + + +C- U C. Hence Ks K and As A By 17, Thm. 5] A > 0 if and only if o-(A+) c C
(=:>) Conversely, assume cr(A-)= C- By [17, Thin. 5] there is exactly one K eF,

+ + A+= A+.namely K K+, such that o-(AK) = C- U C. Hence Ks K s Consequently,
ZX > 0. Also, from (i) we obtain that the pair (K-, A BR-S) is detectable with respect
to C-UC. Since A>0, o-(A-) c C+. Hence X(A-) 0 so (K-,A-BR-IS) is in fact
detectable with respect to C-.

We will now discuss how our results can be specialized to rederive some important
"classical" results on the special case that the quadratic form to is positive semidefinite.
We have the following characterization of the positive semidefinite solutions of the
ARE.

THEOREM 6.2. Assume that (A, B) is controllable, R > O, F_ , and F+ . Let
K F be supported by V. Then K F+ if and only if V c ker K-.

Proof By Theorem 3.1 we have V@ A- V- N".
() Assume that V c ker K-. Then A-I V {x NnlyrK+x 0, for all y V} and

K K+(I Pv). Let x[n, x=x+x2 with x V and x2A-W-. It is easily seen
that xrKx=xfK+x2. Since F+ we have K+->0. It follows that K=>0.

() Conversely, if K _>-0 then for all x V we have

0 <= xrKx xr(K-Pv + K+(I Pv))X xrK-x.
Since F_ we have K- _-< 0. It follows that x rK-x 0, and hence that x

Our next result states that, under the assumption that F_ , if the ARE has
positive semidefinite solutions at all, then it has a smallest positive semidefinite solution
and this solution is equal to the one supported by N.

THEOREM 6.3. Assume that (A, B) is controllable, R > O, and F_ . Then the
following hold" if F+ # then (i) K + +

s F+ and (ii) KF+ impliesKs K.
Proof Since N c ker K- it follows from Theorem 6.2 that K.t+. F+. Now assume

K F+ and K is supported by the A--invariant subspace V X+(A-). Since K F/
we have V c ker K-. Hence V c (ker K-[A-) (the latter is the largest A--invariant
subspace in ker K-; see [21]). It follows that Vc N. But then, by Theorem 3.2,
+<K.Ks--
From the above we deduce the following remarkable fact. Consider the free-

endpoint regular LQ problem with indefinite cost functional. Let (A, B) be controllable.
We already saw that the optimal cost is finite if we have F_ . Assume this to be
the case. Then Theorem 6.3 states that if the ARE has at least one positive semidefinite
solution, then the optimal cost is given by the smallest of these solutions! The case that
the cost functional is positive semidefinite, i.e., to(x, u)>-_ O, for all (x, u), is in fact a
special case of this general principle. Indeed, if (A, B) is controllable and if to_-> 0
then F+ (see [5]). Moreover, applying the latter to the controllable system (-A, -B)
and the same form to_-> 0, we can also see that F_ . Thus we have reobtained
Theorem 4.2(i).

Our next result shows that the fact that for the case to-> 0 optimal controls exist
for all initial conditions is also a special case of a more general principle.

PROPOSITION 6.4. Assume (A, B) is controllable, R > O, F_ , and F+ . Then
ker A ker K-.
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Proof F_ is equivalent to K- 0 and F+ is equivalent to K + => 0. Assume
x ker A. Then 0 __-< x rK+x xTK-x _--< 0. Thus xrK-x 0, and hence K-x 0.

By combining this with the above remarks and by applying Theorem 5.1(iii) and
(iv) we reobtain Theorem 4.2(ii).

To conclude this section, we will briefly discuss what statements can be obtained
from Theorem 6.1 for the case that our cost functional is positive semidefinite. In the
rest of this section, assume that to(x, u)>=_ 0 for all (x, u). We claim that in this case

(6.1) N (ker Q STR-’S)IA BR-’S) CI X+(A BR-’S).

First we claim that kerK- is (A-BR-S)-invariant. Indeed, if w>=0 then Q-
STR-S>= O. Also it is straightforward to verify that

(6.2) (A-BR-’S)TK-+K-(A-BR-’S)+Q-STR-’S-K-BR-’BTK=O.

Let Xo ker K-. Then from (6.2), xTo(Q STR-S)xo 0, and hence (Q STR- S)xo O.
Thus, again from (6.2), K-(A-BR-S)xo=O so (A-BR-S)xoker K-. It follows
that (ker K-IA-BR-S) ker K-. Now, by using the interpretation of K- as the
optimal cost for a fixed-endpoint LQ problem in "reversed time" (see [21, Thm. 7])
it can be proved that

ker K- (ker Q STR-1S)IA BR-’ S)
(6.3)

Ci (X+(A BR-’S)@X(A BR-l S)).

Thus (6.1) follows immediately from (5.2) We have now shown that if w >0, then K +

is in fact supported by the undetectable subspace of the pair (Q-STR-S, A-BR-S)
with respect to C-LJ C. (See also [3, Thm. 1].) By applying Theorem 6.1(i) we may

+then conclude that KT K if and only if (Q STR-S, A BR-S) is detectable with
respect to C- CO (see also [12, Cor., p. 356]).

Finally, we will re-establish the well-known fact that o-(A.-)c C- if and only if
(Q---SrR-S, A-BR-1S) is detectable with respect to C- (see [6], [20], and [12]).
Assume that to =>0. We claim that if (K-, A-BR-1S) is detectable with respect to C-
then A>0. Indeed, if (K-, A-BR-S) is detectable with respect to C- then (K-, A-)
is detectable with respect to C-. The latter is equivalent to

(6.4) (ker K-IA-)(-I (X+(A-)X(A-))=0.
By Theorem 3.1, X(A-) ker A. Also, since co _>-0, ker ZX c ker K-. Hence, by (6.4),
kerz+((kerK-[A-)OX+(A-))=O, whence ker=0. It follows that A>0. We
may now conclude from Theorem 6.1(ii) that cr(A) C- if and only if the pair (K-,
A-BR-S) is detectable with respect to C- From the fact that ker K- is (A-
BR-S)-invariant and from (6.3), the latter condition is, however, equivalent to the
statement that the pair (Q-SrR-S, A-BR-S) is detectable with respect to C-.

7. Concluding remarks. In this paper we have studied just one of the many open
basic questions that still exist in the context of linear quadratic optimal control. To
name but a few of these open problems, we mention, for example, the question about
the relationship between the finite-horizon free-endpoint problem and the infinite-
horizon free-endpoint problem. It is well known that if the cost functional is positive
semidefinite, then the finite-horizon optimal cost converges to the infinite-horizon
optimal cost [1], [2], [9]. It would be interesting to investigate whether this is also
true for the indefinite case. Another open problem is the singular LQ problem with
indefinite cost functional, that is, the problem studied here without the assumption
that R is positive definite. Recently [19] this problem was treated for the case that the
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cost-functional is positive semidefinite. However, for both the free-endpoint case as
well as the fixed-endpoint case, the indefinite version of this problem still remains to
be solved.

Acknowledgments. I thank Dr. Jacob van der Woude and Professor Malo Hautus
for some very useful discussions while the research leading to this paper was carried out.
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SUBSPACE INVARIANCE OF BROYDEN’S 0-CLASS AND ITS
APPLICATION TO NONLINEAR CONSTRAINED OPTIMIZATION*

RODRIGO FONTECILLA

Abstract. Broyden’s 0-class of updating formulae has the following property. If the current approxima-
tion matrix is symmetric and positive definite, then the updated matrix maintains those same properties
under certain conditions. It is shown that if the current approximation matrix is symmetric and positive
definite on a subspace of R", then the updated matrix is symmetric and positive definite along the same

subspace. An application of this result to the implementation of a quasi-Newton method for solving nonlinear
constrained optimization problems is presented.

Key words, unconstrained minimization, constrained minimization, quasi-Newton methods, Broyden’s
0-class

AMS(MOS) subject classifications. 65K05, 65K10

1. Introduction. Consider the unconstrained minimization problem

(1.1) minimize f(x),

(1.Sa)

with

with solution x, for a twice continuously differentiable functionf:R" --> R with gradient
Vf(x) and Hessian V2f(x). This problem is often solved by a class of quasi-Newton
methods that generate points {x} and n x n matrices {B} such that

(1.9.) x+ x d, d -Vf(x).
The stepsize a > 0 is chosen such that f(x/)<f(x). In order to ensure that -d is a
descent direction for f at x, we require that all B be symmetric and positive definite.
In addition, we ask that the secant equation

(1.3) B/s=y

be satisfied, where

(1.4) s x/ x and y Vf(x+) Vf(x).

A general class of methods for computing a symmetric, positive definite B/
satisfying (1.3) from a symmetric and positive definite B is Broyden’s bounded 0-class
of methods, which is given by an update formula depending on a constant 0 which
may even vary throughout the process. The matrices B approximating the Hessian
vZf(x,) are given by

B/ U(s, y, B, O) B
BssTB
s rBs t-

yy---f+ Oww,yTs

(1.Sb) w=x/sTB-s[yY__s_ Bs ]$-$

Any U(s, y, B, O) with 0e[0, 1] belongs to the "convex hull" of the ditterentiable
function problem (DFP) and BFGS formulae, which are obtained as special cases,
namely, 0= 1 for the DFP, and 0=0 for the BFGS. Standard conditions are the

* Received by the editors July 21, 1986; accepted for publication (in revised form) April 4, 1988.
Department of Computer Science and Institute for Advanced Computer Studies, University of
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following:

(A1) The functional f C2(D), with D an open convex subset of Rn.

(A2) The point x, is in D, and is a local minimizer off with Vf(x,) 0 and z2f(x,)
positive definite.

(A3) The Hessian V2f(x) is Lipschitz continuous on D.

It has been shown [2], [3], [10] that under conditions (A1)-(A3), for any Xo D
sufficiently close to x,, and any positive definite matrix Bo close to VZf(x,), these
methods generate a sequence of points {xk} and positive definite matrices {Bk} with

(1.6) sup IIBII <, sup I[B;’II < ,
(1.7) lim IIx+- x.[[

0 if x # x,.

This means that the sequence {x} converges q-superlinearly to x,. This convergence
result rests heavily on the fact that if B is positive definite and s> 0, then B+ is also
positive definite. However, this property does not necessarily hold if B is positive
definite only on a subspace of R". Such a situation arises in solving nonlinear constrained
optimization problems; that is, the Hessian we approximate is symmetric and positive
definite only on a subspace of R". Since the Hessian is known to have such properties,
we want to maintain the same properties for the approximating matrices B. We shall
give conditions to guarantee that the matrices B are positive definite on a subspace
of R".

We present our work in the following fashion. In 2, we present our main result.
We prove that methods in Broyden’s bounded 0-class satisfy the following property.
If the current approximation matrix B is positive definite in the current subspace
S R", if the step s is in S, and if y rs > 0, then the updated matrix B+ is positive
definite in S. In 3, we show that the matrices B still satisfy a bounded deterioration
relation. Iia 4, we apply this result to solving nonlinear constrained optimization
problems with some numerical experiments on a set of 10 test problems.

2. Hereditary positive definiteness. In this section we show that if the matrix B is
positive definite on a subspace S of R", and if s S and y Ts > 0, then B+ generated
by (1.5) is positive definite in S, even when y, s are not necessarily given by (1.4).

In the following, we want the subspace S(x) and the n m full rank matrix N(x)
to be related by

(2.1) S(x) {y 6 R": N(x) 7-y 0},

(2.2) S(x)= {N(x)z: z Rm}.

Thus, the orthogonal projection onto S(x) is given by

(2.3) P(x)=I-N(x)[N(x)rN(x)]-lN(x) r.
In the following, to ease the notation, arguments for S, N, and P will be deleted, so
S(x), N(x), and P(x) become S, N, and P, respectively.

LEMMA 2.1. Let A be an n x n symmetric matrix. Then A is positive definite on S
if and only if PAP + NNr is positive definite on all of R. Moreover, if A is positive
definite on S, then the matrix PA + NNr is nonsingular.
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Proof (i) Let A be a positive definite matrix on S, and let x Rn, x # 0. Then
x y + w for some y S and w N, z S-. At least one of w and y must be nonzero.
Since Py y, Pw 0, and Ny 0, we get

x T(pAP + NNT)x y TAy + NTwII yTAy + NTNzli.
Thus, the right-hand side is strictly positive unless y 0 and z 0, but if y 0 then
w # 0, so z # 0. It follows that PAP + NNT is positive definite.

(ii) Now let PAP + NNT be positive definite and x S, x 0; then

xrAx x 7" (PAP + NNr)x > O,

so A is positive definite on S.
To prove the second part, suppose that x Rn, x # 0, and

(PA+ NNT)x =0.

Then PAx =-NNrx, and since PAx S, this implies that NNrx =0 and PAx =0.
Hence, NTx =0, SO X S and Px x. But PAx =0, so 0= xT(PAx) xTAx, which
implies that A is not positive definite on S. El

LEMMA 2.2. Let A be an n n symmetric matrix and positive definite along S. Then,
there exists a positive constant such that the matrix A + cNNT is positive definite for
all c > 6.

Proof The proof can be found in [1, Lemma 1.25].
The following result relies heavily on the hereditary positive definite property of

the methods (1.5a) and (1.5b).
THF.OREM 2.3. Let the matrix B R and vectors y, s be such that B is symmetric

and positive definite on a subspace S of R, y Ts > O, and s S. Then, the matrix B+
generated by the updateformula (1.5) is well defined and is symmetric and positive definite
on S.

Proof. If we multiply both sides of (1.5) by P, and since s S, we get

(2.4) PB+P U(s, Py, PBP, 0),

(2.5) PB+P + NNT= U(s, Py, PBP + NNT, 0).

Since PBP + NNT is positive definite and s T (py) = s Ty > O, we have that PB+P + NNT

is positive definite, and from Lemma 2.1 we get that B+ is positive definite on S. [3

3. Preserving bounded deterioration. In this section we show that the matrices B
generated by the update formula (1.5) preserve a bounded deterioration property even
when they are not positive definite. This result is fundamental to proving any local
convergence result related to the use of these matrices and the update formula (1.5)
(see [2] and [3]).

It is necessary to exhibit a bounded deterioration property for the matrices B in
order to show that these matrices, which are approximating a Hessian although they
do not converge to it, tend not to go too far away from it. In other words, the
approximation to the Hessian deteriorates, but in a bounded fashion.

For the remainder of this section let x, be a point in R" and let H(x,)-= H, be
a symmetric matrix that is positive definite along S(x,)--S,. Let cr be defined by

max {llx

Hereafter, we will assume that y and s are nonzero vectors. To be able to use Theorem
2.3 we need conditions that will ensure y rs > 0. The following result shows when this
is possible.
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THEOREM 3.1. Assume tr, the vectors y and s, and the matrices N and H. satisfy

(3.1) IlY- H.sll O(r),

(3.2) IIS,S- SSWll- O(r),

and s S. Then there exists a positive constant e such that if tr <-_ e, then ys > O.
Proof Since H, is positive definite along S, from Lemma 2.2 there exists a positive

constant such that the matrix H, + cN,N is positive definite for all c > . Consider

M-2=H,+cN,N for c > t?.

If s e S then N7s 0, so

My M-’ s <-- M
r NNr(3.3) ---IIMII

Consider

yrs (My)r(M-’s) (My M-’s) r(M-’s) + (M-’s) r(M--s).

Taking norms and using the Cauchy-Schwartz inequality, we get

1
[[My- M-’sll < yrs IIMy-M-’sll

=--<1+

Hence, by using (3.3) we can now choose e sufficiently small and obtain our desired
result.

In general, it is not difficult to satisfy (3.1) or (3.2). It is usually true that N(x)
is twice continuously ditterentiable and therefore (3.2) holds.

The following is a technical lemma used later in the section.
LEMMA 3.2. Let the matrices B’ and B/ be defined by

B’= U(z,z,B, O) and B+= U(z,y,B, O),

and assume the vectors y and z satisfy z 7Bz 0 and

(3.4)
Ily zI_____l O(r).

Ilzll
Then there exists e > 0 such that if cr <= e,

(3.5) liB+- B’II <--[IIBII + O(1)]O(tr).

Proof. Consider

yrz= (y- z) rz + zrz.
Taking norms and using the Cauchy-Schwartz inequality, we obtain

1 Y z I_______[ < Y rz Y z

Ilzll
We now choose e sufficiently small so that (3.4) implies

O(tr) _-<<
y’z

+ O(o’)
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’< 1- O(cr) and therefore yrz > 11z112/2.and y rz > 0. We can restrict e further so that 5

Now consider

B+ B’ E + 0(E2 + Er) + OzTBzE3,
where

Rewrite El as

yyT
E, yTz zTz’

E3- (yrz) (zrz)2

E, __Y(Y z) T + (Y-- Z)ZT [ ]yz +zz (z-Y)Z
(yz)(zz)

Recall that yrz >-_ [Izll2/2 and that (3.4)yields [lyll --< (1 + o())llzll. Taking norms, and
using the triangle inequality and (3.4), we obtain

Ilyll Ily- zll I]y- zll

By a similar argument we obtain

Bz B O(),

IIE, IIF
Z

B O(r).

Therefore, we get

liB+ B’II O()/ 2011Bll O() / 0IIBII O()
which yields (3.5). 0

The following result was given by Griewank and Toint [7] for the positive definite
case. We now show that the matrices B still satisfy a bounded deterioration relation.

THEOREM 3.3. Let the assumptions of Theorem 3.1 hold and the matrix B be
symmetric and positive definite on S. Then there exist e > 0 such that if o" <- e, the matrix

B/ given by (1.5) satisfies
(3.6) liB+- H, II[ / O()]llU- H, II / O(),
with Q a4 MQM and M as defined in the proof of Theorem 3.1.

Proof. First note that using Theorem 3.1 we can choose e sufficiently small so
that y rs > 0. Thus, by Theorem 2.3 we obtain that B/ is positive definite on S. Since
H, is positive definite on S,, there exists a positive constant c such that H, + cIN,N
is positive definite; since the matrices B/ and B are positive definite on S, there exist
positive constants c2 and c3 such that B + c2NNr and B/ + c3NNT are positive definite.
Now choose c =max {Cl, c2, c3}, define M as in Theorem 3.1, i.e.,

M-:= H, + cN,N H,,
and consider the positive definite matrices

(3.7) Bc B + cNNr and BC+ B/ + cNNT
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Since s S, we have

itY- M-Zsll- t[Y- H,s- c(N,N- NNr)sI].
The triangle inequality, (3.1), and (3.2) yield

(3.8)
Ily- z[_: o(),

with z M-s. Let/ be given by (1.5) with z instead of y:

B=U(s,z,B,O),

and let B. =/+ cNNT U(s, z, B,., 0).
For any nonsingular symmetric matrix M, (1.5) yields

(3.9) MB’,.M U(M-s, Mz, MB,.M, 0)= U(M-’s, M-s, MB,.M, 0),

(3.10) MBM U(M-’s, My, MB,.M, 0).

Now use Lemma 3.2 with M-s, My, MB’,.M, and MB,.M in place of z, y, B’, and B,
respectively. Note that (3.4) holds because of (3.8) and (M-s)T(MB,.M)(M-s) 0
because s e S. Thus, using Lemma 3.2 and further restricting e if necessary, we obtain

IIMBM- MB’,.MII. [IIMB,.MII + 0(1)]0()

[MB,.M I1 F + O(1)] O().

Therefore, we have

(3.11) lIB’- B,IIM [lIB,.- HII + O(1)]O().

When we use the fact that [lQll=tr(QT) and z= M-s a tedious but elementary
calculation using (3.9) yields

=-(1-0) 1- ] +2 sTB,s sTB,,s

--0 1-- S5 )
+20 STS --k STS )

Now, using the Schwartz inequality, we an easily show that all three brackets are
nonnegative and sine 0 0, 1 we get

(3.) II.- nll lB-Hl.
Now (3.11), (3.12), and the triangle inequalit give

<llB-B’ +B.-HI
(3.) B. Hll + O()O()+ liB..-

+ O()llB.-HI + 0()
Finally, using (3.), (5.2), and the triangle inequality, we obtain our desired result
(3.).
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4. An application to nonlinear constrained optimization. Consider the following
nonlinear constrained optimization problem (NLCOP):

minimize f(x)
(4.1)

subject to gi(x)=0, i=l,...,rn,

where f and gi are functionals defined on an open convex subset D of Rn, twice
continuously ditterentiable with second derivatives that are Lipschitz continuous in a
neighborhood of the solution x,. The solution of (4.1) is based on the use of the
Lagrangian function defined as

(4.2) l(x,

with g (g,"’, gin)r and R being the Lagrange multipliers. The second-order
sufficiency conditions state that if x, is a regular point (i.e., Vg(x,) full rank), with
g(x,) 0 and Lagrange multipliers ,, such that Vx/(x,, ,) 0 and for all z R with
Vg,zr O, zrVl(x,, ,)z> 0, then x, is a minimizer of (4.1).

Hence, our problem can be restated as follows. Find (x,, ,) such that V l(x,, ,,)
0 with the Hessian V2/(x,, ,,) being positive definite on a subspace of R given by

(4.3) S(x,) S,= {z Rn: Vg(x,)rz=O}.
A method initially proposed by Tapia 11 and more recently studied by Fontecilla

[5] is based on solution of the following nonlinear problem;

(4.4) h(x) P(x)Vf(x) + Vg(x)g(x) O,

with P(x) I Vg(x)[Vg(x) rVg(x)]-lVg(x) r. It is easily seen that h(x,) 0 if and
only if V /(x, &,)=0with&, -(Vg,Vg,) .The ofh the solutiong,Vf, Jacobian at

x, is P,V2xl(x,,&,)+Vg,Vg, which by Lemma 2.1 is nonsingular. We define a
Newton-like method for solving (4.4) as follows.

ALGORVrHM 4.5.

Step 1. Given Xo

(4.5a) Step 2. Set

(4.5b) Step 3. Solve [PkvZt(xk,&k+,)+VgkVg[]s,=--h
(4.5C) Step 4. Set xk+ x + s

Step 5. Set k= k+l. Go to Step 2.

If second-order information is unavailable or too expensive to evaluate, the Hessian

H,= VZl(x,, A,) can be approximated using matrices generated with the update
formula (1.5). The algorithm follows.

ALGORITHM 4.6.

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

(4.6f)

Step 1. Given Xo, Bo
Step 2. Set Ak+t -(Vgr --17
Step 3. Solve (PkB +VgVg[)sk =-(PVf +Vgkgk)

Step 4. Set w Psk
Step 5. Set yk Vxt(xk + wk, +)- V.3(xk, +,)

Step 6. Set B+ U(w, yk, B, 0k)

Step 7. Set x+ xk + sk

Step 8. Set k= k+ 1. Go to Step 2.
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Note that if Bk is positive definite on Sk the linear system (4.6b) has a unique
solution. Further, note that the step used to update the matrices Bk is Wk Sk and that
Sk is the step taken from Xk to get Xk/. In i-6] we showed that Algorithm 4.6 generates
a sequence {Xk} converging to x, two-step q-superlinearly.

Algorithm 4.6 with the BFGS update in (4.6e) was run on a set of 10 test problems.
The program was written using MATLAB, an interactive computer program for linear
algebra computations developed by Cleve Moler. The double-precision version of
MATLAB was run on a VAX 11/780 running UNIXVM/4.2. The test problems were
taken from Hock and Schittkowski [8] and Nocedal and Overton [9]. On all of them,
the Hessian of the Lagrangian (Vx/(X,, A,)) is not positive definite.

We were interested in studying the behavior of the eigenvalues of the matrices Bk
and PkBkPk + VgkVg at each iteration, and comparing them with the eigenvalues of

Tthe matrices H,=VI(x,,A,) and P,H,P,+Vg,Vg,, respectively. We ran the test
problems with two different initial matrices Bo. We first tried a finite-difference (FD)
approximation of V/(Xo, Ao) with a stepsize hj=max(lO-6, lO-6]XoJ)l) for the jth
column and where Xoj) is the jth component of Xo. We then checked that Bo was
positive definite along So by verifying that the eigenvalues of PoBoPo+ Vgo,Vg were
all positive. The second choice for Bo was the identity.

We stopped the algorithm when h (xk)li PkTfk q- Vgkgk and when gk became
less than 10-6 We also stopped if either the maximum number of iterations (50) was
reached or the condition number of PkBk-I-TgkTg" became greater than 108.

The results are summarized in Tables 1.1 and 1.2 for Bo FD[VI(xo, ho)] and
in Tables 2.1 and 2.2 for Bo I. The first row of the tables gives the triplet (TP, n, m)
where TP is the number of the test problem as given in Hock and Schittkowski [8]; if
TP is P1 or P2 they correspond to those given by Nocedal and Overton [9]. The number
of variables is n, and m is the number of constraints. The first column in Table 1.1 is
read as follows:

eig (H,)
eig (P,H,)
eig (Bo)
eig (PoBo)
eig (Bk)
eig (PkBk)

the eigenvalues of H,;
Tthe eigenvalues of P,H,P,+Vg,Vg,;

the eigenvalues of Bo;
the eigenvalues of PoBoPo+ VgoVgor;
the eigenvalues of Bk at the last iteration;
the eigenvalues of PkBkPk + VgkVg at the last iteration.

The results in the tables are given as follows. We give a triplet (neg, zero, pos),

TABLE 1.1
B using finite differences.

(TP, n, m)

eig (H.)
eig (P. H.)
eig (Bo)

eig (PoBo)
eig (Bk)

eig PkBk
id

fg
iter

(6,2,1)

(0, 1, 1)
(0,0,2)
(0, 1, 1)
(0,0,2)
(o, 1,1)
(0,0,2)
0.9899

1.5 10-7

6.9 x 10-9

7

(26,3,1)

(0,2,1)
(o, 1,2)
(0,2,1)
(o, ,2)

0.4379

(39,4,2)

(0,1,3)
(0,0,4)
(0, 1, 3)
(0,0,4)
(0,1,3)
(0,0,4)
0.3873

4.2 10-7

3 x 10--12

(46,5,2)

(0,1,4)
(0,0,5)
(0,1,4)
(0,0,5)
(0,1,4)
(0,0,5)
0.4472

3.8 x 10-s

2.7 10-13

6

(47,5,3)

(0,1,4)
(0,0,5)
(0,0,5)
(0,0,5)
(0,0,5)
(0,0,5)
0.2236

1.3 x 10-8

1.5 10-z

5

No convergence. P,H,P, +Vg,Vg singular to machine precision.



SUBSPACE INVARIANCE OF BROYDEN’S CLASS 51

TABLE 1.2
B using finite differences.

(TP, n, m)

eig (H.)
eig (P.H.)
eig (Bo)

eig (PoBo)
eig (Bk)

eig PkBk
id

fg
iter

(56, 7, 4)

(,o, 5)
(0,0,7)
(2,0,5)
(0,0,7)
(2,0,5)
(0,0,7)
1.1736

4.4 x 10-7

8x 10-8

10

(78,5,3)

(1,0,4)
(0,0,5)
(1,0,4)
(o, o, 5)
(1,0,4)
(0,0,5)
0.3965

6.2 x 10-1

4.3 x 10-13

6

(104, 8,4)

(2,0,6)
(0,0,8)
(2, 0, 6)
(0,0,8)
(2,0,6)
(0,0,8)
0.1439

6.3 x 10-7

2.4 x 10-9

6

(P1,2, 1)

(1,0, 1)
(0,0,2)
(1,0, 1)
(0,0,2)
(1,0, 1)
(0,0,2)
0.24

4.5 10-7

2.3 10-8

5

(P2, 3, 2)

(2,0,1)
(0,0,3)
(2,0,1)
(0,0,3)
(2,0,1)
(0,0,3)
0.7533

7.1xlO-11

710-12

5

TAILE 2.1
B using the identity.

(TP, n, m)

eig (Bo)
eig (PoBo)
eig (B)

eig (PB

fg
iter

(6,2,1)

(0,0,2)
(0,0,2)
(0,0,2)
(o, o, 2)
1.5 10-8

6.8 10-1

7

(26,3,1)

(0,0,3)
(0,0,3)
(0,0,3)
(0,0,2)

8.9 10-7

1.4 10-7

20

(39,4,2)

(0,0,4)
(0,0,4)
(0,0,4)
(0,0,4)

5.8 x 10-8

1.3 10-11

10

(46,5,2)

(0, o, 5)
(0, o, 5)
(0, o, 5)
(0, o, 5)

2.4 x 10-8

1.7 x 10-13

10

(47,5,3)

(0,0,5)
(0,0,5)
(0,0,5)
(0,0,5)

1.3 x 10-7

1.9 x 10-12

7

TABLE 2.2
B using the identity.

(TP, n, m)

eig (Bo)
eig (PoBo)
eig (B)

eig Pt,Bk

rg
iter

(56,7,4)

(0,0,7)
(0,0,7)
(0,0,7)
(0,0,7)

1.7 10-7

7.4 10-7

12

(78,5,3)

(0,0,5)
(0,0,5)
(0,0,5)
(0,0,5)

8.4 10-1

5 X 10-13

6

(104, 8, 4)

(0,0,8)
(0,0,8)
(o,0,8)
(0,0,8)

4.6 10-7

6.6 10-11

12

(P1,2, 1)

(o, o, 2)
(0,0,2)
(0, O, 2)
(o, o, 2)

1.3 x 10-8

1.1 10-1

7

(P2, 3, 2)

(0,0,3)
(0,0,3)
(0,0,3)
(0,0,3)

7.4x 10-11

2 x 10-12

5

meaning the number of negative, zero, and positive eigenvalues of the corresponding
matrix. For instance, if the eigenvalues of H, are (2, 1, 0, -1, -3, -4), then in the row
corresponding to eig (H.) we will have the triplet (3, 1, 2). An eigenvalue is set to zero
if it is less than 10-16 in absolute value.

The last four rows in Table 1.1 are used to give more information about the
performance of the algorithm"

id distance from Xo to x.;
fh the final value of
fg the final value of IIg(Xk)ll;
iter the number of iterations.
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The eigenvalues of the matrices PkBkPk /TgkVg are given to check the positive
definiteness of Bk along the subspace Sk. Let us now comment on the results. The
finite difference approximation maintains the same structure on the eigenvalues. Noth-
ing extra was needed for Bo to be positive definite along So. The eigenvalues of Bk
and PkBkPk / VgkVg7 for all k, although not given here, were computed and no changes
were reported. The eigenvalue structure remained the same during the process, as was
expected due to the results of 2 and 3.

Test problem 26 is interesting in itself. It is the only one for which the method
failed to converge. The reason is that the Hessian H, is not positive definite along S,
numerically; that is, one of the eigenvalues of the matrix P,H,P, / Vg,Vg is 0.7 x
10-16. The finite difference approximation PoBoPo+VgoVgro shows this eigenvalue to
be 3.8 10-13, and therefore the method diverges.

In test problem 47 (Table 1.1), Bo is positive definite and so are the remainder of
the Bk. However, we still have convergence even though the Hessian H, that the Bk
is approximating is only positive definite on S,.

Tables 2.1 and 2.2 indicate that the method is quite robust with respect to the
initial guess Bo. In fact, we even have convergence for test problem 26. We think this
is partly because the matrices Bk remain positive definite throughout the process
although H, is positive definite only on S,. This is predictable, since yWk 0 for all
k and Bo is positive definite.

Acknowledgments. The author thanks J. E. Dennis for the fruitful discussion that
led to Theorem 2.3, and Jorge Mor6 for his helpful comments that led to Lemma 3.2
and made the paper more readable.
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LOCAL TIME-OPTIMAL FEEDBACK CONTROL
OF STRICTLY NORMAL TWO-INPUT LINEAR SYSTEMS*

L. DAVID MEEKERf

Abstract. This paper introduces a new technique for the analysis of time-optimal control of linear

systems. A family of easily calculated invariants is developed and, for an important class of two-input
systems, is shown to provide a complete description of the time-optimal flow near the origin. The two

switching surfaces are described analytically and qualitatively in topological terms. The time-optimal feedback
function is defined and analyzed with respect to its complexity and sensitivity to errors in state variable
measurement. The results lead to the first explicit construction of a local regular synthesis for multi-input
systems of arbitrary order.

Key words, time-optimal feedback, closed-loop, stability
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1. Introduction. This paper is concerned with the description, synthesis, and
classification of time-optimal control systems that can be modeled by equations of the
following form:

(1.1a) k Ax+Bu,

(1.1b) xRn, u Cr=-- {uRr: ltli]<: l, i=l,2,..-,r},

(1.1C) n [hi, ", br], b [n, rank (B) r.

Time-optimal control has been the subject of considerable research effort during
the past 25 years. As a result of these investigations the optimal control functions have
been identified and shown to be conceptually simplempiecewise constant with each
control component either +1 or --1Dwith switching surfaces Ill,..., llr (D,i is the
set of points of n where the ith control component changes sign) shown to be
homeomorphic to a relatively open convex subset of an (n 1)-dimensional hyperplane
and to divide the controllable set K (the set of points of R controllable to 0) into two
relatively open sets corresponding to the two values ui 1 and ui =-1 (thus showing
that K\ is the union of two disjoint components) [25].

These results provide an essentially complete qualitative picture ofthe time-optimal
flow (the time-optimal trajectories) in the case of scalar control (when r 1). However,
this is far from the case for multidimensional controls (r > 1). The presence of two,
or more, control dimensions greatly complicates the problem. In this instance several
interesting and important questions arise:

(1) How do the.switching surfaces interact? What is 1"1 f3 fli topologically?
(2) Can/l, =[l.if ij?
(3) What is the topological structure of l’l -= 12 [1?
(4) How complicated or how simple can the piecewise constant optimal feedback

function be? That is, how many "pieces" can there be, or "what is the
connectivity of K\[1" ?

(5) How sensitive is the time-optimal feedback function to measurement errors
or time lags in the feedback loop? In particular, is the time-optimal feedback
control system stable with respect to measurement as defined by Hermes 12]?

(6) How are the answers to these questions encoded in the two matrices A and B?

* Received by the editors September 19, 1979; accepted for publication (in revised form) April 5, 1988.

" Department of Mathematics, University of New Hampshire, Durham, New Hampshire 03824.
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In general, the answers to these questions are unknown. With r > only the case
n r 2 is fully understood [3], [4]. Other investigations have been directed toward
the local analogues of the questions. That is, procedures for the analysis of the
time-optimal flow on K(T), the T-controllable set composed of those points of En
controllable to 0 in time T, in terms of the corresponding relativized switching surfaces
lli(T) lli f3 K(T), 1, , r, and 11(T) 1 f3 K(T), for sufficiently small T [9],
[17]-[19], [21], [22], [26], [27], and [29]. The answers to the local versions of questions
(1)-(6) for the minimally controllable systems (a generic class discussed in 2 herein)
appear in [20] and [21] for the case n 3, r 2, and all but question (5) are answered
for the n 4, r= 2 case in [22]. The general n, r case is discussed in a preliminary
fashion in [19]. In this paper the answers to the local versions of questions (1)-(4)
and (6) are answered for the class of strictly normal systems (see [9], [29], and 2
herein) for systems with arbitrary n and r--2. Sufficient conditions for measurement
stability (H-stability) are also developed for this class of systems.

The analysis and description of the time-optimal flow for these systems is simplified
by the introduction of two mathematical structures that as yet have not become familiar
in control theory literature. The first of these, the theory of cell complexes or, more
properly, the theory of CW-complexes (see [16]) is necessary to describe the collection
of points in K(T) controlled to 0 by all control functions having the same specific
sequence of control values. Below we show that K(T) can be decomposed into a
collection of well-defined cell complexes each associated with known switching sequen-
ces. The description and analysis of the time-optimal flow on each component cell
complex are facilitated by the concepts and results of the theory of semidynamical
systems (see [1]) whose characterization of attracting and invariant sets is critical to
the results that follow. The following discussion of the known results for the cases
n 2 and 3, r 2 is intended to illustrate the value of these two mathematical systems
for the study and description of time-optimal or, more generally, bang-bang control
systems.

In the well-known case where n r 2 the time-optimal flow on K(T) occurs, for
sufficiently small T, in only the two distinct forms shown in Fig. 1. The relative structure
of the switching curves II(T) and 12(T) is very different in the two cases. For systems
of the type shown in Fig. l(a), such as

A- B-
0

the two curves intersect only at O, while for systems of the type shown in Fig. l(b),
such as

[: lo3 [1 o]A- B--

the two curves coincide and 1(T) 12(T) 11(T). K( T)\II(T) has four. components
for systems such as those of Fig. 1 (a) but only two components for those of Fig. l(b).

The time-optimal trajectories can be described on the component ABOA of Fig.
l(a) by "use control u .until you reach curve BO, then switch to u2 and use it until
arrival at 0" (assuming the proper "naming" of the control vectors). This sequence
"u switch to u2’’ defines what we will call an optimal control (switching) policy
p (u, u2), or, when there is no chance of confusion, simply p ( 1, 2). The component
ABOA is composed of those points of K(T) controlled to 0 by control functions
following the policy (1, 2) and is, accordingly, denoted by D( 1, 2). If we define the
other two vertices of the control domain cg2 by u3=-u and u4=-u2, the other
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FIG. 1. The two possible types of time-optimalflow near 0 for n 2.

components of K(T) in Fig. 1 (a), BCOB, CDOC, and DAOD, are associated with the
control policies (2, 3), (3, 4), and (4, 1) and denoted by D(2., 3), D(3, 4), and
D(4, 1), respectively. Similarly, K(T) of Fig. l(b) can be described as the union of
the four components D( 1, 2), D(3, 2), D(3, 4),. and D(1, 4).

Each set D( i, j) is homeomorphic to the standard 2-cell tr {s [2:0 <= Sl -<- s2 =< T}
(this is discussed in detail in 4). For example, D( 1, 2) is the image oftr under the map

(1.2) ’ B dr +
s2
e-AB drx(s,, s2) (u -u2) e-A u

and is, therefore, a 2-cell (see [16]) composed of its interior open 2-cell and its three
boundary 1-cellsmthe two constant control trajectories D(1) and D(2) (AO and BO)
and the portion of the boundary T-isochrone (AB). Thus for each system type, as in
Figs. l(a) and l(b), K(T) can be described as a cell complex consisting of the union
(actually, in the language of CW-complexes, cellular adjunction) of four 2-cells each
associated with a unique time-optimal switching policy (switching sequence). This is
an example of the cellular decomposition proved for the general strictly normal system
in 6. However, we shall see that for general n, the maps corresponding to (1.2) of
the standard n-cell into K(T) need not be injective except on the interior of the standard
cellmcertain boundary cells may coalesce or "lose dimension" under some maps. In
such cases it is necessary to consider K(T) as a CW-complex rather than simply a cell
complex.

The difference in the time-optimal flow pattern and the switching curve structure
in Figs. l(a) and l(b) can be described by noting that the time-optimal trajectories
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define a local semidynamical system on K( T)\{0} (a semidynamical system is a general-
ized dynamical system that permits intersecting trajectories; a local semidynamical
system is a semidynamical system that has a finite escape time---provided, in this
instance, by the optimal response timemfor each point of the state space; see [1]).

The switching curve BO (or D(2)) of ABOA (or D(1, 2)) is the image of the
1-cell {(0, s2): 0<s2 <- T} of tr under (1.2) and is an attracting set of the flow while the
curve AO (or D(1)), the image of the 1-cell {(s, s): 0<s -< T} under (1.2), is an
invariant set of the flow. Note that D(2) is an attracting set of D( 1, 2), but an invariant
set of the adjoining cell D(2, 3). Indeed, the difference in the time-optimal flows of
the two system types stems precisely from the fact that in systems such as those in Fig.
l(a), attracting cells always adjoin invariant cells and vice versa, while in systems such
as those in Fig. l(b), attracting cells always adjoin attracting cells and invariant cells
always adjoin invariant cells. The structure theorem of 9 extends these results to the
general system (1.1) with r 2.

As a consequence of the difference in their optimal flow patterns, the character
of the time-optimal feedback function differs substantially between the two system
types. In Fig. l(b) the value it assumes on the switching curves OB and OD differ
from the values assumed on either side of the curves. Obviously, implementation of
such a closed-loop system would require infinitely precise measurement of the state
variables, since the curves are sets of planar measure zero. On the other hand, the
feedback function of systems of the type in Fig. l(a) are much more tolerant of
measurement errors, since small errors in state measurement yield either the correct
control or a control value that drives the system across the switching curve and, thereby,
increases the probability of determining the proper control. In 7, where such matters
are fully discussed, the feedback function of a system of the type in Fig. l(a) is said
to be realizable, while that of a system of the type in Fig. l(b) is nonrealizable on the
curve BOD.

As is to be expected, the closed-loop time-optimal systems of the two types differ
in their response to measurement errors or time-lags in the control loop. As shown in
Fig. 2(a) the realizable feedback control leads to a (small) "overshoot" in the trajectory,
while in Fig. 2(b) the nonreaiizable controller leads to "chatter" or a "sliding" motion
back and forth across the time-optimal trajectory.

The system of Fig. 1 (a) is actually "stable with respect to measurement" or H-stable
in the sense of Hermes [12]. This concept will be discussed in 11 herein.

Time-optimal control for the case n 3, r 2 is less well known. As shown in
[20], strictly normal systems (to be defined below) occur in precisely three canonical
and topologically distinct forms. Figure 3 provides sketches of typical switching surface
structures (near the target point 0) for each possible type.

In every case the switching surfaces fl(T) and flz(T) are composed of four
two-dimensional cells. In Fig. 3(a) the surfaces have no 2-cell in common and intersect
only in the 1-cells corresponding to constant control trajectories. This leads to the most
complex structure with K(T)\fl(T) consisting of six disjoint components (i.e., having
connectivity equal to 6). It happens that for such systems the time-optimal feedback
function is realizable on K(T) for sufficiently small T.

In Fig, 3(b), fl(T) and I2(T) contain two 2-cells in common. As a result
K(T)\I(T) has connectivity equal to 4, and the feedback function is nonrealizable
on the two common 2-cells where the closed-loop time-optimal system is "chatter-
prone."

In the last case, Fig. 3(c), the two switching surfaces coincide and K(T)\I(T)
has connectivity equal to 2. This situation is the three-dimensional analogue of the
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FIG. 2. Typical responses of the systems of Fig. to time lags or errors in state variable measurement in

the time-optimal feedback loop.
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FIG. 3. Qualitative description of switching surface structures for third-order two-input strictly normal
systems. (a) The case (1) =(2) 1. (b) The case ,V(1) =-(2). (c) The case ,,/(1) =(2) =-1.
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two-dimensional structure of Fig. l(b) and the closed-loop feedback function is
nonrealizable at each point of II(T).

In the sections to follow the analysis that has led to these results is extended to
the class of strictly normal nth-order systems having two-dimensional controls. This
analysis will show that the structure of the time-optimal flow near the origin is
determined completely by geometric relationships among the 2n vectors b, Ab, .,
A"-b, b2, Ab2, ., An-b2 as expressed by the values of the n + 1 determinants:

(1.3) d(j)=det[bt, Ab Ai-b be, Abe, A"--tbz] j=O, 1,...,n

(which, for strictly normal systems, are all nonzero [9], [29]); their signs:

(1.4) 8(j) sgn [d(j)];

and the structure invariants:

(1.5) /(j) =/(j; A, B)8(j- 1). 8(j+ 1), j 1,..., n- 1,

n-l

(1.6) N(A, B) E (1 -T(j; A, B))/2,
j=l

(1.7) M(A, B)--
=

(1 -,?,(j; A, B))
J

The vital role these invariants play in the theory is evident from the following
theorem describing the local switching surface structure for two-input systems (the
concepts of feedback function "realizability" and "Filippov type" are formally defined
in 7).

THEORF.M 1.8. Let system (1.1) be strictly normal, let r 2, and let T be sufficiently
small and positive. Then

(a) K(T)\II(T) has connectivity 2(n N(A, B));
(b) II(T) f) 2(T) is the union of M(A, B) (n 1)-dimensional cells;
(C) D,I(T)=D,2(T) if and only if N(A,B)=n-1 (that is, /(1;A,B)

/(n- 1; A, B) -1);
(d) The time-optimal feedback function is realizable on K(T) if and only if

N(A, B) =0 (that is, /(1; A,B) T(n-1; A,B)= 1);
(e) The feedback function is of Filippov type on the relative interior of some

(n- 1)-dimensional cell of (T) if and only if N(A,B)<= n-2.
These results, which are consequences of the cellular decomposition theorem

proved in 6, imply that in the case n 2, only the single invariant /(1) 8(0) 8(2)
is defined and the structures of Figs. l(a) and l(b) occur when /(1) equals 1 and -1,
respectively. When n=3, two invariants, /(1)=8(0). 8(2) and T(2)=8(1). 8(3), are
defined. The switching surfaces have the structure of Fig. 3(a) when ,(1)= ,(2)= 1,
the structure of Fig. 3(b) when /(1)=-/(2), and the structure of Fig. 3(c) when
,y(1) =T(2)= -1.

While complex approximations and combinatorial analysis of 3-6 underlie the
proof of Theorem 1.8, the final result is a powerful and simple tool for the design and
analysis of time-optimal control systems. As the following examples illustrate, the
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theorem provides a series of easily calculated invariants which provide a complete
qualitative description of the local switching surface structure and of the time-optimal
feedback function.

Example A. The system

A= 1 0 -2 B= 0 0

0 0 0 1

has d(0)=d(1)=d(3)= 1, d(2)=2, and 3,(1)=3,(2)= 1, which implies the switching
surface structure of Fig. 3(a) with K(T)\ft(T) having maximal connectivity of 6 and
ft,(T) fq I2(T) consisting only of 1-cells. In addition, as will be shown in 11, this
system is locally measurement stable.

Example B. The system

A= 0 1 B= 0 0

0 1 0 0 1

has d(0) =d(1) 1, d(2)=d(3)=-1, and /(1)= ,(2)=-1. This configuration implies
the switching surface structure of Fig. 3(c) with K(T)\ft(T) having minimal con-
nectivity of 2 and fl(T) I2(T). In this situation the closed-loop system is "chatter-
prone" (see Fig. 2(b)) at each point of I(T).

Example C. The small angle roll-yaw motions of a satellite in circular orbit about
a spherical earth in normalized time are of the form (1.1) with

0 1 0 0 0 0

-ct 0 0 1 -et 1 0
A=

0 0
B=

0 0

with the two parameters c and az constrained by the conditions 0<a2< ce < 1 [22].
For this fourth-order system d(4) =4a(1-a2)2, d(3)= 1-cez, d(2)= 1, d(1)=
and d(0)= a(1- at)z so, under the constraints above, /(1)= /(2)= /(3)= 1. Thus, by
Theorem 1.8, since N(A, B)= M(A, B)=0, K( T)\II( T) has connectivity equal to 8,
its (three-dimensional) switching surfaces intersect only in cells of dimensions 1 and
2, and its time-optimal feedback function is realizable on all of K(T) (i.e., Fig. 2(a))
and, therefore, tolerant of errors in the feedback loop.

2. Strictly normal and minimally controllable systems. The method of analysis
described in this paper is applicable to a generic class of time-optimal control systems
which have been termed "minimally controllable" [21].

DEFINITION 2.1. System (1.1) is said to be minimally controllable if there exists
a neighborhood U of 0" such that for each x U there exists an extremal control
function v(-, x) that controls x to the origin in minimum time and has no more than
n- 1 switches.

Remark 2.2. Since a system is controllable if K(T) contains a neighborhood of 0
[14], minimally controllable systems are controllable, but need not be normal (i.e.,
have unique time-optimal control functions [ 14]). For instance, the linearized rendez-
vous problem [18] presents an example of a minimally controllable but nonnormal
system.
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Remark 2.3. In the scalar control case (r= 1) or the case n =2, a system is
minimally controllable if and only if it is controllable. Sufficient conditions for minimal
controllability have appeared in [17], [19], and [20].

Hfijek [9] has called the general system (1.1) with r-dimensional controls strictly
normal if, for any collection of integers, j >- O, , jr > 0 satisfying j +" "+jr n, the
n vectors Arab i, 0<= m <=ji-, i= 1,2,..., r, are linearly independent. For example,
when r 2, the case of interest here, a system is strictly normal if and only if all the
determinants d(0), d(1),..., d(n) of (1.3) are nonzero.

Yeung [29] has shown that normal systems are strictly normal if and only if they
are minimally controllable. He has also shown that for such systems and for small T,
K(T) is the union of 2rn- sets, which Hfijek [9] called "terminal manifolds," each of
which has a nonempty interior and is associated with a distinct control-switching
sequence. In the following sections these control sequences are identified for the case
r 2 and the corresponding 2 terminal manifolds shown to form natural groups whose
interiors form the components of K( T)\Q( T).

3. Identification of time-optimal control functions. In this section we identify, for
strictly normal two-input systems, all time-optimal control functions having small
response times. These controls are shown to be naturally grouped: first, by the number
of first coordinate switches and, second, by theactual sequence of control values
assumed by the functions.

Our primary tool in this investigation is, of course, the minimum principle of
Pontryagin [14] which, in this instance, implies that a control function v is extremal
for a point x (i.e., controls x to 0 in the shortest possible time) if and only if it satisfies

(3.1) k’ e-A’Bv(t) min {’ e-AtBu: U E c:}
almost everywhere on 0_-< =< T, where T is the optimal response time for x. The vector
k E En is an outernormal of a supporting hyperplane of K(T) at x [14]. Such a vector
k will be said to generate control functions v and -v over the interval [0, T] if k and v
satisfy (3.1). (It should be noted that, with this definition, -k also generates v and -v
over [0, T].)

If generates v (v, v2) (we identify points in rn with m x 1 vectors) then (3.1)
implies

(3.2) vi(t) -sgn [h’ e-A’bi], 1, 2,

whenever k’ e-A’bi O. Since the functions t->h’ e-A’bi, i--1, 2, are analytic, they
either vanish identically or have isolated zeros. In the latter instance such zeros, where
v or v2 may change sign, correspond to possible switching points of v. If neither of
the two functions vanishes identically, v is uniquely defined by (3.2) and the additional
requirement of continuity from the right. The assumption of right continuity will be
implicit below.

Because of (3.1) each extremal control function is generated by some vector on
the unit sphere in ". Moroz [25] and others have studied the set of extremal functions
using parametrizations of the sphere. Unfortunately, while these global parametriz-
ations yield a description of the switching behavior of the control functions, they do
so in an obscure and complicated fashion.

An alternate method of parametrization is developed here. While it is not global
in scopemn parametric families are required to describe the extremal control functions
on [0, T] for small T---it has the virtue of being intimately related to the switching
behavior of the control functions themselves. This description is based on the fact that
the control function generated by the vector h switches in component (i= 1 or 2) at
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time s if and only if It is orthogonal to the vector

Ei(s)=e-A.,b i.

With this observation it is clear that v (in (3.1)) switches in components a,/3, %.
(where a,/3,%...=1 or 2) at times s,s2, s3,’’’ only if It is orthogonal to
E(sl),Et(s2),E(s3), The notation of exterior algebra [7] is useful in expressing
such relationships. For example, if x, xn- are linearly independent vectors, the
(n 1)-vector x ^ ^ x

n- may be identified with the unique vector It [" that satisfies

It’x x ^. ^ x
n-

^ x det [x, Xn-1, X],

for all xin n. Clearly It is orthogonal to xl, x- and It’x-0 only for those x in
the span ofx "-X

The relationships among the outernormals of K(T) (the It’s), the switching times

s., and the vectors Ei(sj) permit (in the case of strict normality) the identification of
all the time-optimal control functions over a sufficiently small interval [0, T]. For
example, in the three-dimensional case, any It generating a control function having a
switch on the first coordinate when s, and a switch on the second coordinate when
l=s2, must be orthogonal to E(sl) and E2($2) and thus must be a multiple of
Itl(s,, $2) El(s1)/k E2($2).

The control function v=(v, v2) generated by It(s, s2) is determined (via (3.2))
by the signs of

-it’(Sl,S2)’E’(t): (bl-Ab’sl+ "’’)/(b2-Ab2s2 +’’’)^(b’-Ab’t+’’’)

--(S- t)[b1AAb A b2+...] (sl t)[det [b l, Abl, b2]+ .]

and

(S1--t)[d(2)+"" "]

--itl(s1, $2)’E2(/)= -(b -Ab’s, +...)/ (b2-Ab2s2 +.. .) A (b2-Ab2t +’’ ")

(S --/)[-b A b ^ Ab +" "] (s2- t)[-d(1)+" "].

Therefore, the optimal control functions generated by Itl(s1 $2 (which, we recall,
are the only functions with a single switch on each coordinate) switch when sl and
s2 and, over a sufficiently small interval, 0 <= <= T, describe the control sequences (recall
8(i) sgn [d(i)])

(-8(2), 8(1))- (8(2), 8(1))- (8(2),-8(1)),

or
(8(2),-8(1))- (-8(2),-8(1))- (-8(2), 8(1)),

if 0 < s < s2 < T, and the sequences

(-(2), (1))- (-(2),-(1))- ((2),-(1)),

or

(8(2),-8(1))- (8(2), 8(1))- (-8(2), 8(1)),

if 0 < s2 < St < T. Thus, of the eight possible control sequences having a switch in each
coordinate, only these four are time-optimal. Note that the controls always begin with
+(-8(2), 8(1)) and end with +(8(2),-8(1)). Obviously control functions with other
switching patterns (e.g., two switches on coordinate 1) can be identified in the same
way. Their sequences of control vah.tes will be completely determined by



62 L. DAVID MEEKER

i(1), i(2), 8(0) =sgn [b= ^Ab ^A2b2] and 8(3)=sgn [b ^Ab ^A2b]. This analysis
underlies the results of [17], [20], and [21]. The same approach will now be used to
identify optimal control switching sequences for the general nth-order two-input strictly
normal system.

Any control function that switches in the first coordinate at times Sl," , Si and
in the second coordinate at times s,+,..., s,_ must be generated by a multiple of
the vector

(3.3) k(s; j) E(s) ... E(S/) E(s:+) ... E(s,_t),

for s= (s,,-. ",s,)".
The sequence of control values assumed by a control function generated by k(s,j)

is determined by the signs of k(s,j)’E(t), i= 1, 2, for small values of t. From (3.3) it
can be seen that these functions depend on k-vector factors of the form

(3.4) E(ai) 2 (-1) a.
j= j= m=o

This function is clearly analytic (even entire) in each a and vanishes when any
two a’s are equal. It therefore has the Vandermonde function

vdm(a,...,a;k) (a-ai)
j=l

as a factor. The leading k-vector term in the expansion is easily seen to be
Ab A-b.

With these two facts in mind it is easy to see that

(_1)-/
(3.5) A E(ai)= vdm(a,..- a)( Ab A-tb +. .).

.i= 1 2 (k- 1)

Now, in order to determine the sign sequences of k(s,j)’E(t) and k(s,j)’E(t),
which determine the extremal controls generated by k(s, j), we assume that the switching
times satisfy

(3.6) O<s<...<sj<s,<T and

Then, using (3.5), we have

k(s,j)’E(t)=(-1)’-E(t) ^ A E(s,,)^
m=!

(3.7)

0<Sj+ < < Sn_ < S < T.

n-I

A E(s,.)
=j+

=(-1)’. c. vdm (t, s,..., sj;j+ 1). vdm (sj+,..., s,_; n-j- 1)

[b ^. A AJb ^ b ^" A A"-/-b + O( T)]

=(-1)P.a V(s;j). H (s,-t)’[d(j+l)+O(T)]
m=l

where

p n +j(j + 1 )/2 + (n -j 1 )(n -j 2)/2,

a 1/[1!- 2! j!- 1!. 2! (n-j-2)!],

V(s;j) =vdm (s,,. ., s;j), vdm (s+,. ., s,_,; n-j- 1).
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Similarly, we find

(3.8)

It(s,j)’E2(t)=(-1) n-i-’ E(sm) ^E2(t) ^ fi,
=j+l

=(-1)q./3. V(s,j)
n--1

=j+

(Sm-t)’[d(j)+O(T)]

where

q= n-j- 1 +j(j- 1)/2+(n-j)(n-j- 1)/2=-2j+p+ n-j- 1,

fl a .j!/(n-j-1)!.

From (3.7) and (3.8) we see, after canceling common sign factors, that if d(j) and
d(j + 1) are both nonzero and T is sufficiently small (so that sgn [d(j)+O(T)] =8(j)
and sgn [d(j + 1 + O(T) 8(j + 1 )), k(s, j) generates a unique pair of control functions
over the interval 0 <= <= s, <= T which begin with the controls

(3.9a) +u(1,j) -= +((j+ 1), (-1)"-J-’i(j))
and, after j changes of sign on the first coordinate (at s,..., s.) and n-j-1
changes on the second coordinate (at s./+,..., sn_), terminate with the controls

(3.9b) +u(n,j) +((-1)8(j + 1), i(j)).

The requirement (3.6) is not, in fact, necessary. Indeed, (3.5), (3.7), and (3.8)
show that

(3.10) k*(s,j)=-k(s,j)/[vdm(s,,. .,Si; j).vdm(si+,,. .,s._,; n-j-1)]

has removable singularities and is well defined at each point of the boundary of the
n-dimensional cell complex

(3.11) A(j, T){s6".O<__s<__...<__Si<=s,<=T,O<__s+,<_...<=s,<=T}
and generates the same control functions as k(s, j) for points of its interior (that satisfy
(3.6)).

These results are summarized in the following lemma.
LEMMA 3.12. If
(a) The two determinants d(j) and d(j+ 1) (see (1.3)) are both nonzero and have

signs 8(j) and 8(j + 1);
(b) T is sufficiently small;
(c) seA(j,T)={sn’0<-sl<=...<=s<=s,<=T, 0<--sj+,<=..-<-s,<-T},

then the vector k*(s,j) (see (3.10)) generates two time-optimal controlfunctions, v(.; s,j)
and -v(. s, j), over the interval 0 <= -<- s,,. For those points s in the interior of z$(j, T)
these functions satisfy the following"

(1) v(t; s, j) u(1, j) =- (8(j + 1), (-1)--i-18(j)), 0< <min (sl, SJ+);
(2) v(.; s,j) changes sign in the first coordinate when s, s2," ", SJ and in the

second coordinate when sj+, sj+2, , s,._;
(3) v(t; s,j)= u(n,j)-= ((-1)Js(j+ 1), 8(j)) when max (sj, sn_) < <
By Lemma 3.12, each point of the interior, z(j, T), of z$(j, T) corresponds to a

unique pair of time-optimal control functions satisfying the conclusions (1)-(3). If
s z(j, T) has distinct coordinates, these control functions have n- 1 switches and
take on n values from among the extreme points of c2. In this case a typical control

..,un-l u(n,j) with the values ofsequence for v(. ;s, j) is of the form u(1,j), u,
u2, ,u"-1 determined by the relative order of s,..., s. and Si/,"" sn_. For

i12 i!
2example, if s<sj+, =(-8(j+l),(-1)n-J-8(j)); while if sj+<s,

(8(j+ 1), (-1)n-iS(j)). If some s sty, 1 _-< ce -<j </3 -< n- 1, then switches will occur
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simultaneously on both coordinates, and one or more of the ui’s will be missing from
the sequence of control values.

To be more precise, suppose that s A(j, T) has distinct coordinates, and let

s(1), s(2), , sn_l) be the first n- coordinates ors arranged in order of increasing
magnitude. (Note that s) must equal the smaller of s and SJ+ while sn_ must
equal the larger of SJ and s,_ .) The control function v(.; s, j) is then given by

(3.13)

v(t; s,j) u(1,j), 0 <- < s.,,
112, Sr(l) < Sr(2

U S.rr(i_l) =< < STr(i

U STr(n_l) S

The process of ordering the coordinates of those s in A(j, T) whose coordinates
are distinct defines permutations of 1, 2, , n 1} that are characterized by the fact
that their inverses are order-preserving on the subsets {1, 2,... ,j} and {j+ 1,...,
n- 1}. There are precisely (".-)= (n- 1)!/(j!(n- 1-j)!) such j-permissible permuta-
tions. From (3.13), it is clear that if s and s are two different points of A(j, T) which
define the same j-permissible permutation, 7r, then the relative order of all coordinates
s, and.st with c _<-j </3, are the same, and thus the corresponding control functions
v(., s,j) and v(., s2,j) assume the same sequence of control values but differ in at
least one switching time. Let

(3.14) A(j,T;Tr)={sA(j,T):s,s,l<=ce,<=n-l, andTrorderssl,...,s,_}

and let A(j, T; 7r) be its closure. The mapping

Sl---)(Srr(1), Srr(n-1), Sn)

is a cellular homeomorphism [16] (under their natural topologies) of A(j, T; 7r)
(A(j, T; 7r)) and the open n-cell

r(n, T)={yN’" 0<yl <...<y, < T}

(closed n-cell r(n, T)).
In this way the interior of A(j, T) is seen to be the disjoint union of the (n;1)

open cells, {(j, T; 7r): 7r j-permissible}, and their common boundary (n- 1)-cells
defined by equalities of the form s, s, where 1 <_- c <-j </3 _-< n 1. The time-optimal
controls, v(., s,j), assume, for all s z(j, T; 7r), the same sequence of n control values,
p(Tr, j)---(u(1,j), u2, u"-, u(n,j)). Such sequences need to be formally identified
if we are to understand the time-optimal flow.

DEFINITION 3.15. A sequence of control values, (u, u2, , u), which describes
the sequential values assumed (each on a set of positive measure) by a time-optimal
control function v, and which satisfies the additional "policy condition" that u 11i+,
i= 1,..., k-1 (i.e., that it be such a sequence having minimal length), is called the
(time-optimal) switching policy of order k or k-policy (or, simply, switching policy)
ofv.

With this notation, for each s in A(j, T; 7r), v(.; s, j) has the optimal n-policy,
p(j, 7r), and -v(.; s,j) the optimal n-policy -p(j, 7r) (-u(1,j), , -u(n,j)). When
s lies in the boundary of (j, T; 7r) (where one or more equalities of the form s=) =0,
s=)--s(/), s=,_)= s hold), examination of (3.7) and (3.8) shows that the time-
optimal control functions +v(.; s,j), generated by 2t*(s,j) are also described by (3.13)
and have switching policies that are subpolicies of +p(j, 7r) in the obvious sense.
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Of particular importance are the subpolicies of order n-1 of the n-policies
+p(j, r), of which there are always at least two (unless n 1). Namely, in the case of
p(j, r), p(j, r; A)-= (u2, u(n,j)) and p(j, r; I)- (u(1,j), u2, u"-l), where
"A" and "I" indicate the attracting (A) and invariant (I) character of the associated
cells in K(T) to be defined and discussed in 5 and 6.

These two subpolicies may be the only ones of order n- 1. For example, suppose
n 4 and j 0. Then, for s in the interior of 4(0, T) {s: 0_-< s <_- s2 =< s3 -< s4 -< T},
.(s, 0) will generate controls that switch only in the second coordinate and v(.; s, 0)
will have a switching policy of the form p--(U,U2, ul, u2) with u=u(1,0)
(8(1),-8(0)) and u2= (8(1), 8(0)). Since the identity is the only zero permissible
permutation, p and -p are the only time-optimal switching policies of order 4 whenj 0.

The policy p has the two subpolicies of order 3: p(A)=(u2, u, u2), associated
with the 3-cell of 4(0, T) having s =0, and p(I)=(u, u2, ul), associated with the
3-cell defined by s3 s4. Since a subpolicy must satisfy the "policy condition" of (3.15),
these are the only subpolicies of order 3..Points of other boundary cells of 4(0, T)
generate, through k*(., 0), controls with policies of order 1 or 2. For example, the
policy associated with the 3-cell of zX(0, T) defined by sl s2 and the 2-cell defined
by s s2 s3 is the order-2 policy, (ul, u). Clearly, the controls generated by k*(., 0)
(or k*(., n 1)) will exhibit similar behavior for any value of n > 2.

The results derived above concerning the time-optimal control functions for strictly
normal systems are summarized in the following proposition.

PROPOSITION 3.16. Let r= 2 and system (1.1) be strictly normal so that the deter-
minants d(j)50, j=0, 1,..., n. Then there exists a T>0 such that, for each j=
O, 1,..., n-l, the vectors k*(s,j), s(j, T) (see (3.3) and (3.10)) generate time-
optimal controlfunctions, +v(.; s, j), over the interval [0, T] with thefollowing properties:

(1) If s is in the interior of (j, T), v(.; s, j) is unique and if, in addition, s has
distinct coordinates, then v(.; s,j) defines one of the precisely

n-l) (n-l)!
j j!(n-j-1)!

distinct switching policies of order n, p(r; j), and
(a) has initial control vector u(1,j)= (8(j+ 1), (-1)n-i-8(j));
(b) switches in the first coordinate when s, s and in the second coordi-

nate when s.i+ , sn-l;

(c) terminates with the control u(n,j)=((-1)i8(j+ 1), [i(j)).
(2) The subset z(j, T; r) (see (3.14)) of z(j, T) consists of all points generating

controls with policy p(j, r) and is, topologically, an open n-cell and its closure A(j, T; r)
is a closed n-cell.

(3) If p(j, rr)=(u(1,j),uZ, .,u"-l,u(n,j)) and s is in a boundary cell of
z(j, T; r), then k*(s,j) generates control functions whose switching policies are sub-
policies of p(j, r), in particular:

(a) If s is in the (n-1)-cell {sz(j, T; r): sl)=0}, then k*(s,j) generates
a control function with switching policy p(j, r; A) (u2, u(n,j)) of
order n 1;

(b) Ifs isin the (n- 1)-cell {s (j, T; r): s_ s,}, then k*(s,j) generates
a control function with switching policy p(j, r; I)=(u(1,j),..., u-1) of
order n- 1.

These results will now be used to determine the time-optimal switching policies
for small response times of the three example systems introduced in 1. To simplify
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the description we use the notation u=(1, 1), ti2--(--1, 1), 113=(--1,--1), and II4=

(1,-1) for the extreme points of 2. This permits, for example, the description of the
policy (ui, u, uk) by, simply, ( i,j, k).

Example A (continued). For this system, 8(0)=(1)=(2)=8(3)= 1 and the
optimal policies of order 3 are as follows"

j=0: u(1, 0)=u and the two optimal policies are p-(1, 4, 1) and -p=(3, 2, 3).
j 1" u(1, 1)--u4 and the optimal policies corresponding to the two permissible

permutations are Pl (4, 1, 2), p2 (4, 3, 2) and -pl (2, 3, 4) and -P2
(2,1,4).

j=2: u(1,2) =u and the optimal policies are (1,2, 1) and (3,4,3).
Example B (continued). For this system i(0) i(1) 1 and 8(2) 8(3) 1. This

situation leads to the following optimal policies of order 3:
j 0" u(1, 0) u and the optimal policies are ( 1, 4, 1) and (3, 2, 3).
j 1" u(1, 1)= u3 leading to the optimal policies (3, 4, 1) and (3, 2, 1) and their

negatives ( 1, 2, 3) and (1, 4, 3).
j=2" u(1,2)=u with (3,4,3) and (1,2, 1) as optimal policies.
Example C (continued). For the attitude control of the satellite we find 8(0)=

8(1) 8(2)= i(3)=8(4)= 1 and the time-optimal switching policies of order four are
as follows:

j 0: u(1, 0) u4 and the optimal policies are (2, 3, 2, 3) and (4, 1, 4, 1).
j 1" u(1, 1) u with the optimal policies corresponding to the three 1-permissible

permutations being ( 1, 2, 3, 2), ( 1, 4, 3, 2), and (1, 4, 1, 2) and the nega-
tives (3, 4, 1, 4), (3, 2, 1, 4), and (3, 2, 3, 4).

j=2: u(1,2)=u2 with (2, 1,2,3), (2, 1,4,3), and (2,3,4,3) and (4,3,4, 1),
(4, 3, 2, 1), and (4, 1, 2, 1) as optimal policies.

j=3: u(2, 1)=u with the optimal policies (1,2,1,2) and (3,4,3,4).
Remark 3.17. Note that the notation employed to represent the switching policies

is such that if two cells have common boundary cells, the associated switching policies
have corresponding common subpolicies. For example (Example C, j 1), ( 1, 2, 3, 2)
and (1, 4, 3, 2) associated with cells {Sl < s2 < s3 < s4} and {s2 < s < s3 < s4} (using an
obvious notation), respectively, share the subpolicy (1, 3, 2) which is the switching
policy of control functions associated with the points of the 3-cell {sl s2 < s3 < s4}.
As a result, knowledge of the optimal control functions and their switching policies
can be used to analyze the geometry of K(T) and its switching surfaces.

4. The time-optimal policy complex. In the previous section we identified, for each
j 0,. , n and each s in A(j, T), a time-optimal control function, v(.; s,j), defined
over the interval O<=t<--sn<=T. Because the system (1.1) is normal, v(-;s,j) is the
unique time-optimal control function for a point, x(s,j), in K(T). We can identify
x(s,j) by constructing the solution to (1.1) with the unknown x(s,j) as initial data,
noting that 0(s,)= 0, and solving for x(s,j) to find

(4.1) x(s,j) e-AtBv(t; s,j) dt.

UIf the time-optimal switching policy of v(., s,j) is p(j, zr) (u u2, ) (or
a subpolicy of p(j, zr)), then

"’’)
-AtB U -AtB U

2 e-AtB dt u"x(s,j)=- e dt. e dt
dO s(I) n--l)

(4.2)
’ e-’’B dt (-+)- e-’B dt u

k=l dO
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The relationship is simplified by defining

(4.3) gi(7-) e-A’b dt, i-- 1,2

and noting that for 1 =< r(k)<-j, the switch from uk to uk+ at time Sk) involves
the first coordinate and, from Lemma 3.12(1),

uk--uk+:[:l:2(j+l)]O
(’+" if 7r(k) 1, "-" if 7r(k) 2,. -), while ifj+ 1 -<_ 7r(k) < n- 1, the switch involves
the second coordinate and

uk __uk+l [ 0 ]+/-(-1)"--’28(j)

("+" if 7r(k)=j+ 1, "-" if rr(k)=j+2,.--). Then, in terms of

(-1)gt(s,)
(4.4) G’(s; j) g’ (s,) -g’(s2)+-’" + (-1))-’g’ (s.) +

2

and

G2(s; j) g2(s./+,) -g2(s./+) +... + (-1)"-J-2gZ(s,_,) +
2

we have

(4.5) x(s, j) 2g(j + 1 )G’(s; j) + (-1)"-J-’Zi(j)GZ(s; j),

which is independent of r, valid for all s in A(j, T) and defines a C mapping s-> x(s, j)
of A(j, T) onto a subset, D(j, T), of K(T). D(j, T), being the continuous image of a
compact set, is compact and consists of all points x in K(T) which are time-optimally
controlled to 0 by control functions v(.;s,j) with seA(j, T). Because of its cell
structure, which is developed below, D(J, T) is called a time-optimal policy complex.

The map (4.5) is the composition s-->v(.; s,j)->x(s,j) and, while the latter is
injective because of the normality of the system, the former is necessarily injective
only on the interior of A(L T). In fact, it will not be injective on the boundary of
A(j, T) if either j or n-j- 1 is greater than 1. Because of the central role these issues
play in the sections to follow, it will be beneficial to explore an example in detail.
Toward that end we turn to the case "j 1" for the fourth.order system, Example C,
which provides a representative example.

For Example C and j 1, A(1, T) {s 4:0 s s4 T, 0 _-< s2 <- $3 $4 T} and
(recall that all (i)= 1 for all i)

(4.6) x(s, 1) 2[g’(s,) g’(s4)/2] + 2[gZ(s) g(s3) + g2(s4)/2]

maps A(1, T)-->D(1, T)c K(T)c N4. The interior of A(1, T) is composed of the three
open 4-cells (using obvious notation) A(1, T; 7to) {0 < s < s2 < s3 < s4 < T} (Tr0 is the
identity permutation), A(1, T; r)= {0 < s < s < s3 < s4 < T}, and A(1, t; 7r_)
{0 < s2 < s3 < s < s4 < T} and their shared open 3-cell boundaries {0 < Sl s < s3 < s4 <
T} and {0 < s2 < sl s3 < s4 < T}.

Remark 4.7. In this context "open 3-cell (open 2-cell, etc.)" indicates a cellular
homeomorphic image of the standard open 3-.cell (open 2-cell, etc.) not necessarily,
an open set in the topology of the space (see [16]).
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Through the outer normal vectors (., 1) (see (3.3)), the points of these cells are
associated with time-optimal control functions having the 4-policies (recall the notation
from the previous section) (1, 2, 3, 2), (1, 4, 3, 2), and (1, 4, 1, 2) and the 3-policies
(1, 3, 2) and (1, 4, 2), respectively.

The boundary of z(1, T) contains the set {s z(1, T): s4 T}, which x(., 1) maps
into the T-isochrone, and the following cell complexes each composed of one or two
open 3-cells:

Cell complex

{0 s, 0 < s2 < s3 < s4 < T}
{ S S4 < T, 0 < s < s3 < $4 < T}

{0 < S < S4 < T, 0 s < s < s4 < T}
{0 < s < s4 < T, 0 < s2 < S $4 < T}
{0 < S < S4 < T, 0 < s s < s4 < T}

Optimal policy

(2,3,2)
(1,4,1)

(4,3,2) and (4, 1,2)
(1,2,3) and (1,4,3)

(1,2)

The last three complexes of this list each contain two open 3-cells (e.g., correspond-
ing to sl < s3 and s3 < sl in the first instance) which, in the first two cases, determine
two optimal 3-policies. In the last instance the points of the two open 3-cells determine
a single 2-policy which is also the policy associated with the open 2-cell {0 < s < s2 s3
s4< T}. Other boundary cells of 4(1, T) determine additional 2- and 1-policies. For
example"

Cell complex

{0-- S < S < S S4 < T}
{0-- S S < S < S4 < T}
{0-- S < S < S S4 < T}
{0-- S < S S S4 < T}

Optimal policy

(2,3)
(3,2)
(4,3)
(4)

The connection between shared boundary cells of lower dimension and shared
subpolicies (see Remark 3.17) is clearly evident from these examples. Furthermore,
the "shared subpolicies" become, via (4.5), shared boundary cells of the policy
complexes. This illustrates the geometric insight provided by the concept of "switching
policy."

Now, as noted above, there is a one-to-one correspondence between control
functions and points of K(T) because of the assumed normality ofthe system. However,
as the examples above clearly demonstrate, the correspondence s-- x(s, 1) is, in general,
many to one when s lies on the boundary of A(1, T). Before specifically addressing
the many-to-one feature, let us consider the mapping in more detail. From (4.4) and
(4.5), the Jacobian matrix of (4.6) (in column form) is

0x(s, 1)= [-2E’(s), -2E2(s2), 2E2($3), E’(s4)- E2($4)](4.8)
0s

with the determinant

[0x(s, 1)] 8[k(s, 1)/x E(s4)-X(s, 1)A E2(s4)]det
[

(4.9)
8[[h(s, 1) A E(s4)l-f-IJk(s, 1) A E2($4)[],

given the signs assumed by the determinants h(s, 1) ^ E;(t) for > max (s, s3) (shown
in (3.9b)). This result confirms the local injectivity of the mapping on the interior of
z(1, T) as long as both determinants, h(s, 1) ^ E(t), i= 1, 2, do not vanish identically.
More important, it leads to a proof that on the relative interior of a boundary k-cell,
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that is, an open k-cell (in this case k 1, 2, or 3) corresponding to an optimal k-policy,
the Jacobian matrix has rank k, and therefore, the image of this open k-cell in D(1, T)
is also an open k-cell (note Remark (4.7)).

This example is typical of the general case. Calculations similar to those of (4.8)
and (4.9) lead to the same conclusions concerning the Jacobian of (4.5) and show that
this C mapping is injective on the interior of (j, T) and on any open k-cell associated
with a time-optimal k-policy. However, the mapping is not injective on some cells
defined by equalities of the form si Sin, where 1 =< i, m =<j, or j+ 1--< i, m_<-- n- 1.
Examination of (4.5) shows that such a cell of dimension, say, m is associated with
the same optimal k-policy, with k < m, as some open k-cell. Thus the two cells are,
insofar as time-optimal controls are concerned, equivalent, since their points s map
into the same open k-cell in D(j, T). The following proposition, proven in [23], uses
the concepts and results of [16] to formalize these relationships.

PROPOSITION 4.10. The equivalence relation on A,(j, T) defined by

R(j)-- {(s l, s2): s, s 6 A(j, T), v(’; sl,j) =V(’; S2, j)}

is a cellular equivalence relation. Also,
(1) With the usual topology on the cell complex /(j, t), the quotient space

z(j, T)/R(j) is a normal CW-complex;
(2) The map x*: z(j, T)/R(j)- D(L T) c K(T) based on (4.5) is a cellular homeo-

morphism, and therefore, the time-optimal policy complex D(j, T) is also a normal
CW-complex.

This proposition provides a clear picture of the policy complex D(j, T). Its interior
is, essentially, that of z(j, T) while its boundary contains homeomorphic images of
some of the (n- 1)-dimensional boundary cells of z(j, T). Other boundary cells of
the latter cell complex are mapped by x(.,j) into a single cell of lower dimension.
This situation is especially clear in the third-order Examples A and B for j 0 or 3.
It is obvious that the face of the tetrahedron z(0, T) defined by s s2 is mapped by
x(s, O)=8(1)gl(s3)+28(O)[g2(s)-g2(sz)+g2(s3)/2] into a curve which is the homeo-
morphic image of the cell {s z(0, T): 0 s sz <_-s3-<- T}.

This qualitative view is, however, not sufficient; we need considerably more
detail in order to reconstruct the time-optimal flow on K(T). Much of the necessar;’

information is provided by identification of the cells of D(j, T) having dimension n
and n 1.

The only open n-cells of the complex D(j, T) are the images of the (’.-) cells
zk(j, T; r), defined by the j-permissible permutations r. Images of open (n- 1)-cells
ofthe form {s zl(j, T): si=Sk, l<=iU--_j<k<--n--l,s # st,a, fl# i,j} lie inthe interior
of D(j, T) and form the joint boundaries of the open n-cells. These cells play no
particular role in the following. That is far from the case for the open (n- 1)-cells
forming the boundary of D(j, T) relative to K(T) (that is, ignoring the portion of the
boundary contained in the T-isochrone). These cells occur in four groups and are the
images under (4.5) of the cell complexes of z(j, T) defined by s =0, by s./= s,, by
Si+ =0, and by s,_ s. These complexes will be denoted by D(jls =0), D(jls s,),
etc. The first two of these complexes correspond to those permutations in which the
first, or last, switch occurs in the first coordinate; the latter two complexes corresponding
to those permutations in which the first or last switch occurs in the second coordinate.

D(j[s, 0) and D(jlsj s,) each contain "-(.-_) open (n 1)-cells corresponding
to each j-permissible permutation with r(1)= (so that s < s.+) for the first complex
and to the permutations with r(n 1) =j (so that s_ < SJ) for the second. D(jls./+ =0)
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and D(jls,_, s,) each contain ,-2(.j) open (n-1)-cells corresponding to those 7r

satisfying r(1) j + 1 in the first instance, or r(n 1) n 1 in the second.
These relationships can be made clearer by defining

(4.11) D(j, T; 7r)= clos [x(zl(j, T; 7r),j)],

which is a closed n-cell and consists of all points of K(T) whose time-optimal control
functions have switching policies that are subpolicies of p(j, 7r) (see 3.16). In particular,
the open (n- l)-cell corresponding to the subpolicy defined as p(j, r, A) is a cell of
the complex D(jls =0) if 7r(1)= 1, and of the complex D(jlsj+ =0 if 7r(1)=j+ 1.
Similarly, the open (n 1)-cell associated with the subpolicy p(j, 7r, I) is in D(j[sg s.)
or D(jls,_t s,) if 7r(n 1) =j or n 1, respectively.

5. The time-optimal flow as a local semidynamical system. In this section we
examine the time-optimal trajectories on the policy cell complexes +D(j, T), j--
0,..., n, of the previous sections from the perspective provided by the theory of
semidynamical systems (see [1]). In the process we show that the policies p(j, 7r, A)
and p(j, r, I) of order n- 1 correspond, indeed, to attracting and invariant cells of the
local semidynamical system defined by the time-optimal trajectories on D(j, T)\{0}.

A point x(s,j) in the interior of D(j, T) lies either in the interior of a unique
closed n-cell D(j, T, r) or, if its optimal control function has a policy of order <n, in
the boundary of two or more such n-cells. For the moment let us assume the former
(i.e., that the coordinates of s are distinct) so that the time-optimal control for this
point has the n-policy p(j, r)=-(u, U2, un-l, un> with switches occurring in the
sequence Sr), S=2), ", S= 1). Define

(5.1) y(sr(l), Sr(2), ", S(n-I), Sn) :--- X(SI, $2,’" ’, Sn-I, s.,j).

Then, since x(s,j) was found by "backing out from 0" in (4.1), the time-optimal
trajectory from x(s,j) to 0 is easily seen (using (4.2)) to be described by

q(t) =y(s=()- t, s=(2)- t," ", s=(,_)- t, sn t), 0=< < s(),

=y(0, $7r(2 t,. ’, s=,_)- t, s, t), s=) -< <
=y(O, O, s,(3)- t, , s.(._l- t, s. t), s. < < s(3),

y(0, 0, , 0, sk)- t, , s_)- t, s, t), STr(k_l) <: < STr(k),

=y(0, 0,. , 0, s t), s(_)-_< < s,
O, s. <= <_- T.

This representation of the time-optimal trajectories can be extended to all of
D(j, T) and is easily seen to define a semidynamical system [1] on this complex. It is
clear that each point of the T-isochrone (s, T) is a "start-point" of the flow (i.e., is
not "downstream" from another point of the complex). Furthermore, as the following
proposition shows, the semidynamical system is strongly related to the cell structure
of the policy complex.

PROPOSITION 5.3. Let x x(s, j) be apoint of D(j, T) and suppose that the switching
policy of the time-optimal control function for x, v(.; s, j), is p(j, 7r) or a subpolicy of
p(j, or). Let q(t), 0 <=t < s, describe the time-optimal trajectory from x to 0 (see (5.2))
and D(j, 7r, ce) be the image under x(. ,j) of the (n- ce)-dimensional cell of A(j, T;
defined by s<) s=<2) s=,) 0. Then

(1) D(L 7r, a) is a closed cell of D(j, T) of dimension n a;
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(2) If s()>O, q(t) lies in the interior olD(j, T) for 0-<_ t<s();
(3) If s) < s+), tp(t) lies in the relative interior of D(j,

S(+);
(4) If s has distinct coordinates, then ( t) successively traverses the relative interior

ofeach cell ofthe sequence D(j, T), D(j, r, 1), D(j, r, 2),. ., D(j, rr, n 1) as traverses
the interval [0, s ].

Proof The first result follows from continuity of the mapping x(. ,j) and calcula-
tions based on its Jacobian analogous to (4.8) and (4.9). The other assertions follow
directly from (5.2).

A subset M is an attracting set of a semidynamical system on a set X if the set
of points of X that are attracted to M form a neighborhood of M (the notion of
"attraction" is clear for the time-optimal flow considered here; see [1] for precise
technical considerations). Thus, in considering the time-optimal flow on D(j, T), it is
clear that any set containing 0 will be an attractor of the flow. This is, obviously, of
little use in studying the time-optimal system. The notion of attraction, however,
becomes much more discriminating when we consider the local semidynamical system
defined on D(j, T)\{0} by the time-optimal flow. In this instance (5.2) and (5.3) show
that the cells D(j, r, 1) and their subcells are attractors of the flow restricted to
D(j, T; 7r). When all j-permissible permutations are considered, these cells form the
attracting cell complexes denoted by +D(jls =0) and +D(jls./+ =0) in 4.

A subset N is a positively invariant set of a semidynamical system on a set X if
the trajectories starting in N remain in N. It is called negatively invariant if its
complement is positively invariant, and invariant if it is both positively and negatively
invariant. In applying these notions to the time-optimal flow on D(j, T), we note that
the cellular nature of the flow makes each closed cell of the nested sequences D(j, 7r, 1),
D(j, r, 2), , D(j, 7r, n 1) positively invariant, but not invariant, cells. However, as
(5.2) shows, the cells defined by s(_) s are both positively and negatively invariant.
These (n- 1)-dimensional cells form the invariant cell complexes previously denoted
by +D(j[si s,) and .-t=D(jls_ s). These results are summarized in Proposition 5.4.

PROPOSITION 5.4. The local semidynamical system defined on D(j, T)\{0} by the
time-optimal flow characterizes the boundary cells of this policy complex as follows:

(1) The portion of the T-isochrone contained in the policy complex consists of "start
points" of the time-optimal flow;

(2) The (n-1).dimensional cell complexes D(jls=0) and D(j[s.i+=O) are
attracting sets of the time-optimal flow;

(3) The (n-1)-dimensional cell complexes D(jls.=s) and D(jls_.=s) are
invariant sets of the time-optimal flow.

6. The assembly of K(T). In the previous section we identified the n + 1 policy
complexes D(j, T), j=O, 1,..., n and the complexes composed of their (n-1)-
dimensional boundary cells D(jls 0),. -, D(jls_ s), j 0, 1,. ., n. Due to the
symmetry of the system---v(.; s,j) is a time-optimal control function if v(-; s,j) is a
time-optimal control function--we also have their negatives -D(j, T), etc. In this
section we show how this "n-dimensional jigsaw puzzle" assembles to form K(T). The
basic step in the assembly process involves showing that each boundary (n- 1)-cell
of, for example, D(j, T) is also a boundary cell for precisely one of the four complexes
=i=D(j- 1, T) or =t=D(j + 1, T). This we accomplish by direct calculation. The remainder
of the construction relies on a technical lemma that shows the union of all the policy
complexes to be K(T). In this process we are providing another proof of Yeung’s
result on the minimal controllability of strictly normal systems of the type (1.1) [29]
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and providing a great deal more information on the time-optimal flow which will be
of use in later sections.

LEMMA 6.1 (Structure lemma). Let r= 2 and system (1.1) be strictly normal and

define

(6.2) l(k)=a(k-1).8(k+l), k=l,...,n-1.

Then, for 1 <=j <= n 1"
(1) If /(j) 1

1) D(jls, =0) =-a(j). 8(j- 1). D(j- lls,_, s,),
2) D(j[si=s,)=(j). (j-1). D(j-lls2=0);

(2) If l(J)=-1
1) D(j]s, 0) 8(j). 8(j 1). D(j l[s.i 0),
2) D(j[s. s,)= -8(j). 8(j- 1). O(j- 1]s,_,

For 0-<j n-2:
(3) If l(j+ 1)= 1

1) D(jls2+, =0)= [i(j+ 1). [i(j). D(j+ l[s2+,
2) D(jls,_ s,)=-8(j+ 1). [i(j). D(j+ l[sl 0);

(4) If (j+ 1)=-1
1) D(jlsj+=O)=8(j+ 1). 8(j). D(j+ lls, =0),
2) D(jls,_, s,)= -(j+ 1). (j). D(j+ I[Si+,

Proof As noted above, the proofs of these relationships are computational.
Because, from (4.4), G(s; j) depends only on s,..., Si, s, and G2(s; j) depends only
on Si+,’’’, sn-l, sn, we have the relationships

G(0, s2, s2, sn;j)= -Gl(s2, s2, s,;j- 1),

G(s,, Si-,, s., s.; j)= G’(s,,"’", s2_, s; j- 1)

and

G2(0, s.+2, s._,, s.; j) -G2(si+2, s._,, s.; j + 1),

G2(s./+,,’’’, s.-2, s., sn;j)= G2(s.+,,’", s._2, s.;j+ 1).

Now, using the first two of these equations and (4.5), we find that

(6.3a)

(6.3b)

[i(j- 1)" x(s; j)].,.,=o -2l(j)G’(s2,’’’, s2, sn;j- 1)

+ (-1)"--2[i(j) g(j- 1)G2(s.+l, s,;j),

g(j-1)" x(s; j)l. ...... 2/(j)G(Sl, s.i_,,sn;j-1

+ (-1)" -i-’28(j) g(j 1)G2(s./+, ", s,,; j),

(6.4a)
8(j). x(s;j-1)].,,,__o 2G’(s,, s._,, s,;j- 1)

+ (-1)’--’28(j). 8(j 1)G2(s;+,, ., s,; y),

(6.4b)
8(J)" x(s;J- 1)1 ...... ...... =2G’(s,,’"’, s._l,sn;j-1)

+ (-1)"--i28(j) 8(j-1)G(s, s_, s,;j).

Now, if /(j)= 1, we see that the image of the (n- 1)-cells making up the set
(sz(j, T)" s =0} under the map (6.3a) is exactly the same as the image of the
(n 1)-cells of the set {s. z(j- 1, T)" s_. s,} under the negative of the map (6.4b).
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Similarly, the image of {s&(j, T): s./= s,,} under the map of (6.3b) is equal to
the image of {seA(j-l, T): S/=0} under the map of (6.4a). Thus, when (j)= 1,
8(j- 1). D(jls, =0) =-[i(j). D(j- l[s,_, s,), and 8(j- 1). D(jls s,) =8(j).
D(j-lls. =0}. This proves (1(1)) and (1(2)) of the lemma. The assertions (2(1)) and
(2(2)) also follow from (6.3) and (6.4) under the assumption that 3’(J)=-1.

In the same fashion we can prove the remaining assertions of the lemma by
considering the mappings g(j+l).x(.,j) and g(j).x(.,j+l) restricted to the
appropriate cells of &(j, T) and &(j + 1, T). [3

Now let
n--1

K [.J [D(j, T) U (-D(j, r))].
j=0

K is a closed cell complex contained in K(T) and, from (6.1), since D(0, T)
shares an (n-1)-cell with D(1, T) and -D(1, T),..., D(n-1, T) shares an (n-1)-
cell with D(n, T) and -D(n, T), it is clear that K1 is a connected complex which is
symmetric with respect to 0. Furthermore, its interior K is also connected. To see this,
let x be a point of the relative interior of one of the boundary (n- 1)-cells of, say,
D(j, T). Then the map (4.5) is locally a smooth homeomorphism and so, near x,
D(j, T) is a smooth n-dimensional manifold with boundary which contains a half-
neighborhood of x intersecting the boundary (n- 1)-cell in a relatively open set. The
same result is true for the other complex, say, D(j-1, T), which shares the cell
containing x with D(j, T). The union of the two half-neighborhoods forms a neighbor-
hood of x contained in D(j, T) [_J D(j- 1, T) which, clearly, has a connected interior.
This, given the relationships of Lemma 6.1, proves that K1 is a closed symmetric cell
complex with nonempty connected interior.

THEOREM 6.5 (Cellular Decompositior Theorem). Let r= 2 and system (1.1) be
strictly normal and let T be sufficiently small and positive. Then

--1

K(T) [_J [D(j, T) U (-D(j, T))].
=0

Proof K(T) is a connected convex set with nonempty interior, K(T). Thus
K(T)\K1 is either empty or contains a point x. In the first case the result is proved.
In the second instance, let x be a point of the interior of K. Since both x and x lie
in the interior of the connected set K(T) there exists a curve lying in K(T) that
connects them. The cells ofK of dimension n -2 or less (the cells of the (n -2)-skeleton
of K1; see [16]) are a relatively negligible part of the complex (and of K(T)) and it is
reasonable to suspect that the curve connecting these two points can be chosen to
avoid all such cells. This is, in fact, possible by a general position argument [8], [28].
Thus, if z is the "last" point of the connecting curve lying in the closed set K1, it must
lie in the relative interior of some cell of dimension n 1. This, however, is impossible,
since we have just shown that the points of the relative interiors of all such (n 1)-cells
are in the interior of K1. This contradiction proves the proposition.

This result shows that the control functions +v(. j, s), s &(j, T), j 0, , n 1,
we have identified are sufficient to control all points of K(T), for sufficiently small T,
to 0 time-optimally. In the sections to follow we shall use this result to explore the
time-optimal flow, the switching surface structure and the character of the time-optimal
feedback function.

7. Time-optimal feedback control and regular synthesis. In the previous section we
proved that K(T) is the union of the policy cell complexes +D(j, T), j 0,..., n- 1.
By the normality of the system, time-optimal controls are unique. It is clear, therefore,
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that the unique control function for a point lying in the intersection of two, or more,
policy complexes has a policy that is a subpolicy of one or more of the n-policies
associated with the original complexes. Thus, if we define the time-optimal feedback
control function on each of the component n-complexes, +D(j, T), j 0,.-., n- 1,
it is uniquely defined on all of K(T).

Accordingly, let x K(T) and suppose x x(sl, , sn-t, sn,j) D(j, T) and the
unique control function for x has p(j, 7r) (ut, u2, , u") (or a subpolicy of p(j, r)), s(n_ (or a subsetas its switching policy and switches consecutively at times s(),
of these times). Then define

F[x(s,’",s.,j)]=u’ ifO<s(t),
u if O= s) < s(),

I! if 0 S(I S(2) < S’n’(3),(7.1)

u" if 0 s=() s=(,_) < s, <= T,
0 if 0 s=1) s=,_) s,.

PROPOSITION 7.2. The time-optimal feedback function, F, satisfies the following"
(1) F is piecewise constant and"

(a) F(x)=u(1,j)= (8(j+ 1), (-1)"-l--ii(j)) if x lies in the interior of D(j, T)
or in the relative interior ofan n- 1 )-cell belonging to either of the n- 1)-
dimensional invariant cell complexes D(j[s s,) and D(jls,_

(b) F(x)=(-8(j+l),(-1)"--(j)) if x lies in the relative interior of an
n 1)-cell belonging to the n 1)-dimensional attracting cell complex
D(jls =0).

(c) F(x) (Ii(j+ 1), (-1)"-8(j)) if x lies in the relative interior of an (n- 1)-
cell belonging to the n 1)-dimensional attracting cell complex D(j[s+ 0).

(2) The time-optimal trajectories of (1.1) on K(T) are solutions of

(7.3) Ax + BF(x), x(0) x K(T).

(3) If x lies in the relative interior of the (n a)-cell D(j, r, a) (defined in (5.3))
for a 1,. ., n- 1, the vector Ax+ BF(x) lies in the tangent space of D(j, 7r, a) at x
and the vector field x--> Ax + BF(x) is transversal to the (n-a- 1).cell, D(j, 7r, cr + 1).

Proof. The proof of these assertions follows directly from the definition of F,
(5.1)-(5.3), and the fact that the "jump" in the tangent vector to an optimal trajectory
traversing D(j, 7r, or) at a point of D( m a + 1) is (from (5.2))

,p (s(+)+0) ,(s(+,) O) 13(u+’ -u)

+b or +b2,

depending on the coordinate in which the cr + 1 switch occurs. U
COROLLARY 7.4. The collection of cells composed of the following:
(1) The interiors, +D(j, T), j 0, , n 1, of the policy complexes;
(2) The cells D(j, 7r, a), c 1,. ., n- 1, (see (5.3)) for all j-permissible permuta-

tions r and for all j O, , n 1;
(3) The cell {0}

with the time-optimal feedback function, F, of (7.1) form a regular synthesis on K(T)
in which every cell is of type i (see [5], [27]).

Proof. This result follows directly from (7.2) and (5.3). ]
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Since the cells of (7.4) are fully constructable using the maps of (4.5), this result
provides the first explicit construction of a regular synthesis for systems ofthe generality
considered here.

Equation (7.3) provides an example of a differential equation "with discontinuous
right-hand side" as studied by Filippov [6], Hermes [12], and Hijek [10], [11]. For
our purposes the most useful concept of "solution" for such systems is the one proposed
by Filippov.

DEFINITION 7.5. Let f be suitably defined on a subset of (see [6], [10], and
[11]), then an absolutely continuous function p is said to be a solution to

f(x), x(0) =x

on the interval 0 <- t<= T, in the sense of Filippov (.an -solution) if (0)=x and
qS(t) e (f, x(t)) almost everywhere on [0, T], where (f, x) is the closed convex set

(7.6) ff(f,x)= fq (q E-6[f(B(,x)\E)],
ti>0 (E)=0

where B(8, x) is the intersection of a 8-ball about x with the domain of f, /z is
n.dimensional Lebesgue measure and E-6 denotes the closed convex hull of its argument
set.

Clearly, if f is continuous at x, (f, x) {f(x)}. At the other extreme, values of f
taken on near x only on sets of measure zero play no role in the determination of
(f, x) or for -solutions through x.

DEFINITION 7.7. A feedback function F: K--> rf is of Filippov type at x K if
F(x) (F, x). F is realizable on a subset S of K if it is of Filippov type at each point
of S.

Remark 7.8. A practical feedback function should not require "infinitely precise"
measurements for its implementation. The determination of function values taken only
on sets of measure zero would require such extreme measurement precision. This
observation motivates the definition of "realizable" feedback function.

The following proposition generalizes the results concerning the measurement
requirements of the feedback function discussed earlier for the n 2 and n 3 cases
pictured in Figs. I-3,

PROPOSITION 7.9. Let F be the time-optimal feedback function defined in (7.1), F
is of Filippov type at each point x of K(T) that lies

(1) In the interior of a policy cell complex +D(j, T);
(2) In the relative interior of an (n- 1).cell of the invariant cell complex D(jls

s) t3 D(jls._- s.) t_J (-D(jls s)) t_J (--D(jls_--
(3) In the relative interior ofan n 1)-cell ofthe attracting cell complex +/-D(jls O)

if and only if 1(J) 1
(4) In the relative interior ofan (n 1 )-cell ofthe attracting cell complex :t:D(jls+

O) if and only if l(J + 1)- 1
forj=O,..., n- 1.

Proof If x lies in the interior or in the relative interior of an (n- 1)-cell of an
invariant cell complex of D(j, T), Proposition 7.2(1)(a) shows that F(x)=u(1,j). In
either case, this value is assumed in a neighborhood or a half-neighborhood of x and
therefore is assumed on a set ofpositive measure in every B(8, x). This proves assertions
(1) and (2) of Proposition 7.9.

If x lies in the relative interior of an attracting (n- 1)-cell of D(jls 0), then,
from the structure Lemma 6,1, it also lies in an invariant cell complex, -i(j). ii(j-
1). D(j- lls,_ s,), or an attracting cell complex, 6(j). fi(j- 1). D(j- lls+- 0), of
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+/-D(j-1, T), when /(j)= +1 or -1, respectively. In the first case, F is realizable at
x by the previously proven assertion (2). In the second case, the value F(x) differs
from u(1, j) in the first coordinate and from i(j) Ii(j 1) u(1, j 1), the value assumed
by F in the interior of i(j) i(j 1) D(j 1, T), in the second coordinate. This implies
that this latter value is, in fact, -u(1,j). Consequently, in any sufficiently small ball,
B(6, x), F takes on only three values: u(1,j) on points of the interior of D(j, T);
-u(1,j) on points of the interior of (j)-i(j-1). D(j-1, T); and F(x) on points
of the (n-1)-cell D(jlsl =0). Since the set of points x where F(x)= F(x) is a set of
measure zero and F(x) is not a convex combination of +/-u(1,j), F is not realizable at
x. This proves (3), and (4) follows from similar arguments, lq

8. The time-optimal switching surfaces. The time-optimal feedback function F is
conceptually simple. Its two components F1 and F2 assume only the values +1. As a
result the controllable set K is decomposed, for each i= 1, 2, into two sets F/(+I).
The ith switching surface, li, forms the boundary of these two sets. Moroz [25] has
shown that ’i has a one-to-one projection on the subspace orthogonal to bi.

While examples show that switching surfaces can, in general, be very complicated,
the analysis presented above permits a complete description and study of the switching
surfaces within the controllable set K(T), where the results developed in the previous
sections apply. The switching surfaces are, in fact, precisely the attracting cell complexes
described in (5.4).

PROPOSITION 8.1. Let system (1.1) be strictly normal and r 2. Then

n-I

(a) I,(T) --- 1, (q K(T) U [-D(jls 0) U D(j[s, 0)],
j:l

(b)
n-2

[12(T) [12 f-) K(T) [-D(jlsj+, 0) t_J D(jls+, 0)].
j--0

Proof The proof follows by construction and Proposition 7.2.
PROpOSrrON 8.2. For each j 1, 2, , n 1, the n 1)-dimensional cell complex

D(j[s 0)tiesin [I( T) I22( T) ifand only if l(j) l and, for each j O, 1,..., n

2, the n 1)-dimensional cell complex D(jls+ 0) lies in l-It(T) f-q. ll2( T) if and only
if l(j + l -l.

Proof This result follows directly from Lemma 6.1 (the structure lemma) and
Proposition 8.1 (e.g., if /(j)=-1, D(j]sl 0), which lies in lit, is equal to i(j). 8(j-
1). D(j-1]s2 =0), which lies in 112). 71

This description of the switching surfaces coupled with the analytic mappings of
(4.5) permit a complete analysis and construction of the switching surfaces for small
response times. Such results formed the basis for construction of closed-loop time-
optimal controllers for the third- and fourth-order systems reported in [17] and [18].
The switching policies describing the switching surfaces of our example systems are
the following.

Example A.

1: (1,4),(2, 1),(3,2), and (4,3),

II: (4, 1),(1,2),(2,3), and (3,4).

Example B.

l’l,=gl2: (4, 1),(2,3),(2, 1), and (4,3).
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Example C.

1)1: (2, 3, 2), (1, 2, 3), (1, 4, 3), (2, 1, 2), (4, 1, 4), (3, 4, 1), (3, 2, 1), and (4, 3, 4),

1)2: (1, 4, 1), (2, 1, 4), (2, 3, 4), (1, 2, 1), (3, 2, 3), (4, 3, 2), (4, 1, 2), and (3, 4, 3).

9. Canonical structures: proof of Theorem 1.8. In this section we present the proof
of Theorem 1.8, which, for convenience, we restate below. Recall that

’/(j) ’y(j; A, B) (j 1). (j + 1), j 1,. , n-1,
n--1

N(A, B) Z (1 -(j; A, B))/2,
j=

(1 -/(j; A, B))
Jj=

THEOREM 1.8. Let system (1.1) be strictly normal, let r 2, and let T be sufficiently
small and positive. Then the following apply:

(a) K(T)\I)(T) has connectivity 2(n N(A,B));
(b) 1)1( T) 1)2( T) is the union of M(A, B) (n 1)-dimensional cells;
(c) 1)(T)=1)2(T) if and only if N(A,B)=n-1, (that is, /(1;A,B)

/(n- 1; A, B) -1);
(d) The time-optimalfeedbackfunction is realizable on K(T) ifand only ifN(A, B)

0 (that is, /(1; A,B) /(n- 1; A,B)= 1); and
(e) The feedback function is of Filippov type on the relative interior of some

(n )-dimensional cell of 1)(T) if and only if N(A, B) <_- n 2.
Proof (a) We have seen that K(T) is the union of the cell complexes +/-D(j, T),

forj=0, ...., n-1. From Lemma 6.1 it is clear that D(j, T) adjoins +i(j). i(j-
1) D(j- I, T) and +/-fi(j).fi(j+l).D(j+l,T) (when 0<j<n-l, ifj=0 or n-l,
only one such relationship exists). Its intersection with the former pair consists of the
cell complexes D(j[sl 0) and D(j]s sn). If ,(j)= 1, these complexes lie in 1)1 and
1)2, respectively (from (8.2)); each intersection is of the attracting/invariant type; and
D(j, T) and (j) i(j 1) D(j 1, T) lie in distinct components of K(T)\l)(t) as, of
course, is also true of -D(j, T) and -i(j) i(j 1) D(j 1, T). Similarly, if(j + 1)
1, the intersections of D(j, T) and -i(j). i(j + 1). D(j + 1, T) are of attracting/in-
variant type and the two n-complexes also lie in distinct components. Thus, if all
/(k) 1 and therefore N(A, B)=0, each of the 2n policy complexes lies in a distinct
component of K( T)\1)( T). Consequently, K(T)\1)(T) has connectivity 2n when
N(A, B) 0.

On the other hand, if /(j)=-l, the intersection of D(j, T) with i(j). 8
(j-1). D(j-1, T) is of attracting/attracting type and its intersection with -i(j). i
(j-1). D(j-1, T) is of invariant/invariant type. The first implies that D(j, T) and
(j). (j-1). D(j-1, T) are separated by (n-1)-cells which lie in 1)1 f31)2 and
therefore lie in distinct components of K( T)\1)( T). The invariant/invariant intersec-
tion, however, obviously implies that the feedback function is continuous on the interior
of D(j, T) (-6(j) i(j 1) D(j 1, T)) and that these two policy complexes lie in
the same component. The same is true of-D(j, T) and fi(j). 6(j-1). D(j-1, T).
Thus, for each /(j)=-1, the connectivity of K( T)\I-I( T) decreases by 2 and N(A, B)
increases by 1. Clearly, this is the relationship presented in assertion (a).

(b) If all /(j)= 1, allintersections of the policy complexes are of the attracting/
invariant type, 1)1(T) 1)2(T) contains no cells of dimension .n 1 and M(A, B) 0.
However, if/(j)=-l, the attracting/attracting intersection of D(j, T) with
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8(j)’8(j-1)" D(j-1, T) in the (n-1)-dimensional cell complex D(j]s,=0)=
B(j). i(j- 1). D(j- l[sj 0) implies that the

(n- 1)-dimensional cells of D(jls 0) lie in both switching surfaces. Then, by sym-
metry, the minimum number of (n- 1)-cells in Ill(T)f’1112(T) increases by

if /(j)=-1. This proves (b).
(e) If all /(j) -1, all policy complexes intersect in attracting/attracting combina-

tions, each attracting cell lies in the intersection of the two switching surfaces and,
since lower-dimensional cells all lie in each surface, fll(T)= 11z(T).

(d) If N(A, B) is positive, there exists at least one /(j)=-1 and at least two
(n- 1)-cells in I(T)71 lz(T). In this ease the time-optimal feedback function F is
not realizable on these cells by Proposition 7.9(4). However, if N(A, 1)= 0, all policy
complex intersections are of the attracting/invariant type. As a result each time-optimal
attracting subpolicy of one complex is simultaneously an invariant subpolicy of an
adjacent policy complex. It is this property that permits us to show that 1 is of Filippov
type at each point of K(T) and, therefore, realizable.

Now let x K(T). If x lies in the interior of a policy complex or in the relative
interior of an (n- 1)-dimensional boundary complex, then F is of Filippov type at x
by (7.9). Therefore, suppose x lies in some lower-dimensional boundary cell of
D(j, r, T) and that the time-optimal control function for x has a switching policy that
is a subpolicy of p(j, r)= (u, u2, u"). Specifically, suppose F(x) uk and that
the policy describing the control function for x is (a subpolicy of )(uk, uk+, ",

Thus x lies in the (n-k+ 1)-dimensional cell D(j, or, k-1) (see (5.3)) corresponding
to this control policy.

To show that F is of Filippov type at x, it is sufficient to show that F takes on
the value uk on a set of positive measure inside any neighborhood of x. To do this it
is sufficient to show that x lies in a boundary cell of some policy complex, say D(j’, T),
with F(x)= u(1, j’)= uk on points, x, in its interior.

The attracting subpolicy (u2, ., u") of p(j, zr) is also an invariant policy of an
n-policy (u2, u", wm) of an adjacent policy complex. In turn, the attracting sub-
policy of this n-policy is an invariant subpolicy of another n.policy (u3, , u", w, w).
Clearly this process continues until we identify a time-optimal policy p(j’, zr’)=
(uk, , u", w1, , wk-), where j’ denotes the number of switches in the first control
coordinate implied by the policy. Because the control policy of x is a subpolicy of
l(J’, zr’), x is a point of the boundary of D(j’, T). It is clear that points of the boundary
lie in the closure of the interior of D(j’, T). Hence there exist interior points arbitrarily
close to x. Since each such interior point has a neighborhood in which F uk, F is of
Filippov type at x and (d) is proven.

(e) If N(A, B)= n- 1 then fl(T)= "2(T) and F is not realizable at any point
of the relative interior of an (n-1)-dimensional cell of II(T). On the other hand,
if N(A,B)_<-n-2, there exists at least one "attracting/invariant" intersection of
(n 1)-cells. As has been previously shown, F is of Filippov type on the relative interior
of each such cell. This completes the proof of Theorem 1.8.

COROLLARY 9.1. Under the hypotheses of Theorem 1.8 all time-optimal trajectories
on K(T) are Filippov trajectories if and only if l(1; A, 11) /(n- 1; A, i)- 1.
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Proof. A time-optimal trajectory through a point x is a Filippov trajectory if and
only if F is of Filippov type at x.

Theorem 1.8 shows that the time-optimal flow and switching surface structure
near 0 is completely determined, qualitatively, by the structure constants
3"( 1),. , 3"(n 1). These integers, unlike the determinants tl(0), , d(n) are invariant
under linear transformations and provide a canonical classification of strictly normal
systems. Since the system is strictly normal it is possible to use the columns of any
fl(j) as a basis to transform the system into its equivalent Luenberger canonical form
A, B [ 15]. That is, if 0 <j < n, andT denotes the matrix corresponding to the determinant
(j), . T-AT [e2, ., e/, a, e/+2, e", c], =T-B [e e/+

where e denotes the kth column of the nn identity matrix, a=T-A/b and c=
T-tA--b2.

With the system in canonical form, it can be shown that for the low-dimensional
systems ofprimary interest, n _-< 6, 3"(I), , 3’(n I) constitute a system ofindependent
invariants and provide a complete canonical categorization of linear time-optimal
control systems. This result, however, remains to be proven for general

10. L*-systems. Olsder [26] introduced a class of systems he called L* systems.
In the case of two-dimensional controls of interest here, system (1.1) is L* if for n 2k,
tl(k 1), tl(k), and d(k + 1) are nonzero, or if for n 2k + 1, tl(k) and d(k + 1) are
nonzero.

For such systems Olsder shows that, for almost all x of the unit sphere in IR",
there exists an ex > 0 such that exx is time-optimally controlled to 0 by a unique control
function having k switches in each coordinate when n- 2k + 1 and k switches in one
coordinate and k-1 switches in the other coordinate when n 2k. Furthermore, the
switching times and response times are analytic functions of a power of e.

In terms of the results developed in this paper, Olsder’s work implies that in the
n 2k + 1 case, for example, almost every ray from the origin intersects -D(k, T)U
D(k, T) in an interval containing 0 in its interior. Interpreted geometrically, this implies
that the switching surfaces separating these complexes from the others meet tangentially
at the origin. Furthermore, as T--, 0 the relative contribution of all other complexes
(+D(j, T), j k) to K(T) becomes negligible.

The two complexes +/-D(k, T) lie "above" and "below" both switching surfaces
and contain the major portion of K(T). This is illustrated in Fig. 3 and evident in
Examples A and B and the general analysis of [17], [20].

11. Stability with respect to measurement. Hermes [ 12] has introduced the concept
of "stability with respect to measurement" to characterize those feedback systems

(11.1) k Ax+ BF(x),

that are tolerant of measurement error. Hermes’ original formulation has been shown
by Hjek 10], 11] to be equivalent to "stability with respect to inner perturbations"
(an inner perturbation of =f(x) is of the form k=f(x+p(x)) where p is essentially
bounded). This formulation has proved to be more tractable than the original used by
Hermes.

There are necessary conditions for measurement stability and sufficient conditions
for measurement stability, but necessary and sufficient conditions only for the case of
scalar controls, arbitrary n (see [11]), two-dimensional controls with n--2 (see [3],
[4]), and two-dimensional controls with n 3 (see [21]). Furthermore, only [3] and
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[4] deal with the global case; the other results consider only "local measurement
stability" in a neighborhood of the origin.

PROPOSITION 11.2. A necessary condition for a closed-loop time-optimal control
system of the form (11.1) to be locally stable with respect to measurement is that F be
realizable on some K(T), T> 0.

Proof. In his original paper [12] Hermes showed that if a system is measurement
stable, every Carath6odory solution of (11.1) is also a Filippov solution (-solution).
If F is not realizable, there exist Carath6odory solutions on every K(T) that are not
-solutions. On the other hand, if F is realizable, every Carath6odory solution is an
-solution.
CoroA 11.3. Let system (1.1) be strictly normal and r--2; then the condition

(; ,) (n-; n,)--

is necessary for the existence of a locally measurement stable time-optimal feedback
function.

Proof The proof follows directly from Theorem 1.8(d).
PROr,OSTOy 11.4. A closed-loop time-optimal control system of the form (11.1)

with r-dimensional controls, 1 <= r <- n, and a realizable time-optimalfeedbackfunction on
some K(T), T> O, is locally measurement stable ifand only if Filippov solutions to (11.1)
are unique for all x K(T).

Proof If F is realizable on K(T), the classes of Filippov solutions, .Krasovsky
solutions, and Hermes solutions to (11.1) (see [10], [11]) coincide. The result then
follows from [11, Lemma 9.1], which states that (11.1) is stable with respect to
measurement if and only if Hermes solutions are unique.

Unfortunately, existence of a realizable feedback function is not sufficient to imply
uniqueness of Filippov solutions. The following result from [21] exhibits an additional
requirement.

THEOREM 11.5. A strictly normal system of the form (1.1) with n 3 and r 2 is

locally stable with respect to measurement if and only if
(a) ,,/(1; A, B)= /(2; A, B)= 1, and
(b) det[b, b, (2)E(t) + (a)Ez(t)] 0.
Remark 11.6. In [21] the determinants d(j) are indexed by the number of b2-based

columns rather than b-based columns. As a consequence, the roles of i(1) and i(2)
are reversed in the original paper.

The system of Example A is locally measurement stable.
In general, switching surfaces II(T) will contain Boltyanskii "cells of the second

kind" (see [2], [5]) for sufficiently large T. However, it is unlikely that such cells could
introduce measurement instability. Indeed, with the proper cellular decomposition
these cells should occur as attracting sets for some n-cell and "start-points" (see [1])
for another n-cell complex. If this turns out to be an accurate view of the switching
surface structure, then Filippov solutions would be locally unique in a neighborhood
of cells of the second kind. This analysis implies the following conjecture.

Conjecture 11.7. A time-optimal feedback system of the form (11.1) with r-
dimensional controls, 1 <= r <- n, is stable with respect to measurement if and only if it
is locally stable with respect to measurement.

12. Analysis of more general systems. The techniques employed here to analyze
strictly normal two-input systems may be extended to general minimally controllable
r-input systems. This work is in progress and will be reported later. In addition, the
total information concerning the local regular synthesis gained from this analysis sheds
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considerable light on the total switching surface structure for large T. it is expected
that this information will permit a resolution of (11.7).

13. Summary. This paper has extended the analytical techniques of [20] to the
general nth-order strictly normal two-input system. In this extension:

(1) A cellular decomposition of K(T), for sufficiently small T, has been described
and shown to provide the first explicit construction of a local regular synthesis for
multi-input systems of arbitrary order.

(2) A system of linear invariants has been identified and been shown to completely
characterize the time-optimal flow and switching surface structure for small response
times.

(3) New necessary, and necessary and sufficient, conditions for local measurement
stability have been proven.
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CONSISTENT APPROXIMATIONS OF LINEAR STOCHASTIC MODELS*

ANDREA GOMBANI?

Abstract. This paper considers the problem of approximating a stochastic process {y(t)} with state
space X. The desired process {y(t)} has state space X, of dimension as small as possible, such that, in
mean square norm,

for a given e ->_ 0. The solution given here has the inclusion property, i.e., X X and is consistent, that is, it
reduces to the problem of finding a minimal realization of y(t) when e is set equal to zero.

Key words, stochastic realization, approximate model, splitting subspaces, e-observability

AMS(MOS) subject classifications. 93E12, 93B20

1. Introduction. In this paper we consider the problem of stochastic model reduc-
tion. This consists of finding, for a given process {y(t)), a process {y(t)} admitting a
Markovian representation of lowest possible dimension that approximates {y(t)} in
some norm. This problem has received considerable attention in recent years [5], [7],
13], 14], especially in connection with the Hankel-norm approximation of a spectral

factor of y. However, in this paper we investigate a different approach to the problem,
one which exploits the geometric framework of stochastic realization theory [9], 10],
11 ]. The basic idea of this approach is to start with a state space X of y (not necessarily
minimal) and build the reduced model within this space. This is done by cutting off
the parts of X that are almost unobservable or almost unconstructible (in a sense to
be described below).

There are several reasons for considering this approach. One is that the reduced
model will have its state space included in the original one, which means that, in a
suitable basis, the new model is a subsystem of the original in the sense explained
below. A more important reason is that in this way our algorithm is consistent, that is,
the procedure we propose solves as a special case the problem of finding a minimal
realization of (y(t)}, given a nonminimal one.

The Hankel-norm approximation is generally not consistent; this implies that
some care must be taken in the choice of the state space X we want to reduce. (In
fact, it is shown in [16] that the best results are achieved with this method when the
minimum-phase spectral factor is approximated.) So, for the problem of reducing any
given state space X, the Hankel-norm is not very suitable.

On the other hand, our procedure might not perform any better than the Hankel-
norm method in the finite-dimensional case (even if, in the given example, it yields a
much better bound and there seems to be an advantage in infinite dimension).

Since we work with approximation of stochastic systems, we will use the mean
square norm

Ilxll := (x/.
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This is the natural norm for this setting, and is unitarily equivalent to the L2 norm.
As we recall, the Hankel-norm approximation in stochastic model reduction is generally
used to achieve an upper bound on the L2-norm [14], [16], and it is this context in
which this paper refers to Hankel-norm approximation.

It could be argued that the problem, posed in a deterministic setting, could be
better solved with H-methods (with respect, for instance, to robustness) (see, e.g.,
[15]). However, these methods are not very suitable when a variable phase factor is
built into the model. This situation is illustrated by the following example (due to
J. C. Willems, and pointed to us by C. I. Byrnes).

Suppose we want to record a symphony. Then the different distances between the
instruments and the recording apparatus will introduce a phase shift in the signal. This
phase shift is not strongly continuous under the H-norm. Therefore, any attempt to
filter out noise, eliminate redundancy, etc., will encounter difficulty, since even slightly
shifted versions of the same input will be very distant from each other in H, and will
have to be treated as different signals. The L norm does not have this disadvantage.

2. Preliminaries. We review here some basic facts about stochastic realization (we
refer the reader to [9]-[11] and references therein for the full story).

Let y(t) be a real-valued discrete-time, stationary, centered, purely nondeterminis-
tic (p.n.d.), Gaussian process on the probability space {gl, , P}. Consider the Hilbert
space generated by the process

H span {y(t); 7/}

where the closure is taken with respect to the inner product (x, z)= Exz, E denoting
expected value.

The space H comes naturally endowed with a bilateral shift U, defined by

Uy(t) := y(t + l)

and extended by linearity to the whole space.
The basic realization problem is the following: find all representations of the form

(2.1) x( + 1) Ax( t) + Bu( t), y(t) Cx( t) + Du( t)

where u(t) is a white noise process in H (i.e., for each t, s7/, Eu(t)u(s)=6,.s), and
A, B, C, D are constant matrices. It is of particular interest to characterize all minimal
representations of form (1) (minimal in the sense that the vector x(t) has smallest
possible dimension). This problem can be posed as a geometric problem in the Hilbert
space H, namely, the problem of finding all subspaces X of H that are Markovian
and splitting for y, in the following sense. A nonzero subspace X of H is said to be
Markovian if it splits its own past and future, i.e., defining X+= span { UnX; n >-0}
and X-= span { U"X; n <-0}; thus we have that

(2.2a) EX-x+= EXx+,
(2.2b) EX/x-= EXx
with EA denoting the orthogonal projection on A.

The space X is splitting for y if it splits the past and future of y, i.e., if H+=
span {y(n); n=>0} and H-=span {y(n); n<0} the following holds:

(2.3a) E H-vxH+ EXH+,
or equivalently,

(2.3b) E H+vxH- EXH-.
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For short, in the sequel we use the concept of state space to denote a Markovian
splitting subspace (for y).

A state space X for y is minimal if any other state space X1 c X is necessarily
equal to X. Minimality can be characterized geometrically, introducing the concepts
of observability and constructibility. We say that a state space X is observable if

(2.4a) EH+= X
and constructible if

(2.4b) EXH-=X.
It is then consistent with these definitions to say that a subspace X1c X is

unobservable if X c (H+)-, and that X2 X is unconstructible if X2 (H-)-.
Markovianness can also be characterized in a more convenient way. We say that

a subspace Z H is invariant for the shift U if UZ Z and invariant for the adjoint
shift U* if U*Z Z. We say that Z1, Z2 H intersect perpendicularly if one of the
following equivalent conditions holds:

(2.5a) (i) (Z)lc Z2 (_l_ denoting orthogonal complement in H);

(2.5b) (ii) EZz2 EZ2z.
Then it can be shown [11] that any splitting subspace X can be represented as

the intersection of a unique pair (S, S) of perpendicularly intersecting subspaces of
H, i.e.,

X=SCqS

such that

(2.6a) S H-

and

(2.6b) H+.
The space X is Markovian if and only if U*S S (i.e., S is invariant for the

backward shift and US S) and US S (i.e., S is invariant for the forward shift).
Hence we have characterizations of all state spaces of y in H in terms of invariant
perpendicularly intersecting subspaces satisfying (2.6). This correspondence will be
denoted by X (S, S). It can be shown [11 that the following decomposition holds:

(2.7) H -X(S-.
In particular, S X(-, and ;= X( Sz. Now the question is how to get a

minimal state space from a given X (S, S). The answer is provided by the following
theorem and is the guideline of our model reduction scheme.

THEOREM 2.1 11 ]. LetX S, ) be a Markovian splitting subspace. Let 1 :-" H+ v
S+/- and S := H-v S1. Then X1 -(S, St) is a minimal Markovian splitting subspace such
that X X.

The importance of this theorem is that the construction of a minimal Markovian
splitting subspace from a nonminimal one is a model reduction problem, in which the
Markovian and splitting properties are both preserved.

To analyze this geometry in an efficient way, a functions model is needed.
Therefore, as is customary, we shall work in the isomorphic setting of the Hardy spaces
H2 and

We recall that L2(T) is the Hilbert space of square integrable complex-valued
function on the unit circle.
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Every f t2(]]-) has a representation (unique)

f(e’) f e ’,".

We write H2(2) for the subspace of L whose elements have positive (negative)
vanishing Fourier coefficients. The symbol H() denotes the subspace of H2(/-2)
whose elements are essentially bounded functions. An outer function f in H is an
element with the property that fH :-span {fg; g e H} H2, and an inner function
h H is an element subject to Ih(ei) 1 almost everywhere.

The symmetric concepts in/_)2 will be called conjugate outer and conjugate inner.
It can be shown that any function gH2(/-2) can be factored as g=fh with f
(conjugate) outer and h (conjugate) inner.

Remark. The notation used here is not conventional (the standard mathematical
notation being exactly the opposite). This choice has been adopted to be in agreement
with most engineering literature.

One of the reasons Hardy spaces have become an indispensable tool in realization
theory is illustrated by the next theorem. We recall that an N-valued p.n.d., mean
square continuous, stationary process {y(t)} has the representation

{y(t)} ei’’d(w),

d.(w) being an orthogonal random measure such that there exists a finite, positive,
absolutely continuous measure dF(e) with density b(e), for which

Eldi(w)[= b(e’) dw.

We also recall that the spectral measure of a white noise is an orthogonal random
measure da(w) subject to

Elda(w)]=dw.
It can be shown that if u(t) is a white noise in H (i.e., F_.u(t)u(s)= 6,L), then the

spectral measure defined by

(2.8) u(t)= e"d(w)

induces an isometric isomorphism I, from H onto L defined via the trigonometric
polynomials p(z) as

I,p(u)u(O):=p(e i’)
and extended to the whole of H by continui.ty. (See [12] for details.)

Let K be an inner function. By H(K) we denote the subspace (invariant for the
left shift)

H(K) H2@KH2.
Analogously, by/-2(K*) we denote the subspace/2@K*/2.

TWF.ORF.M 2.2 [9]-[11]. Let X -(S, S) be Markovian splitting. Then there exists a

unique pair of white noises u, fi such that

(2.9a) 1uS z-H,
(2.9b) I,= K/2,
(2.9c) IS z-K*H-,
(2.9d) I$= I2I
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where K is an inner function in H2, The process y( t) has the representation

(2.10a) y(t)= ei’W(ei) d(to)

with We H2, i.e., Iuy(0)= W. Analogously, I ay(0)= ff/’ 2 and the following rep-
resentation holds"

(2.10b) y(t)= ei’ff’(e) d(to).

Moreover,
K= Wff/"-.

The correspondence between state spaces X and pairs (W, W) and u, a) is one to
one. It will be denoted by X -( W, W)- (u, ). The functions W(z) and W(z) are real
for real z. The space X has the representations

(2.11) X=f d=fd
where

(2.12a)
and

(2.12b)

: z-’H(K) z-’(H2( KH2)

=/2(K*) 2K*/2.

The functions W and W are called, respectively, stable and strictly unstable spectral
factors of y associated to X. Consequently, in the spectral domain, we represent the
pair (S, S) by the pair (W, W), or equivalently by (u, a).

Let X be a Markovian splitting subspace for y. How are the pairs (X-, X+) and
(S,) related ? Clearly, X- S, and X+ = , but it is not a priori clear if equality holds.
The next theorem shows this.

THEOREM 2.3. Let X -(u, ) (S, S) be a state space for y. Then, X-= S and
X/-o

Proof Since it can be shown [11] that S= H-(u), we need to show only that
u(-1) X-, because then the inclusion follows from the invariance of X- To this
end, represent y(t) as in [12]"

(2.13) y(t)= wnu(-n+t)
n=0

where n=o wnz-"= W(z), the forward spectral factor associated to X. Let k>0 be
the index of the first coefficient in (2.11) which is different from zero. Then

EXy(k-1) =Es 2 w,(u)(-n+k-1)
n=O

Z WnU(-n+k-1)

because u (t) _L S for => 0, and u (t) S for < 0. Similarly,

EXy(k) E s Y w,u(-n + k)

E w.u(-n+k).
n=k+l
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But EXy(k-1) and U*EXy(k) both belong to X- Therefore

u(-1) ___1 [EXy(k 1)- U*EXy(k)]
Wk

is also in X-. The same is true for X+ (use the representation induced by fi for y(t)
instead of (2.1 3 ).

Let W L. Then the Hankel operator with symbol W is

Hw := E H2-M W[H

The singular value Ok(A of an operator A is defined as

trk (A) inf (ll A C II; rank C _-< u }.
Denote by k the set of strictly proper stable rational functions of degree less than
or equal to k. Then there exists the following result due to Adamjan, Arov, and Krein
[1]"

min Hw Hf irk Hw).
f

Now let g H2+/-. It is not difficult to see that

defines a norm on H- called the Hankel-norm. Then the result of [1] says that the
Hankel-norm approximation error of a function W with a function f6 k is exactly
rk Hw).

Finally, let y be given and let X- (W, W) be splitting for y. By Hankel-norm
approximation of y (given X) we mean the Hankel-norm approximation of W. 71

3. The problem. This section is devoted to the problem formulation, a discussion
of the consistency and inclusion properties, and the illustration ofhow methods already
developed in the literature (such as Hankel-norm approximation) behave with respect
to these properties.

We are considering, for the time being, the geometric structure of H, and therefore
a coordinate-free approach is appropriate. Hence, given a process z(t), and a Markovian
splitting subspace Z for z, it is reasonable to use the word model to denote the pair
(z, Z). We define the degree of the model to be the dimension of Z.

DEFINITION. We say that the model (Yl, X1) is a submodel of the model (y, X)
if X X1.

This definition is more restrictive than it might seem at first sight, and X1 cannot
be just any subspace of X. In fact, since (Yl, X1) is a model, X1 is Markovian, and if
X is finite-dimensional, the number of its Markovian subspaces is also finite. Under
the assumption X--X this is equivalent to saying that there exists a basis x(0) in
X such that the Markov process

x(t + 1)= Ax(t)+ Bu(t)

(u is A white noise) can be split into

X2( + 1) A21 A22_JLx2(t)
+ Bu(t)

with X basis for X and A12=O (which yields Markovianness of the process xl(t)).
We consider two equivalent formulations of the model reduction problem. First

define, for e->_ O, the class Z to be the class of models (z, Z) satisfying

(3.1) Ilz( t) y( t)ll <-



CONSISTENT APPROXIMATIONS 89

and, for k N, the class k to be the set of models (z, Z) such that dim Z _<-k. Finally,
the set of admissible models, which will depend on the approximation procedure, will
be denoted by .

PROBLEM 1. Given a model (y, X) and e >- O, find in (’] , a model (Yl, X) of
minimal degree. If there exists more than one solution with the same degree, find one
whose error

(3.2) Ily(t) y(t)[

is minimal
PROBLEM 2. Given a model (y, X), and k >= O, find an Y{ f’] k, a model (Y2, X2)

such that the quantity

(3.3) Ilz(t)-y(t)ll

is minimized. If there exist more than one solution with the same error find one whose
degree is minimal

At first sight, it may seem reasonable to choose the class Y to be Y (or Yk). This
choice can certainly be made, but in this case we have to deal with a nonlinear
minimization problem in L2 over a set of rational functions (which is not even convex),
and therefore this is quite a difficult problem to solve. We can then restrict the set of
our candidates Y to some smaller and nicer, class for which an explicit solution can
be determined (as for the procedure proposed in this paper), or for which at least an
approximate solution and an error bound can be computed (as for the Hankel-norm).
In both cases we obtain an overall bound on the error of the actual solution. It is then
clear that the performance of these algorithms will depend on the properties of the
underlying set Y.

DEFINITION. We say that an approximation algorithm is consistent if, whenever
the smallest class Yk containing the solution (y, X) also contains a minimal realization
of y, then y =y almost everywhere, and (y, X) is also a minimal realization of y.

In other words, our algorithm should select a minimal exact model whenever there
exists one of the same degree as in the solution.

In the Hankel-norm approximation scheme described in 2, the set Y is, given
(y, X) and k, . := {(z, Z) z- x-}.

The following example shows that this is not always a satisfactory choice.
Example 3.1. Let X (u, fi) be any Markovian splitting subspace such that u is

not equal to fi and apply the Hankel-norm approximation to the model (a, X). Observe
first that there exists a zero-dimensional exact realization of fi, namely (, 0). Clearly
we can obtain a zero-dimensional model using the Hankel norm, but this would not
be exact. In fact, Hankel-norm approximation amounts to approximating the spectral
factor of 1 (note that is a white noise) corresponding to u, namely the structural
function K/z (of degree, say, n) which is inner. The Hankel operator with symbol
K/z has all its singular values equal to 1, and therefore the Hankel-norm approximant
of K/z of degree k < n will in fact be zero with error bound 1; then the corresponding
model is (0, 0), which clearly is not exact. Therefore we do not have consistency.

The example above shows that the choice of the original state space X is quite
relevant to the quality of the Hankel-norm approximation. In fact, it is shown in [16]
that the best behaviour is obtained by choosing the minimum-phase model. However,
the given physical model may be far away from the minimum-phase one, and in this
case a different approach is needed.
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DEFINITION. We say that an algorithm has the inclusion property if for any
solution (Yl, X1) the relation X c X holds.

This property insures that in an appropriate basis the approximate model is a
subsystem of the given one, as we will see below. In addition, as we shall show in 5,
imposing this property, namely choosing

(3.4) ,:={(,z);zx}

(where I stands for inclusion), will yield consistency. Therefore the Hankel-norm
approximation cannot have the inclusion property, which is also seen from Example
9 in [7].

Desai and Pal [5] have suggested an approach to model reduction that has the
inclusion and consistency properties and may, at first sight, seem very natural. However,
as we shall see below, it yields a "model" that is not necessarily Markovian, and hence
is not a model in our sense.

Let (y, X) be our given model. To simplify matters, we assume throughout the
rest of this section that X c H- (the argument can be extended to any X with some
slight modifications). Then X is splitting for y if

(3.5) EX-E"-=O, H+,
i.e., the conditional angle between past and future given X is zero. It can be shown
that X_ E U+H- is the minimal subspace in/4_ satisfying (3.5).

If a further reduction of X is needed, the splitting condition (3.5) must be waived.
The natural way to do it is to impose that the angle between past and future, if not
zero, is at least smaller than some given e. That is, find X H- such that

(3.6) IIEX,-E"-II<=IIII, H+.
Mapping H- onto z-H and H+ onto/- via I_ and Ia/, respectively, the projection
operator EU-H+ has, as spectral representator, the Hankel operator HT, where T:=
z- W_ ff’_ is called phase function. Then the equivalent of (3.6) reads

(3.7) IIEIMT Ez-’M2MTII <= e,

z-IHz. It can be shown (see, e.g., [3], [5]) that if e Crk(Hr), and (i, r/i) is the
Schmidt pair associated to cri(HT-), then

k := span {:o,. ", :k-,}

satisfies condition (3.7). In fact, with a little computation, it can also be seen that

<(:k, ;k> O’k(H)

and (i, j) =0 for j. In other words the value O’k(HT) represents the cosine of the
kth principal angle between H/ and H-, and is called the kth canonical correlation
coefficient (see [2]). (The kth principal angle between two Hilbert spaces H, K is
defined as

(

arc cosinf sup <:,r/;codHo=k, HocH
C Uo,rl K

and indicates roughly how near H and K are to being orthogonal, "given" H)Ho.)
Mapping back to H- via I -u_, we obtain an X = H- satisfying (3.6). This representa-
tion is, in fact, the one obtained by Akaike using canonical correlation analysis [2].
It is rather straightforward to check that the canonical correlation coefficients are the
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singular values of the Hankel operator H-, and that the principal components of past
and future are the inverse images under Iu of (:k, */k) (see [2]). The reason the procedure
above looks interesting is that we can easily compute the approximate model from a
realization of the original one, since it is always possible to find a basis in X such
that the representation

x( + 1) ax( t) + Bu( t), y( t) Cx( t) + Du( t)

of y induced by X has as its first k components exactly the images I7i_ for
0,. , k- 1, of the first k Schmidt pairs. In other words, we can write

Xl(t+ 1) [ Xl(/))l I bl

Xk+l(t+ A21 A22j /Xk+l(t
+

bk+
x,(t+ 1) k x,(t) ] L b,

(3.8)
[ x(t)

t)

L x,(t)

where xi(0)= I._ Then an approximate model is naturally given by

Xl(t+ 1)
=A + u(t),

Xk( + 1) LXk( t) bk
(3.9)

y(t)=[C,,’’’,Ck]
Xk(t)

This is the approach already suggested by Akaike in [2], and proposed by Desai
and Pal [5]. The main drawback, however, is that (3.9) is indeed a submodel of (3.8)
only if m12 is zero, and this generally cannot be achieved if we require the first k
components to be the images of the /i, 0,..., k-1.

An equivalent statement is that X is, in general, not Markovian. In fact, we are
going to prove that X1 cannot be Markovian if the singular values of HT are distinct.

THEOREM 3.1. Let (o, 7o), , (n--1, 9n--1) be the Schmidt pairs ofH- associated
to tro> tr >. > o’,_. Then Xk T span {o," ", k-1} is not Markovian, for k <
n-1.

The proof is quite technical and is given in the Appendix.
The basic reason this algorithm does not yield a Markovian model is that what

is reduced is simultaneously almost unobservable and almost unconstructible (this is
the meaning of (3.6)). By contrast, the reduction algorithm of Theorem 2.1 cuts off
the unobservable part of X. That is, letting 1 := S- v H+ and C)1 Xu easily shows
that EH+xu =0. But X, is certainly not unconstructible, because X, = (H)- implies
EXuH_ Xu, since H-v H+= H. So in fact X, is constructible.

We conclude that the philosophy of the solution to the model approximation
problem is to take observability and constructibility into account separately, not at the
same time. We will do this in the next two sections. It is easily seen that a procedure
for solving Problem 1 can be easily transformed into a solution to Problem 2. Hence,
in what follows, we will focus our attention on Problem 1.

4. The exact model. As we have said, we want a model reduction scheme that is
consistent. To this end, we reformulate the exact reduction algorithm of Theorem 2.1
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so that it can be easily generalized for approximation. This is the content of this section
and is, in particular, the meaning ofTheorem 4.2 and Algorithm 4, as Example 4.1 shows.

There are basically three variations of the algorithm of Theorem 2.1 when X-
(S, S) is given.

ALGORITHM 1. Set g := S+/- v H+ Sl := - v H+

We obtain the minimal state space contained in X that is closest to the future H/

in the sense that X1 is the maximal element in the complete sublattice of minimal
splitting subspaces of X. In particular, if the backward predictor space X/-- EH+H-
is contained in X, then X1 X/.

ALGORITHM 2. Set $1 := +/- v H+, $1 := S- v H+.
We get the subspace that is closest to the past in the above ordering. In particular,

if X = X_ EU-H+, the predictor space, then X1 X.

ALGORITHM 3. Take S to be any invariant subspace with the property

H- v - $1 c S+ 71S

and set 1 := S-v H+. Then clearly $1 and intersect perpendicularly and it can be
shown that X1 is minimal.

In the following we will focus our attention on the first two algorithms.
The frame space XD is defined as

X := X_ v X+
where X_ and X/ are the forward and backward predictor spaces. It can be shown
that any minimal splitting subspace is contained in X[] 11 ]. Moreover, these subspaces
have a complete lattice structure under the partial ordering described below. It can be
shown 11 that if X is minimal splitting,

X f Q*H(K) da_

where Q is an inner function. The correspondence between X and Q is one to one.
Then given X and X2 minimal splitting and the corresponding inner function

Q1, Q2, we say that X < X2 if Q
THEOREM 4.1. Suppose X Markovian splitting subspacefor y and set X1 := X X[].

Then the set of minimal subspaces of X1 is a complete lattice with the ordering induced
byX (i.e., it has a complete lattice structure). The maximal element is given by Algorithm
1 and the minimal element by Algorithm 2.

For the proof we need the following lemma.
LEMMA 4.1. Suppose Z c X[] is a Markovian splitting space with a complete

lattice structure. Then R f) Z also has a complete lattice structure for any left invariant
subspace R.

Proof Let Z_ (v_, 3_) be the minimal element in the lattice and Z/ the maximal.
Then 11

Z_= f H(K) dO_, Z+= I Q*+H(K) dO_

and any minimal subspace of Z has the form

X I Q*H(K) d_
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for some Q IQ*+. Conversely, to any such Q there corresponds a minimal state space.
The space R will have the representation

f P*H2 d3_R

for some P inner. Then set

Then

Q,,:=(Q+,P).

X., := I QH(K) d_

is the maximal element of our sublattice, since the inner divisors of an inner function
form a complete sublattice. The minimal element is clearly Z_, and the lemma is
proven. [3

Proofof Theorem 4.1. Since X (S, ) we can apply the lemma above to Xc f-1 S,
and then (after time reversal) to (XD fq S) f) , and the first part of the theorem is thus
proven.

To see that the minimal element is the one given by Algorithm 2, observe that
X1 < X2 in the lattice if and only if QI[ Q2, where

and hence if $1 c S2 since

Xi f Q* H(K) du_,

f
Si J Q*i H2 du_.

Since Si D qi v H-, clearly the minimal element is the one for which S qi VH- This
is similar for the maximal element.

We want to describe the reduction procedure of Theorem 2.1 in the spectral
domain. Therefore we introduce a basis in the spectral image of the given state
space X, and hence also in X. Let Iu denote the isomorphism mapping X- onto z-1H2.
Then (cf. (2.13), (2.14))

X f z-IH(K) d

where K is inner. Let b,. , b denote the poles of K. Then a basis for= z-ill(K)
is

NVl(Z)
z-hi’
N2 1-zb(4.1) v2(z)

z-b2 z-b1’
N. 1-zb._ 1-zbv.(z)

z-b, z-b,_ z-b

where Ni is a normalizing factor given by N=(1-1b12) /2. The basis v,..., v is
orthonormal. For short we can write

1 zbj
V Z iIz b----, j=l B(z), B(z) :=
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The basis vl,"’,v, also has the property that span{vl,...,v,}=
z-IH(BI, Bi). This basis clearly depends on the ordering of the poles. If r is a
permutation of S,, then b,,..., b,, will generate another basis, i.e.,

vT(z) := 11/,(z).z- b,,-, j=

The spectral factor W and the isomorphic image of y(0) under I, then have
different representations as o- ranges over S,"

(4.2) W= i(O")D7
i=0

where vff 1. Let Res (Vi, bj) denote the residue of the function Vi(Z in b. Then the
coefficients ai(cr) are the solution to the following system:

(4.3)

" b,) Res (v’" b..) /..()/ IRes (w;0 Res v b.) Res V 1,

0. 0.: Res (v;b:):....... Res (v;b):. =IRes (W;b:)[.
o o o

and can be computed recursively (cf. [3]).
Among all possible choices of basis, there are some that are particularly interesting.
LEMMA 4.2. Let X -( W, W)= (u, tT). Then X is observable ,if and only if there

exists no permutation o’ S, subject to c,(0)=0 in the representation (4.2) of W.
Proof (If). Suppose that, for some or, Res(W; b,,)=0. This means c,(r)=0,

and hence the degree of W is at most n-1. It can be shown (cf. [11]) that, given
X -(W, if’), there exist polynomials p and q such that W(z)=p(z)lq(z) and ff’(z)
p(z)l(z), where (z)=zq(z-"), n=deg q. Moreover, X-(W, if’) is observable if
p and q are coprime (see [11]). In our case, deg q n and deg W-< n- imply that
p and q are not coprime, i.e., X is not observable. Reading the argument backward
proves the (Only if).

In other words Lemma 4.2 characterizes the observable subspaces of X in the
spectral domain. Clearly an analogous result holds for constructibility. To obtain it
we simply need to consider the map I from X/ onto 2. Then the conjugate basis

ofvi for i--1,...,n+l, is

zN,,. "+’ 1 -zb.(4.4) 3;(z) := 1-I B(z), B(z) :=
1 zb,, .i=i+ z- b

(The (n + 1)st component represents the constants. This is done to simplify notation
later.) The conjugate spectral factor of y will therefore have the representation

n+l

(4.5) W= X ff,(cr)v,.
i=1

Then the constructible version of Lemma 4.2 reads as follows.
LEMMA 4.3. Let X -( W, W)= (u, 5). Then X is constructible if and only if there

exists no permutation o S subject to c(o-) =0 in the representation (4.5) of W.
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The reason Lemmas 4.2 and 4.3 are interesting is that they provide the key to the
spectral version of Algorithm 2 (the reduction algorithm) as is shown in the next
theorem.

First define, for a given Markovian subspace X splitting for y,

(4.6) ko := min {k; c(r)=0,j> k},
S

(4.7) k. := max k; ai() 0, j < k}.
S

Let o-o and o-. denote the minimizer and maximizer, respectively, in (4.6) and
(4.7). The letters o and c here stand for observable and constructible, respectively.

LMMA 4.4. Let X u, 0). Then

(4.8) Xo := I’ span {v’(,,,...,

and

(4.9) X, := 1 z- span

are, respectively, observable and eonstruetible Markovian splitting subspaces for y.
Before proving this lemma, we proceed to the main theorem of this section.
THEOREM 4.2. Let X S, S) be Markovian splittingfor y, let Xo and X be defined

as in Lemma 4.4, and set := Sv H+. en
(s,s,)Xo.

Analogously, let S :=v H- en
(S,S)X,..

The spectral version of Algorithm 1 is now clear.

ALGORITHM 4. Let X (u, ) be given.
(1) Set Xo := I’ span {vo, .,
(2) Consider Xo (W, o)(u, o), the basis I’z-’{]o} in Xo, where #oS,,,

and the representation

k+l

i=1

(3) Set ko.:=maxo,so{k: ;(o)=O,j<k} and let ,, be the maximizer of this
expression.

(4) Define Xo := 1-1 -,,z span{vo,;i=ko,...,ko}.

Obviously, there is an analogous spectral domain version of Algorithm 2, yielding
a minimal Markovian splitting subspace Xo.

COROLLARY 4.1. Let S, S1, as in Algorithm 1. en
(4.10) Xo(s,,s,).

Analogously, if $2, $2 are as in Algorithm 2, then

Xo (S2, S).

With this corollary the spectral equivalents of Algorithms 1 and 2 are completely
characterized. Before we look at the proofs, we consider an example, trivial by itself
but useful for the understanding of the approximation procedure in the next chapter.
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and

with

Example 4.1. Consider X (u, a)"

X=ilspan{ 1 1 }=i_lspan{ 1 1 }z+(1/2)’z+(4/5) + (z/2)’ 1 + z(4/5)

Then W(z) can be written as

y(O) f W(ei) du(w)

W(z)
z+ (1/3) 1 + z(4/5)
l+(z/2) z+(4/5)"

z+ (1/3) 1 + z(4/5)
W(z)

1 +(z/2) 1 +z(4/5)"
It is easily seen that, whereas no reduction is possible on W, for W there are two
representations associated to two different bases"

1 1 z 5 z z+ (4/5)
w() =-+-

3 2 1+z(4/5) 12 l+(z/2) 1+z(4/5)’
1 5 z z z

W(z) =-+- --+0
3 6 l+(z/2) 1+z(4/5) l+(z/2)"

The second representation shows that, according to Lemma 4.3, X is not constructible,
because O2 is zero, and hence it can be reduced in the second step of the algorithm.
Then Xo X and no reduction is made, whereas

l+(z/2)

is a one-dimensional minimal splitting subspace for y.
As we said, it is obvious that W can be represented by a rational function of first

degree. It is important to construct the reduced state space in a way that is generalizable
to approximation, as will be seen in the next chapter.

We turn now to the proofs. We consider only the observable case, the constructible
one being symmetric.

LEMMA 4.5. Let X --(u, 3) be a Markovian subspace. Iffor some constant d

(4.11) y(0) EXy(0) + du(O)

then X is splitting for y. Similarly, if and W are the spectral representations ofX and
y(O), X is splitting for y iffor some constant d

Wd+x.
Proof Let EXy(t)= Cx(t), where C is a convenient matrix and x(t)= Utx(O),

x(O)X. Since for t>=O, u(t)_t_X-, we have EX-y(t)=EX-Cx(t) because X is
Markovian. Similarly, for <0, since u(t)_L (X-)+/-= X/X from Theorem 2.3, we
can write

EX+y( t) Ex+Cx( t) + EX+u( t) EXCx( t) + EXu( t) EXy( t).
In other words, E ,-vXH+ EXH+ and E "+VXH- EXH-, i.e., X is splitting. The
second part follows by mapping (4.11) in the spectral domain.
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Proof of Lemma 4.4. Let Xo -(Uo, rio) and consider in H2 the images o and W
of Xo and y(0) under the map Iu. Then Markovianness follows from the left invariance
of o. As for the splitting property, from (4.2) we see that We d +, and we can
therefore apply Lemma 4.5. As for observability note first that, since Xo is splitting,
the representation Xo (Wo, Wo) holds for a convenient choice of spectral factors
Wo, Wo. We need to prove that Wo W, or equivalently, that S XS. This equality
becomes, in the spectral domain, under the map Iu,

span {Z"o n <= 0} z-1H2.
To prove this last equality we pick a cyclic element in o. Consider the first element
of the basis of o, vl= N(z-b)-= Nz-(1-z-b)-1. The function (1- z-bl)- is
invertible in H2, and hence outer, i.e., viH= z-ill2, as wanted. That is, S XS, and
hence Wo W. But then we can apply Lemma 4.2, and Xo is observable.

Proof of Theorem 4.2. Let Xo -(S, S--o), and :-- H+v S+/-. We need to show only
that o . Since Xo is splitting, we have H+ c o, and since also o S+/-, we obtain
So S. That is, Xo X (S, St). Since both Xo and X are observable subspaces,
the following holds:

(4.12) ESH+= EX’H+= X1 c X EXH+= ESH+,
i.e., X X. A similar argument holds for Xe.

5. Main results. We have seen that, if X is not minimal, there exists an algorithm
to cut out the unobservable and unconstructible parts of X. Suppose now that we are
in a situation where a minimal model is still too large for applications. Then some
further reduction leading to an approximate model must be performed. This is the
topic of this section.

The idea is to generalize the algorithm presented above by cutting off subspaces
of X that are "almost" unobservable or "almost" unconstructible, in a specific sense
to be described below.

To this end, let us examine Algorithm 1 more closely.
LEMMA 5.1. Let X (S, ) and S-o := S-v H+. Then Xo -(S, o) is characterized

by the following properties"
a Xo is Markovian

(5.1) (b) X Xo is unobservable;
(c) x-= x,
(d) Xo is minimal with respect to the above properties (i.e., if X’o Xo has

properties (a)-(c), then X’o Xo).
Proof Xo is Markovian by construction, and since X-= S X-, then (c) is also

satisfied. Since (X Xo _1_ (So fq S), but also (X Xo S, it follows that (X Xo _L So.
Since S-o H/, afortiori (X Xo)_1_ H/, i.e., X Xo is unobservable, and this shows
(b). Suppose now that X’o Xo has the same properties. Then (XX’o)f3 Xo is also
unobservable. But this implies (XX’o)f3 Xo =0, i.e., X’o Xo and hence (d) holds.

Conversely, if a subspace X = X satisfies (a), (b), (c), (d), then it is splitting,
because for each H/, the equality

EX=EX,+EXX,=EX,
holds and, since X is splitting, we have

ES EX EX,,
which is the splitting property for X. Observability follows from (d). In conclusion,
X1 is Markovian, observable, and splitting for y, and such that X S. But then, X Xo
(because X-= S and X+ H+ v $1). Using (4.12), we get X1 Xo.
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For our approximation scheme, we need to replace the unobservability condition
(b) by a weaker one (which will not imply, as condition (b) did, that Xo is splitting).

DEFNnqON. Let e>0 be given. Then we say that a subspace Z of H is e-

unobservable if

(5.2) sup IIEZy(t)ll<-_e, t>-_o

and e-unconstructible if

(5.3) sup IIE y( t)[[ _-< e, < 0.

The reason for this definition is explained by the following proposition.
PROPOSITION 5.1. Z X is unobservable if it is e-unobservable for all e > O.
Proof Z is unobservable if Z c X fq (H+)-. But this implies that EZx=O for

x H/. In particular, EZy(t) =0 for all t. Conversely, e-unobservability of Z for all
e>0 implies EZy(t)=O for t>0, and since any xH+ has a representation x=
Y.,>=o aty(t), EZy(t) =0 for t>_-0, we get EZx=0.

Condition (b) now becomes the following:
(b’) XX1 is e-unobservable.
THEOREM 5.1. Suppose XI c X satisfies condition (a)-(c), and X =(u, 5). Then

there exists a process {y (t)} such that

(5.4) Ily(t)- y(t)ll < e

and X is splitting for y. If condition (d) is satisfied then Xt is observable for
Proof Since X is splitting for y there exists a representation

y(O) du(O) + E Xy(O)

where u is the forward process associated to X. Set

Then,

yt(0) := du(O) + EX,y(O).

y,(O) au(O)+

So, from Lemma 4.5, Xt is splitting for Yr. Moreover, X@Xt is e-unobservable, and
hence

Ily(O)- y,(O)ll- Ey(0)- EX’y(0)

Let us now assume that Xt is not observable with respect to yr. We shall show
that condition (d) cannot then hold. If XI-(S, S1) is not observable, then X2-
(S, S-v H+(yl)) is a proper subspace of X satisfying properties (a), (b’), and (c);
hence (d) cannot hold. D

Now we exhibit a constructive way to obtain a reduced space satisfying properties
(a), (b’), (c), and (d). First the following lemma is needed.

LEMMA 5.2. Let X (S, Sl) X (S, S). Then S@ St is e-unobservable if and
only if

(5.5a) Ey(0)ll < .
Similarly, S S, is e-unconstructible if and only if

(5.5b) IlE,y(O)ll < .
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Proof Suppose (5.5a) holds, and let y(0) yl(0) + y2(0) with yl(0). Then EseS,y (t) 0 and

IIEy(t)ll- IlE#e#y2(t)ll
0

IlE,y(0)[[
because U is unitary and the projection is contractive. Hence S $1 is e-unobservable.

The other direction is obvious. A similar argument holds for constructibility.
THEOREM 5.2. Let X(u, ) be given, and let := I,X. Suppose there exists a
S, such that Ei=k+l [li()l 2 en X, span {o ,’" ", O} satisfies conditions

(a), (b’), and (c). IfE= 1,<)12> e2 for each S,, then condition (d) is also satisfied.
Proof Clearly X, is Markovian. The space X- is mapped under Ic onto z-H.

Since v=z-(1-zb)-spansz-H (i.e., span{z-"v;nO}=z-H2); also X=
X- To prove that condition (b’) holds, we apply Lemma 5.2 to X and X. Concerning
condition (d), if X,= X,, for some Sk’, with k< k, and X, also satisfies
conditions (a), (b’), and (c), then by definition =k+ Ii()l =. But this contradicts
the hypothesis of the theorem.

The following algorithm concludes this story.

ALOR 5a. Let the state space X (u, a) and e 0 be given. We set

(5.6) ko:=min{k; I()lNeforsomeS}
and let o be a minimizer of (5.6). (This minimizer does not need to be unique. In
this case we choose the one for which the above sum in parentheses is minimal.) We
set

Xo := I span {v",..., v,’,;},
k

yo(O) := ,(,)v7 aa.
i=0

Then, by Theorem 5.1, Xo is Markovian, splitting, and observable for yo. Moreover,

Ily(O)-yo(O)ll <-- e.

To complete the analogy with Algorithm 1, we need to cut out an e-unconstructible
part from the resulting space. This can be easily done by reversing time and using the
conjugate objects a, /2, etc. instead of u, H2. In the following example, we consider
the same state space as in Example 4.1 but use a slightly different process.

Example 5.1. Let X -(u, /) be given by

X=i,span{ 1 1 }z+(1/2)’z+(4/5)

y(O) W(e i’) du(6o)

where

z+ (1/3) z+ (11/9)
W(z) z+ (1/2) z + (4/5)
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The corresponding W is

W(z)
z+ (1/3) z+(ll/9)
1 +(z/2) 1 +(4z/5)"

It is simple to see that X is now minimal. Therefore a one-dimensional model needs
to be an approximation with some error e > 0. Let e 0.05. Then it is easily seen that
X has no e-unobservable part, and hence Xo X. On the other hand, W can be written
as

W Z Ol, o -[- (11 -[- 022

11 164 z(x//2) 11 5/3 z+ (1/2)
--I--
27 81x/ l+(z/2) 243 1+(4z/5) l+(z/2)

with 1 -[- 2 and 1]5111L2-lie=lie-- 1. Since

11
.045267489

243

we obtain that span I152 is e-unconstructible and can be eliminated. Therefore

Xoc=spanIl{ 1 }1+z/2

I (11 164 z3x//2)yoc(O)- \ 81x/ /d.
Now we compare our approximation with one obtained using Hankel-norm

techniques. The Hankel-norm approximation applied to the spectral factor W yields
the approximant

z -.986176
a(z) -.388370

z+.857631

with error bound

o’1 .167481,

which is considerably larger than our bound. An objection might be that we did not
apply Hankel-norm approximation to the most favourable case, since W is not
minimum-phase (cf. [16]). The first answer to this objection is that we are interested
in an approximation of the original model, which includes the state space, and not in
that of the corresponding minimum-phase model.

Anyway, for sake of completeness, we approximate the outer factor of W:

11 z+l/3 z+9/ll
Wl(Z)-

9 z+l/2 z+4/5

The Hankel-norm approximation of W1 yields an error of

40 7 - .096022,0"2
27 108

which is still more than twice our bound. Moreover, again we stress that this is not
an approximant of the original spectral factor.
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However, Hankel-norm approximation provides, in general, an upper bound on
the L2 norm of the error, which might a priori be smaller. This is not the case in the
above setting, since in both cases the difference between the function and the Hankel-
norm approximant is inner (cf. [7]), and therefore the errors in L2-norm, Hankel-norm,
and H-norm do coincide. Therefore the errors cr and or2 are also real L2-errors.

There remain some questions to be answered relating to the minimality of the
final space. A first question is what the basis of the backward representation will look
like. The backward representation I maps onto 2, and

y(0)-- ld.

Now we want to express W as the sum of a constant and something in zT I UX
(see 2.11). The canonical basis for z is thus given by

:= z- b, j=i+l 1 zb
and the conjugate spectral factor W will have the representation

n+l

(5.7) W=
i=1

where+ 1. The forward and the backward basis are related via the following lemma.
LZMMA 5.3. Let () and() be the coefficients of Wand Win (4.2) and (5.7),

respectively, related to the same permutation of the poles . en
i() i()bi+ N, a()Npg,,() i= 1,. ., n,

k=O

k=O

where

i--1

pk,,(o-)= H (-b,)
j=k+l

Pk, 1 for 1 <= k + 1)

and N 1.

Proof We drop the dependence on cr in the proof, understanding that what holds
for 1,..., n, is also true for cry,..., crn. Let

Then, remembering that W K*W (and K* Co), we obtain

(5.8)

viK*= Ni B1)K*
z ’ bi

(Bi-1

zNib,
(B*+,. B’n)+ N(B*+,’’ B*)

1

bii + NiC
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Next, Ci_ Ni biC. In fact,

z-bi 1-z-b
Ci--

zbi
Ci= Ci

z-1 bi

z b’-i- bi Ci--" Nii- biCi,

and therefore the following representation holds"

i=+ Xj=+ j=k+
(5.9) ., NiiPk, "k’Pk,n+l.

i=k+l

Hence, expressing W through (5.8) and (5.9) and setting No 1, we get the following
chain of equalities"

W WK*= a,v,K*
k=0

OkbkOk -t- OlkSkCk
k=l k=0

"-"Og’kbkk-[-Ol’kNk(
k=O i=k+l Ni’iPk’i’--Pk’n+l)

aibii +
i==1 k=O i=k+l k=O

oibii + Np, + Np,.+
= = =o =o

i ibi + i kNkPk, i + i kNkpk,n+,
i=1 k=O k=O

which completes the proof.
It is now clear how to truncate an e-constructible part of a state space X.

ALGORITHM 5b. Let e 0 be given. We set

(5.10) k := max k; 2 I()1 e %r some e S
i=1

where the () are as in (5.7), and set to be the maximizer of (5.10) (with the
same precaution concerning nonuniqueness as in Algorithm 5a). Set

Xc := I span {v:,..., v},
n+l

E
i=

Then X is Markovian splitting and constructible for y. Moreover,

To obtain an approximate model the general procedure is as follows.
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ALGORITHM 5. Let X -(u, a) and e _>-0 be given From X, using Algorithm 5a,
derive the space Xo c X, and the process {yo(t)}. Next, apply Algorithm 5b to Xo and
{Yo (t)}, to get Xoc Xo, and {Yoc (t)}. Then,

Ily(O)- yoc(O)l < 2e.

An important question is whether the reduced model thus obtained is indeed
minimal for the process {yo(0)}. We know that it is constructible (from the conjugate
version of Theorem 5.2), but observability could have been destroyed a priori after
the e-unconstructible part was cut. The next theorem shows that this is not the case.

THEOREM 5.3. Let Yo and Xo be, respectively, the process and the state space
(splitting for Yo) obtained through Algorithm 5. Then Xoc is minimal splitting for Yo.

Proof All we need to show is the observability of Xo,., because constructibility
follows from Theorem 5.2. Let Wo be the spectral factor of the forward representation
of Yo, i.e.,

y(O) I Wo daoc

where Xo =(uo,., ao,.). Let then Xo-(uo, ao) be the observable space obtained with
the first step of the procedure. Then, for any er Sko, the coefficient ak,,(o-) in the
representation

k

(5.11) Wo
i=o

is different from zero. We claim that

(5.12) Wo= T + B, B,k ( Ogi(O’)VT)
koc+

where

3/= (-b.,)
i=0 j=i+l

and No 1 for some r e Skoc. In fact, letting Ko Wo if,S1, we have

Wo WoK*o Ot’i(O’)IAi
i=0

Oi(O’)V7 Ko*+ Oi(O")V7 Ko*
koc+

[Ji(O.)O7 .Of_ ,lCkoc+l Af. Ol.,(O’)V K,,.
k,, +

Since the second and the third added in the last term are orthogonal to
span {3,. ., 37}, when the e-constructible part is truncated, we obtain exactly

(5.13) roc ’)/koc+ -it" ( ai(o)v[)K*o.k,, +

Multiplying (2 13) by C*koc./ we get precisely (5.12). But the coefficients of the vi are
the same as the last ko- ko,. coefficients in (5.11), and observability then follows from
that Xo.
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Now we have the following important result about the consistency of Algorithm
5. In fact, we can easily show that the inclusion property, i.e., the very choice Lr- i
(cf. 3.4), implies consistency.

THEOREM 5.4. Suppose an algorithm solves Problem 1 with ,i. Then this
algorithm is consistent.

Proof. Let (93, ’) be a solution generated by our algorithm. Suppose there exists
a minimal realization of y of dimension k equal to dim X. Since there exists in any
state space X for y a minimal state space Xk contained in X, the minimal realization
(y, Xk) of y belongs to Lri, and clearly with this choice the error (3.2) is minimized,
since it is zero. So the error of 33 must also be zero, i.e., 33-y almost surely, and hence
(y, X) is also a realization of y. Since its dimension equals that of Xk, it is minimal.
Therefore the inclusion property implies consistency.

COROLLARY. Algorithm 5 is consistent.
We conclude with a remark on the infinite-dimensional case. One advantage of

our procedure is that it extends very easily to the case when X has infinite dimension,
and the structural function K is not rational. In fact, if K is a Blascke product, then
the set (4.1) (which is now infinite-dimensional), forms a basis in H(K), and hence
W will have representation

w: E o i(o)v7
i=O

with {a(r)}o . (This is because {vT} is an orthonormal set.) That is, in the case
when K is a Blascke product, the coefficients a(r) will eventually become small. This
does not happen with Hankel-norm approximation, where, to get a slower convergence
of the singular values, the assumption W H+ C(-) is needed.

The general case, when K has a singular inner part, can be treated in a similar
fashion. In fact, by Frostman’s theorem [18], any inner function can be uniformly
approximated by a Blascke product. Then, for any e > 0, there exists a Blascke product
B such that

and hence we can define the e-unobservable part of X, etc. Again, this is not possible
with Hankel-norm approximation.

Appendix: Proof of Theorem 3.1. A subspace X1 of H- is Markovian if and only
if its image 1 under I,_ has the form 1 Q(H2BH2) with B, B2 inner. Since zr/o
is outer, all we need to show is that 1 is not of the form H-BH, or equivalently
(from Beurling’s theorem), that 1, which is equal to span {r/o,’", r/k-i}, is not
invariant for the left shift in z-lH, which is to say that span {Zr/o, ", Zr/k-} is not
left invariant in H. To this end, we consider the Hankel operator r from H: to H:x:

T := E H2+/-MTIH

We also define T_ := E H2+/-T. It is well known that r r_, and it is clear that

(A1) , r(r_),

where ;717, "--Zr/i, i--Zi, and tYi(T_ "-O’i(T). Hence what we need to prove is that
the space

k := span {vi 0,. ., k- 1}

is not left invariant in H2. To this end we need some technical lemmas.
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LEMMA A1. Let B be a Blascke product, and let H(B) := H2(BH2. Then

(A2) S(B) := EH(B)Mz-,IH(B
has no reducing subspace.

(A subspace X is reducing for an operator A if AX c X and AX*c X*.)
Proof. The adjoint of S(B) is easily seen to be EH2MzlHB). Suppose Z1 is reducing

for S(B). Then A*I EH2MzY{1 is contained in 1. So 1 is invariant for the left
shift on H2. For the same reason, 2 X is also invariant for the left shift U*.
But a subspace Z invariant for U* has the form Z H2BH2 for some inner function
Q (again from Beurling’s theorem). Then

Z, Ue B1u2= H(B1), Z2 U2Bell2= H(B2)

with B, Be inner. We are going to show that Z # 0 implies Z2 0. Since Z1 and Z2
are orthogonal, Z1 is contained in Z-= B2H2. Let B= ql(Z)/(Z). Then, 1/l(Z)--
Bzf(z) for somef H2; but 1/(z) is outer, and hence Be 1, i.e., Ze=0.

From now on, Br_ will denote the Blascke product obtained with the poles of T_.

LEMMA A2. Let B be an inner divisor of BT_. Then ,the operator

0 on H(B),
(A3) Y(1 :=

Heon B1

is Hankel if and only if the "prediction error" operator based on H(B1),

E := (I- EH(B1))Mz-IIH(B,),
has range contained in the kernel of H.

Proof We recall that an operator H is Hankel if and only if Mz-, EH2MzH.
In particular, since H2= H2(B) B1He, 1 is Hankel if and only if

(i) YgiMz-lf EU2Mz-,f forf B, H2;
(ii) W,M-,f=O forf6 H2B1H,

condition (i) is always satisfied. In fact, from the invariance of B1H2 for Mz-,, we
have that f B1He implies Mz-,f BH2, and hence

lMz-,f Mz-lf UH2XMz-lf UU2XMz-,lf
As for condition (ii), since

W, Mz-,f=WEn,HM-,f (I-

Hence, condition (ii) is satisfied if and only if

(I-EH,))Mz-,=O,
which is equivalent to [(I-EH(’))Mz_l]ker

LEMMA A3. ere is no left invariant subspace H(B1) H(B) such that 1 is
Hankel 1 as in A3 ).

Proof In view of Lemma A2, if 1 is Hankel, then (I-EHSl))M-H(B1) is in
the kernel BH2 of . This means that EHS)(I-EnS,))Mz-,H(B1)=0, which implies
S(B)H(B)= H(B). But this means that H(B) is invariant for S(B). Since it is
already left invariant, it is reducing. But this contradicts Lemma A1.

We can now finish the proof of the theorem. Suppose that for some k, the space
span {x; i= 0,..., k-1} is invariant for the adjoint shift. That is to say, 1 is

equal to (B1H2) for some inner function B1 q(z)/l(Z) of degree k. The vector k
admits in turn the representation k Bl(Z), for somef H2 of degree n k and outer
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(cf. [1]). Express T_(z) as a sum of two rational functions, one in (B1H2) +/- and the
other in B1H2:

Since

p,(z) p:(z)
T_(z) + -T(z)+T2(z).

q,(z) q2(z)

T,(z)vk(Z)
p,(z) H2q,(z--f

we get

(A4)

Now consider the Hankel operator’T(z)=0.

2:= E H2-MT2
In view of (A4), w2 coincides with W on ak, i.e.,

That is to say, and 2 coincide on the whole invariantsubspace of H2 generated
by Vk, which is BH. This space contains vi for i>=k (because vi +/- 1 for i>=k), i.e.,
Y(zvi=o’i(T_)i, i>-k. Moreover, is divisible by B* (cf.[1]) for i>=k. Hence
*, 0 for _-> k, and

which is to say that ker 2 (Lemma A2), or equivalently,

0 on H(B),
2 :=

H.T_ on B

But this, in view of Lemma A3, is a contradiction.
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DISTURBANCE DECOUPLING, (f, g)-INVARIANT AND CONTROLLABILITY
SUBSPACES OF A CLASS OF HOMOGENEOUS POLYNOMIAL SYSTEMS*
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Abstract. This paper discusses control systems of the type

)=f(x)+ biui+ , djwj,
i=1 j=l

xa

where f(x) is a homogeneous polynomial vector field, bi and d are constant vectors, and the output function
is linear. It is shown that the well-known theory of disturbance decoupling of linear systems extends to this
class in a very natural way. The resulting theory is far simpler than the general nonlinear theory. More
important, all computations needed can be done using very simple algorithms, which require only a finite
number of computations and use only methods from linear algebra.

Key words, polynomial systems, Lie algebras, decoupling, disturbance decoupling, (f, g)-invariance

AMS(MOS) subject classification. 93

1. Introduction. We consider a system on n of the form

k

(1) 2 :f(x) + E billi + f djooj,
i=1 j=l

(2) y Cx

where f(x) is a vector field such that each entry is a homogeneous polynomial function
of common degree p, bi and d are constant vectors and C is an n x rn matrix. The
output is denoted by y, the inputs by ui, and the disturbances by wj. Our primary
purpose in this paper is to show that problems such as disturbance decoupling and
controlling the state while keeping the output at zero can be easily solved in this class.

Nonlinear control systems of the type 2 =f(x)+ g(x)u with f and g being poly-
nomial vector fields previously have been the object of study by several authors
(Brockett [3], Baillieul [1], [2], Jurdjevic and Kupka [10], and Bonnard and Tebbikh
[5], [6]). Examples of type (1) include the very important problem of controlling the
angular velocity of a rigid body. It is well known (see Baillieul [1] and Byrnes and
Isidori [7], for example) that such a system can be described by

(3) 22 a2xlx3J + Bu.

23 a3xlx:z]

Therefore our theory developed here will solve the problem of disturbance dec0upling
of a rotating rigid body with linear output functions of angular velocities.

It was observed by Jurdjevic and Kupka [10] that, for systems of this type, the
set of points that can be reached along trajectories with zero initial state is a subspace
if the degree off is odd. When the reachable subspace is [", the state can be controlled
from a given initial point to a desired final point in arbitrarily short time. This hints
at the possibility of extending the geometric theory of linear control (see Wonham 15])
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tO this class without having to go through the complicated computations needed in
the local nonlinear geometric theory. In this paper we show that, indeed, the theory
of disturbance decoupling extends naturally. Moreover, we show that when the degree
of f is odd there exists a largest 6ontrollability subspace in a given subspace of R"
(see 5 for definition). It is perhaps surprising that all computations can be done using
linear algebraic methods and we give algorithms for this.

s(x; v)
(x; )(x)
ao(; )

Notation 1.1.
B The n m matrix of which the columns are bl," ", bin.
D The n k matrix of which the columns are dl,’", dk., @ The column spans of B and D, respectively.

The collection of vector fields {f, bl,. ., bin}.
+ The collection of vector fields {f, b,..., bm, dl,"’, dk}.

Let be a given subset of vector fields on n and x n be arbitrary.
Lie () The Lie algebra of vector fields generated by .

Lie ()(x) The subspace of R" obtained by evaluating Lie () at x.
Lieo () The subset of constant vector fields in Lie ().

Let be a subset of .
cq(; ) The set of q tuples {Y1," ", yq}c such that at least one Y ; q

is an arbitrary positive integer.
Lie ideal generated by in Lie ().
Evaluation of 5(, ) at x.
The subset of constant vector fields in 5(; ).

We will identify Lieo (W) and o(; ), etc. with subspaces of R" in a natural
way. Also, when or {d,. ., dk} or {b,. ., b,,}, we will denote them simply
by D or B. We will not distinguish between constant vectors and constant vector fields
of R" unless the distinction is required to clarify the context.

The Lie algebraic computations needed in this paper can be done most conveniently
by using multilinear algebra. In this regard, note that if h" R" R" is a homogeneous
polynomial function of degree, p, then it is well known that we can associate a unique
symmetric p-linear map

p

H I-I R" R""
i=1

having the following property:

For example, if h" R2"- R is

R2then H’I-I=I oR is given by

h(x)=H(x,x," ,x).

h(Xl, X2) x21+ x1x2

2H((xl, x’), (Xl2, X2)) XlXl _..1/2 (X llx2__xlx2).22

Recall that the kth derivative at zero of h of degree p is a symmetric k-linear map
(Dkh(O)) [Iik=l R -Rr". The map H is defined in general by

1
H=--(DPh(O)).

pt
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Now by using the Taylor series of h we obtain

1
h(x)= ,.(h)(O)(x,x,...,x).

k=0

But (Dh)(0) 0 if k < p. Hence,

1
h(x) (()h)(O))(x, x, , x)

(4)
=H(x,x,. .,x),

as desired.
The symmetric p-linear map associated to f will be denoted by F. The main

purpose of introducing F is the following identity. Let ul,..., up be arbitrary elements
of Nn. Since there is no ambiguity, we will denote the associated constant vector fields
by the same symbols. Now ad,.., ad,,(f) is a constant vector field on " and an
easy calculation shows that

ad.., ad,,(f)= (DPf)(O)(v’, vp)
(5)

=(p!)F(ul, ..., uP).

2. AeeessiMlity anl reaehnlility stflslees. The key observation regarding the class
of systems (1) was made in Baillieul [2], Bonnard [6], and Jurdjevic and Kupka [10].

THEOREM 2.1 [2], [6], and [10]. Assume that no disturbances are present.
(i) The set of points reachable from the origin is contained in Lieo (O%) and has

nonempty interior in Lieo (o%).
(ii) If the degree p off(x) is odd, then all points in Lieo (o%) are reachable from the

origin in arbitrarily short time.

Proof For a complete proof we refer the reader to Jurdjevic and Kupka 10]. We
will give a proof of (i) to motivate the computations of the rest of the paper.

Since Lie (o%) is obviously polynomial, it is also analytic and hence integrable
(Nagano [11], Sussmann [14]). Now by Sussmann and Jurdjevic’s results [13] on
controllability, it follows that the reachable set from the origin is contained in the
leaf L of Lie () through the origin and contains a nonempty open subset of L. We
only need to show that L Lieo ().

First, Lieo (O%) is obviously contained in L and N c Lieo (o%). Consider the follow-
ing algorithm"

A=,
A+=span {F( v, vV) v, vP}

_
A} + A.

Since F(v, vp) -ad... ad,,,f, it follows that each A is contained in Lieo (O%).
Since the A form an increasing sequence of subspaces, they converge to some subspace
A in a finite number of steps. Now A Lieo (O%). We claim that Lieo (O%) A also.
Remembering that Y contains a nonempty open subset of Lieo (), it is enough to
prove that the vector field f is tangential to A at all points of A (for then the controlled
trajectories can never leave A showing that Y c A). But by the construction of A, it
follows that if x A, then f(x) F(x, x, , x) A. Now

A Lieo (O%)c L

and contains a nonempty open subset of Lieo (O%) and hence A L. [3
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(6)

Definition 2.2. The algorithm,

A Y3,

Ai+l =span {F(I/1, I/P) {i/1 ,. 1/p}Ai} + A

will be referred to as the accessibility subspace algorithm.
Remark 2.3. Observe that (6) needs only finitely many computations. Let

{e e J} be a basis of A Then

ai+ =a +span {F(e i(1), e i(2), ei(p))[1 < i(1) <’’’= <= i(p)<j}.=

Two equivalent ways to compute Ai+1
are"

Ai+l-- A +span {f(x)]x A},

Ai+1-- A +span {f(+ei()+/- ei(2)+/- + ei(p))[1 <- i(1) ___--" i(p) <--j}.

These apparently different ways of looking at the accessibility subspace algorithm will
be useful in the sequel.

Assumption 2.4. For the rest of the paper we will assume that Lieo (O%)
Actually we do not need this assumption for any of our theorems, yet this

assumption simplifies the notation and ideas considerably. All of our results will be
valid for all trajectories of (1) (allowing disturbances) starting at the origin, for example,
and hence is particular when Lieo (O%+)=n.

3. Conditions for the disturbance to not affect the output. For the moment let us
ignore feedback and find conditions for w to not affect the output. The important
subspace needed here is 50(Lie (+); D) (see Notation 1.1 for the definition). For
convenience 5 and 5o stands for 5(Lie (O%+); D) and 5o(Lie (o%+); D), respectively.
The following lemma characterizes 50 Its proof was adapted from the proof of
Lemma 5 in 10].

LEMMA 3.1. 5% is the smallest subspace V of that satisfies the property

DcV,

F( v, v2, vp) V for all i/, e V, all v2, vp e [".

Proof Remembering that Lie0 (O%+) [" by Assumption 2.4, it follows easily that
V c 5o. We need to prove the reverse inclusion.

Each element of 5 is a linear combination of elements in D along with vector
fields ofthe form adr, ady,,_.l(Yq) for some q and {Y, , Yq}e Cq(O%+, D). Since
D c V and B c Lieo (O%+), every element of 5 is a linear combination of an element
belonging to V along with elements of the form adr,...ady,,_,(Yq), where
{ Y1, ", Yq} cq(fu "; V). Moreover, each such summand is a homogeneous vector
field. By induction we will prove that all constant vector fields of the form
ad r, ad Yq-I Yq)’ where

{Y1, Yq}E cq(f[,-J[q; V)

belong to V. Thereby we prove that o c V. We abbreviate Cq(fuq; V) to C q.
Now let X adr,""" adr,,_,(Yq) be constant and { Y1,’", Yq} C o. Let r be the

number of indices j such that Y./=f Define the notion of length of X, l(X), as the
smallest r among all such representations of X. (/(X)=O if X e V). We will prove
our assertion by using induction on length.

If l(X) 0 or 1, by definition X V. The induction hypothesis is: l(X) <- s implies
that I(X)=0. (seN).
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Assume that the hypothesis is true for some s. Let X=ady...adyq(Yq+l) be
such that the number of indices j with Y =f is equal to s + 1. There is a smallest
integer t, t<=q such that Yt+l=f. Hence X=ady,...ady,ady(IT), where I7=
ady,+2""" adyq(Yq/l). Using the Jacobi identity, we can rewrite X as a sum of terms
of the form [ad Yv, ad v,(f), ad yg, ad y,_i( Y)], where Yl <" ( Yi and

<. <
_

t. We have only to consider nonzero constant summands, which fall
into four types:

Type 1. i=p, ady. ady. (Y) islinearand{Yv,...,Yv.}V.
Type 2. p, ady ad y, (Y) is hnear, { Yv,. ., Yv.} V .
Type 3. p 1, adv. adv. (Y) is constant, { Y,. ., Y.} V .
Type 4. p l, ad y. ad y. (Y) isconstant,{Yy,,..., Yy.}V.

It is easily seen that each of these types has length less than or equal to s, and hence
by the induction hypothesis has zero length.

THEOREM 3.2. efollowing conditions are equivalent:
(1) For all bounded measurable disturbance inputs and all initial states, the disturb-

ance does not affect the output.
(2) o(Lie (if+); D) is contained in the kernel of C.
Proofi We abbreviate (Lie (if+); D) to
(2 1). Let W be a complimentary subspace to o in ’.
Let us write x(t) (t) + (t), where (t) W, (t) o.
Now (1) implies that

(t)=f((t))+ E F((t), (t), (t),. ., (t))
r=O r(p-r)l

k

+ E b,u,(t+ E d(t.
i=1 j=l

But by our characterization of 5o in Lemma 3.1, it follows that

F((t),. ., (t), n(t),. ., n(t)) o.
Since D c 5o we can also write

i=1

where f and are the projections of f and b onto W along 5o. In particular, the
dynamics (t) are independent of the disturbances and, since y(t)= Cx(t)= C(t),
the disturbance does not affect the output.

(1 2). Since 5 is spanned by

{ad... ado_(V,)l{Y, , Y,} C(+; O); q},

it follows that 5o is spanned by such vector fields that are constant. But it is well
known that if the disturbance does not affect the output, then ad y, ad y_,(Yq)(X)
Ker (C) for all x, for all {Y,. ., Y} C(ff+; D), and for all q. (See Theorem 3.2
of Isidori [9].) This can be proved rather directly using the Fliess series [8].

Remark 3.3. Even the () part above can be proved using the Fliess series.
In view of the Theorem 3.2 we give the following definition.

Definition 3.4. The subspace 50(Lie(+); D) will be called the disturbance
confining subspace.

The disturbance confining subspace can be computed using the following algorithm
and its proof follows at once from Lemma 3.1.
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ALGORITHM 3.5. DISTURBANCE CONFINING SUBSPACE ALGORITHM.

V=
Vi+1= Vi+span{F(vl, v2,’’’, Vp)lvl W, vjR" forj> 1}.

Since the subspaces W are increasing, the algorithm converges in finitely many
steps. As was stated in Remark 2.3, all computations are finite.

4. Disturbance deoupling and (f, B)-invariant subspaees. In this section we will
study the problem of constructing feedback such that the output functions will not be
affected by the disturbance inputs. The class of feedback functions considered is of
the form

(7) ui( t) ai(x( t)) + vi( t)

where a(x) is a homogeneous polynomial of degree p. Our reasons for selecting this
class of feedback laws are the following:

(1) This class of feedback laws preserves the structure of the system. The slightly
more general class u(t)= a(x(t))+Yj= fljvj(t) with constant flj s does not give more
freedom, since the disturbance confining subspace algorithm does not depend on/30’s.

(2) We will show later that if the disturbances can be decoupled from the output
with feedback of the form (7) with analytic functions i(x), then there also exists a
homogeneous polynomial feedback a(x), which solves the problem.

Remark 4.1. Presently we do not know whether reason (2) is valid for the class
of feedback of the form u(t) a(x(t)) += o(x(t))vj(t) with analytic functions
and/3.

Except in the proof of Theorem 4.9, a(x) will denote a homogeneous polynomial
of degree p, and c(x) will denote an m-tuple of such functions.

Let o%, {f+ Ba, b ,..., bm} and +-- {f+ Ba, b, b,,, dl, ., dk}. We will
abbreviate 5o(Lie (+); D) to

Now if there exists feedback a in (7) that decouples the disturbances to from
the output, then from Theorem 3.2, 5 c Ker (C). By the characterization of 5o in
Lemma 3.1 we have

ad,. ad(f+ Ba) for v 5 and 1)2," ", t)p Rn.

Hence ad, ad(f)
Definition 4.2. A subspace V of n satisfying

(8) F(v,...,Vp)V+ forallvlVandallvjnforj>l

will be called an (f, B)-invariant subspace.
Note that (8) is equivalent to f(x + v) f(x) mod V+) for all x ", and all

vV.
It is clear that the set of (f, B)-invariant subspaces is closed under the addition

of subspaces and thus has a maximal element V* in the kernel of C.
Definition 4.3. V* will be called the maximal (f, B)-invariant subspace contained

in the kernel of C.
THEOREM 4.4. There exists feedback ofform (7) which decouples the output from

the disturbance input if and only if
@c V*.

Proof (3) # is an (f, B)-invariant subspace contained in the kernel of C and
containing 9. But the maximality of V* implies that @ # V*.
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() We are going to construct feedback a such that

(f+Ba)(x+v)=(f+Ba)(x)mod V* for allx[ and all vV*.

Pick a basis {el,’’’, en} of Nn such that {el,’", eq} is a basis of V*. Now
{ei,’’’ei,,}i, i,,<, forms a basis of the symmetric covariant p-tensors Sv on [".

Define a linear function c’Sv--> rn SUCh that

(9) (F+Bd)(ei,’’’ei,,)V* wheneveril-<_q.

Now c defines a unique homogeneous polynomial function a of degree p and this a

satisfies our requirement
Now Algorithm 3.5 for constructing # shows at once that
Remark 4.5. Part (3) was proved by Bonnard [6] for quadratic systems.
Remark 4.6. Note that this is similar to the corresponding linear theorem. In that

case p 1 and our V* coincides with the maximal (A, B)-invariant subspace in the
kernel of C. In fact we can even extend the corresponding linear algorithm (see Wonham
[15]) to our situation

ALGORITHM 4.7. COMPUTATION OF THE MAXIMAL (f B)-INVARIANT SUBSPACE
IN THE KERNEL OF C. Let {e,. ., e} be an arbitrary basis of . Define the set of
linear maps Ai,,...,i,,_," [n ._.> n,. 1 <= i =<’’" <-- ip_- n<

ai, ip_,(x) F(ei,, ei,_,, x).

The collection of all such maps will be denoted by {Ai}i, where

I {(i,,..., ip_)ll <= il <=’" <= ip_, <- n}.

Algorithm.

(10) V Ker (C),

(11) gi+l= Vi(’l( (’li, A’ ’(Vi+B))"
Clearly the sequence of subspaces is decreasing, and hence it converges to some

subspace V+. Moreover, V*= V by definition. Now suppose that V*= V for some
i. Then it is clear from (11) that V*= Vi+. This proves by induction that V*= V+

and the maximality of V*. The fact that V+ satisfies (8) implies that V*= V+.
Remark 4.8. When di V*, the disturbance decoupling feedback a(x) can be

easily computed using (9).
We will show that the class of feedback functions we have been considering is

fairly general.
THEOREM 4.9. Suppose that there exists analytic feedback ui(t)=ai(x(t))+vi(t)

defined in a neighborhood of the origin that renders the closed-loop system disturbance
decoupled. Then there exist feedback functions ti(x) that are homogeneous of degree p
that decouple the closed-loop system on

Proof We will denote the motuple {al,. , am} by a and write a(x) =o a(x)
using the Taylor series. (a(x) is homogeneous of degree j.) Define c a p. Letf and
f denote f+ Ba and f+ Bc, respectively. Let + {f, B, D} and {fa, B, D}.
Similarly, we abbreviate cq(+ D) and cq(- D) to cq and C q, respectively.
We also abbreviate 5(Lie (+) D) 5(Lie + ); D) and); D), 5o(Lie +

5o (Lie (); D) to 5, 5, 5 and 5, respectively.
Now 5 is spanned by {adr,...adv,,_,(Yq){Y,...,~ Yq} cq, q>- 1}. For each

{Y,...,Yq}Cq we will denote by{Y,..., Yq} the q-tuple in C] obtained by
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replacing feedback a by c. Now suppose that {Y1,’", Yq} Cq is such that
adg,.., adG_,(ITq). Then (ady,...adv,,_,(Y))(O)=adg,... adG_,(.’"q) and from
this we conclude that 5 c 5. But since 5 Ker C, it follows that 5 c Ker C. We
conclude by Theorem 3.2 that the feedback u c + v decouples the disturbance and
output.

5. Reachability subspaces. Consider the following problem. We are given

(12) i=f(x)+Bu(t),

(13) y= Cx

where f is a homogeneous polynomial of degree p, and B and C are n x m and x n
matrices. Can we partition the inputs, i.e., find an m x m nonsingular matrix G
Gnxm, [Gznxm2] and feedback

u=(x)+
/9 mzX 1

where a(x) is a homogeneous polynomial of degree p such that when we write the
closed-loop system as

(14) (f+ cr)(x)+ BG, v,(t) + BG2v2(t)

the inputs v(t) do not affect the output y? In this section we give necessary and
sufficient conditions for the existence of a solution to this problem, and show that
when there is a solution, it can be found such that the set of points that can be reached
by v(t) is maximized. This problem is important in controlling a system while keeping
the output at a constant value or when decoupling the effect of the inputs on the outputs.

Now let us consider the system (12), (13). Suppose that v2(t)=0 and x(0) =0.
Then it follows from Theorem 2.1 that the set of points that can be reached along
measurable or piecewise constant control trajectories is contained in the subspace of
constant vector fields in the Lie algebra generated by {f+ Ba, BGt}, where BGI denotes
the vector fields given by the columns of BG. We will denote this subspace by

<f+ Ba Im

and call it the accessibility subspace of {f+ Ba, Im (BG)}. Theorem 2.1 states that if
p is odd, this space is the space of points that can be reached from the origin. In this
case we can also call them controllability subspaces. Our theory here will be the
counterpart of the theory of (A, B)-controllability subspaces of a linear system. Our
proofs are generalizations of the corresponding proofs for (A, B)-controllability sub-
spaces, as can be found in Wonham [15]. The subspace (f+BalIm (BG)) can be
computed using the accessibility subspace algorithm (6). We advise the reader to keep
this algorithm in mind since it will be helpful in understanding the proofs of this
section. As before we will assume that (flIm (B))=R" for simplicity of exposition.
We denote by , , 2, etc. the images of B, B, and B2. When we refer to feedback
a, we mean that a is a homogeneous polynomial function of degree p.

Notation 5.1. We define (f, B)-invariant subspaces as in 4. The collection of all
(f, B)-invariant subspaces contained in a given subspace Y{ will be denoted by
S(f, B; Y{). As we saw .in the proof of Theorem 4.4, for all V S(f B; Y{) there exists
feedback ce such that

adv,’"adv,,_,adx(f+Ba)V for all v,...,vp_6R" for allxV.

The set of all such feedback will be denoted by A(V).



116 W. P. DAYAWANSA AND C. F. MARTIN

Definition 5.2. A subspace of n is called an (f, B)-accessibility subspace if
Yt=(f+Ba[Im (BG1)) for some feedback cr and G1. The collection of all (f, B)-
accessibility subspaces contained in a given subspace 3’{" will be denoted by (f, B; Y{").

Let Y{" be the kernel of C. If there is a solution to our problem, then according to
Theorem 4.4, Im (BGI) should be contained in V*, the largest element of S(f, B; Y{").
Conversely, if there exist G such that Im (BG)c V*, then we can find feedback
a + GIO -4-GzO2 such that the input vl does not affect the output. This completely
solves the problem we posed earlier. However, we proceed further and ask whether
G can be found such that (f+ Ba[Im (BG1)) is also maximal. In a sense, we are
talking about maximizing our ability to control the state while keeping y(t)-= O. We
prove the existence of such a maximal (f, B)-accessibility subspace and give an
algorithm to compute a, G, and G2. We will proceed via a series of lemmas. We
caution that if R is an (f, B)-accessibility subspace, then it may not be an (f, B)-
invariant subspace. However, adv," adv,(f) R + B for all vi R. Hence it makes
sense to define A(R), the set of feedback functions a such that (f+ Ba)(V)c V.

We reiterate that the basic ideas of the proofs are due to Wonham [15].
LEMMA 5.3. Let G1 be arbitrary and define (fl Im (BG1)). Then R (fl 3 0 ).

Conversely, if R (fl ), then there exist GI such that R (film (BG1)).
Proof The second assertion is obvious. So we turn to the first one. Since

Im (BG) R, the accessibility algorithm implies that R (fl f3 ). Conversely,
fq R and f(R) R. Hence (fl f3 ) = .
We obtain the following corollary.
COROLLARY 5.4. (f B; ?7{") if and only if there exist a such that

R f+ Bo CI R).

LEMMA 5.5. If 6(f,, n’, ?7{"), then (f+ Ba fq ) for all a A(R).
Proof If (f, B; 77{"), then by definition there exist So such that R

(f+ Bcol f3 ). Let cr A(R) be arbitrary and let

Since (f+ Ba) , it follows easily that 1 . To prove the converse we use the
accessibility subspace algorithm.

Let Vo 3 f’) and

span ((f+ Bao)( v) v Vi} + W.

The induction hypothesis is

Vc for <- k.

Clearly this is true for k 0. Suppose that it is true for some k. Let x Vk. Then

(f+ Bcro)(X)= (f+ Bo,)(x)+ B(ao(X)- cr,(x)).

By the accessibility subspace algorithm, (f+ Bal)(X). Also, B(ao(X)- al(X)) B
and

B(oo(X)- a,(x))= (f+ Bao)(X)-(f+ Ba)(x) .
Hence (f+ Bceo)(X) RI+( f’) ) R1, implying that Vk+l c R1. By induction,
=. [3
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LEMMA 5.6. Let VS(f, B; Y{), oC (3 and aoA(V) and B(a-ao)(V)c
Bo. Then

Proof Let a A(V) and let 1 (f+ Ba o). Define

Vi+l span {(f+ Bao)(V)[v Vi} + W.

Then Vo Go c 1. Suppose that V 1 for _<- k for some k. Let x Vk. Then, since
obviously c V, it follows that

B(o- Oo)(X) V(’] o 1.

Hence

(f+ Bao)(X)= (f+ Ba,)(x)+ B(a -ao)(X)6

By induction, (f+ Baot 9o) = . The inverse inclusion follows by the symmetry
of the argument.

LEMMA 5.7. Let V S(f B, ) and let rand let ao be such that (f+ Bao)(. Then there exist a A(V) CI A(R) such that al ao[.
Proof The proof follows by arguing as in the construction of a in the proof of

Theorem 4.4.
Now we are ready to state our maximality theorem.
TEOREM 5.8. Let { be a given subspace and let V* be the maximal (f B)-invariant

subspace contained in {. Then there exists a maximal (f, B)-accessibility subspace
contained in V* and * (f+ Ba V* (q ) for arbitrary a A(V*).

Proof Let a cA(V*) and let =(f+ Ba[ f3 V*). Clearly c V*. Let o
(f+BaolClo) be an arbitrary (fB)-accessibility subspace in V*. Pick
A(Ro) f’] A(V*) such that a[Ro aoRo. Now if x V*, then

B(a, ao)(X) (f+ Ba,)(x) -(f+ Bao)(X) V*.

Hence B(a ao)(X) V* and now by Lemma 5.6,

to <f+ Ba, VI to) <f+ Ba 13 CI V*) *.

We also obtain the following important corollary.
COROLLARY 5.9. A(V*) c A(R*).
Remark 5.10. Theorem 5.8 together with the accessibility subspace algorithm and

the (f, B)-invariant subspace algorithm provides a means for computing the largest
accessibility subspace.

6. Decoupling problem. We consider the system

(15) 2=f(x)+Bu,

(16) Yi Cix, 1," ", r

where f(x) (as before) is a homogeneous polynomial vector field of.degree p; B is an
n x m matrix; Ci is an li rt matrix. We propose a question. Can we find feedback

tar
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where a(x) is a homogeneous polynomial vector of degree p and G1,"’, Gr are
constant matrices with the following properties"

(a) vi does not affect yj if ij;
(b) The output yi can be controlled to any desired value by v. We will assume

that the subspaces {Image (C)}’=1 are independent, for otherwise this problem does
not make sense.

In view of Theorem 2.1, we will henceforth assume that p is odd. In view of the
machinery we have at our disposal we can study this problem using (f, B)-accessibility
subspaces just as in the linear case.

Notation 6.1. Let Y{ be a subspace. Let V*(Y{) denote the largest (f, B)-invariant
subspace in Y" and let *(Y{) denote the largest (f, B)-accessibility subspace contained
in V*(Y{). If V is an (f, B)-invariant subspace, then A(V) denotes the set of feedback
functions a such that (f+Ba)(x+v)=(f+Ba)(x) mod V for all x" and all v V.

THEOREM 6.2. Suppose that there exists a such that
(1) a A(V*(G j ker (C))) forj= 1,..., r,
(2) dim (C/(y2*(f’) i.j ker (Cg)))) rank C/.

Then the decoupling problem has a solution.

Proof Define matrices G such that

Image (BG) *(f’) ker(Ci)) f’) , j= 1,..., r.
\ ij /

Then by Theorem 5.8,

*(Nj ker (C))=(f+Ballmage (BG)),

Therefore by two, the input v completely controls the output yj.
Moreover, our theory of disturbance decoupling (Theorem 4.4 and its proof)

shows that y is not affected by v if
In the previous theorem, having to verify the existence of a is cumbersome. If

we want to decouple the state, a much nicer set of necessary and sufficient conditions
can be stated. Let us denote by C the matrix [Cr,..., C rr]r.

THEOREM 6.3. If rank (C)= n, then the decoupling problem is solvable if and
only if

kerC+*( f’l kerC./)=lR" forallj.
ij

Proof The proof of necessity is trivial.
Sufficiency. Clearly our condition implies condition (2) of Theorem 6.2. Let

denote f-I i.iker C. Then Yf’I(Y.jY{i)=O, for all j. This follows at once since
rank (C)= n. Therefore V*(Y)f’I (k.j (V*(Y))) 0 for all j. Now the construction
of a described in the proof of Theorem 4.4 easily shows that there exists some
a A(V*(Y{)), j 1,. ., r. The sufficiency follows by Theorem .6.2.

7. Concluding remarks. The primary purpose of this paper has been to show that
the geometric theory of decoupling of linear control systems extends almost directly
to the class of nonlinear systems given by (1) and (2). Along with Jurdjevic’s and
Kupka’s theorem [10] on controllability quoted in Theorem 2.1, it almost seems to
imply that the linear control theory we know of is actually an "odd degree polynomial"
control theory. This merits investigation of the relationship between stabilizability and
controllability. Unfortunately, controllability does not imply stabilizability even for
this class.
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Example 7.1. Consider the following system:

XX3,

2 X33,

3=U.
This system is controllable. However, according to Brockett [4] and Byrnes and

Isidori [7] a necessary condition for asymptotic stabilizability of this system is the
existence of a function c(x, x2, x) that renders the equation

X a2

Ol(Xl, X2, X3) a3

solvable for x, x2, x3 whenever a, az, a3 are arbitrarily specified small real numbers.
However, it is seen that when a2 0, then necessarily a 0 also for solvability, showing
that the system is not asymptotically stabilizable.

We do not know of any reasonably simple extra conditions that would ensure
stabilizability.
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THE STRUCTURE OF SMALL-TIME REACHABLE SETS IN
LOW DIMENSIONS*

ARTHUR J. KRENERY AND HEINZ SCH.TTLER:

Abstract. This paper outlines a general method to determine the geometric structure of small-time
reachable sets for a.single-input control system with a bounded linear control. The authors’ analysis relies
on free nilpotent systems as a guide, and hence their techniques only apply to nondegenerate situations.

The paper illustrates the effectiveness of the method in low dimensions. Among other results is given a

precise description of the small-time reachable set for a system =f(x)+ g(x)u, lul -< in dimension four,
under the generic assumption that the constant controls u +1 and u -1 are not singular. As a corollary,
a local synthesis is obtained in dimension three for the time-optimal control problem under the analogous
generic condition.

Key words, nonlinear systems, nilpotent approximation, reachable sets, bang-bang trajectories, singular
arcs

AMS(MOS) subject classifications. 49B10, 93B10

1. Introduction. In this paper we study the qualitative structure of small-time
reachable sets in low dimensions for a single-input system with a bounded linear
control. More precisely, we consider a system of the form

(1) : : =f(x) + g(x)u, lul -< 1, x 6 R"

where f and g are smooth (C) or analytic vector fields and admissible controls are
measurable functions with values in [-1, 1] almost everywhere. A trajectory of the
system corresponding to a control u(.) is an absolutely continuous curve x(.) such
that (t) =f(x(t))+ g(x(t))u(t) almost everywhere. We say a point q is reachable from
a point p within time T if and only if there exists a trajectory x(.) defined on an
interval [0, t], t=< T, such that x(0)=p and x(t)= q. The set of all such points q is
denoted by Reach (p, T); Reach (p, T) denotes the set of points that are reachable
exactly at time T. The reachable set from p, Reach (p), is the set of all points that are
reachable from p within some time T.

Reachable sets play an important role in control theory. If a system can be stabilized
to a given point by a feedback control law, then that point must be in the reachable
set of every other point. In optimal control problems, if the cost is added as another
coordinate, then the optimal trajectories must lie in the boundary of the set of reachable
points. For this reason the Pontryagin Maximum Principle plays an important role in
studying the boundaries of reachable sets.

The problem of describing a reachable set and the extremal trajectories that
generate its boundary is closely related to the problem of regular synthesis in the sense
of Boltyansky [1] and others [5], [18]. While the problem has been studied extensively
for many years, only a few examples of regular syntheses have been described, for
instance, [24]. Even in low dimensions, the reachable set of a general control system
can be extremely complicated.
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We shall attempt to avoid this difficulty by considering only "nondegenerate"
systems. By a nondegenerate system we mean one where (i) f, g, and the low-order
Lie brackets off and g span as many dimensions as is possible given the dimensions
of the state space; and where (ii) no nontrivial equality relations.hold between those
vector fields (for instance, if n is the space dimension, then any relation saying that
n vector fields are dependent at a point is considered a nontrivial equality relation,
whereas a relation that simply expresses the fact that a vector field can be .written in
terms of a basis is considered trivial).

This is in the spirit of Lobry [14], who described the small-time reachable set of
(1) in dimension three under the assumption that f, g, and If, g] are linearly indepen-
dent. The method described below is an attempt to extend Lobry’s result to higher
dimensions. As will be seen, it is successful in the four-dimensional case, but in
higher-dimensional cases obstacles still have to be overcome. These obstacles, however,
are not due to our general approach, but they lie in the fact that, at the moment, too
little is known about the structure of extremal trajectories. We shall return to this
question at the end of the paper. In the paper we shall give a precise description of
the small-time reachable set in dimension four assuming that the constant controls
u + 1 and u -1 are not singular on the boundary of the reachable set. It can easily
be seen (cf. 4) that this is equivalent to an independence assumption on the vector
fields f, g, If, g], and If+ g, If, g]], respectively, [f-g, [f, g]]. As a corollary we are
able to improve on recent results of Bressan [4], Sch/ittler [17], and Sussmann [21]
on time-optimal control in dimension three.

Throughout this paper we will use nilpotent systems as a guide to the general
situation. A system is nilpotent of order k if all brackets of orders greater than k vanish
and if k is the smallest integer with this property. In a certain sense these systems play
the same role as the polynomials do within the class of smooth functions. Nilpotent
systems are the low-order part of the coordinate free Taylor series expansion of a
general system.

To be more precise, we must define the Lie jet of system (1). At a point p the Lie
jet consists of a list of the values at p of the Lie brackets of f and g written down in
some prescribed order. Of course, because of the skew-symmetry and Jacobi relation

[f, g]+[g,f] =0, [f, [g, h]] + [g, [h,f]]+[h, [f, g]] =0,
we need only consider a list of distinct brackets. These brackets can be partially ordered
by the total number of vector fields involved; for example, f is a bracket of order one
and If, g] is of order two. The Lie jet of order k is a list of values at p of the distinct
brackets off and g of order less than or equal to k. The Lie jets of orders one through
four are given below:

Order one: {f(p), g(p)},
Order two: {f(p), g(p), [f, g](p)},
Order three: {f(p), g(p), [f, g](p), If, [f, g]](p), [g, [f, g]](p)},
Order four: {f(p), g(p), [f, g](p), If, If, g]](p), [g, [f, g]](p),

[f, [f, If, g]]](P), If, [g, [f, P]]](P), [g, [g, [f, g]]](P)}.
If N(k) is the number of distinct brackets of f and g of order k or less, then the
kth-o-rder Lie jet of (1) at p is a point in the vector bundle consisting of the Whitney
sum of N(k) copies of the tangent bundle.

A basic result of Krener [12], later proved in other contexts by Rothschild and
Stein [15], Hermes [10], Crouch [8], Bressan [3], and Sussmann [20], [21] is that for
analytic systems of the form (1), the kth-order Lie jet at p determines the trajectories
emanating from p up to order O(tk+) and up to diffeomorphisms of the state space.
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Sussmann [22], [23], Bressan [4], and Sch/ittler [16], [17] have shown that the
local structure of time-optimal controls in dimension two or three is determined in
nondegenerate situations by the second, respectively, third-order Lie jet at a reference
point. In degenerate situations higher-order jets need to be considered [16], [17], [23].

On the basis of these results we might conjecture that in nondegenerate situations
the kth-order Lie jet at p determines the structure of the set of small-time reachable
points where the H/Srmander or controllability condition is satisfied, i.e., the rank of
the kth-order Lie jet at p equals the dimension of the state space. And maybe the
qualitative structure of the reachable set can be obtained by looking at a kth-order
nilpotent approximation. Unfortunately, as we mention in the last section, these
conjectures are not completely true, but they do motivate much of our work.

The paper is organized as follows. The next section reviews the Pontryagin
Maximum Principle as applied to the system (1). This also gives us a chance to introduce
some notation and terminology. In 3, we will describe the main ideas and outline
the general structure of our techniques by looking at the trivial two-dimensional case.
We will also give a brief proof of Lobry’s three-dimensional result. The main part of
the paper is 4, where we determine the geometric structure of the small-time reachable
set for the nondegenerate four-dimensional system (assuming that both quadruples
(f, g, [f, g], [f+ g, [f, g]]) and (f, g, [f, g], [f- g, [f, g]]) consist ofindependent vectors
at p). We also draw the obvious corollaries about time-optimal control in dimension
three. Section 5 concludes with a brief discussion of the free nilpotent five-dimensional
system and explains why the general nondegenerate five-dimensional case is different
from this one.

2. The maximum principle. The Maximum Principle [13] gives necessary condi-
tions for a point to lie on the boundary of the reachable set. Let u(. be an admissible
control defined on an interval [0, T] and let x(.) be the corresponding trajectory
starting at p. If x(T) 0 Reach (p), then x(t) 0 Reach (p) for all [0, T] and there
exists an absolutely continuous curve A’[0, T] ", which does not vanish anywhere
such that

(2) ,((t) 7"= -)(t)7"(Df(x(t))+ Dg(x(t)) u(t)),

(3) (,(t), g(x(t)))u(t)= Min (A (t), g(x(t)))v,

(4) H (, t), f(x( t)) + g(x( t))u( t))=- 0

almost everywhere on [0, T]. (We write vectors as columns, (.,.) denotes the standard
Euclidean inner product on ", and Df and Dg denote the Jacobian matrices off and
g, respectively.) Any trajectory for which an adjoint variable ,(.) exists such that
(2)-(4) are satisfied is called an extremal trajectory. The optimality condition (3)
determines the control u(t) whenever 4(t) := (A (t), g(x(t))) 0; 4) is called the switch-
ing function and u-I (u +1) on intervals where b is positive (negative). Trajec-
tories corresponding to these constant controls are called bang arcs and are denoted
by X (=f-g) and Y (=f+g), respectively. A concatenation of bang arcs is a
bang-bang trajectory. Observe that (A(t),f(x(t)))=O at switching times t, i.e., where
(A (t), g(x(t)))=0. At these times (3) gives no information about the optimal control.
If, however, b vanishes on an open interval I, then all the derivatives of b also vanish
on I and this may determine the control u. We have

q(t) (A (t), [f, g](x(t))),

(t) (A (t), [f+ gu, [f, gJ](x(t))),
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and if (h (t), [g, [f, g]](x(t))) does not vanish on I, we can solve for u in 0 as follows:

u(t)
(h (t), [f, [f, g]](x(t)))
(A (t), [g, If, gl](x(t)))"

A control of this type is called singular and the corresponding trajectory is a
singular arc.

This suggests that concatenations of bang and singular arcs are the natural
candidates for trajectories in the boundary of the reachable set (but of course no such
regularity statement can be drawn from the Maximum Principle alone). We denote
concatenations of bang and singular arcs by the corresponding letter sequence; for
instance, we simply write XSY for a concatenation of an X-arc, followed by a singular
arc and a Y-trajectory, etc.

3. The main ideas of the technique: the nondegenerate two- and three-dimensional
cases. In this section we analyze the (well-known) structure of small-time reachable
sets in a nondegenerate situation in dimensions two and three. These cases are easy
and give us an opportunity to outline the general ideas of our technique without getting
preoccupied with technical details.

Suppose is a system of the form (1) in dimension two and assume that f and
g are independent at a reference point p (see Fig. 1). It is clear how the small-time
reachable set from p will look. If we let F+ (respectively, F-) be the integral curves
of the vector fields f+ g (respectively, f-g) for positive times, then for sufficiently
small T, Reach (p, <_- T) is the union of F+, F-, and the open sector R between F+ and
F- into which f(p) points. It is easy to see that any point in R is reachable from p;
for instance, if q e R, just run a trajectory of corresponding to the control u +1
backward in time until it hits F-. The important point is that this is all of the small-time
reachable set. This follows immediately from the Maximum Principle since only
trajectories corresponding to the constant controls u---+1 or u-=-1 can lie in the
boundary of the reachable set. (There cannot be a junction, since then both
(,(t),f(x(t))) and (a(t), g(x(t))) vanish, contradicting the nontriviality of a.)

1-.+
f+g

P

f-g F-
FG.

Generalized to higher dimensions, the quintessence of this argument is to have
two hypersurfaces F* and F. which are generated by extremal trajectories, have a
common relative boundary and "enclose" a region R. Then, to. prove that R is actually
the reachable set Reach (p, <-T), we must show (i) trajectories cannot leave R through
F* or F., and (ii) all points in the sector are reachable. The latter is immediate if we
have a drift vector field f with f(p) O. This is exactly the same argument as in the
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two-dimensional case. Take any point q inside R and run a trajectory ofE corresponding
to the control u-=0 (or for that matter corresponding to any control) backward in
time. Since f(p) # 0, this trajectory will hit F* or F,. So basically (i) must be checked;
this is mostly a matter of computing tangent spaces, as will be shown below. This is
the general strategy of our technique.

All technical issues left aside for a moment, the key question is how to come up
with the surfaces F* and F.. We propose an inductive procedure. Let us explain it at
the next step, which is the case of a three-dimensional system E, where we assume
that f, g, and If, g] are independent at a reference point p. (This is the example
considered by Lobry [14].)

Choose coordinates x (xl, x2, X3) such that (dx, (f(p), g(p), [f, g](p))= Id, the
identity matrix. The projection of E into the (xl, x2)-plane is then the two-dimensional
system considered above and we know the structure of its small-time reachable set.
Our aim is to find two hypersur.faces F* and F, consisting of extremal trajectories that
project onto the reachable set R of the two-dimensional system in dimension three. If
F* and F, have a common relative boundary that projects onto 0R and if F* and F,
do not intersect in their relative interior, then it is clear that these surfaces "enclose"
a region R. Then we must check whether trajectories can leave R. If this is impossible,
R is the small-time reachable set.

The Maximum Principle gives preliminary information about F* and F, because
it describes necessary conditions for trajectories to lie in the boundary of the reachable
set. In this three-dimensional case it actually determines F* and F, precisely, but in
higher dimensions this is no longer true. It is then that we will use nilpotent systems
as our guide to find candidates for F* and F,. More on that appears in 4.

Now that we have outlined the general approach, let us also illustrate the basic
technical arguments by reproving Lobry’s result. It follows from the Maximum Principle
that all trajectories that lie on the boundary of the reachable set are bang-bang. For,
if the switching function vanishes at some t, i.e., if (A(t),g(x(t)))=O, then also
(A t),f(x(t))) O, and hence r(t) (A (t), [f, g](x(t))) cannot vanish by the indepen-
dence of f, g, and [f, g] and the nontriviality of A. For dimensionality reasons it is
therefore reasonable to consider the following two surfaces as candidates for F* and F,:

r* {p exp (Sl(f- g)) exp (s2(f+ g))" s,-> O, S - S2 small},

F, {p exp (h(f+ g)) exp (t2(f- g)): ti >= O, t, + t2 small}.

We write flows of vector fields as exponentials and we let the diffeomorphisms act on
the right, i.e., p exp (tf) denotes the point obtained by following the integral curve of
f that passes through p at time zero for units of time.

It is clear that F* and F, are two-dimensional surfaces with boundary. In both
cases the boundary consists of the two curves corresponding to the trajectories off+ g
and f-g and the point p. Furthermore, by the Campbell-Hausdorff formula [11]

p exp (s,(f- g)) exp (sz(f+ g))

=p exp ((S " s2)f’+’(S2--Sl)g’-- S1S2[f g]’lt- S1S2 O(T)),

p exp ((t,(f+ g)) exp (t2(f-g))=p exp (tl + t2)f+(tl- tz)g- tlt2[f, g]+ tt2" O(T))

where O(T) stands for terms that are linear in the total time T. This shows that F*
and F, do not intersect in their relative interior. So F* and F, enclose a region R.

To prove that the enclosed sector R is the small-time reachable set we must show
that there cannot be any other points in the reachable set. As in the two-dimensional
case we have two options: either we show that we have exhausted all trajectories that
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FIG. 2

possibly can lie on the boundary of the reachable set, or we show that trajectories
starting at points on F*, F,, F/, or F_ cannot leave R (_J F* (3 F, t3 F/ (.J F_. As it turns
out, this is the same argument, only viewed differently.

Let us first show that we have exhausted all possible trajectories that can lie in
the boundary of the small-time reachable set, i.e., that such a trajectory is bang-bang
with at most one switching. Let y be a bang-bang trajectory with two switches, say of
the form XYX, with junctions Po and Pl at times to < tl. If ] h(tl), then we have
(, g(pl))=0 and (,f(p))= 0. Also (h(to), g(po))=0 or, equivalently, if we move g
ahead along the flow of the vector field Y we get (h, exp (-(q- to) ad Y)X(po))=0.
But # 0 and so these three vectors are dependent: Po and p are conjugate points
(Sussmann [22]). Therefore

X(p) ^ Y(Pl) ^ exp (-At ad Y)X(po)= 0

i.e., X(pl)^ Y(p)^[X, Y](p)+O(At)=O, where At--tl-to. But such a relation
cannot hold in small time by the independence of X, Y, and [X, Y]. Similarly it follows
that YXY-concatenations cannot satisfy the Maximum Principle.

This computation can also be viewed in the following way. Define a map
F’(tl, t2, t3)--p exp (tlX) exp (t2 Y) exp (t3X) for t small. Then this map has full
rank if t > 0. For, if we compute the tangent space to the image, but pull back to
p exp (tlX) exp (t Y), we get exactly the vectors exp (-t2 ad Y) X, Y, and X. Therefore
F(tl, t2, t3) is an interior point of the reachable set. Finally, if we pull back the tangent
space one step further to p exp (tlX) we have the vectors X, Y, and exp (tz ad Y)X
X- t2[X, Y] / O(t). The minus sign at IX, Y] implies that X-trajectories point inside
R at points on F*. Similarly, it follows that Y-trajectories steer the system into R from
F*. And this proves that trajectories of the system cannot leave R through F*, F., F+,
or F_. (Because of the Maximum Principle we can restrict ourselves to just looking
at these regular controls instead of having to consider arbitrary measurable functions.
For, if any trajectory would leave R, then there will also have to be additional trajectories
lying on the boundary of the reachable set and these must be bang-bang.)

The structure of the small-time reachable set as a stratified set can easily be
described using the following notation. For n let

S.._ := {p exp (sX) exp (s2 Y) exp (s3X)

exp (snB)" si > 0, B X if n is odd, B Y if n is even},

Sn,+ :’-- {p exp (t Y) exp (t2X) exp (t Y)

exp (t,B)" ti > 0, B X of n is even B Y if n is odd}.

In a nondegenerate situation each of the S,.+/- is a n-dimensional smooth manifold
(Certainly this will be true in all the cases we consider here.) In the three-dimensional
case the boundary of the small-time reachable set consists of the two two-dimensional
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strata $2, which have in their boundary the two one-dimensional strata S,+/- and the
zero-dimensional stratum So {p}. So also lies in the boundary of $1,. If we restrict
the total time to be -<_ T we must make the obvious adjustments. In particular, we must
add the strata Sn, := Sn,+/- Reach (p, T) for n 1, 2.

4. The nondegenerate four-dimensional systems. In this section we determine the
geometric structure of the small-time reachable sets from a point p for a system E of
the form (1) in dimension four, where we assume that the constant controls u--+1
and u--1 are not singular. These conditions can easily, be expressed in terms of
independence assumptions on f, g, and lower-order brackets off and g. For, a constant
control u u is singular on an interval I if and only if there exists an adjoint multiplier
h such that (h,f), (h, g), (h, [f, g]), and (h[f+ gu, [f, g]]) vanish identically on I. By
the nontriviality of h this is impossible iff g, If g], and [f+ gu, If, g]] are indepen-
dent. Therefore in terms of the vector fields X and Y our conditions are equivalent to

(A) X, Y, IX, Y] and [X, IX, Y]] are independent near p;

(B) X, Y, IX, Y] and [Y, [X, Y]] are independent near p.

If we write IX, IX, Y]] as a linear combination of X, Y, [X, Y] and [Y, IX, Y]] as

IX, [X, Y]] aX +/3 Y+ y[X, Y] + [ Y, [X, Y]],

then (A) is equivalent to 6 0.
The cases 6 > 0 and 8 <0 are significantly different: if 8 > 0 only bang-bang

trajectories can lie in the boundary of the reachable set, if 8 <0 singular arcs are
possible. Intuitively this is clear. If u is singular on an interval I, then (omitting the
arguments and x(t))

(h, [f+ gu, [f g]])

=(;, (1-u)[X,[X, v]]+(l +u)[V,[x, vii)

=1/4((1-u)6+(l+u)).(h,[Y[X, Y]]) 0

and so u=(6+1)/(6-1). This is an admissible control only if 6-<_0. Note that the
singular vector field is given in feedback form as

6+1 1 -6

S=f+6 l g=l-6 X+1-6 Y, 6<0.

4.1. The totally bang-bang ease: 6>0. This is the generalization of Lobry’s
example to dimension four. We treat only the general case here, but we remark that
the structure of the small-time reachable set is the same as for a nilpotent system where
f, g, If, g], and If, [f, g]] form a basis and all other brackets vanish. In appropriate
coordinates the latter system is linear.

The key observation again is that the Maximum Principle precisely determines
the possible trajectories that can lie in the boundary of the small-time reachable set.

LEMMA 1. If 3/ is a trajectory that lies in the boundary of the small-time reachable
set, then 3’ is bang-bang with at most two switches.

Proof We first exclude bang-bang trajectories with more switches. Let y be a
YXYX-trajectory with switching points p, P2, and P3 and let s, s2, s3, s4 be the length
of the times along the respective X-arcs or Y-arcs. At every junction we have
(, X(pi))=O and (h, Y(pi))=0. This gives rise to four conditions on h.
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and

If is the value of the adjoint vector at the switching time at P2, we have

(, X(p)) (, (p)) O,

(, exp (-s2 ad Y)X(p))= O,

(, exp (s3 ad X) Y(p3))= O.

Again, the nontriviality of implies that these four vectors are dependent ("conjugate
points"). So we get (dividing out s2 and s3)

S S2

(5) =X^ Y^[X, Y]+s3[X,[X Y]]+O(sZ3)^-[X, Y]+sz[Y,[X, Y]]+O(T2)

1
-do-(s, s)(x ^ Y ^ IX, Y] ^ Y, IX,

where T is the total time along 3’ and O(T2) stands for terms that are quadratic in T;
(r is a smooth function of s2 and s3. If we express [X, [X, Y]] in terms of X, Y, [X, Y],
and [Y, [X, Y]], we see that

(6) o’(s2, $3) s -+- $3( "1- O( T2)
where 6 is evaluated at P2. In a sufficiently small neighborhood of p, 6 is bounded
away from zero and so the linear terms dominate quadratic remainders in small time.
Hence r(s2, s3) is positive for s small; in particular, it cannot vanish, a contradiction.

Analogously, if 3 is a XYXY-concatenation with switching points q, q2, and q3

and if t, t2, /3, t4 are the times along the respective trajectories, then we get

0=X^ Y^(exp(-t2adX)-l)y^(exp(t3ad Y)-I). X--t2 t3
(7)

1
=--7"(t2, t3)(X A Y ^ [X, Y] ^ Y, [X, Y]])I,,2

where

(8) ’( t2, t3) --t3-- t26 + O( T2)
is a smooth function of t2 and t3 near the origin. Again, since 6 is bounded away from
zero near p this function is negative for small times, a contradiction.

P3

Pl Y, s4
X,s

P2
FG. 3



128 A.J. KRENER AND H. SCHATTLER

It now follows that, in fact, any trajectory that lies in the boundary ofthe small-time
reachable set is bang-bang. This is an easy but slightly technical argument. We will
do it here rigorously since we will need the computations later on anyway. The point
is that we do not have a priori knowledge about regularity properties of the controls,
e.g., that they are piecewise constant. This is the case if and only if the zero set Z(b)
of the switching function b is finite. If it were infinite, then the set N of limit points
of Z(b) would be nonempty. In fact, it is a closed, nowhere dense, perfect set. (If
tl < t2 are points in N(b) then, since b cannot vanish identically, b is different from
zero somewhere in (fi, t2) and by continuity it is different from zero on a whole interval.
It is perfect, i.e., every point N(b) is a limit point of points t, N(b), t, t, since
N(b) cannot have isolated points. We can see that this is so, since we know already
that bang-bang trajectories with more than three switchings do not lie in the boundary
of the small-time reachable set!) Suppose t<t2 are times in N(b). There exists
a ’(tl, t2) such that b(’)0. Let ’:=sup([q,’]ffiN(b)) and let ’2 :=
inf ([ ’1, tz]ffl U(b)). Then ’ < ’2, N(b), and Z(b) f-) ’1, ’2] is finite. This implies
that y contains subarcs of the form .B. and .B., where B denotes a bang arc (X or
Y), stands for any switching, and stands for a junction in N(b). Observe that
(t) 0 if N(b). We will now show that none of these concatenations can lie in
the boundary of the reachable set and this will prove the lemma.

Without loss of generality we consider a concatenation of the form .X. with
switching points P0 and p and let be the time along X. Then, if is the value of the
adjoint vector at the switching time corresponding to Po, we have

(., X(po)) (., Y(Po)) (, [X, V](po)) 0.

Also (, exp (-tad X) Y(p))= 0 and so by nontriviality of we again get

0= X A Y A [X, Y] A Y- t[X, Y]+1/2t2[X, [X, Y]]+ O(/3)
(9)

=1/2t2(l+O(t))(XA YA[X, Y]A[Y,[X, Y]])lpo"
This cannot hold in small time. Analogously it follows that no B. or. B. concatenation
can lie in the boundary of the small-time reachable set if 3 0. This proves the lemma
(and note that the argument is valid in general under assumptions (A) and (B)).

It is now clear that the surfaces F* and F, must be as follows:

F* {p exp (sX) exp (s2 Y) exp (s3X)" s => 0, small},

F. {p exp (t Y) exp (t2X) exp Y)" li 0, small}.

F* and F. are three-dimensional surfaces with common boundary C that has precisely
the structure of the boundary of the small-time reachable set in dimension three. It is
the union of two two-dimensional surfaces made out of XY- and YX-trajectories
respectively, glued together along the X- and Y-trajectories.

We will now show that F* and F, do not intersect away from C, in particular that
they enclose an open region that will be the interior of the small-time reachable set.

DIYrrON. We say a point q is an entry point (respectively, an exit point) of
a (closed) set S for a vector field Z if for some > 0, S {q exp (tZ)" -e <= <= 0} {q}
(respectively, if SD{q exp (tZ)" 0 <- <- e}= {q}).

LWMMA 2. For sufficiently small T the points in F* are entry pointsfor the small-time
reachable set from p for Y, IX, Y]]. The points in F. are exit points.

Proof If q is an exit (entry) point for Reach (p,-<T) that does not lie in
Reach (p, T), i.e., exit or entry is not due to the time restriction, then the corresponding
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trajectory is extremal and the adjoint multiplier satisfies the transversality condition
(A, [Y, IX, Y]](q))-0 ((A, [Y, [X, Y]](q))=> 0). We claim that necessarily

qeF, (q F*).

(10)

Recall that the second derivative of the switching function is given by

(t) (A (t), If+ gu, If, g]](x(t)))

=(1-u(t))(A,[X,[X, Y]](x(t)))

+-(1 + u(t))(h, Y, IX, Y]](x(t))).

Expressing [X, [X, Y]] in terms of X, Y, [X, Y], and Y, [X, Y]], we get a linear
combination of terms (A,X), (A, Y), (A,[X, Y]), and (A,[Y,[X, Y]]), where the
coefficient at (A, [Y, [X, Y]]) is

1/2(1 u)6 +1/2(1 + u) => Min (1, 6) > O.

Suppose y is a bang-bang trajectory with two junctions. Then the two junctions
determine a multiplier A up to a positive constant multiple. Normalize such that
I1 (0)11== 1. Because ), has two junctions (A, X), (A, Y), and (A, IX, Y]) vanish some-
where on [0, T], T tl + t2 + t3. For sufficiently small T these functions will be bounded
in absolute value on [0, T] by any e > 0. Because of (B) I(A (t), Y, IX, Y]](x(t))) can
be bounded away from zero on [0, T]. By choosing e, i.e., T small enough,
(A, [Y, IX, Y]]) dominates all other terms in (10), that is, we have in small time: 4
has constant sign equal to sign ((A, Y, [X, Y]])). But (A, Y, IX, Y]])> 0 allows only
for XYX-trajectories and (A, Y, IX, Y]])< 0 permits only YXY-concatenations. This
proves our claim.

We still need to show that points in F* and F, in fact have these optimization
properties. Suppose y is a XYX trajectory. Then the tangent space at the endpoint is
spanned by X, exp (--/3 ad X) Y and exp (--/3 ad X) exp (-t2 ad Y)X. Note that
Y, [X, Y]] always points to one side of the tangent space since

(11)

X ^ exp (--t ad X) Y ^ exp (--t ad X) exp (-t2 ad Y)X ^ Y, [X, Y]]

---t2(X ^exp (--t3 ad X)Y^ exp (-t ad X)(exp (-t2 ad Y)- 1) X
2

^ Y, [X, Y]])
t2(X ^ Y- t3[X Y] / O(t) ^ [X, Y] + O(T) ^ Y, [X, Y]])

=t2(I+O(T))(X^ Y^[X, Y]^[Y,[X, Y]]).

If we write the defining equations for F* and F, in terms of canonical coordinates
of the second kind, that is, as products of the flows of the vector fields X, Y, IX, Y],
Y, IX, Y]] in the form

(12) p exp (XlX) exp (x2 Y) exp (x3[X Y]) exp (x4[ Y IX, Y]]),

then this implies that we can think of F* as the graph of a function X4 It(Xl, X2, X3)o
It also follows from (12) that the integral curve of [Y, IX, Y]] through p and the
compact set Reach (p, T) are disjoint for small positive T. Therefore, given T, there
exists a T-< T with the folio.wing property. Any integral curve of Y, [X, Y].] that
passes through a point on F*(T), the set of all trajectories in F* of total time =< T, does
not meet Reach (p, T). This implies that the points on F*(T) are entry points for the
small-time reachable set. For, if q F*(T) is not an entry point, then by compactness
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there exists an entry point of Reach (p, _-< T) of the form q exp r[ Y, [X, Y]]. Since this
flow does not meet Reach (p, T) this point must lie on F* and this contradicts the
graph property. Analogously the result follows for F..

An easy computation shows that, if F* and F. would intersect away from C, then
it would have to happen transversally. This would contradict Lemma 2.

The geometric structure of the small-time reachable set is now clear. It is the exact
analogue of Figs. 1 and 2 in four dimensions. Its boundary consists of the surfaces F.
and F* that match up along C, the set of points reachable by a bang-bang trajectory
with at most one switch. The open region enclosed by F* and F. is the interior of the
reachable set. A stratification of its boundary is given by So and Sn,+ for n 1, 2, 3
(see 3).

Remark. This qualitative structure of the small-time reachable set for a totally
bang-bang system generalizes to arbitrary dimensions under the conditions of Krener’s
and Sussmann’s nonlinear bang-bang theorem [19]. Suppose that the vector fields f
and adif(g), i=0,..., n-1 are independent at p and that for i=0,..., n-1 there
exist smooth functions c,..j and/3i with I/3i(p)l < 1 such that

[g, adi/(g)] c0 adJ/(g)+ fli ad+1 f(g).
j=0

Then it follows that for sufficiently small-time T all trajectories that lie in the boundary
of the reachable set from p are bang-bang with at most n switchings. A stratification
of the boundary is given by the strata So {p} and Sk,+, k 1," ", n. In particular,
points in Sn,+ are exit points of the reachable set for (-1) n-1 adn- f(g), points in Sn,_
are entry points. Given the results on the structure of trajectories in the boundary, this
is a straightforward generalization of the argument above. All the difficult work has
been carried out by Sussmann in [19], specifically in the proof of Lemma 3 there.

4.2. The bang-bang singular case: ; < 0. This case is a nontrivial extension of
Lobry’s result. Here not all the extremal trajectories actually lie in the boundary of
the small-time reachable set. It is therefore not clear how we should choose F* and

F.. We now use the structure of the small-time reachable set for the corresponding
free nilpotent system as a guide. The only reasonable nilpotent approximation to
choose is one where all brackets of orders greater than or equal to 4 vanish. Note that
f, g, [f, g], and [g, [f, g]] are always independent in this case. Since we want to work
with a system as simple as possible, we also assume [f, [f, g]]-= 0. This is an equality
relation in the third-order Lie jet, but in a slightly more general setup (weighted Lie
algebra) this would be a free nilpotent system. Therefore we refer to this system as
the "free" nilpotent case. We will first analyze a model of this "free" nilpotent case,
and then we will show that the general case has the same qualitative behavior.

4.2.1. The reachable set in the "free" nilpot.ent case. To simplify some computations
we restrict ourselves to the following model Z:

(13) .20 1 21 u, 22 x 23 X

Note that [g,f](x) (O/Ox2) + x(O/Ox3), [g, [g,f]] O/Ox3 and all other brackets vanish
identically. It is clear that the qualitative structure of the reachable set from the origin
at any time is the same as for the small-time reachable set: one is a rescaling of the
other. (If u is a control defined on [0, T] and x is the corresponding trajectory, then
the time reachable set can be obtained from the time T reachable set by letting
ri(t) := u(t/T) and )(t):= Tixi(t/T) for i= 1, 2, 3.) To determine the reachable set it
therefore suffices to look at time slices T constant, and without loss of generality we
can assume T 1.
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If A (Ao, A, A2,/3) T is an adjoint vector for an extremal trajectory x(. ), then
A is the switching function and

and in particular ’1 h3u, i.e., u-= 0 is the only singular control. Note that, if A3 0,
then h is a linear function and the extremal trajectory is uniquely determined. By a
theorem of Bressan [2] this implies that the reachable set is convex in direction of
(0,0,0, 1) T or equivalently in the direction of [g, [g,f]]=1/2[X, [X, Y]]; that is, if
(Po, Pl, P2, a) and (Po, P, P2, b) lie in the reachable set, then the whole segment
{(Po, P, P2, c): a _-< c =< b} lies in the reachable set. it is therefore clear what the surfaces
F* and F. have to be: F* consists of trajectories which are exit points for [X, [X, Y]]
and F. of those which are entry points. Equivalently, we can speak of trajectories that
maximize/minimize the coordinate x3.

For extremal trajectories that give rise to entry/exit points for [X, [X, Y]], an
additional transversality condition was to hold. One of the directions +[X, [X, Y]]
can be separated from an approximating cone to the reachable set at this point. In
our case these conditions simply say that A3 => 0 for trajectories that minimize x3 and
A3--< 0 for those that maximize x3. In particular A3 0 for those that do both and these
trajectories are bang-bang with at most one switching. So again the common boundary
of F* and F. will be a set C that has the structure of the boundary of the small-time
reachable set in dimension three.

We now determine F.. We can assume h3> 0 and without loss of generality
normalize A3 to 1. Thus, =-u and so A is strictly convex and positive along X,
strictly concave and negative along Y. Singular controls satisfy the generalized
Legendre-Clebsch condition [13]: (A, [g, [f g]])=-A3 <0. It follows that the only
extremal trajectories are concatenations of a bang arc, followed by a singular arc and
another bang arc. We now restrict to the time slice T 1. Define

F_o_ := {0 exp (sX) exp (s2f) exp (s3X): s;-> 0, s, + s: + s3 1},

F-o+ := {0 exp (s,X) exp (s2f) exp (s_ Y): si->_ 0, s + s2 + s3 1},

F+o_: {0exp (t Y) exp (t2f) exp (t3X): ti>O, + t2+ t3-- 1},

F+o+ := {0 exp (t Y) exp (t2f) exp Y): ti _>- 0, t + t2 + t3 }.

We will show that these are two-dimensional surfaces with boundary which match up
and together form F. with

0F. {0 exp (sX) exp (s2 Y): si => 0, s + s2 1}

LJ{Oexp(tlY) exp(t2X): ti>=O, t+t2 1}.

LEMMA 3. Each of the sets F+/-o+/- is a two-dimensional surface with boundary. For
any two of them the images of the open simplices are disjoint. Furthermore,

F_o_ f3 F-o+ F-o {0exp (sX) exp (szf): s-->0, s + s2= 1},

F_o_ f3 F+o_ Fo_ {0 exp (sf) exp (s2X): s _-> 0, s + s2 1},

F_o_ f3 F+o+ Fo {0exp (st): 0_-<s_-< 1}-- F_o+ (3 F+o_,

F_o+ f3 F+o+ Fo+ {0exp (sf) exp (sz Y): si_->0, s + s2= 1},

F+o_ f3 F+o+ F+o {0 exp (s Y) exp (s2f): s >= O, s + s2 1}.

Graphically, these relations can be illustrated as shown in Fig. 4.
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The proof of the lemma consists of straightforward computations that we shall
only illustrate in one case. It is easy to see that all the maps are regular with rank 2
in the interior, and it is clear how the maps behave on the boundary. So the F+o+ are
two-dimensional surfaces with boundary. To prove that the images of the open simplex
under different maps are disjoint, we choose a way that does not use the specific form
of the equations, but works with a basis provided by the vector fields f, g, If, g l, and
[g, [f, g]]. This also gives an idea how the analogous argument in the general case
runs. We rewrite the defining equations in terms of canonical coordinates of the second
kind as products of the flows of the vector fields f, g, If, g], and [g, If, g]]. Since in
this case

(14) exp(f+g)=exp([g,[f g]]/3)exp([f,g]/2)exp(g)exp(f),

we get, for instance, for F+o+:
0 exp (tl(f+ g)) exp (t2f) exp (t3(f+ g))

0 exp ((t31[g, If, g]]) exp (1/2t2[f g]) exp (fig) exp ((tl + t2)f))

(t3[g, If, g]]) exp (1/2t[f g]) exp (t3g) exp (t3f)xexp

0 exp (((t + t3) + t2t3(tl +1/2t3))[g, If g]]) exp ((1/2(t + t3) 2 + t2t3)[f g])

x exp ((t + t3)g) exp (f).

Analogously we have for F_o+"

0 exp (s(f- g)) exp (szf) exp (s3(f+ g))

0 exp ((sl s2s3 +1/2s33 + s2s32_ ss2s3)[g, If, g]])

x exp((-1s +s3+ (s + s:)s3)[f, g]) exp ((s3- s)g) exp (f).

A simple computation shows that the equations we obtain by equating the coordin-
ates have no positive solution. Similarly this is shown for all pairs of surfaces. The
statements about the intersections are then clear. [3

This shows that F. is a two-dimensional stratified set with its one-dimensional
relative boundary 0F, made out of bang-bang trajectories with at most one switching.
Figure 4 gives a precise description of the stratification. We now show that the points
on F, are, in fact, the points that have the smallest x3 coordinate among all points of
Reach (0, 1) with a fixed (Xo, x, x2).
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Let us first compute the tangent spaces to the surfaces F+o+. Note that in each
case the pullback of the tangent space to the endpoint of the singular arc simply
consists of the space spanned by the vectors g and If, g] evaluated there (remember
that we are working in the time slice T-- 1). This implies that IX, IX, Y]] 2[g, [g,f]]
always points to one side of the tangent space. In fact,

exp (-tad (f+ g))g ^ exp (-tad (f+ g))[f, g] ^ [g, [f, g]]-= l(g ^ [f, g] ^ [g, [f, g]]).

In the limit this also holds for the one-dimensional strata. Therefore [g, [g, f]] always
points to one side of the stratified surface F.. It is easy to see that, in fact, we can
think of F. as the graph of a piecewise defined function x3 0(xi, x2). (The projections
of the images onto (xl, x2) intersect only along the projections of the intersections of
the surfaces F+/-o+.) Since we have exhausted all possible extremal trajectories that can
minimize the coordinate x with F., it is now clear that given (1,)2, 3) EF, any
other point (xl, x2, x3) E Reach (0, 1) with xl ffl and x2 if2 must satisfy x3 > 3. This
concludes the analysis of F..

Next we will determineF*. Here we can assume A3----1 and so ’l u, i.e., the
switching function b is convex when b is negative and concave when b is positive.
This clearly suggests bang-bang extremals. However, now the situation is significantly
different from all previous cases" it will turn out that the times along bang arcs are no
longer free, which in turn will mean that we cannot a priori exclude bang-bang
trajectories with a large number of switchings. In general, it is a very difficult problem
to eliminate extremal trajectories with a large number of switchings (cf. [4] or [16]).
It turns out that in our approach we do not even have to address this issue.

Let us start by showing that the times along bang arcs can no longer vary freely.
Suppose we have a concatenation ofa Y-trajectory followed by an X-arc with switchings
at the beginning and the end (.XY.). Call the switching points Po, Pl, and P2 and let
s and be the times along X and Y, respectively. Then Po, Pl, and p2 are conjugate
points and therefore

0=exp(-sadX) YAX^ Y^exp(tad Y)X

( ) (exp(tadY)-l) Xexp(-sadX)-I
Y^X^Y^

--S

(15)
X ^ r ^ IX, Y] + s[g, [f g]] ^ Y, X] t[g, If g]]

(s- t)(X ^ r ^ [X, Y] ^ [g, [f, g]]).

Hence s and the same is true for a YX.-concatenation. Therefore, so as not to
violate the Maximum Principle, and since we donot expect any degeneracies in the
structure of the reachable set, we restrict ourselves to the following two surfaces:

F- {0 exp (siX) exp (s2 Y) exp (s3X) S O, S " S2 + S 1, sl <--- $2, $3 $2},

’+ {0 exp (tl Y) exp t2X exp t3 Y)" ti >= O, tl + t2 h- 1, t <= t2 <= t2}.

Our aim is to build F* out of trajectories from ’+ and ’-. However, as they are at the
moment, we still have too many extremal trajectories. The surfaces ’- and ’+ have a
nontrivial intersection . To see this let us rewrite the defining maps in terms of
canonical coordinates as follows"

0exp (siX) exp (szY) exp (s3X) 0 exp (s1s2(s2-s1)[g If, g]]) exp (S1s2[X Y])

x exp (s2 Y) exp ((sl + s3)X),
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0 exp (t, Y) exp (t2X) exp (t_ Y) 0 exp (t2t3(2t,- t2 + t3)[g, [f, g]]) exp (tt[X, Y])

exp ((tl + t3) Y) exp (tzX).

If we equate the coordinates, it follows easily that sl t3, s_ t2, and s3 t. It follows
that + and - also intersect along the one-dimensional curve

# {0 exp (sX) exp (Y/2) exp ((1/2-s)X)’O <= s <-1/2}.
We need to analyze the intersection more closely. Let

q =0 exp (sX) exp (sY) exp (sX) ".
Then the tangent space to F- at q is spanned by (recall that s 1- s- s2)

exp (-s ad X) exp (-s2 ad Y)X-X= Sz([X, Y]+(2s3-sz)[g, If, g]]),

exp (-s ad X) Y-X 2g s[X, Y]- s[g, [f, g]].

The point q also lies on ’+ and a tangent vector to ’+ at q is

exp (-t3 ad Y)X- Y= -2g + t[X, Y] t[g, [f, g]].

In the intersection t sl =: s, sz = and s -s. Thus

T,’-A I a(Zg A [X, Y] A [g, [f g]])

where

A= 0 1 -2s 2s(s-1/2)_<- 0.

-1 s -s

Hence ’- and ’+ intersect transversally except at the endpoints of (s =0, s =1/2).
Observe that the endpoints are characterized by the condition that the conjugate point
relation s (= 1/2) holds. We need to know which surface has a larger x-coordinate.
It follows from

Tq’- A [g, [g,/]] -2g A IX, Y] A [g, [f, g]]

that Z and [g, [g, f]] point to the same side of F- at q. Observe that xl 0 for points
on . Since the coefficient of at g is negative, the points of + for which xl < 0 have
a larger x3-coordinate than those points on F-. Conversely for xl > 0 the x3-coordinate
of points on F- is larger. Therefore we define

F-:= {0exp (sX) exp (szY) exp (s3X)" s>=0, s + s2+ s3 1, sz_-> 1/2},
F+ := {0 exp (t Y) exp (t2X) exp (t3 Y)" t _-> 0, t, + t2 + t3 1, t2 => 1/2}.

Observe that F- has the Y-trajectory in its boundary and that the X-trajectory lies in
the boundary of F+. Define F*:-F-L] F+. It follows from above that [X, [X, Y]]
2[g, [g, f]] always points to one side of ’-, and similarly this holds for ’+. Since x -> 0
for points in F-, xl <_-0 for points in F+ and x 0 exactly on the intersection, it follows
that F* is a piecewise defined function x3 q(x, x2).

It is obvious that 0F* consists of all trajectories that are bang-bang with at most
one switching, i.e., 0F*= 0F.. Graphically, the structure is illustrated in Fig. 5.

By directional convexity it is clear that the whole set R between F. and F* lies
in Reach (0, 1). We need to show that it lies nowhere else. The points of + and
that we deleted lie in the interior of R. (We deleted those points on F respectively,
15- that lie below ’-, respectively, ’+ in the direction of IX, [X, Y]].) But this implies
that the endpoints of bang-bang trajectories with more than two switchings lie in the
interior of the reachable .set. Suppose we have an extremal XYXY-trajectory with
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times s, $2, $3, and S4 along the trajectories. Then S S by the conjugate point
relation, and thus s2 < s + s3. By the invariance of the structure of the reachable set
it follows that 0 exp (sX) exp (s2 Y) exp (s3X) int Reach (0, s + s: + s3). (This is a
point of the type we deleted!) Hence the trajectories that define F/ and F- are the
only extremal trajectories that can lie on the boundary of the reachable set. This proves
R Reach (0, 1).

Summary. For every time the time -t- reachable set is a stratified set that is
topologically a sphere. Its boundary consists of two hemispheres F*(t) and F.(t) whose
common relative boundary 0F*(t) consists of all points reachable in time by a
bang-bang trajectory with at most one switch. F*(t) consists of all bang-bang trajectories
with at most two switchings for which the time along the intermediate arc is greater
than or equal to the sum ofthe times ofthe adjacent arcs. F. (t) consists of all trajectories
that are concatenations of a bang arc, followed by a singular arc and another bang
arc, where the times along these trajectories are free subject to 0 <-time<= t. The
stratification of its boundary is given in Figs. 4 and 5.

4.2.2. The general case. We now show that the qualitative structure of the small-
time reachable set does not change in the general case. Clearly, some of the arguments
will have to be adjusted; for instance, the correct generalization of the arguments using
directional convexity now use the integral curves of IX, IX, Y]]. However, finding a
general version for the explicit computations in the analysis of the bang-bang extremal
trajectories is crucial.

We first define F.. Recall that the singular control is given in feedback form as
u (6 + 1)/(6 1) and since 6 < 0 we have no problems with u hitting the control
constraint [ul=l in small time. Let p=l/(1-6), p(0,1), and let S:-
f+(6+ 1)/(6-1)g= pX +(1-19)Y, be the singular vector field. Define

F_._ := {p exp (siX) exp (sS) exp (s3X): si >- 0, small},

F-L+ := {p exp (sX) exp (sS) exp (s3 Y): si _-> 0, small},
F+.,._ := {p exp (t Y) exp (tzS) exp (t3X): ti 0, small},
F+.,.+ := {p exp (t Y) exp (t2S) exp (t3 Y): ti -> 0, small},

F, := F_._ U F_,+ U F+,_ U F+..+.
If we replace f by S in Lemma 3, then the statement stays true verbatim for

instead of F0+/-. (The computations are a straightforward though somewhat messy
extension of the computation in the "free" nilpotent case and we omit them.) So again
F, is a stratified two-dimensional surface; its one-dimensional relative boundary OF,
is made out of the bang-bang trajectories with at most one switching.
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LEMMA 4. For sufficiently small T the points on F. are entrypoints of Reach (p, <_- T)
for [X, [X, Y]].

Proof. The strategy is the same as in the proof of Lemma 2. We first show that
the extremals on F. satisfy the necessary transversality condition for entry points
(which are not due to the time constraint). Then we show that F. actually is a graph
with the coefficient of the flow of [X, [X, Y]] as dependent variable. As in Lemma 2
this suffices to prove our result.

If y is any trajectory containing a singular arc then, for sufficiently small time,
(A, [X, [X, Y]]) will dominate (A, X), (A, Y), and (A, [X, Y]), in particular, it has
constant sign. Along the singular arc (A, [X, [X, Y]]) 26/(1 6) (A, [g, [X, Y]]) and
the generalized Legendre-Clebsch condition implies that (A, [X, [X, Y]]) is positive.
This shows that points in F. satisfy the necessary transversality condition. An argument
analogous to the one made in the proof of Lemma 1 shows that, in fact, any extremal
trajectory for which (A, [X, [X, Y]]) is positive has to be of the form BSB, that is, we
have exhausted all possible candidates. To prove that indeed each point on F. has
the entry property, we show again that we can think of F, as the graph of a piecewise
defined function x3 (Xo, xl, x2), where (x0, Xl, x2, x3) are canonical coordinates of
the second kind, and x3 is the coefficient at the flow of [X, [X, Y]]. Let us consider,
for instance, F/s_. It is easier to compute the pullback of the tangent space to the
endpoint of the singular arc. It is spanned by X, S, and exp (-t: ad S)X. Note that
S taX +(1 + p) Y and it follows by induction that ad S(X) anX + tinY+ yn[X, Y]
with smooth functions an, fin, Yn:

[S, adn-1S(X)]=[pX+(1-p)Y, an-lX+fln-ir+Yn-[X, Y]]

yn_,(p[X, IX, Y]]+ (1 -p)[Y, IX, Y]]) +f g or[f g] terms

p(aX + flY+ y[X, Y]).

Also IS, X]= [pX +(1-p) Y, X]= 2Lx(p)g +(p-1)[X, Y]. Therefore

X ^ S ^ exp (-t2 ad S)X=(1-p)2t2(l+ O(t)). (f^ g ^ [X, Y]).
Now if we take the wedge-product with IX, IX, Y]] pulled back along X, t3 this yields

X ^ S ^ exp (-t ad S)X ^ exp (t3 ad X)([X, IX, r]])
=(1-p)t2(l+O(T)) (f ^ g^[f g]^[X,[X, Y]])

and there are no problems with dominance since t2 factors. Hence [X, [X, Y]] always
points to one side of F+s_ in the interior. Analogously it follows for the other surfaces.
By continuity this also follows for the one-dimensional strata. Straightforward but
slightly more tedious computations show also that the projections of the relative
interiors of the sets F+/-: onto (Xo, x, x2)-space are pairwise disjoint. Therefore F. is
a graph in canonical coordinates. This proves the lemma. [-]

The analysis of the bang-bang extremals is more difficult. We start by computing
the conjugate point relations. Suppose 3’ is a .XYX.-concatenation starting at p with
junctions at p, p, p2, P3 and times s, s2, s3 along the respective trajectories. Then we
have (the vector fields are evaluated at p):

(16) X A YA IX, Y]-lsl[X IX, Y]] "- O(s) A -IX, Y]---$2[ Y, IX, Y]]-- O(s)
Z z

1
’.O’(S1, S2)(X A Y ^ IX, Y] ^ Y, IX,

where ff(s, s) -s6 s2 + 0(2).
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The equation (Sl, s2)=0 has a unique solution 11($2) and in general XYX-
trajectories only satisfy the necessary conditions ofthe Maximum Principle if Sl <-- l(S2).
Note that if(0, s2)< 0 and so this is equivalent to !(s, sz)<-_0. (Using an argument
analogous to (9) it can be shown that extremal trajectories do indeed have switchings
at s, , but we will not need this.) Furthermore,

X(p2) ^ Y(P2) ^ (exp
(-s2 ad Y)- 1 X(pl)0=

\ /

^ (exp (s3 ad X)-1)Y(P3)S3

1 1=XA YA-[X, Y] +-s2[ Y, [X, Y]]+"" "A[X, Y] +-s3[X, X, r]]+"

1
=-(S2, S3)(XA YA[X, Y] A [Y, [X, Y]])Ip2

where (s2, s3) -s- s36 + O( T).
Again the equation ((S2, S3) --0 can be solved by 3(s:), and YXY-concatenations

only satisfy the Maximum Principle if s3---(s2). Since t(s2, 0)< 0 this is equivalent
to t(s2, $3) 0.

Therefore we define

F- {p exp (siX) exp (s Y) exp (s3X)" si--> 0, small, s2 is free,

if(Sl, S2) 0, ((S2, 83) 0}.

Analogously we must compute the conjugate point relations along a YXY.-concatena-
tion which yields

[’+ := {p exp (tl Y) exp (t2X) exp (t Y)" tl >-- 0, small 12 is flee,

7(t, t2) 0: tl -l(t2)’7(t2, t3)--0 t3 ’3(t2)}

where

Z( t, t2) -tl- t2t + O(T2), (t2, t3) -t2t3 t3 + O( T2)

and and 3 are the solutions of 7--0 and -7 0, respectively. ’/ and ’- are three-
dimensional surfaces with relative boundary made up entirely of bang-bang trajectories
with at most one switch.

LEMMA 5. The surfaces ’- and ’+ intersect along a two-dimensional surface ’.
The intersection of " with the relative boundaries 0’- and O"+ are the following

one-dimensional curves"

3 {p exp (siX) exp (sY)" s2=>O, small, S

3’ {P exp (fi Y) exp (t2X)" t >-O, small, tl t-((t2)}

(i.e., the trajectories corresponding to the conjugate points). Awayfrom 3" and the surface
entirely lies in the relative interior of ’-, respectively, ’+ and there’the intersection is

transversal.
Proof We want to solve the equation

(17) pexp(siX) exp(s2Y)exp(s3X)=pexp(tlY)exp(tX)exp(t3Y).
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Suppose a point q in the relative interior of ’+ or ’- lies on [’. We claim that (16)
can be solved in terms of t and t2 near q. This follows from the Implicit Function
Theorem if the Jacobian with respect to (s, s2, s3, t3) is nonsingular at q. If we compute
these derivatives and pull the vectors back along X we get

exp (-s2 ad Y)X ^ Y ^ X ^ exp (s3 ad X) Y

( (exp (-s2 ad Y)-I)(exp (s3 adX)-l)y)=ss3 X^ Y^ X^
S S

1

2ss a(s, s)(x ^ [x, ]^[v,[x,

But in int (F-) s2 and s3 are positive and also c(s2, s3)< 0 since the conjugate point
relation does not hold. So we can solve in terms of t and t2. This computation shows
also that ’+ and ’- intersect transversally in int (’/) or int (’-).

Next we show that points q of this type exist. For that we rewrite both sides of
(17) in terms of canonical coordinates of the second kind. A short computation (cf.,
for instance, [16]) shows that

(1/2s, + s + o(s))[ , Ix, ]])p exp (sX) exp (s2 Y) exp (s3X)=p exp s2(sl

exp (s,sz(1 + O(S))[X, Y])

exp ((s2 + O($3)) Y) exp ((s, + s3 + O(S3))X),
p exp (t, Y) exp (t2X) exp (t3Y)=p exp (1/2t2t3(2t, + t3+ t26+o(r2))[Y, [X, Y]])

exp (tzt3(1 + O(T))[X, Y])

exp ((t, + t3 + O(r3)) Y) exp ((t2 + O(T3))X)
where O(S’) or O( T) stand for terms of order greater than or equal to k in the total
time, S s + se + s3, T t + tz + t3, and 6 is evaluated at p. Equating coefficients we get

(i) s, t-- s -1I-- O(53) t2 + O(r3),

(ii) s2 + O(S3) tl + t3 + O(T3),
(18)

(iii) s,s2(l+O(S))--t2t3(l+O(T)),

(iv) s,s(s6 + s2 + O($2)) tet3(2tl + t3 + t2 + O(T2)).
If we assume that all switching times are comparable, i.e., of order T, then (18(i), (ii)),
and

(iv’) s6+s+O(S)=2tl+t3+t26+O(T)
can easily be solved for s in terms of modulo higher-order terms:

s, tz +- t, + O(T2),

(19) s2 t, + nt- O(T3),
1

S --’ t, / O(T2).

With these times the conjugate point relations cannot hold since

(20) &(s2, $3) -s $31 -1
t- O( T2) -t3 + O( T2)
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is negative. So the corresponding point q lies in fact in the relative interior and therefore
it is possible to solve for t3 in terms of tl and

(21) t3=-tl-6t2+O(T2).

This gives a solution to (18). Note that

T
(22) t2 pT+ O( T) +O(T).

1-8

As long as (tl, t2, t3) are bounded away from the boundary of the simplex
tl + t2 + <_- T, the times are comparable, these computations are justified, and we get
a two-dimensional intersection that we can parametrize by tl and t2. The problem is
whether it extends all the way to the boundary. But the equations (19) and (21) are
well defined for tl- 0 (in a time-slice tl + t+ T it follows that 3--> --tt2 + O(t),
i.e., to a limit of order T. By (20) this implies that the two-dimensional surface defined
by these functions of (t, t) stays away from the conjugate point condition t(s2, s3) 0.
Hence the implicit function theorem is still applicable.) Therefore F extends all the
way out to t 0, i.e., to the XY boundary surface.

A precise characterization of ’+ fq ’- (q {p exp (siX) exp (S2 Y)" s => 0, small} is
possible. Clearly these are points such that tl =0, t2--S1, t3 S2, and 0= s3. Since
(sl,s2,0)dom’- we have .o(sl,,s)<=O, and since (0, s,s)dom"+ we have
:r(s,s2)>-_O. But in this case .o-(sl, s2)= ?(s, s2) (cf. (16) and the analogous formula
for -7). Therefore (s, s2)= 0, i.e., sl (sz), the conjugate point relation.

This proves that ’- f) ’+ extends all the way out to the XY-boundary surface and
that the intersection with the XY-surface is the one-dimensional curve consisting of
the conjugate points.

Analogously we can show that (17) can also be solved in terms of sl and s in
int (’-). Using these formulas we can show that ’- fq ’+ extends all the way up to the
YX-boundary surface and that the intersection of ’- fq + with the YX-surface consists
of the curve 3’.

Note thai in a time-slice tl + t2 + t3 T the qualitative geometric structure of’-
is exactly as in the free nilpotent case. Only the condition t2--T/2 is replaced by
t’--(1/(1-3))T (modulo higher terms) which shifts F away from the center. This is
illustrated in Fig. 6.

The surface F bisects ’+ and ’- and only one of the two components has the Y-,
respectively, X-trajectory in its boundary. We define F- and F+ to be these components

(# < -1)
XY
_+

Y

FG. 6
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and let F*= F+U F- It is then clear that F* is a three-dimensional stratified surface
whose relative boundary consists of all bang-bang trajectories with at most one
switching, i.e., 0F*= OF..

LEMMA 6. The points in F* are exit points of the small-time reachable set for
IX, IX, Y]].

Proof. It is easy to see (cf. (10)) that, for sufficiently small time, all extremals on
f’- or f’+ satisfy the necessary transversality condition (,, IX, IX, Y]]> _<-0.

We show first that the points that we deleted from - and ’+ are not exit points
(see Fig. 7). Let

q =p exp (s,X) exp (s2 Y) exp (s3X)=p exp (t, Y) exp (t2X) exp (t Y)

be. a point in the relative interior of . ’- and / intersect transversally. It follows as
in the proof of Lemma 2 (cf. (11)) that the XYX- and YXY-surfaces are graphs
x4 q(x,, x2, x3) in canonical coordinates of the second kind with x4 the coefficient
at the flow of [X, [X, Y]]. This inherits on ’- and ’+. To prove that the parts of
(respectively, ’+) that we delete are not exit points, it suffices to show that these parts
lie below ’+ (respectively, ’-) in direction of [X, [X, Y]].

IX, ix,vii

FIG. 7

The tangent space to ’- at q is spanned by X, exp(-s3adX)Y and
exp (-s3-ad X)(exp ((-s2 ad Y)- 1)/-s)X. To show that the part of"+ that we deleted
lies below ’- near q it suffices to show that IX, IX, Y]] and a tangent vector
that is oriented toward the sector of ’+ that we deleted point to opposite sides of Tq’-
We get such a vector t if we lengthen the time along the last Y leg. (We delete the
piece that contains in its boundary the trajectories corresponding to the conjugate
point relation ’3(t2)’)

Instead of computing at q we pull back all vectors along X, s3 and get

exp (+s3 ad X)(Tq-) ^ exp (+s3 ad X)[X, [X, Y]]

( (exp (-s2 ad Y)- 1) )X ^ Y ^ X ^ exp (s3 ad X)[X, IX, Y]]
--S2

-(t + O(T))(X ^ Y ^ [X, Y] ^ Y, IX, Y]])lp2=pexp(s,X)exp(s2y),
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exp (S ad X)(TqF-) ^ exp (S ad X) Y

( (exp(-s2ad Y)-I)(exp(s3adX)-l) )=s XA YA XA, Y
--S2 S

1

"-- S3(’(S2, S3)(X A Y A [X, Y] A Y, [X, Y]])Ip2-

But q is a point in P, and P lies entirely in the relative interior of ’- except for the
obvious boundary curves 3 and 3’. In particular (cf. also the proof of Lemma 5) the
conjugate point relation s3 g3(2) does not hold, or equivalently, t(s2, s3)<0. So
these wedge-products have opposite signs, which proves our claim. This also implies
that the portion of’- that we delete lies below ’+, and since there is no other intersection
this holds for all the points we deleted.

The stratified sets F* and F, enclose a region R that lies in the small-time reachable
set. In particular, the portions of ’- and ’+ that we deleted therefore lie in the interior
of the reachable set. Since these pieces contain the trajectories corresponding to the
conjugate points t3 3(t2) and s3 3(s2), it follows that no bang-bang trajectory with
more than two switchings lies in the boundary of the small-time reachable set. Hence
the points in F* are the only possible exit points of the small-time reachable set for
[X, [X, Y]]. It follows from the construction of F- and F+ that F* is also a graph.
Again, the projections onto (xl, x2, x3)-space are disjoint. Therefore it follows as in
Lemma 2 that the points on F* have the exit property for sufficiently small time. V1

Finally, F* and F, do not intersect in their relative interiors. It is now clear how
the small-time reachable set looks: It is the set of points enclosed by the two three-
dimensional stratified surfaces F* and F,. F* consists of bang-bang trajectories with
at most two switchings such that modulo higher-order terms

(23) -k- tt2 + t3 0

if tl, t2, and are the consecutive times along a YXY arc and

(24) s16 -It- $2 4r" $3 0

if s, s2, s3 are consecutive times along XYX. F. consists of all concatenations of a
bang arc, followed by a singular arc and another bang arc where the time along the
trajectories is free. F* and F. have a common relative boundary C consisting of all
trajectories that are bang-bang with at most one switching. For sufficiently small-time
T a time-slice of the reachable set has exactly the same qualitative geometric structure
as for the free nilpotent system (13). Furthermore, if 6(.) is an integral curve of
IX, [X, Y]] such that 6(tl) and 6(t2), tl < t2, lie in the small-time reachable set, then
so does the whole curve 6(t), t<-_t <- t2. The points on F. are entry points for
[X, [X, Y]]; the points on F* are exit points.

Remark. We emphasize that the result is not what might be expected intuitively.
From dimensionality we could conjecture the occurrence of bang-bang trajectories
with two switchings, respectively, BSB trajectories in the boundary of the small-time
reachable set. Also, this is essentially what was partially known from earlier results.
However, we see no simple reasoning that could explain why, in fact, some of these
bang-bang trajectories with two switchings are not a part of the boundary. This is only
revealed by our analysis.

4.3. Time-optimal control in dimension three. Our results have immediate implica-
tions on time-optimal control in dimension three. Suppose the triples (g, [f, g], If+ g,
If, g]]) and (g, If, g], If-g, If, g]]) consist of independent vectors at a point p in 3.
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Equivalently, suppose that the constant controls u--+1 and u-=-1 are not singular.
If we augment the three-dimensional system E to a four-dimensional system E by
introducing time as a coordinate, o 1, Xo(0)= 0, i.e.,

then if a E-trajectory x(. )’[0, T]- E3 steering p to q is time-optimal, the augmented
trajectory : lies in the boundary of the reachable set from p. The augmented system
E satisfies our assumptions (_A) and (_B), and therefore time-optimal trajectories are
bang-bang with at most two switchings or concatenations of a bang-arc, followed by
a singular arc and one more bang arc. Under additional assumptions this result was
obtained earlier by Bressan [4], who studied only trajectories emanating from an
equilibrium point of f and by Sussmann [22] and Schittler [17] who both assumed
in addition also that f, g and [f, g] were independent. Our analysis shows that the
vector field f is irrelevant and we do not have to make any assumptions about it. Our
results are also more precise in the sense that we can exclude the optimality of those
bang-bang trajectories with two switchings that violate (23) (respectively, (24)) in the
bang-bang singular case. We summarize in the following corollary.

COROLLARY. Suppose the vector fields g, [f, g] and [f+ g, [f, g]] are independent
near a reference point p 3. Write

If- g, [f, g]] ag + b[f, g] + c[f+ g, [f, g]]

and assume that c does not vanish. Then we have in small time:
(i) If c > O, then time-optimal trajectories are bang-bang with at most 2 switches.
(ii) Ifc < O, then time-optimal trajectories are bang-bang with at most two switchings

or are concatenations of a bang arc, a singular arc, and another bang arc. Time-optimal
XYX (respectively, YXY) concatenations satisfy modulo higher-order terms

c(s+s3)+s2>--__O (resp.,tl+t3+ct2<--O)

where s, $2, s (respectively, t, t2, t3) are the consecutive times along the bang arcs.

5. A brief outlook to higher dimensions. We have outlined a general method to
determine the structure of the small-time reachable sets and proved its effectiveness
in nondegenerate cases in small dimensions. One of the difficulties that will become
more and more prominent in higher dimensions is that the necessary conditions of the
Maximum Principle will not restrict the class of extremal trajectories sufficiently enough
to give the candidates for F* and F,.

Under assumptions (_A) and (_B) in dimension four, we could overcome this problem
by taking a corresponding "free" nilpotent system of the same dimension as a guide.
We do not expect this to happen in general. In fact, for the five-dimensional system, where we assume that f, g, [f, g], [f, [f, g]], and [g, [f, g]] are independent, the
small-time reachable set has extremal trajectories in its boundary that do not appear
in the analogous five-dimensional free nilpotent system. The reason for this lies in a
-qualitatively different behavior of the singular controls, specifically, in the fact that
singular controls can now hit the control constraint [ul 1 and may have to be
terminated. Nevertheless, the free nilpotent system contains most of the information
about the small-time reachable set, though it does not characterize it completely. To
be more specific, we will briefly describe (without proofs) the structure of the reachable
set for the free nilpotent system in dimension five and how the general case differs
from it.
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We take as our model:

It is no problem whatsoever to carry out the analysis within our technique as in the
construction in 4.2.1. Now the reachable set is convex in direction of (0, 0, 0, 0, 1)r=
[g, [g, f]] and F*, respectively, F, will consist of those trajectories that are exit,
respectively, entry points.

It follows from the generalized Legendre-Clebsch condition that F, contains
concatenations with singular arcs, whereas F* will consist of bang-bang trajectories
only. Singular controls are constant, but now they can take on any value in [-1, 1].

Let F, F_u_ U F_u+ U F+u_ U F+u+, where

F_u_ := {0 exp (sX) exp (s2(f+ ug)) exp (s3X)" si _-> 0, s + s2 + $3 1, u [-1, 1 ]},

etc. (By the invariance property of the reachable set we can restrict to the time-slice
T 1.) The points on F, are precisely the ones that minimize the coordinate x4.

For a fixed value Uo of the singular control, -1 < Uo < +1, the qualitative structure
of F,,uo F, restricted to values u Uo is precisely as in 4.2.2, Fig. 4 (see Fig. 8).

For Uo + 1, F_u_ u 1 reduces to F and all other strata become trivial whereas
for Uo -1, F+u+ u -1 F+_+ and the remaining strata are trivial. For each of these
two-dimensional surfaces (Uo fixed) the relative boundary consists of all bang-bang
trajectories with at most one switching. The surfaces F,,uo themselves interpolate
between F+_+ for Uo =-1 and F_+_ for Uo 1. Topologically F, is a stratified sphere

SX

YSX
+Uo- YS

YX
+-

X YSY Y

+Uo+ +

XYS SY
--Uo+

FIG. 8

XS

XY
-+

F

XYX

YX

XY

YXY
FIG. 9
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with OF, F_+_ kJ F+_+, i.e., all bang-bang trajectories with at most two switchings
(see Fig. 9).

The surface F* consists of bang-bang trajectories analogous to the bang-bang
singular case in dimension four. Now

’- {0 exp (siX) exp (s2 Y) exp (s3X) exp (S4 Y)" S O, S " S2 + S + $4-’- 1,
sl =< s3, s4-< s2-conjugate point relations},

’+ {0 exp tl Y) exp (t2X) exp Y) exp (/4X): ti >= O, q- t2 + t3 -F 4 1,

t -<_ t3, t4 =< t2-conjugate point relations}.

and ’+ intersect in a two-dimensional surface ’, which consists of those trajectories
for which

respectively,

(S1 "k- S3) :z (S1 q- S3) q- 2SS3 0,

tl + t3) t -k- t3) + 2t2t 0.

The intersection is transversal except at those points that lie on the relative
boundary of ’- or ’/. These points are again characterized by the conjugate point
relation

" 71F_+_ {0 exp tl Y) exp (tX) exp Y) exp t4X )" 0, t4 /2},

" (3 F+_+ {0 exp (tl Y) exp (tzX) exp (t3 Y) exp (t4X): t t3, t4 0}.

We define F- (respectively, F+) as the component of [’- ([’+) containing the
YX-curve {0 exp (s2 Y) exp (s3X)" si >= 0, s2 + s3 1 } (respectively, the XY-curve) in
its boundary. Then F* := F-t0 F+ consists precisely of those points that maximize x4
on the reachable set. Note that topologically F* also is a stratified sphere with
0F*= F_+_ t.J F+_+, the set of all bang-bang trajectories with at most two switchings
(see Fig. 1 0).

The key fact here is that it is still obvious that OF* and 0F, match up. They are
identical. It is therefore clear that Reach (0, 1) is the set of all points that lie between
F* and F,.

It is precisely this simple reasoning that breaks down in the general case. The
cause for this lies in the structure of the singular controls. The analysis of the bang-bang
trajectories carries over to the general case with only one minor change in the structure.
Whereas in the free nilpotent system the two curves " F+_+ and F f3 F_+_ both have
points corresponding to the X- and Y-trajectories as endpoints, this need no longer
be true: " fq F+_+ is a curve starting at 0 exp (1. Y) but which in general no longer
ends in 0 exp (1 X) but rather on a point in the XY-curve (respectively, YX-curve).
This distortion is due to the presence of fourth-order brackets. One possible case is
depicted in Fig. 1 1.

Still the relative boundary of F* consists of all bang-bang trajectories with at most
two switchings. The structure breaks down in the analysis of the singular surface F,
for u near + 1. The reason is that in the presence of fourth-order brackets the singular
controls are no longer constant, and thus the analogue of F,,uo for Uo -1 does not
reduce to F+_+, i.e., to bang-bang trajectories with two switchings. For instance, it
may not be at all possible to start a singular control with Uo =-1. This is the case if
ti < 0 at Uo =-1, which happens under generic assumptions on fourth-order brackets.
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For the same reason, singular controls with u0 close to +1 may have to be terminated
when they become one in absolute value. If the singular control becomes saturated
(i.e., hits the constraint and cannot be continued) then this determines the subsequent
structure of the trajectory and it is easy to see that concatenations such as BSBB or
BBSB, which are not present in the free nilpotent system, come into play. Therefore
F, has trajectories in its relative boundary that contain singular arcs. The main challenge
in applying our technique to higher dimensions seems to be finding a way to decide
whether structurally different trajectories, such as a bang-bang trajectory, and a concate-
nation that contains a singular arc steer a system to the same point. Once 0F* and 0F,
can be identified, it is clear that the set they enclose is the small-time reachable set.

Note, however, that this structural instability only happens near F,,_I and F,,+I.
The structure of most of the trajectories in the boundary is still the same as in the free
nilpotent systems. And it is intuitively clear that the structure of the exceptional
trajectories will come up in a higher-dimensional nilpotent system. Therefore, in our
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view, the study of the structure of the reachable sets for nilpotent systems will be the
key to the general problem.

6. Summary. We have described an approach to determining the qualitative struc-
ture of the small-time reachable set in a nondegenerate situation. It is a nontrivial
extension of a construction done by Lobry in dimension three. In dimension four we
succeed completely in determining the small-time reachable set. For higher dimensions
obstacles still have to be overcome. However, they do not lie in the general structure
of our approach, but in the fact that too little is known about the structure of extremal
trajectories in higher dimensions. For instance, in the five-dimensional case, what is
the precise structure of extremal trajectories that contain a saturated singular arc? For
dimensions six and beyond, the crucial new ingredient appears to be the incorporation
of chattering arcs, another structure of extremal trajectories about which little is still
known.
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SPECTRAL ASSIGNABILITY FOR DISTRIBUTED PARAMETER
SYSTEMS WITH UNBOUNDED SCALAR CONTROL*
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Abstract. This article studies a class of control systems in a Hilbert space H given by (t) Ax(t) + bu(t),
where A generates a holomorphic semigroup on H, u(t) is a scalar control, and the control input b is
possibly unbounded. Many systems with boundary or point control can be represented in this form. The
author considers the question of what eigenvalues {ak}kt the closed-loop system can have when u(t) is a
feedback control. Shun-Hua Sun’s condition on {ak}k [SIAM J. Control Optim., 19 (1981), pp. 730-743]
is generalized to the case where b is unbounded but satisfies an admissibility criterion; this condition is

generalized further when unbounded feedback elements are allowed. These results are applied to a structurally
damped elastic beam with a single point actuator. Similar techniques also prove a spectral assignability
result for a damped elastic beam with a moment control force at one end, even though the associated input
element is not admissible in the appropriate sense.

Key words, distributed parameter systems, spectral determination, feedback control, holomorphic semi-
groups, elastic beam
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1. Introduction. In this paper we consider the eigenvalue specification problem
for a class of distributed parameter systems with scalar control and unbounded input
element. We consider the question of what closed-loop eigenvalues can be realized by
a feedback control. Sun answers the question completely in 11 in the case where the
input element and feedback element are bounded. We will generalize Sun’s sufficient
condition to the case where the input element is "admissible" in the sense given in
[4], but is not necessarily bounded. We also consider a class of systems where the
input element is not even admissible. We consider feedback elements that are not
necessarily bounded, allowing us to further relax the conditions on the closed-loop
eigenvalues. Furthermore, we give a formula for the closed-loop eigenvectors in terms
of the open-loop eigenvectors, and a formula for the feedback element in terms of the
dual basis to the open-loop eigenvectors. We will apply these results to two examples
involving a structurally damped elastic beam.

The systems we consider are of the form

(1.1) :(t) Ax(t) + bu(t), x(0) x0,

where x(t) H, which is a Hilbert space with norm I1" II, and u(t) is a scalar control.
We assume that A is a closed operator on H which has eigenvectors {Ok}k with
associated eigenvalues {Ak}, and that {o} is a Riesz basis for H, i.e., every x H
can be written as xkq, and there exists m, M > 0 such that

rn Ilxll _<- Ix [ _<- MIIxll =.
Let the dual of H be represented by a Hilbert space H’ (which can be chosen to

be H, although this might not be convenient), and let (.,,) be the duality relation on
H’(R)H. Then the norm in H’ is given by [[yll,-sup {<y.x>/llxllL,. For h H’ we

* Received by the editors February 17, 1987’ accepted for publication (in revised form) November 25,
1987. This research was supported in part by the Air Force Office of Scientific Research under grant
AFOSR-86-0079.

t University of Nebraska, Lincoln, Nebraska 68588.
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denote the bounded linear functional x- (h, x) by h*, and any bounded linear func-
tional on H has such a representation. Let {@k}k be the Riesz basis of H’ which is
biorthogonal to {k}k; i.e.,

The input element b is a one-dimensional "admissible input element" which can
be represented by

(1.2) b= bkOk.
kl

When b is in H, bk is given by (Ok, b), and this will be generalized later. We will use
a modification of the definition of admissible input given by Ho and Russell in [5],
which we state in the next section. Many systems with boundary or point control can
be put into the form (1.1) with an input element that is admissible but unbounded [4],
[7], [10].

In this paper we are interested in the case where the eigenvalues lie between two
curves of the form

(1.3) F := {a +/- ix e"lx (0, o)},

where tr [0, 7r/2), and r is fixed for the remainder of this paper. If tr > 0 A generates
a holomorphic semigroup of operators S(t) for in

(1.4) 1 := {z C[ [arg (z)l < o-},

and S(t) is strongly continuous on . If o" O, A generates a group of operators for
e (-c, oo). The semigroup (or group) generated by A is given by

(1.5) S( t) (k’/, Xkqgk) kel Xk eXtqk"

In this paper we consider the following problem for the system (1.1).
Eigenvalue Specification Problem. Given a set of complex numbers {ak}k, can a

linear functional h*: @(h*) c H [ be found so that the feedback control u(t) h’x(t)
leads to a closed-loop system which has eigenvalues at {ak}k ? If possible, find h*
and the closed-loop eigenvectors {Xk}k1.

In this paper we will consider a class of linear functionals h* which are "admis-
sible," as described in 2.

For the problem with bounded input (i.e., b H) and bounded feedback control
(i.e., h H’) the existence question is answered completely for some of the systems
described above by Sun 11 ]. He proves the following necessary and sufficient condition
that there exists a bounded functional h*: H- R such that A + bh* has eigenvalues at
{},:

(1.6) ., I(ak--Ak)/bkl < oO,
kl

when bj 0 for all j L The restriction that b must be a bounded input rules out many
interesting cases, including boundary control. Furthermore, this result is restricted to
bounded feedback elements h*, which is why we cannot move the closed-loop eigen-
values uniformly away from the original eigenvalues. In [11], no formulas are given
for the eigenvectors of the closed-loop operator, although they can be found by solving
an infinite-dimensional linear system of equations.

Sun’s result, like most spectral determination results [2], [9], 12], and this paper,
requires a spacing condition on {Ak}kl, SO that the eigenvalues are not too close to
each other asymptotically (see condition (6) in Definition 3 in the Appendix). In [4],
Ho also considers systems with an admissible input element and describes a different
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kind of generalization of Sun’s condition, where the spacing conditions are relaxed
and (1.6) is modified accordingly.

In [2], [7], [9], and 12], eigenvalue specification is studied using canonical forms
for (1.1). In [7], [9], and [12], {hk}k! is the zero set of a cardinal function, which is
an infinite-dimensional generalization of a characteristic polynomial of a finite-
dimensional system. In [9] and [12] the cardinal functions are entire functions. In this
paper we will be using the definition of a cardinal function given in [7], where the
cardinal function is a meromorphic function, which is applicable to more cases than
entire cardinal functions. This definition is given in the Appendix to this paper. We
need to consider meromorphic cardinal functions for some systems because there is
no entire function with zeros at {hk}k which have appropriate growth conditions in
the right half of the complex plane. Classes of cardinal functions are constructed in
[8]. For the remainder of the paper, we will insist on the following assumption.

Assumption A. {Ak}k1 is the zero set of some cardinal function p.
In [7] we used canonical forms to consider the cases where {ak}k is the zero

set of a cardinal function with the same poles as p and either
(I) b is a bounded input, bk 0 for all k /, and (1.6) holds, or

(II) There exists m, M > 0 such that

(1.7) m<bk <M.

(Note that condition (II) includes no other restrictions on {Olk}kl.
In both cases (I) and (II) we find a formula for an h* such that A/ bh* has

eigenvalues at {Olk}kl, and give a formula for the closed-loop eigenvectors. In case
(I), h* is a bounded feedback element, and in case (II), h* is an admissible feedback
element, as defined in 2. We also use the canonical form in [7] to prove a control
spillover results for a finite-dimensional approximation to the infinite-dimensional
feedback control in cases (I) and (II). In this paper we will generalize those formulas
and study their applicability in detail. Those generalizations follow: let

(1.8) J:={jIlbjO} K:={kI]bk=O},
and assume that

(1.9) Ok k for k K.

The closed-loop eigenvectors {Xk}kl associated with {Olk}k are

(1.10)
Xg (1/p’(Ag)bk) , [p(a)bj/(Cek Aj)]qj

jJ

/’k (k for k K.

for kJ,

Under certain conditions, we will show that these form a Riesz basis for H. The basis
for H’ which is biorthogonal to {Xk}k is defined as follows:

(1.11)
hj bp’(hj) E {q(hk)/[q’(aj)(hk-- aj)bkp’(hk)]}qk forj J,

k.J

hj qj forj K,

where q is a cardinal function with zeros at {Olk}k and the same poles as p. The
feedback element will be given by

(1.12) h*= Y p(%)hj/bp’(Aj).
jJ

In this paper we will work with these equations directly, without reference to
canonical forms. We will show that these formulas solve the Eigenvalue Specification
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Problem under conditions much less restrictive than conditions (I) and (II). In the
next section we give the definitions of "admissible input element" and "admissible
feedback element" which we will be using. In 3 we will state and prove control results
related to formulas (1.10)-(1.12) for systems with a general admissible input, and for
systems with a class of input elements which are not even admissible. In 4 we will
describe in detail an example of a damped elastic beam with two kinds of controls.
We apply our results to an example where the control is a single point actuator, and
we study how the placement of the actuator affects the kind of eigenvalue specification
results we obtain. In the other example, the control is a moment force at one end of
the beam. In this case the input element is not even admissible, but we show that we
can still use the above formulas to solve the Eigenvalue Specification Problem.

2. Definitions.
Admissible input element. We start by identifying the set of admissible controls

u(t): Since S(t) generates a holomorphic semigroup, we will consider the system (1.1)
along any ray

(2.1) lo {x ei lx [O oo)}
for 0 [-or, o’]. The set of admissible controls will be

0"//:--- I,.J Llot[/0].

We will be using a modification of the definition of admissible input element given
in Ho and Russell [5], which is the same modification used by Ho in [4]. To motivate
this, we must first decide which space b should belong to.

When Zo @(A), S(t)Zo is an element of H for all f and is the solution in H
of

(2.2) (t) Az( t), z(O) Zo.

If Zo H, z(t)= S(t)Zo is an element of H, and is the solution of (2.2) in a generalized
sense, but (2.2) is no longer an equation in H. A can be extended to an operator on
:= @(A*)’ as follows:

(2.3) ,3.: H Y(: (,3,z, 7):= (z, A’r/) V (A*),
where A* is the adjoint of A when the inner product (.,.) is used. In this context we
think of @(A*) as a Hilbert space with the graph norm, and (A*) H’. We think
of Y as a Hilbert space with the norm induced by the duality pairing (., ). Therefore,
(2.2) is an equation in Y. If we want (1.1) to be an equation in Y(, we must at least
require that b is an element of Y(, i.e., b is a bounded linear functional on the Hilbert
space @ (A*).

Not all be will lead to a dynamical system in H. Ifb H, 1o, and u(t) Loc[lo],
the solution of (1.1) with Xo 0 is

B(t)u= I (S(t-s)b)u(s) as,

where [0, t] is the straight line segment from the origin to t. A generalization of this
to the case where b Y( is

(2.4) (B(t)u,y)= | (b,S(t-s)*y)u(s) ds for every y@(A*).
0,t]

DEFNTOrq 1. b ’t is an admissible input element on lo if B(t) given by (2.4)
is a strongly continuousfamily of bounded operators from Lo[lo] into H. b is
admissible on the wedge 11 (cf. (1.3)) if it is admissible on lo for all 0
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If b is admissible on lo, x(t) S(t)Xo + B(t)u is a generalized solution of (1.1) in
the sense that x(t) H and x(0) Xo, 2(t) , and 2(t) ,x(t) + bu(t) in for all
tElo.

If XO=k Xo,kOk and b is given by (1.2), the generalized solution of (1.1) is

In this case, b is admissible on lo if and only if x(t) given by (2.5) is an element of
H whenever u e Lo[lo].

An easily checked sufficiency condition for admissibility is given in [5]. It involves
checking whether a certain measure is a Carleson measure. For instance, using this
method it is easy to see that, for the systems under consideration in this paper, an
input element b with {b} e Lo is admissible.

Admissible feedback elements. Let h*: H-->N be a linear functional with domain
(h*). For any x e N(h*), we can define .x+bh*x (cf. (2.3)) as an element of f.
We will define the domain of A + bh* as

(2.6) (A+bh*):={xe(h*)l,x+bh*xeH}.

For x (A+ bh*), we define

(2.7) (A + bh*)x ,x + bh*x.

DEFINITION 2. h* is an admissible feedback element on lo if
(1) @ A + bh * is dense in H.
(2) There exists Ah, an extension of A+ bh*, such that Ah is the infinitesimal

generator of a strongly continuous semigroup Sh(t) for lo.
(3) For allxeHand Telo,

h*S (t)x to,r <.
h* is an admissible feedback element on if h* is admissible on lo for all 0 e [-o-, cr].

The third condition in this definition guarantees that the feedback control u(t)=
h*x(t) is admissible. The other two conditions seem to be minimum requirements for
the closed-loop operator A+bh* to be useful. Unbounded feedback elements are
considered in [3], where conditions are given under which an unbounded feedback
leads to a closed-loop operator with the properties given in Definition 2. in general it
will be hard to verify the conditions in Definition 2. In this paper we will verify that
h* is an admissible feedback element by determining the basis properties of the
closed-loop eigenvectors Xk given in (1.12). For instance, it is easy to prove the following
proposition, whose proof we omit.

PROPOSITION 1. Suppose {Xk}kt formS a Riesz basis for H:

(2.8) (A + bh*)Xk akXk,

and

(2.9)

Then

(2.10)
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and A+ bh* is the infinitesimal generator of the semigroup

(2.11) S(t)( ,kl Xk’)(k) 2kl Xk eak’Xk’

which is holomorphic on t) and strongly continuous on 1).

3. Control results. We will begin this section by stating the main results of this
paper. We first need some notation. Suppose {Olk}ke is the set we would like to realize
as the closed-loop eigenvalues and {ak} is the zero set of a cardinal function. Let m
be such that

(3.1) laj Olkl
_
m]j- k and

where the existence of such an m is guaranteed by condition (6), the definition of a
cardinal function, in Definition 3 in the Appendix. Fix m for the remainder of this
section. Let

(3.2)

(3.3)

jk Jk := {j I] Iy-1 is minimized),

:= (k II layk- Akl < m/2),

Ik=I for k 5,

Ik=I\{jk} fork65.
TrEOREM 2. Suppose {ak}k1 is the zero set of a cardinal function q which has the

same poles as p, b is admissible on , and

(3.4) {(ag ;)/bg}g, i,

(3.5) {(ak--Ag) 2 I1/(k X,)l2} e l.
.je ke

en h* given by (1.12) is an admissible feedback element on with domain

and A+ bh* has eigenvalues at {} and eigenvectors {X} given by (1.10) which

form a Riesz basis for H.
In some cases (3.5) is easy to verifyfor instance, we will show that (3.5) is true

if {-I} l.
The next theorem is a more direct generalization of Sun’s result in [11].
Toa 3. Suppose {} is the zero set of a cardinal function q which has the

same poles as p, b is admissible on a, and

(3.7) {(-1)/b}, e l.
en h* is a bounded feedback element, and A+ bh* has eigenvalues at {} and
associated eigenvectors { .

We can use similar methods to prove eigenvalue specification results for some
systems which do not satisfy the hypotheses of Theorem 2 or Theorem 3.
ToM 4. Let b k and a k, where

(3.a) M, I1 e m > 0 and Me I1 e m> 0

for some m, M, m, and M. (In [8] it is shown that there is a cardinal function p
with zeros at {a}.) Suppose chat {(-a)/b} e l and there exists a cardinal

function q with the same poles as p. en {X} given by (1.10) is a Riesz basis for H,
h* given by (1.12) with domain (3.6) is an admissible feedback element, and A+bh*
has eigenvecors {X} and eigenvalues {}.
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We will show that under the hypotheses of Theorem 4, the input element b is not
admissible on 1). It is usually difficult to analyze systems like this because the solution
is not guaranteed to be in H when u is an admissible control.

The following results from [7] will be needed in this section, so they are stated
as a lemma.

LEMMA 5. Suppose p and q are both cardinal functions with the same poles, and let
p have zeros at {Ak}k and q have zeros at {Olk}k I. Then

(3.9) (h,x),=6.,, forallLkJ (cf(1.8)),

(3.10) qk=(1/P’(Ak)bk) 2 [q(Ak)p’(A)bj/(Ak--aj)q’(aj)]Xj,
jGJ

(3.11) Ok 2 [bkp(i)/(i-Ak)bj]hj,

{Ip()/(-)},,
(3.12)

{iq(A)/(,- A)}., l.
(3.13) m P’(Ak) M for some m, M > O.

.Formula (3.12) and the second inequality in (3.13) are consequences of the definition
of a cardinal function, and their proofs are given in the Appendix. e other results are

proved in [7].
Note that the index set in (3.10) and (3.11) is L given by (1.8), and not L Our

first task is to show that it suffices to assume that bk 0 for all k L i.e., that J L
LEMMA 6. Suppose {Xk}kcJ given by (1.10) is a Riesz basis for

Hj := { kj Xkk[{Xk}I2}
en {Xk}kt is a Riesz basisfor H, and {Xk}kt is biorthogonal to {h}t given by (1.11),
which is a Riesz basis for H’.

Proof Using (3.11), we can see that {h}j is a basis for

H:={ xO ’{x} l}.
It follows from (3.9) and the hypotheses that {h} is a Riesz basis for H}.
(cf. (1.8), (1.10)) is obviously a Riesz basis for

HK:={ keK XI{Xk}612}
and {hi}.iK (cf. (1.11)) is obviously a Riesz basis for

If x k XkPk H, x can be written as Xl + x2, where Xl Hj and x HK. The above
statements then imply that

(3.14) Ilxll zN M ]x] for some M> O.
kel

Similarly, we can show that
2

(3.15) for some M > O.v lye[
kc
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We now prove that {Xk}k is biorthogonal to {h}.jc" for j and k both in J, or j
and k both in K, it is clear that (hk, X.i)= 6.j,k. Suppose j J and k K. Then bk O,
and hk qk; therefore,

(hk, Xi)= (1/p’(A)b) [p(a)b/(aj-Ai)](qk, qi)=0,
j_J

since k does not belong to J. Similarly, (hk, X)=0 when k6J and j 6 K; thus we have
proved the biorthogonality.

Now note that

kJ kJ kl :J :I I -I

for some M, using (3.15). Combining this with (3.14), we see that {g} is a Riesz
basis for H, and so {h}i is a Riesz basis for H’. [3

LEMMA 7. Ifxk @(h*), then (A+bh*)xk =akXk.
Proof First note that

(3.16) axk Z {P(k)bjAj/[P’(Ak)bk(ak-Aj)]}gj for kJ
jl

and (since Xk qk and ak hk for k K)

(3.17) AXk akXk for k K.

Also,

(3.18)

and

bh*Xk [p(ak)b/bkp’(Ak)]i for kJ
.j

(3.19) h*xk 0 for k a K.

Putting (3.16) and (3.18) together, we get (A+bh*)Xk=AXk+bh*Xk=(1/p’(hk)bk)
.jj [akp(ak)b./(ak--h)]j=akXk, for kJ. Putting (3.17) and (3.19) together, we
also get (A + bh*)xk Olk,k for k

The theorems in this section will be proved by showing that {,)(k}kl is a Riesz
basis for H and applying Proposition 1. Because of Lemma 6, to do this it suffices to
assume that the index set K is empty, i.e., bk # 0 for all k 6 I.

We need to verify two inequalities in order to show that {,)(k}keI is a Riesz basis.
Suppose {xk} 12. Then

(3.20) E XkXk , Xk(1/p’(Ak)bk) , [p(ak)b/(ak--A)]qy E yqj,
kl kl jl j.l

where

(3.21) y.= Y Xkp(ak)bj/[bkp’(Ak)(ak--Ai)].
kl

Since {(k}kl is a Riesz basis of H, to show that
2

(3.22) k-I XkJk <= M
kl

]xkl2

is true for some M, we need to show that

(3.23) 2 ly[--< M Ixl
kl k-I

is true for some M when Yk is given by (3.21). In this case {,)(k}k_I is said to be
uniformly 12-convergent.
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If {Olk}ka is the zero set of a cardinal function with the same poles as p, then
(3.10) is true; therefore, we can write

(3.24) Y XkPk 2 x(1/p’(A,)bk) , [q(Ak)p’(A3)b.i/(A-a3)q’(i)]X3 2 Y.iX.i
k kc .j .j-

where

(3.25) y , xkq(Ak)b;p’(h;)/[bkp’(Ak)q’(a,i)(A< a)].
kl

In this case (Xk}kl is a basis for H. Furthermore, the existence of a biorthogonal set
(Lemma 5) implies that the Xk are strongly independent. If {Xk}k is uniformly
/2-convergent and also uniformly 12-independent, i.e.,

(3.26) m , lxlZ<= ,x,x,
for some rn > 0, then {Xk}kl is a Riesz basis. This is true if (3.23) is true for some M
when y. is given by (3.25).

When o->0 in (1.3) and A generates a holomorphic semigroup on that is

strongly continuous on 12, the results in this section require that the input element
should be admissible on 12, not just on the positive real axis. When A generates a
group, we require that the input element is admissible on the positive real axis. The
following two lemmas are consequences ofadmissibility.

LEMMA 8. Suppose b is admissible on 12, {Ot.k}k satisfies (3.1), and we can find a

and fl such that {ak}k and {hk}k lie between F and F3 (cf. (1.3)). (Unlike the rest

of the results in this paper, we do not require Assumption A for this lemma.) Then there
exists M such that

(3.27)

(cf. (3.3)). If there exists c > 0 such that

(3.28) [ai hkl> C for all j E I and k I,

then
2

(3.29) bkXj/(cej ik) M [xl2.
kl jal jl

Proof. Let m be as in (3.1), so that (cf. (3.2))

>-. >-- mlj -J <l I.;- I.
This implies that

(3.30) la -’1-->-- (ml2)lj-j[,
In particular, this implies [a--hk]>--_ rn/2 forj jk, SO that Jk {jk} if ]ak--hk[<m/2.
Hence (cf. (3.3))

(3.31) [a--hk[>--_tn/2 forjIk, kI.

For future reference, we also note that (3.30) implies that

(3.32) { [l/(cej--hk)[2} I.
j lk k
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Let u(s) ,.j x e",. We will first assume that the following two conditions hold"
Condition 1. {ak}k is to the left of Fo.
Condition 2. There exists p, r such that p < r, {ak}kl is to the left of Fo (cf.

(1.3)) and {hk}k is to the right of Fr.
Then

(3.33) f lu(s)l Idsl <= M Ix[=
10 je

for some M independenL of 0 [-, g], by results in [6]. Using (2.5), we see that
since b is admissible on ,
(3.34) 2 b e,,(’-)u(s) ds N M lu(s)l=ldsl

kl 0,t] 0,t]

for some M and all t. Let J,:={klm(X)>0} and K,:=(kelIm(a)0}.
For all the left side of (3.34) is greater than or equal to

[e’[ b e-Xu(s) ds e E b e-u(s) ds
kJl 0,t] kJ! 0,t]

for some > 0, since Re (t) is bounded below for k J and l_. Let on
I_,,, and the integral on the right side approaches the Laplace transform (as defined
in [6]) of u evaluated at Z, or x/(i-Z).

Putting this together with (3.33) and (3.34), we see that

2 E bx/(,-A) M 2 Ix l
kJ .j ,j

for some M. Now let l,, and we do the same thing with the index set K replacing
J1, yielding (3.29), as long as Conditions 1 and 2 are satisfied.

Let a > 0 be large enough so that

(3.3 5) {a a }k satisfies Conditions and 2.

We can verify that

2 bkXj/(i--hk) bkXj/(i-a-hk)

(3.36)

+ Z Z bkX.ia/(a.i- a Ak)(a Ak)
k j

The first sum in the above line is bounded by Mk [Xkl for some M, because (3.35)
implies that (3.29) is true when {ak}kX is replaced by {ak- a}k. The .second sum is
less than or equal to

(3.37)

Y’. Ibkxja/(,-a-’k)lm{ ]l/(aj--Ak)l}k

t k, je,k
,, Ix ke,X Ibka/(aj- a ak)l
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The first term on the right in (3.37) is bounded, from (3.32). Using (3.29) and (3.35),
we see that

(3.38) [bk/(OO--Ak--a)12<-- M
kesl

for some M. Hence (3.37) is bounded by M kl IXk[ for some M. Combining this
with (3.36) yields (3.27).

If (3.28) is true, we can go through the same proof by replacing the summation
over j Ik in (3.36) and (3.37) with the summation over j I. This leads to (3.29) and
finishes the proof of the lemma.

We can use Lemma 8 to study the basis properties of {Xk}k1.
LEMMA 9. Suppose b is admissible on f, {ak}k satisfies (3.4), and we can find a

and fi such that {ak}k and {Ak}k lie between F and F3. Then (3.23) is true with y
given by (3.21).

Proof Using (3.21), we have that

(3.39) Z lyl-- E E
k k .it

The right side of (3.39) is less than or equal to

(3.40)

E [xP(a)bk]/{biP’(Ai)(%-Ak)]
jcl

Y [xp(a)b]/[bp’(A)(a- A)]-- k. j

+ E I[x,,P(a)bk]/[bP’(A)(a-Ak)][
k

To get an upper bound on this we need the following lemma.
L 10. (lb/bu.l} is bounded.
Proof of Lemma 10. lfjk=k, then Ib./b.l-1. Now assume that jk k and k.

When we let a be as in (3.35), (3.38) is true and implies that

which is bounded by M(m/2+ a) when k (cf. (3.3)). Using (3.4), we have that

for some/. Fork andjk e k, I. .l I. A+A. -AI>= la.-A.l -I.. -AI >
talk --jk[- m/2 >-- m/2 (cf. (3.1) and (3.31)). Therefore, ]b/ bl -<- MM(m/2 + a)/(m/2)
for k e and jk k, so Lemma 10 is true.

This means that (3.40), and hence (3.39), is bounded by M Yg [xl for some
M, which completes the proof of Lemma 9. El

(cf. (3.2), (3.3)). By (3.12), (3.13), and (3.4), ]p(.)/bp’(A)l is bounded. The first two
sums are bounded by

M E x.ib/(o-Ak) +M xb/(a-A) <-_4 Z Il
k j j

for some M and M, where we use the two results in Lemma 5.
Using (3.4) and (3.12), we see that there exists M such that the third sum in (3.40)

is less than or equal to

(3.41) M Z Ixblbl.
kN
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TrEOREM 11. Suppose {ak}kt is the zero set of a cardinal function q which has the
same poles as p. Suppose b is admissible on f, and (3.4) and (3.5) hold. Then { Xk} k

is a Riesz basis for H.
Remark. Note that (3.5) is true if {ak- Ak}k /,because of (3.32).
Proof. In this proof let

(3.42) jk Lk := {j II lak AI is minimized}

so that ]0k --/j[ [XJk --/jl- IXJk okl mlj --jk[- [ak hi[, which implies that

(3.43) lak AI >- (m/2)lj -Jkl.
In particular, this implies that >_- m/2 forj #jk, SO Lk {jk} if ]Zk--ak]< m/2.
Let

(3.44) K :- (k II < m/2},

#k=I for k K,
(3.45)

#k I\{jk} for k ;

therefore,

(3.46) lak--Ajl>--m/2 forj6oCk, kL

Taking Lemma 9 into account, we see that {Xk}k is a Riesz basis for H if (3.23)
is true when y is given by (3.25). Therefore, we want a bound on

(3.47)
kl kl jl

Taking (3.12) and (3.13) into account, we have that

k
(3.48)

<- M , Xjbk/p’(hj)(Aj Cek)
kl

for some M. Letting a satisfy (3.35), we can write this as

E lYkl2= E Y’. xjq(Aj)bkp’(Ak)/[bjp’(Aj)q’(ak)(Xi-- ak)]

M ., Z x2bk/P’(A.i)(a2 hk a)
kl Jk

+ Z x.ibk(a--A+ak--Ak--a)/[P’(A)(a--Ak--a)(A.i--ak)]
Jk

<-_M E X;bk/p’(hi)(ai--hk -a)
kl

., Xbk(aj-- A)/[P’(A)(a.i Ak a)(Aj-- ak)]

Z X2bk(ak--,k)/[p’(,X2)(a2--,k--a)(,2--ak)]

Z Xibka/[P’(hi)(a2 Ak a)(A2 ak)]
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We will refer to these last four sums as S + $2 + $3 -- $4o By Lemma 8, S is bounded
by M .j, Ixl2 for some M. Taking (3.13)into account, we have that

(3.49) S2M IXjbk/(aj--Ak--a)12{ I(Olj--Aj)/(Aj--Olk)12}.
k Jk

When we use (3.4), the term in brackets is seen to be less than or equal to

(3.50) Ib/(A,-)l
Jerk Jk

Since the term l(A--ak--p)/(A--ak)[ is uniformly bounded forj k and kL from
(3.44), the right side of (3.50) is uniformly bounded, from (3.38).

Therefore the term in brackets in (3.49) is uniformly bounded for j g and
kL so

kI

for some M and M, again because of (3.38).
To estimate $3, use (3.38) and hypothesis (3.35) to see that

ke je.

M 2 I1 1 Ib/(a a)l M 2 Ix
jI kel jI

for some M and M. Similar estimates are easily seen to hold for $4, so
2

(3.51)
ke je.k je

for some M. Comparing (3.51) with (3.47), we see that (3.23) is true if

2 Ixq(Z,)b,P’(A,)/[bP’(Z.)q’(a)(A-a)]l:M 2 Ix l
k

(cf. (3.44)). Using (3.12), (3.13), and (3.17), we see that this is true if

(3.52) lx,,bk/b g lxj.
k jl

LEMMA 12. {bk/b}k I.
Proo To prove Lemma 12, we first need to show that

This is done by an argument similar to that used to analyze (3.48). The proof then
proceeds as does the proof of Lemma 10, so we will omit the details and consider
Lemma 12 proved. The proof of Lemma 11 is then complete, because Lemma 12
implies (3.52).

We now use this theorem to show that h* is an admissible feedback element.

Proof of eorem 2. We will prove this by referring to Proposition 1. (Xk}kI is a
Riesz basis for H, by Theorem 11. Lemma 7 shows that (2.8) is true. Suppose x is in
the set on the left side of (2.9), so x can be written ask (Xk/ak)Xk, where {Xk}k l.
Using condition (6) in Definition 3 in the Appendix, we see that {1/ag}g l. This
implies that {Xk/ak}k l, SO X (h*) and (2.9) is true. All of the hypotheses of
Proposition 1 are satisfied, so h* is admissible and A + bh* has eigenvalues at {k}kl
and eigenvectors {Xk}k.
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We can get similar results with different restrictions on (Oik}k I. We will go through
a similar procedure to prove Theorem 3.

THEOREM 13. Suppose {Cek}kX is the zero set of a cardinalfunction q which has the
same poles as p. Suppose b is admissible on , and (3.7) is true. Then {Xk}kX is a Riesz
basis for H.

Proof As in the proof of Theorem 11, the above is true if (3.23) holds when y is
given by (3.25). We see that the left side of (3.48) is less than or equal to

E E xq(A)bkp’(Ak)/[bp’(A)q’(ak)(a--Ak--a)]
k Jk

+ E E M,kxjq(Z,,)bkp’(Ak)/[bp’(A.,)q’(ak)(a--Ak--a)]
k .Jk

where

M.s,k [(%. AS)+ ak ,’tk) a]! ak AS),
which we write as S + S.

We use (3.12), (3.13), and (3.7) to show that ]q(Xx)p’(Xk)/bxq’(a)l is bounded, so
Lemma 9 implies that $1 Ms Ix, for some M. To estimate S, we need the
following result.

LEMMA 14. {,k}jk,kl 1.
Proof of Lemma 14. First note that we have

(3.53) [(a Aj)/(ak Aj)[ Mlbj/(ak Aj)]

for some M, using (3.7). Using (3.38) and (3.46), we see that this is uniformly bounded
for j &k and k I. The term ]a/(ak-A)] is also uniformly bounded for j &k and
k I, by (3.46). Hence, we are interested in showing that the term. := (-)/(-x)
is uniformly bounded for j e and k e L Let

:=(Z-a)/b, ,:=b/(a-Z-a).
Formulae (.7) and (.8) imply that

(.54)

for some M independent of j e I and k e L It is easily checked that. ([(, z)/( z,)]- }nm.((, z )/(,- )}.

We can use (.8), (.46), and (.7) to show that {[(a-)/(a-)]- 1} is uniformly
bounded for j e and k L We can easily verify that

(,- z- a)/(,-) [nm, +(-z)/(-z- )]-’.
The term (a-2)/(a--a) is bounded below forj and keI, and, goes
to zero as k goes to , uniformly in j. Therefore, there exists K such that
(a Z)/(a Z a) c > 0 for all k K andj I. Hence, . is uniformly bounded
for j and k K. Because {A- a}i<K is a bounded set, when it is combined
with the definition in (.44), we see that ,k is uniformly bounded for j and

k < K. Thus the proof of Lemma 14 is complete.
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To continue analyzing $2, we note that

$2 2 IM.i,kXjbkp’(Ak)/[P’(Aj)q’(cek)(Cej--Ak--a)][22 Iq(Aj)/bjl2
k Jk Jk

k Jk J

for some M, where we used (3.13) and Lemma 14 for the last inequality. The term in
brackets is bounded because of (3.2) and (3.57), so (3.38) then implies that this is
bounded by M Y’.I ]x.l 2 for some M. This verifies (3.23) when yj is given by (3.25),
and so the proof of Theorem 13 is complete. 15]

As in the proof of Theorem 2, the Riesz basis property of {Xk}k1 is enough to
show that h* is an admissible feedback element. To show that h* is bounded, we note
that {hJ}, is biorthogonal to {Xk}k, (cf. (3.9)), SO {hi}l is a Riesz basis for H’.
Since (3.12) and (3.7) imply that

(p(ak)/bkIk112,

the boundedness of h* follows from (3.13) and (1.12). This completes the proof of
Theorem 3.

Theorem 4 is less general than Theorems 2 or 3, so we can prove it in a more
direct fashion. Before we prove Theorem 4, we will show that it is not a special case
of either Theorem 2 or Theorem 3.

LEMMA 15. Assume that the hypotheses of Theorem 4 hold. If> 0 in (1.3) b is
admissible on (0, o). For any cry[0, 7r/2), b is not admissible on f.

Proof Referring to Definition 1, we have that the input element b is admissible
on (0, ) if (3.34) is true for each e (0, oo) for some M M(t). For each
let q(A)= Io e-ASu(s) ds, so the left side of (3.34) is

(3.55) Ib e’llo(t)l.
kel

It is well known (see, for instance, [6]) that 2k, I(Ak)l2 -< Ml(t) Io lu(s)l as for some
Ml(t). If o- > 0, then -Re (Ak) >- thk for some rh > 0 and large enough k, and [b e"’l
is bounded. Hence (3.55) is less than or equal to M(t) o [u(s)l ds for some M(t), so
(3.34) is verified. Therefore b is admissible on the positive real axis if r > 0.

To see that b is not admissible on , let e-iL Plugging u(s)= ea, into (3.34),
we see that if b is admissible on , then

b e(’-) ea.," ds NM ds]
kI 0,] 0,]

for some M. Therefore, if b is admissible on ,
bj

o,t]
<= M ft eZRe(’b)ldsl"

0,t]

When we compute the integrals above, this becomes

(3.56) Ibi exp (,,X e-’)l:Z<= M{exp (2 Re (A.i ei)) l}/2 Re (A.i e-’)

(if Re (A.j e-i) is zero, then the term on the right is M). When j>0, Re ()t e-’) is
bounded above and below, so that (3.56) is true only if {b}>o isbounded, which
we do not have in this case. Therefore b is not admissible on f. l-!
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Proof of Theorem 4. Once again, we start by showing that (3..23) is true for Ys
given by (3.21). Since (3.12) is true, we see that {p(ak)}k is a bounded sequence.
Letting Zk,j=XkP(ak)bj/bkp’(Ak)(tij--Ak) we have that

(3.57) , lysl2--<2" S>Ok>O zk’s +’>O k<o +<O k>O +<0" k’<O zkd

We will estimate the first of these sums.
Let Zk Ck- Ak. The hypotheses of Theorem 4 imply that there exist c2, 8, and

cl > 0 such that IAk ASl => cllk-jl for k > 0, j > 0, and Ik-jl > 8, Izl--< c=k. Choose
large enough so that c c- c> 0. Then, for k > 0, j> 0, and Ik-jl > ,, ]- ’hi

IA A + zkl >-- c, lk -Jl c2k Cllk-jllk +Jl- ck >= (Cl( c2)k ck >- MIIzll (cf.
(3.8)). This implies that for k>0, j>0, and Ik-jl> 8, we have that

for some M. This implies that

(3.58) II/(c xs)l--< MI(A As) <- (MI c,)/(kZ-j:).
Let :k Xk/p’(Ak)ak, SO that (using the hypotheses of Theorem 4)

2

<-ME
S>o

E kP(ak)flJ/flkk(as--Ak)
k>O

k>0
Ik-jl>

kP( a.k flsj/ flkk( ak As)

k>O
kP(ak fl:j/ flkk( ak As)

for some M, which we write as S, + $2. Since {P(ak))k and (S/flk}S,k, are bounded
and (3.58) is true for j>0, k>0, and Ik-jl> ,% there exist M and M such that

2

S,<=M E IJlk(,-) Y_, I’,<1
j>O k>O k>O

Ik-jl>

j>O

Ik-Jl>

Since the term in square brackets is easily seen to be bounded independently of
k>0, we have that Sl--<_.Mk>ol:kl for some M, which is seen to be less than
M k>O Ixl= for some M, from (3.12).

To show that $2 is bounded, note that (3.12) implies that

S2 <- M E _, kj/k <= M, E ., (J/k) E I,1
j>0 k>0 S>0 k>0 k>0

Ik-jl<-- i Ik-Sl<--_ Ik-.jl<=

for some M and M. The term in brackets is easily seen. to be bounded for any j, so that

S=<-_M Y I1= Y -<_M, Ixl=
k>O Ik-jl k>O

k>O

for some M and M. This shows that the first sum on the right side of (3.57) is bounded
by M k>O iXkl2 for some M. We handle the other sums in (3.57) in a similar way,
showing that (3.23) is true for {yj}jt given by (3.21).
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In order to show that {Xkkl is a Riesz basis, it suffices to show that (3.23) is
true for y./ given by (3.25). This is done by the methods used above. The rest of the
theorem is a consequence of Lemma 7 and Proposition 1.

4. Examples. Many vibrating systems can be written in the form (1.1) considered
in this paper. Combining Theorems 2, 3, and 4 with the examples of cardinal functions
given in [8], we can get specific eigenvalue specification results for these systems. We
now give two examples involving an elastic beam with both ends hinged, and apply
the results above to give eigenvalue specification results which, to the knowledge of
the author, are new. In the first example the control is a point actuator, which yields
an input element b that is admissible on f, so we can apply Theorems 2 and 3. In
this example the input is not bounded, and the input coefficients do not satisfy (1.7),
which are the two typical restrictions on the input (cf. [7], [9], [12]). In the second
example the control is a moment force on one end, which yields an input element that
is not bounded or even admissible on f. However, we can apply Theorem 4 to this
example. To the author’s knowledge, this is the first eigenvalue specification result for
such a system.

Example 1. To describe a structurally damped beam with both ends hinged, we
use the Euler-Bernoulli beam model, with the damping term arising from a lateral
force on the beam negatively proportional to the rate of bending [10]. Let w(x, t) be
the lateral deflection of the beam, let w, be the derivative of w with respect to time,
and let Wx be the derivative with respect to the position x [0, L]. Assume that the
flexural rigidity EI and the density p are constant. If there is no external force the
beam is modeled by

(4.1) wtt(x,t)-2y(EI/p)/2w(x,t)+(EI/p)w(x,t)=O, 0<-3/<1,

(4.2) w(0, t)=0, w(1, t)=0, Wx(O,t)=O, Wx(1, t)=O,

with initial conditions

(4.3) w(x, O)= Wo, w,(x, O)= w.
If we have a point actuator at Xo [0, L], the zero on the right-hand side of (4.1) is
replaced by 6(X-Xo)U(t), where u is a scalar control force and 6 is the Dirac delta
function. Without loss of generality, let L 1.

To put this in state space form, let X L2[0, 1 ], and

B" XoX" w(EI/p)wx,,x,,,

(B) {we n4[0, 111 w(0) w(1)= wx(0) w(1) 0}.

Then B has a set of eigenvectors {dk}kZ which form an orthonormal basis for
X, and associated eigenvalues {trk}kZ+, where k(X)=2/2sin(Trkx) and rk=
(EI/p)(Trk)4. With this choice of @(B), Bt/2 is given by the differential operator
B/2w (EI/p)/2wx and

(B’/) {w H2[0, 1]l w(0) w(1) =0}.

Equations (4.1)-(4.3) then become (now we use a dot to denote differentiation with
respect to time)

(4.4) fb+23,B/+Bw=u, 0< 3,<1,

where b (x-Xo). If the control is distributed over the spatial extent of the beam,
/ is replaced by some element of X. Formula (4.4) with a homogeneous left side is a
general model for structural damping, given by Chen and Russell in [1], when the
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undamped, uncontrolled system is given by ff + Bw 0. Unfortunately, it is not always
that easy to identify the square root of the operator B. For instance, in the cantilever
case discussed in [10], B/2 is a pseudoditterential operator, so Russell introduces a
damping term that has a more direct physical interpretation. However, numerical tests
in [8] and [13] indicate that in the cantilever case, the damping term
-2y(EI/p)/2W,xx(X, t) still leads to a system which has eigenvalues between two curves
of the form Fa when 3’ is small.

Let

Y:= (B1/2), H := YO)X,

and

(4.5) A=[0 I ]-B -2TB/2

with domain (A)= (B) yc H. Let

z(t)=[w(t),ff(t)] r, z0=[Wo, W] r, b [0, t(.- Xo)] .
Therefore (4.1) and (4.2) with the point actuator control at Xo can be written in the
form (1.1). To see that A generates a holomorphic semigroup on H it is sufficient to
note that A has eigenvectors

1 [O’;1/2Ok] e+,, ), ke(4.6) q+/-k :=
[. e+i,ok j,

(--3’ + 41 3’2 Z+

with associated eigenvalues

(4.7) ’+/-k 0"/2e+/-in
that these eigenvectors are easily seen to form a Riesz basis for H, and that the
eigenvalues lie on Fo (cf. (1.3) with o-= r/- 7r/2. Let I be the index set Z/U Z-, so
that A generates the semigroup given by (1.5). For our purposes, it is convenient to
think of the dual space of H as being

H’:=

where

The inner product for [z, z2] r H’ and [y, y2] r H is

(4.8) ([z,, z2] , [y, y2] r) := B-’/2z,(x)B’/Zy,(x) + z2(x)y2(x) dx.

The domain of A*, the adjoint of A, is the subset of H’ given by @(A*)=X Y. It
is easy to see that

(4.9) q+/- k := (1/,,/ sin (r/))[ (:t: i’/2+/-idpke+/-in)dpk] kZ+

is an eigenvector of A* with associated eigenvalue Ak, that {Ok}kl is a Riesz basis for
H’, and that (%, qk) 6.hk, SO that {q}k is the dual basis to {qk}k.

The input coefficients can be easily computed in this case: they are

b+/-k =(b, q,+/-k)= (a(.- Xo), + iOk) + iOk(Xo) + sin rrkxo)/sin q).

There are no nonzero values of Xo for which {b} is in 12. Since {bk} is bounded,
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it is easy to use methods in [5] to show that b is admissible on f/, so we can apply
Theorems 2 and 3 to this system.

There is no value of Xo for which b satisfies (1.7). If Xo is rational, bk is zero
infinitely many times, and. the {bk}kJ (cf. (1.8)) satisfies (1.7), so we can apply the
methods in [7] to the system. (In fact, the results in [7] will be better in this case, since
the only restriction on {ak}k is that it is the zero set of a cardinal function with the
same poles as p.) If Xo is irrational, bk 0 for any k I, but (1.7) is not satisfied, and
the author knows of no other eigenvalue specification results for this system. The
following corollary of Theorems 2 and 3 gives us a class of eigenvalues that can be
realized for the closed loop system.

COROLLARY 16. Suppose Obk tk / ’lk sin (Trkxo), where {’Ok}kI I. Then {)(k}kl
given by (1.10) is a Riesz basis for H, h* given by (1.12) with domain (3.6) is an
admissible feedback element, and A+bh* has eigenvectors {Xk}kI and eigenvalues
{ak}kt. If {qk}kt 12, then h* is bounded, i.e., h* H.

Proof. It is clear that (3.4) is satisfied. Since {sin (zrkxo)}k is bounded, {ak Ak}k
is bounded, so (3.5) is also satisfied (see the remark after the statement of Theorem
11). Let

(4.10) p(A)= I-I (A-Ak)/(A-Ak-m),q(A)= I] (A--ak)/(A--Ak--m),
kI kl

where rn is chosen so that there is a constant c such that {Olkk lies to the right of
Fc and {hk- m}kl lies to the left of Fc. It is shown in [8] that p and q are cardinal
functions. Therefore we can apply Theorem 2 to this system if{r/k}k l. If{r/k}k 12
we can apply Theorem 3. l-]

To illustrate this, let Xo 1/Tr, and the damping factor 3’ .2588, and we will
determine the feedback law that realizes the closed-loop eigenvalues a+/-k

h+k--5 sin (k). Let p and q be given by (4.10), with m =6. We will approximate p and
q by finite products to estimate p(a), q(Ak), p’(Ak), and q’(a.i) so that the last two
approximations Pn and P,+I satisfy I(pn/p,+)-l]<.O01. Using formulae (1.11) and
(1.12), we can find h* in the form >o c./q +q_, where the first nine coefficients are

{c}.=1 {.8804+ 5.1598i, 1.3474+4.4128i, 1.2395 +4.3680i, .6952 +4.6051 i,
.0532 + 4.8249 i, -.2895 / 4.9092 i, -.2075 + 4.8877 i, .0.808 + 4.8120i,

.2614+ 4.7571i}.

l(x) B-/2h(x)= E fkv/ sin (Trkx),
k>O

(4.12)
h2(x) gkx/ sin (Trkx),

k>0

with the first nine coefficients given by

{fk},=l {--.7101, .2333, .0977,--.7619,--1.7531, --2.2697, --2.1456, --1.7091, --1.4329},

{gk}]= {--7.5545, --6.4608, --6.3952, --6.7423, --7.0642, --7.1875, --7.1561,
--7.0452, --6.9649}.

where

In this case h* is not a bounded element, but we can truncate the series for h*
to get a bounded element. In [8] the effect of the truncated feedback element on the
distributed parameter system is studied.

If h* is written as Ibm(s), h2(s)], then the control is given by

Io(4.11) u(t)={h*,z(t)}=(cf.(4.8)) [,(s)wx(x,t)+h(x),(’x,)]dx,
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Example 2. We now consider a beam with both ends hinged and a moment force
u(t) at one end. This is modeled by (4.1), where we derive the correct boundary
conditions for the damped beam by computing the time rate of change of the energy
associated with (4.1) The energy for the Euler-Bernoulli beam is

(4.13) ((w))(t) := +plw,(x, t)[) dx.

Integration by parts twice yields

d((w)(t))
dt

lwx,(x, t) dx

w,(a t){(EI)wxxxx(a t)+ow,,(a t)-2T(oEl)/2w,xx(a t)} dx

+{EIwx(x, t)}w,(x, .t)+{2v(EI)/wx(x, t)-Elwxxx(x, t)}w,(x,

If w satisfies the differential equation (4.1) and the boundary conditions

w(O, t)=o, w(1, t)=o, w(o, t)=o, w(1, t)=u(t,),(4.14)

then

d((w)(t))= EIu(t)W,x(1, t)-(EIp)/2 [W,x(X, t)l dx,
dt

which is the correct form for the rate of change of the energy 10].
In this case (4.1) and (4.14) can also be written as (4.4), where the input element

/ will be determined from the boundary conditions (4.14). We will follow the procedure
in [5]. We need two extensions of A. One extension, is A’H g(, given by (2.3). In
the cases under consideration,

kl

and

To get the other extension, we first define an extension of B. Let

J: XX: w(EI/p)wxxxx,

(J) {W E H4[0, 111 w(0)= w(1) Wxx(O) =0}.

If (X):=(X3--X)/6, then is in (J), and x(1)= 1. We can therefore write, any
element of (J) as +u, where E (B) and u is a scalar. Let

(4.15) L: H H" Lz [ 0 I]-J _2TB,/2 z, (L) (J)O)(B’/),

so that L is an extension of A. We can write z @(L) as :+ u[, 0] r, with u a scalar
and sc (A). We would like the solution z(t)=[w(t), if(t)] r to be in (L). In fact,
we can write the control system (4.1), (4.14) as

(4.16) (t)=Lz(t), z(t)=,(t)+u(t)[], ,(t)(A).



168 RICHARD REBARBER

We will rewrite this in the form (t)= ,z(t)+(L-,)z(t), where the term (L-,)z(t)
turns out to be of the form bu(t).

Since L: ,:, Lz ,z uL[, 0] r u/[, 0] r u/[, 0] r.. To compute
,[, 0] r, let [r/, r/:] r e (A*)= X@ Y (note that this implies that r/(0) r:(1)=0);
therefore,

([,, 2]T [l, 0IT}-- (A*[’r/l, ’/’/2] 7’, [l, 0] T)
<[-m, ,-2,’/,], [, o]>
-(B-’/B’O, B’/ff> c[o,,]

(-/o ,x(Xx(x x

(integrating by parts twice) (-EI/0 ’O 1 ).

Hence -[ff,, 0It= (EI/o)[O, ’(’-1)] r := b, and (4.15) becomes

i( t) ,z( t) + bu( t),

Which is an equation in . The expansion coefficients of b are b =(b,
+/-i2-1/2(EI/p)’k(1)/sin (rl) +/-i(EI/p)zrk(-1)k/sin (’O) for k Z+, since @k(X)
2/2 sin (rkx). Hence we can represent the input element in the form (1.2), and this
system satisfies the hypotheses of Theorem 4. Therefore, we can realize any closed-loop
eigenvalues such that there is a cardinal function q with the same poles as p, and
{(ak--Ak)/bk}k 1o. For instance, if ak +’Ok, where ’Ok l, p and q given by
(4.10) are shown to be cardinal functions in [8], so A + bh* has eigenvalues at
if h* is given by (4.12).

As an example we consider (4.1) and (4.14) with the dam,ping factor y =.2588.
We can realize ak --2 by the control law (4.11), where h and h2 are given by
(4.12), with the first nine coefficients given by

{fk}9k= {.1790,--.0733, .0540,--.0434, .0279, --.0159, .0160,--.0152, .0141},

{gk}9k= (.9578,--.4535, .2995,--.2240, .1754, --.1419, .1228,--.1079, .0961}.

Appendix: Definition of cardinal function and consequences.
DEFINITION 3. Let p be a meromorphic function with zero set (Ak}kc and pole

set {.k}kl. Assume that all Ak’S and /Zk’S are distinct, and that I Z+LI Z-. Then p
is a cardinal function if:

(1) There exist real constants d, c, and ml, with d <c, such that Ip(A)l_-<m for
all h {h > F} I..I {h < Fa}.

(2) There exist real constants a, b, and m2 with b < a such that [p(A)l>_-m2> 0
for all h {h > F,} t.J {h < F}.

(3) There exists m>0 such that ]p’(h)[, [p’(p,k)/(p(tzk))2[>--m3 for all k I.
(4) There exist paths {Ai}jz between F and F such that

(a) there exists m4, independent of j, such that ]p(h)]_-> m4> 0 for h A;
(b) {length (A)}jcz is bounded;
(c) (infah. Im (A)) j-.o and (supaA. Im (h)) -.i_._ -c.

(5) There exist paths {A}z between F and Fa such that
(a) there exists m> 0, independent of j, such that [p(h)[ <_-m5 for
(b) {length ()}./z is bounded;
(c) (infa,. Im (h)) ;_ oo and (supa; Im (A))

__
-o.

(6) infk>o {Im (e-(hk--hk-)) Im (e(h-k A-k+,))} > O, Im(Ak)---->O for k>O,
and Im (Ak) <---- 0 for k < O.
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(7) infk>0 {Im (e-’(p,k--k_,)), Im (e’’(l_k--_k+,))}>O, Im (p,k) >_-- 0 for k>0,
and Im (/k) - 0 for k 0.

Remark 1. Two classes of cardinal functions are constructed in [8]. In one class,
the zeros and poles are spaced asymptotically linearly, and in the other class they grow
faster than linearly.

Remark 2. The definition of cardinal function given in [6], [7] requires that

]p’(hk)l<--M and [p’(I,k)/(p(I.k))21M
for some M independent of k. We also need this for results in 3. To show that this
is a consequence of that definition, let Ck be a small circle oriented counterclockwise
with center hk and radius e, where e is chosen so that p(h) is bounded on all Ck. Then

[P’(hk)[ ( "tri) I [P()/(- Ak)] d

which is easily seen to be bounded independent of k. We could do the same with p
replaced by 1/p to show that [p’(p,k)/(p(tzk)) 2] is bounded independent of k.

To verify (3.12), let C be the curve F U Ft, where c < a < b < a </3, F is oriented
from top to bottom, and F is oriented from bottom to top. When we use Cauchy’s
Theorem, we can easily show that

[p(ak)--p(h)l=(1/2zr) fc" [p()/(ak--)] d-Ic [P(sr)/(A-’)] d"

<-- (1/ 2"n’)[ak h[ { Ic ’P()/ hj )(ak )[ [d’1.
Since p is bounded on C, and hi and ag lie between F and Fb, it is easy to see that
the term in brackets is uniformly bounded. Since p(A) =0, (3.12) follows.
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Abstract. High-order necessary conditions for optimality for an optimal control problem are studied
via properties of contingent cones to reachable sets along the optimal trajectory. It is shown that the adjoint
vector of Pontryagin’s maximum principle is normal to the set of variations of reachable sets. Results are
applied to study optimal control problems for dynamical systems described by: (1) closed-loop control
systems; (2) nonlinear implicit systems; (3) differential inclusions; (4) control systems with jumps.
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1. Introduction. Consider the following optimal control problem in lt n"

1.1 minimize g(x(T)

over the solutions to the control system

(1.2) x’(t) =f(x(t), u(t)) a.e. in[0, T],

(1.3) u(t)e U is a measurable selection,

(1.4) x(0) e C.

Let R(t, C) denote its reachable set at time from the set of initial conditions C c Nn
and TR(,,c(Xo) the contingent cone to R(t, C) at x0eN".

If a trajectory z of the control system (1.2)-(1.4) solves the above problem, then
the derivative g’(z(T)) is nonnegative in every tangent direction we TRr,c(z(T)),
i.e., g’(z(T)) belongs to the positive polar cone TR(r.c(z(T))+ of TR(r,c(z(T)). This
is the so-called Fermat rule. Thus we obtain the necessary conditions that allow us to
test whether a given trajectory z is optimal whenever we can characterize this positive
polar cone. In this paper we study some necessary conditions that can be derived from
the above Fermat rule. In the case of nonlinear system, the best we can hope for is to
characterize explicitly subsets Q of the tangent cone TR(T,C)(Z(T)), using variations
of the solution z(. ).

Then, by duality, g’(z(T))e TR(r,c)(z(T))/ c Q+ and the inclusion g’(z(T))e Q/
is a necessary condition of optimality. Q is the larger set and Q/ is the smaller set, so
that the necessary condition becomes stronger.

In particular, we prove that the reachable set at time T, R L(T), of the following
linear control system"

Of (z(t) (t))w(t)+v(t) a.e.,W’ -X
(1.5) v(t) e Tof(z(,),t)(z’(t)),

w(0)

(where ti is a control corresponding to z) is contained in TR(r,c)(Z(T)). Hence whenever
z is optimal, g’(z(T)) e R(T)/.
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Such inclusion implies easily the celebrated Pontryagin’s maximum principle: the
solution q of the adjoint system

f (z(t), a(t))* (t) in [0, T],(1.6) -q’( t) =--x q a.e.

(1.7) q(T) g’(z(T))

satisfies the minimum principle

(1.8) (q(t), z’(t))=min (q(t),f(z(t), u)) a.e. in [0, T]
uU

and the transversality condition

(1.9) q(O) Tc(z(O))+.
The aim of this paper is to go beyond the maximum principle and to provide

some additional properties of the adjoint vector q(. that can help to eliminate more
candidates for optimality than the maximum principle. Let us describe briefly the main
ideas.

We introduce the "variations" { W(t, z): [0, T]} of z(. ), defined by

W(t, z) := {v ::lh, 0, hi >-- 0,/zi 0+ such that z( +

(in particular, TR(,.c(Z(t)) c W(t, z)).
For all 0 -< =< + h --< T, define the reachable map r(h, t) :n :: n of (1.5) by

r(h, t)= {w(t + h): w W’"(t, + h) is a solution of (1.5), w(t) }.

We shall prove that for all t[0, T[, r(T-t, t) maps W(t,z) into TR(r.c(z(T))
and, in particular,

r( T, O) Tc(z(O)) r(T.c)(Z( T)).

Thus for all el0, T], g’(z(T))e (r(T- t, t) W(t, z))+. If r(T- t, t) is a linear operator,
we deduce from the bipolar theorem that g’(z(T))e r(T-t, t)*-’(W(t, z)+), where
r(T-t, t)* is the transpose of r(T-t, t). But the reachable map r(T-t, t) is not
single-valued: it is a positively homogeneous set-valued map (i.e., one whose graph is
a cone) which can also be transposed. We shall then prove two things: first, that for
any convex cone Q c w(t, z),

(1.10) (r(T- t, t)O)+= r(T- t, t)*-’(O+),
and second, that the transpose r(T-t, t)* can be computed in the following way:

(1.11) r( T- t, t)* r q( t)

where q is a solution to the system (1.6), (1.8) satisfying q(T)- 7r. By piecing together
all this information, we obtain the existence of a solution q of (1.6)-(1.9) satisfying

(1.12) q(T) e Tg(r.c)(z(T))+,
(1.13) q(t)e W(t,z)+ forallte[0, T[.

It also implies the following invariance property of reachable sets"

(1.14) If Tg(r.c)(z(T))+#{O},thenforall t[O, T], Ta(,.c)(Z(t))+#{O}.
This result is of the same nature as a theorem of Waewski stating that the boundary
point of reachable set can be reached only by a boundary trajectory.
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The inclusions (1.12)-(1.13) are additional information described via reachable
sets. For nonlinear systems the reachable sets and, consequently, the set of variations
W(t, z) are not known a priori. But condition (1.13) still allows us to eliminate some
candidates for optimality among those satisfying the maximum principle. Let us
emphasize that it is enough to know one element w W(t, z), such that the solution
q of (1.6), (1.7) satisfies (q(t), w)< 0, to deduce that z is not optimal.

Inclusion (1.13) can also be seen as a higher-order optimality condition, since it
deals with variations of z(. of all orders. High-order necessary conditions involving
higher-order derivatives of g are (of course) of an entirely different nature.

The high.order necessary conditions in optimization have two features:
(1) Necessary conditions involving the high.order variations of constraints;
(2) Calculus of high-order variations.
Here we shall not divide any calculus of sets W(t, z). In 19] the interested reader

can find many examples of variations corresponding to piecewise C-controls. They
are constructed via Lie brackets of some vector fields. However, because of the
Lavrentiev phenomenon, we should not expect such regularity of optimal trajectories.
Still the results of [19] can be used at regular enough points of optimal control. The
irregular points are much more difficult to address and require further investigations.

We shall study a more general dynamical system than the parametrized control
system (1.2), (1.3), the so-called differential inclusion

(1.15) x’F(x).

This is a generalized differential equation to which the control system (1.2), (1.3)
can be reduced by setting F(x)-f(x, U). Whenf is continuous, the Filippov Theorem
(see [1, p. 91]) says that the solutions of (1.15) and (1.2), (1.3) do coincide.

In general the set-valued map F cannot be parametrized in a way that reduces
the system (1.15) to (1.2), (1.3). The main reason for this is the restriction on admissible
controls (1.3). Still this can be done when F has convex compact images and is
continuous in the Hausdorff metric. But even in this case the parametrization would
only be continuous, and therefore would not be very useful because of the lack of
differentiability of f.

The differential inclusions, besides being a description of more general dynamical
systems, provide a mathematical tool for studying nonsmooth control systems, closed-
loop control systems:

(1.16) x’=f(x, u), u U(x),

and implicit dynamical systems

(1.17) f(x,x’)=O.

We refer to 1 ], [9], [22], [6], and references therein for the corresponding examples
of systems whose models are described by (1.16), (1.17).

Setting F(x)=k_Juu))f(x, u) and F(x)={v:f(x, v)=0} we reduce (1.16) and
(1.17), respectively, to the differential inclusion (1.15).

Recall that the dynamical system (1.17) appears in the Lagrange problem (see
[28]). Two ways to treat (1.17) are described in [28]. One is an unjustified multiplier
rule. The second is (again) an unjustified assumption that (1.17) can be rewritten as
a control system (1.2), (1.3). In this paper we treat (1.17) via differential inclusion
techniques.

Properties of the dynamical system given by (1.15) depend on the graph of the
set-valued map F.
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Actually the generalized differential equation (1.15) inherits many features of
ODEs (see [1]). The one we exploit the most here is the variational inclusion, which
is as useful as variational equations arising in ODEs. It has been extended to variational
inclusions in [13], [12], and independently in [23]. Many results concerning inclusions
can be found in [1], [9]-[16], [18], [23] (see also the references therein).

The maximum principle for differential inclusions has been proved in [9], [10],
[12], [18], [23]. It involves graphical derivatives of the set-valued map F ([12], [23]),
generalized Jacobians of selections for F 18], or generalized gradients of Hamiltonians
[9], [10]:

H(x, p) sup {(p, e): e e F(x)}.

We prefer the "graphical" approach mainly for two reasons:
(1) In general, even for smooth control systems, H is merely Lipschitz. Hence

we are led to differentiate H in one generalized way or another. There is not yet any
convenient notion of higher-order generalized derivatives of H adequate for our
purposes. Neither is it clear how we can solve the nonsmooth Hamiltonian inclusions.
Rather, we deal with convex subcones of tangent cones to graph (F) and the associated
convex processes. The convex process is a set-valued analogue of linear operators (see
[25], [2]). In particular, the Kalman rank condition can be extended to convex processes
[3].

(2) In the examples of applications we provide here, the Hamiltonian maximum
principle is less powerful than that involving the adjoint system (see 4, Remark 4.10
for a detailed discussion).

Tangent vectors to reachable sets are studied via local variations in 2. In 3 we
investigate the adjoint of the reachable process, r(T-t, t)*. The cone TR(r.c)(z(T))/
is studied in 4. Section 5 is devoted to necessary conditions for problem (1.1) for
the (usual) control system (1.2), (1.3), the closed-loop control system (1.16), and the
implicit dynamical system (1.17). In 6 we sketch how the same approach can be used
to study control systems with jumps (deterministic impulse control systems). Examples
are provided in 7.

We do not present here a thorough study of high-order variation. Many results
concerning smooth cases can be found in [19]. In the more general framework (1.15)
we deal with the extended notion of Lie brackets for set-valued maps. A second-order
result can be found in [14]. However, the higher-order variations require a further
investigation.

2. Tangent vectors to reachable sets. One of the main tools we use here is the
following result due to Filippov 11].

THEOREM (Filippov). Let y:[a, b]->R be an absolutely continuous function and
G: [a, b] xR"->n be a set-valued map with closed images such that:

(i) For all x , the map --> G( t, x) is measurable;
(ii) For some e>0, kLl(a,b) and all t, G(t,.) has nonempty images and is

k( t)-Lipschitz on y( t) + eB.
Set K exp (b k(t) dt) p := I2 dist (y’(t), G(t, y(t))) dt. If p < eK, then there exists
an absolutely continuous function x a, b - satisfying x(a) y(a),

x’(s) G(s, x(s)) a.e. in [a, b],

x y c(.,b) gp and for almost all a, b

IIx’(t)-y’(t)ll <- k(t), exp k(s) ds +dist (y’(t), G(t, y(t))).
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Remark. The proof can also be found in 1] under an additional assumption that
G is continuous in t. In [9, p. 115] the theorem above is stated in a weaker form, but
the proof allows us to deduce the above stronger version. We provide a sketch of such
a deduction. The function x is constructed as the limit of a Cauchy sequence xi
C(a, b; R") i-0, 1,... of absolutely continuous functions satisfying xi(a)- y(a) and
for almost all e [a, b] and all i_-> 1:

[[xl/l(t)-x(t)l] <- k(t)[[xi(t)-xi_,(t)l <-_ k(t)p
(’a k(s) ds)

(i-2)!

[[x( t) y’( t)l] =dist (y’( t), G( t, y(t))).

Hence for almost all [a, b] the sequence {xl(t)} is also Cauchy. This and Lebesgue’s
dominated convergence theorem yield the existence of x C(a, b) such that for all
t[a,b]

x(t) x(a)+ lim xl(s) ds.

Hence x is absolutely continuous and we finally obtain that

xl(s) x’(s) a.e. in [a, b].

Moreover, for almost all [a, b]

IlxI+(t)-y’(t)ll Ilx.;+(t)-x(t)[[+ [Ix(t)-y’(t)ll
j=l

<- k(t)p k(s) ds !+ IIx(t)-y t)l[
j=0

<- k(t)p exp k(s) ds +dist (y’(t), G(t, y(t))).

Taking the limit we obtain that for almost all [a, b]

Ilx’(t)-y’(t)ll<-k(t)pexp k(s) ds +dist(y’(t), G(t,y(t))).

Consider a set-valued map F from R" to " and a differential inclusion

(2.1) x’eF(x).

A function x WI’(0, T), T>0 (the $obolev space) is called a trajectory of (2.1) if
for almost all [0, T], x’(t) F(x(t)). We denote by S, the set of all trajectories of
(2.1) defined on the time interval [0, t]. The reachable set of the inclusion (2.1) from
a point " at time t_-> 0 is given by

R(t, ) {x(t): x S,, x(0) }.

We observe that the reachable sets enjoy the semigroup property"

R(t+ h, )= R(t, R(h, ))
(2.2)

R(0,:)=s. for all t, h _-> O,

Let z e ST be a given trajectory. In this section we study tangent vectors to the
reachable set R(T, C) at z(T). We call a set Q c $" a cone if for all A -> 0, AQc Q.
First recall the following definition.
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DEFINITION 2.1. Let K be a subset of Rn and x K. The (Bouligand) contingent
cone to K at x is given by

T (x) { v R El hi - 0+, vi - v such that x + hivi K }.

The intermediate tangent cone to K at x is defined by

It: (x) {v II Vhi O+ ::lvi v such that x + hivi K}.

We refer to [2], [12] for properties of Tr (x), I (x). Throughout the entire paper we
assume that the set-valued map F in the right-hand side of the differential inclusion
(2.1) satisfies the following assumption:

Dom F:= {x" F(x) } is open,(H) F has compact images and is Lipschitzian on Dom F.

DEFINITION 2.2. Let F"" ff" be a set-valued map that is locally Lipschitzian
at x and y F(x). The derivative of F at (x, y) is the set-valued map dF(x, y):" :: R
given by the following: for all u ",

( F(x+hu)-Y)=o.v dF (x, y) u: hliom+_ dist v,
h

Observe that graph (dF (x, y)) := { (u, v): v dF (x, y) u } is a closed cone equal to
the intermediate tangent cone to graph (F) at (x, y). We refer to [12]-[14] for some
properties and applications of the set-valued derivative.

We denote by co F the convexified set-valued map, i.e., for all x , co F(x) is
the convex hull of F(x).

Consider the "linearized inclusion"

(2.3) w’(s) d co F(z(s), z’(s))w(s) a.e.

For all h, t->0, :n define the reachable set r(h, t) of (2.3) by

r(h, t)={w(t+h): we W’(t, t+ h) satisfies (2.3), w(t) :}.

DEFINITION 2.3. Let [0, T[. Set

W(t, z) { v Elhi _-> 0,/xi 0+ such that lim hi 0, z(t + hi)

+Iziv R(t+ hi, C)+o(Ixi)B},

/V(t, z) {v: V/zi 0+ Elhi - 0, hi ->_ 0 such that z(t +
+ Ixiv - R(t + hi, C) + o(p.,)B}.

Observe that W(t, z) and //V(t, z) are closed cones. Moreover, for all [0, T[

(2.4) TR,.c)(z(t)) W(t, z), IR,.c)(Z(t))c tC(t, Z) W(t, z)

and, in particular, Tc(z(O)) W(O, z).
Remark. When for some integer k => 1, /xi h, the vector v can be seen as the

kth-order variation of R(. at (t, z).
Actually, variations of R (., C) at (t, z) are mapped by r( T- t, t) into the tangent

vectors to R( T, C).
THEOREM 2.4. Assume that (H) is verified and let [0, T[. Then for all < r < T

r(’- t, t) W(t, z)= TR.(z(’)), r(’-- t, t)tT’(t, z) IRt,c(Z(’)),
r(T- t, t)TRt,.c(z(t)) TRr.c(z(T)).
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TO prove the theorem above, we need a consequence of the Filippov-Waewski
relaxation result (see [1, p. 124]):

Consider the convexified inclusion

x’(s) e co F(x(s))
(2.)

x(O)C.

PROPOSITION 2.5. Assume that (HI) holds true. Thenfor all [0, T] the contingent
(respectively, intermediate) cones to the reachable sets of (2.1) and (2.5) at time taken
at the point z( t) do coincide.

ProofofTheorem 2.4. By Proposition 2.5, we may asume that F has convex images.
Fix a solution w of (2.3) and let hi>-_O, tzi-O+, vi v= w(t) be such that limi_ hi 0,
z( / hi) + ].ll, iV R( + hi, C). For all s + hi, 7"] set

yi(S)’-’Z(S)+i Vi+
t+h

w’(p) dp)
and let L_-> 1 denote the Lipschitz constant of F. Then for almost all s + hi, z] and
all large

(2.6)

Moreover,

I t+hi
lim [[vi-vll + [[w’(p)[[ alp)=o

and, by definition of dF, for almost all s t, z]

lim dist (z’(s)+ /z,w’(s), F(z(s)+ txiw(s)))/Ixi =0.

Thus, by the Lebesgue dominated convergence theorem and (2.6),

lim dist (y(s), F(yi(s))) ds/li =0.
cX + h

By the Filippov Theorem there exist

riG R(--t-hi, z(t-k-hi)+tzivi)c R(z, C)

such that Ilri
Since

( I )lim (y,(-)- z(z))/tzi lim Vi-[" wt(p) dp w(T),
+

we end the proof. 13

THEOREM 2.6. Assume that (H) is verified and let 0<= <= ’<- T. Then the set

{(w(t), w(-)): w(t)6 TRt,c)(z(t)), we W’(t, z) isatrajectoryof (2.3)}
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is contained in

T{(x,y).xeR(,,C),yeR(_,,x)}(z(t), 2(7")).

Proof By the proof of Theorem 2.4 in the case when hi 0 for all >- 1, we know
that there exist /xi0+, viv, riR(7"-t,z(t)+txivi) such that z(t)+txiviR(t, C)
and Ilr-z()-(v+$S w’(p)dp)ll o(). Hence

lim (z()+v-z(t), r-z(r))/= v, v+ w’(p) dp =(w(t), w(r)).

It is shown in [16] that under the hypothesis (H1) the reachable map R has the
following (first-order) expansion: for all : near z(t) and all small h > 0

(2.7) R(h, sc) + h co F(z(t))+ o(t, h)

where

lim o t, h)l]/h 0
h--,O+,&- z(

and the equality in (2.7) must be understood in the following way:

R(h, )+ h co F(z(t))+ o(t, h)B,

:+ h co F(z(t))c R(h, so)+ o(t, h)B.

On the other hand, the function z(.) being absolutely continuous, for almost all
[0, T] and all h > 0 we can write z(t + h) z(t) + hz’(t) + o(h). Applying (2.7) with
z(t) and using Definition 2.3 we obtain

(2.8) co F(z(t))-z’(t)c 7,V(t,z) a.e. in[0, T].

We have even a stronger result that we shall use in Theorem 2.9.
THEOREM 2.7. Assume that (H) holds true. Then W(t, z)+ TR(,.c)(z(t))= W(t, z),

Plf( t, z) + IR(,.c)(Z( t)) Ill/’( t, z).
Proof. Fix we 7/V(t, z), v TR(,.c(z(t)) and let/zi0+, v- v be such that z(t)+

iivR(t,C). Fix hi0+, wg-w, ygS,+h, such that z(t+hi)+lzwiR(hi, z(t)),
yi(t) z(t), yi(t + hi) z(t + hi)+ tziwi. Set 27i y,+/xiv. Then dist (37’i(s), F(yi(s))) <-_

dist (y(s), F(yg(s)))+ L/z[[ vg[[ Lp.[[ vg[[, where L denotes the Lipschitz constant of F.
This and Filippov’s Theorem imply the existence of xi S,/h, such that xi(t)= )Ti(t)-
z(t)+lzivi R(t, C),

xi(t + hi) 37(t + hi) + o(/zi)

z( + hi) + tx,(wi + v,) + o(txi) R(h,, xi( t)) c R(h,, R( t, C)).

Hence, from (2.2),

z(t+hi)+lxi(wi+vi)a R(t+hi, C)+o(txi).

Definition 2.3 ends the proof of the first statement. The proof of the second one is
analogous; therefore we omit it. 13

In 4 we study "normal" cones to reachable sets along the trajectory z via a
duality technique applied to convex subcones of the set W(t, z). Next we introduce
an example of such a subcone.



178 HALINA FRANKOWSKA

DEFINITION 2.8. Let [0, T]. A vector vR is called a smooth variation of
order k > 0 at (t, z) if

(R(h,z(t’))-z(t’+h))li,om+ dist v, h;’ 0.
t’-> +

The set of" all variations of" order k is denoted by Rk(t, 2). The closed cone spanned
by all variations is called the expansion cone of" the reachable map at (t, 2) and is
denoted by R(t, 2)"

R(t, z)=cl [_J ARk(t, z).
h0
k>O

The expansion cone at a stationary trajectory is introduced in [14] for studying
the problem of local controllability at a point of equilibrium. Clearly, whenever
vRk(t,z), for all /z0+ there exist h0+ such that z(t+h)+lv
R(h, z(t))+o(z). Hence Theorem 2.7 yields TR(,,c)(z(t))+Rk(t, Z) c W(t, z).
Moreover,

IR(,,c)(Z(t))+ R(t, z)= /(t, z),
(2.9)

TR(,.c)(z(t)) + R(t, z) W(t, z).

TEOREM 2.9. Assume that (H) holds true. Then R( t, z) is a closed convex subcone
of the cone of variations /’( t, z) satisfying (2.9).

This result is an immediate consequence of the closedness of /’(t, z) and Lemma
2.10.

LEMMA 2.10. If (H) holds true then we have the following:
(i) For all K>k, ORk(t,z)c R(t,z);
(ii) For all k>0, (n+l)-k co Rk(t,z)c Rk(t,z).
Proof. Clearly, for all k > 0

(2.10) oRk(t,z).
Fix K > k > 0 and observe that for all v ", t’ [0, T[, h ]0, 1[ we have h /k < h and

(R(h,z(t’))-z(t’+h))dist v,
h K

(R(hK/k’z(t’+h--hK/k))--z(t’+h--hK/k+hK/k))---dist v, (hK/k) k

This and Definition 2.8 imply (i). To prove (ii) fix k > 0, hi >= 0, vi 6 Rk(t, 2), 0, , m
satisfying i=o hi- 1. We claim that

(2.11) hkv, gk(t, Z).
i=0

Indeed, consider tj- t+, hj 0+. Then

2( tj + Aohj)+ h’hok Vo a R(hohi, z(tj)) + o(h)B
where limi_,o o(h;)/h’ 0. We proceed by the induction. Assume that we have already
proved that for some 0-<_ s < n and all j

(2.12, z(t+h Ai)+h: A k,v,R h Ai, z(t) +o(hj
=0 =0 =0
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with limi_ o(h)/h=O. By Definition 2.8 applied with t’= t+h E,=o A,, h =As+,h

z( t, + As+hj) + h;A k k
// g(hx+, z(t’))+ o(h ).

This and the Filippov Theorem yield

z(t’+A,+lh)+h 2 AvieR hA+, z(t’)+h A ku, + o(h)n (by (2.12)),
i=0 i=0

=0 =0

Hence (2.12) is valid also with s replaced by s+ 1. Applying (2.12) with s m, we
obtain that

lim dist h k V,
j-

R(h2’ z(t2))- z(t:i +
=0,

and since {t} and (h} are arbitrary, Definition 2.8 implies (2.11). On the other hand,
by the Carath6odory Theorem for all v co Rk(t, z) there exist tz >= O, vi Rk(t, z) such
that i=on /zi 1 and i--o/ivi v. Observe that i=o /(n + 1) < 1. Applying (2.11)
with

A,=i/(n+l), v,,+,=O, h,,+,=l- /(n+l),
i=0

we obtain that (n+ 1)-gv=+=o hk v Rk( t, Z). This proves (ii).

3. The adjoint process r(T-t, t)*. Recall that for a subset K of a Banach space
E, its positive polar cone is given by

K+ {p E*: Vu K, (p, u) => 0}.

We also recall the following definition.
DEFINITION 3.1. A set-valued map G :R :: Rn is called a (closed) convex process

if graph (G) is a closed convex cone.
We refer to Rockafellar [25], who introduced and studied this notion, and to

Aubin and Ekeland [2] for further properties.
DEFINITION 3.2. Let G:n:: be a set-valued map. The adjoint map

G*:" " is given byp G*(q) ifand only if for all (x, y) graph (G), (p, x)<-_(q, y).
In other words pc G*(q)(-p, q) graph (G)+.

Observe that the adjoint G* is a closed convex process.
Let {A(s): s [0, T]} be a given family of closed convex processes from It to R"

satisfying the following:

(H2) (i) For all w" the map s A(s)w is measurable.
(ii) For all s[0, T], the map wA(s)w is k(s)-Lipschitzian, where k

(0, r).

For all 0 <_- _<- r -< T, we investigate the adjoint r(r t, t)* by studying the inclusions

(3.1) w’(s)6 A(s)w(s) a.e.,

(3.2) -q’(s) A(s)*q(s) a.e.

in the case when

(H3) graph (A(s))c graph (d co F(z(s), z’(s))) a.e. in [0, T].
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For a subset Qc" we denote by ro(r-t, t) the restriction of r to Q, i.e.,

t, t)x when x Q,
ro (r t, t)x

otherwise.

The main result of this section is Theorem 3.3
THEOREM 3.3. If a family {A(s): s [0, T]} of closed convex processes from n to

satisfies (H2) and (Ha), then for all b6, convex cone Q c, and 0 <- t<-_ ’<- T:
(a) r(--t, t)*b {q(t): q6 W’(t, r) satisfies (3.2), q(-)= b};
(b) ro.(r-t, t)*b {q(t): q6 W’(t, -) satisfies (3.2), q(r)=b}-Q+;
(c) (r(’-t, t)Q)+ {q(’): q W’(t, -) satisfies (3.2), q(t) Q+}.
To prove the above theorem we associate with all 0_-< =< r _-< T the convex process

?(--t, t):i"-- [" defined by the following: for all scI",
(3.3) (r- t, t)= {w(-): w satisfies (3.1) on It, r], w(t)= }.

Then by the definition of the adjoint map, for all b R"

(3.4) r(r- t, t)*bc (’- t, t)*b,

(3.5) ro(’-t,.t)*bc r(r-t, t)*b,

(3.6) (r(r- t, t)Q)+ (?(r- t, t)Q)+.
Theorem 3.3 follows from the inclusions above and the following two lemmas.
LEMMA 3.4. If (H2) holds true, then for any 0 <- <- r <-_ T and b

(3.7) ?(--t,t)*b={q(t): q6 wl’(t, z) satisfies (3.2), q(-) b}.

LEMMA 3.5. If (n2) holds true, then for any convex cone Qn and be
Dom ?(r-t, t)* we have the following:

(3.8) (--t, t)*b (--t, t)*b-Q+,

((’- t, t)Q)+= (’- t, t)*-l(Q+).

Proof of Lemma 3.4. Fix 0 -<_ _-< r -< T. Let us set:
X wl’2(t, r), Y LE(t, r) x L2(t, r);
L={(x,y)6 Y: y(s)A(s)x(s)a.e, in[t, r]};
D, the differential operator on X, Dx- x’;
y, the trace operator on X, y(x)= (x(t), x(r)).
Observe that L is a closed convex cone and, by the measurable selection theorem

(see [26]),

(3.9) L+ {(-p, q) Y*: p(s)a(s)*q(s)a.e, in [t, r]}.

We claim that

(3.10) Im (1 xD)-L= Y.

To prove it we must verify that for. all (u, v)e Y there exists x X satisfying

(3.11) x’(s)eA(s)(x(s)-u(s))+v(s) a.e. in[t, r].

Fix (u, v)e Y and observe that, by (H2), the set-valued map [t, r]x" (s, x)
A(s)(x u(s)) + v(s) is measurable in s, and for almost all s it is Lipschitzian in x with
the Lipschitz constant k(s). Moreover, dist (O,A(s)(-u(s))+v(s))<= k(s) Ilu(s)[[+
IIv(s)ll. By the Filippov Theorem there exist M >=0 and x W"t(t, r) satisfying (3.11)
and such that

]lx’(s)ll-Mk(s)+k(s)llu(s)ll+llv(s)ll a.e. in[t, ].
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Thus Ilx’]l e L2(t, r) and therefore x e X. Hence we have proved (3.10). By Lemma 1.3
of [3] and (3.10) we obtain

(3.12) ((1 x D)-’L)+ (1 x D)*(L/).
Clearly, 3,((1 x D)-L)c graph ((7.- t, t)) and by (3.12), 7* graph (f(7.- t, t))+c
((1 xD)-1L)/=(1 xD)*(L/). Hence for all (a, b)egraph (f(r-t, t))/ there exists
(-p, q)e L/ such that

(3.13) y*(a, b)=(1 x D)*(-p, q).

This implies that for all w e W’2(t, r),

0=((1 xD)*(-p, q), w)= (-pw+qw’)(s) ds= w’(s) q(s)+ p(r) dr ds.

Thus, q W’2(t, 7.) and q’=-p. By (3.9),-q’(s)eA(s)*q(s) almost everywhere in
[t, 7.]. From Proposition 1.Tb of[3] we deduce that q e W’(t, 7.). Moreover by (3.13)
for all xeX, ((a, b), (x(t),x(r)))=((q’, q), (x,x’))=q(z)x(r)-q(t)x(t). Hence
(-a, b)=(q(t), q(r)), and q(t)e (7.-t, t)*q(7.). We have proved that for all beln,
(7.- t, t)*b is contained in the right-hand side of (3.7). On the other hand, if q satisfies
(3.2) then for all solutions w of (3.1)

q(7.)w(7.)-q(t)w(t)=((q’, q), (w, w’))>--O.

This yields that q(t)e r(7.-t, t)*q(r) and ends the proof.
To prove Lemma 3.5 we apply some results from [2, pp. 142-143] concerning

closed convex processes. Since in general f(7.- t, t) is not closed we need the following
lemma.

LEMMA 3.6. If (H2) holds true then (7. t, t) is Lipschitzian on " and the set-valued
map cl ( 7. t, t) defined asfollows: for all u R", cl ( 7- t, t) u ’(7- t, t) u is a Lipschit-
zian on closed convex process. Moreover, (cl (7- t, t))* (" t, t)* is an upper
semicontinuous set-valued map with compact images mapping bounded sets to bounded
sets and Dora (" t, t)* ( 7- t, t) (0) +.

ProofofLemma 3.6. Since 0 e (7-- t, t)0, the set (7-- t, t)0 is nonempty. Fix any
u eN" such that ?(7--t, t)u# and let w be a solution of (3.1) on It, 7-] satisfying
w(t)-u. Pick yeN" and set y(.)=w(.)+v-u. Then dist(y’(s),A(s)y(s))=
dist (w’(s), A(s)(w(s) + v u)) <- k(s)llv ull. This and the Filippov Theorem imply the
existence of a solution # of (3.1) defined on [t, 7-] and satisfying #(t)=y(t)=
w(t)+v-u=v,

()-y()ll Mllv- ull
where M does not depend on v, u. Thus (r-t, t)v fg and

()- w()ll ()-y()ll + [[Y(7.) w()ll MIIv- nil + IIv-
i.e., (r-t, t) is Lipschitzian on n with the constant M+ 1. Pick any u, u, e",
vcl (7.-t, t)u and consider vi--> v, vi (r-t, t)u. By the Lipschitz continuity of
(7.-t, t) for some wi (7.- t, t)u, IIw- viii <-_(M+ 1)llu-ull. Taking a subsequence
and keeping the same notation, we may assume that w converges to some we
cl (7--t, t)u. Then [[w-vll<-_(M+ 1)llu-u[ and this yields the Lipschitz continuity
of cl (7- t, t). Let (u, v) graph (7- t, t)) be a sequence converging to some (u, v).
Then vi (7-- t, t)ui and, by Lipschitz continuity, for some w (7--t, t)u we have
]lwi-vill(Mq- 1)]]u-uil[. Hence w-> v and vcl (7-- t, t)u. This implies that

(3.14) graph ((7--t, t))= graph (cl (7--t, t))
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and therefore graph (cl (r-t, t)) is a closed convex cone. Hence cl (r-t, t) is a
closed convex process and

graph ((-- t, t))+ graph (el ?(r-t, t))+.
From Definition 3.2 we deduce that ?(--t, t)* =(cl ?(--t, t))*. The last statements
follow from Proposition 1.7 of [3].

Proof of Lemma 3.5. We prove first that

(3.15) o(’- t, t)* (cl 0(’- t, t))*.

Indeed, fix ui Q, vi (r- t, t)u such that limi_ (ui, v) (u, v). Then u Q and
(u, v)graph (f(r-t, t)) =graph (el (r-t, t)) (by (3.14)). Hence vcl O(--t, t)u
and we proved that graph (o(’-t, t))=graph (cl ro(r- t, t)) this yields (3.15). We
also know that Dom (cl (z- t, t)) --I". Hence using [2, pp. 142-143] we obtain (3.8).

To prove the second statement we observe that the Lipschitz continuity of
cl (r t, t) yields

cl (r-t, t)Q cl (r-t, t)Q.

hence ((z-t,t)Q)+=(cl(r-t,t)Q)+=(cl(r-t,t)t)+=(by [2, pp. 142-143])
cl (r- t, t)*-l(Q+) (by Lemma 3.6) (r- t, t)*-(Q+). The proof is complete.

4. The cone TRt,c)(Z())+. In this section we assume that (H1) holds true and
that there exists a family of closed convex processes {A(s)}.tO.T satisfying (H2) and
(Ha).

Observe that the dual form of Theorem 2.4 is as follows" for all 0_-< < --< T,

(4.1) TR.c)(z(r))+ c (r(’-- t, t) W(t, z)) +.
Hence we can "estimate" TR,,c)(Z(r))+ using the set (r(r-t, t)W(t, z))+. We study
this last set via a duality technique.

Consider again the adjoint differential inclusion

(4.2) -q’(s) A(s)*q(s) a.e.

THEOREM 4.1. Assume that (H)-(H3) hold true. Let Q(t)c W(t, z) be a family
of convex cones such that for all 0<-_ < t <- T, (t- t, t)Q(t)c Q(tl). Then for all

" [0, T]

TR(,c)(Z(r))+ {q(r)" q W’(0, ’) satisfies (4.2), q(t) Q(t)+ on [0, -[}.

Consider next the differential inclusion

(4.3)
-q’(s) A(s)*q(s) a.e.,

(q(s), z’(s))= min {(q(s), e)" e F(z(s))} a.e.

THEOREM 4.2. Assume that (H)-(H3) hold true and let Q(t) 7g’(t, z) be any
family of convex cones. Then for all - [0, T]

TR.c)(Z(r))+ {q(r)" qe W’(O, ’) satisfies (4.3), q(t)e Q(t)+ on [0, r[}.

In particular,

TR,c)(z(r))+ {q(r)" q W’(0, r) satisfies (4.3), q(t) R(t, z)+}.

Observe that the statements of the above theorems depend on the choice of {A(s)}
and {Q(s)}. From (4.1) and Theorem 3.3(c) we obtain Lemma 4.3.
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LEMMA 4.3.. If (H)-(H3) hold true, then for any 0 <- < r <- T and any convex cone
Q W(t, z)

TRnc(z(’))+ {q(r): q W"(t, r) satisfies (4.2), q(t) Q+}.

Proof of Theorem 4.1. We apply the above lemma. Fix r ]0, T] and b TR,c X
(z())/.

Step 1. Fix any 0_-< t <. < t,, < r. We first prove the existence of q W’(0, r)
satisfying (4.2) such that

(4.4) q(r) b,

(4.5) q(t,) Q(ti)+ Vi 1,’", m.

By the assumptions of the theorem, inclusion (4.5) implies that

(4.6) q(t) ((t- t__, t_)Q(t_))+.
We proceed by the induction. By Lemma 4.3 there exists q W’(tm, ’) satisfying
(4.4), (4.5) with m. Assume that we already know that for some 2=<j =< m there
exists q W’(t, r) such that (4.2), (4.4), (4.5) hold true with i>=j. From (4.6) we
deduce that q(t)(P(t.i-t_, t_)Q(t_))+. Applying Lemmas 3.4, 3.5 with r= t,
b q(t), and t._ we prove the existence of W’(t_, t) satisfying (4.2) such
that (t) q(t), (t_,) Q(t_,)+. Setting

q(s)={(s) whens[t,7"],
(s) when s [t_, t],

we end the proof of Step 1. 1-1
Step 2. Let ti [0, r], i= 1, 2,’" be a dense subset of [0, r]. Set

L {(x, y) L2(0, r) L2(0, r): x(s) a(s)*y(s) a.e.}.
Since A(s)* are closed convex processes, by Mazur’s Lemma, L is weakly closed in
L2(O, -) x L2(0, r). By Step 1, for all j-> there exists q wl’(0, r), satisfying (4.2)
and such that q(r) b and for all 1 -< i_-<j

(4.7) q(t,) Q(t,)+.
By Proposition 1.6(b) of [3], for all j and almost all s [0, r], IIq(s)ll--< k(s)llq(s)ll.
This and Gronwall’s Lemma imply that {q./} is bounded in W’(0, r) and, by reflexivity,
it has a weak cluster point q. Since L is weakly closed, q satisfies (4.2) and by (4.7),
for all i, q(t) Q(t)/. Fix [0, r], we Q(t) and let {tk} be a subsequence converging
to from the right. Since {A(s)} satisfies (H), by the Filippov Theorem there exist

Wk (tik t, t)w converging to w. Moreover, for all k, (q(tik), Wk)>=O. Therefore, taking
the limit, we get q(t) Q(t)+ for all [0, r]. This ends the proof. [3

To prove Theorem 4.2 we need two lemmas.
The next lemma shows how a given family {A(s)} can be "increased" to a larger

family of closed convex processes still satisfying (H2), (H3)
LEMMA 4.4. For all s[0, T] such that z’(s) F(z(s)) and for allx set

G(s)x A(s)x + To v(z(.))(z’(s))
and set G(s)=A(s) for all other s. Then {G(s)}.to.r are closed convex processes
satisfying (H2), (H3) and A(s)c G(s). Moreover, for almost all s [0, T] and all q "A(s)*q when q (F(z(s))- z’(s))/,
(4.8) G(s)*q=

otherwise.

Proof From the definition of G(s), exactly as in the proof of Lemma 3.6, we
deduce that G(s)(.) is k(s)-Lipschitz on N". By Lemma 2.8 of [12] we know that
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{G(s)} satisfy (H3). Since G(s)(. is continuous and has closed images, graph (G(s))
is closed. It is also clear that graph (G(s)) is a cone. To prove its convexity it is enough
to consider only those s[0, T] that satisfy z’(s) F(z(s)). Fix such s and u, vRn.
Since A(s) is a convex process and Too F(z(s))(Z’(S)) is a convex cone, we obtain

A(s)u+ rcoF(z(s))(z’(s))+A(s)v+ rooF((.,))(z’(s))c A(s)(u+v)+ TcoF((.))(z’(s)).
This yields that

G(s)u + G(s)vc A(s)(u + v)+ rco F(())(Z’(S)) G(s)(u + v).

Hence G(s) is a closed convex process. Moreover, by [25], for all q 6R"

[a(s)*q when q To v(z(.,,(z’(s)) +,(4.9) G(s)*q
otherwise.

Since co F(z(s)) is a convex set we also have

(410) To F(z())(Z’(S)) hi /(CO F(z(s))- z’(s)),
i= 1,2,...

and therefore

Lo z(z’(s))+ (co F(z(s))- z’(s)) +.
Using (4.9), we deduce from the last equality that for almost all s [0, T], (4.8) holds
true. To end the proof it remains to show that for all x[", the map s G(s)x is
measurable. Since the map s F(z(s)) is continuous it is also measurable. By Castaing’s
Representation Theorem [8] and the assumption (H2)(i) there exist measurable selec-
tions

f(s) 6 F(z(s)), g,(s) 6a(s)x, n 1,2,...,

such that for all s

f,(s)= F(z(s)),
nl

Hence, using (4.10), we obtain

U g,(s)= A(s)x.
nl

G(s)x= g,(s)+ (f(s)-z’(s))= g,,(s)+i((s)-z’(s)).
nl i>--I nl n

i,.j>

Since the functions s g,(s)+ i((s)-z’(s)) are measurable, the last equality and
Castaing’s Theorem imply that s G(s)x is a measurable set-valued map. [3

In Theorem 4.1 we deal with convex cones Q(t) W(t, z) that have the following
invariance property:

(4.11) /O<-_t<h<-T F(t,-t,t)Q(t)cQ(t,).

The next result shows how such cones can be constructed.
LEMMA 4.5. Let {A(s)}.[O.T be any family of closed convex processes satisfying

(H), (Ha) and O( t) W( t, z) be convex cones. Then there exist convex cones Q( t) Q( t)
satisfying (4.11 ).

Proof. For all 0 <- t <-. <-_ tm <- T, define recursively cones P(t)
((t) + (t, 0)((0),..., P(fi,..., t+)= ((t,/) + (t+- t,, t)P(fi,..., t,). Using
an induction argument, we prove by Theorems 2.4 and 2.7 that for all i_->1,
P(fi,..., t)c 7V(t, z). Set

Q(t)= LI P(t,,..., t,,).
0_ "" _--<

m-->_l
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Clearly Q(t) is a cone containing ((t) and, by definition of Q(t), for all0<_- -< t-_< T,
(t-t, t)Q(t) Q(t,). It remains to prove that Q(t) is convex, i.e., we must check
that for all 0 _-< t -<. _-< t,, t, 0 _-< t’! --<" -<- t,
(4.12) P(t,’. ", t,,)+P(t,..., t,) O(t).

We proceed by the induction with respect to m / k. Observe that for all [0, T],
P(t) is a convex cone. Fix [0, T]. Assume that for some j->_ 2 and all m -> 1, k >- 1,
0 < t =<. < t,, t, 0 < t’l =<. < t, satisfying m + k =<j the relation (4.12) holds
true. Fix O<- t<- <- t,,+ t, O<-_ t’<= <- t’ such that m+ k =j, tk_<-- t,,. Then
P(fi,. ., t,,) + P(t,. , t,_, t,,) Q(t,). Moreover, by definition of P(. ), using
that is a convex process we obtain

?( t,, t’k-,, t’_)P( t t’k t,,).tk-l) P( tl, -1,

This and the definition of Q(t) imply"

P( t t,,+l)+P(t’l, t’k) t( t) + ( t,, t,,)P( tl t,)
/ Q(t)+ ?(t- t,, tm)(t, t’k- 1, t’k_ )P( t; t’k-i)

c O.(t)+ (t- t,,,, t,)(P(t,," tin)+ P(t,,’’ , t_,,t,))

= O(t)+ (t-tin, tm)Q(t,,,) Q(t).

Proof of Theorem 4.2. By Lemma 4.4 we replace the family {A(s)} by the new
family {G(s)} satisfying (H2), (H3) and (4.8). From Lemma 4.5 it is not restrictiveto
assume that the family {Q(s)} satisfies (4.11). Theorem 4.1 applied with {G(s)} yields
the result.

COROLLARY 4.6. Assume that (H)-(H3) hold true and let Q be a convex subcone
of Tc(z(O)). Then for all " [0, T]

Tn.c)(Z(-))+ {q(-)" q W’(0, ’) satisfies (4.3), q(0) Q/}.

Proof Setting Q(t)= (t, 0)Q and applying Theorem 4.1 with closed convex
processes {G(s)} of Lemma 4.4, we deduce our statement from (4.8).

THEOREM 4.7. Assume that (H)-(H3) hold true and that, for any [0, T], q,
qz W’(O, t) satisfying (4.3) and equal at t, we have q,/llq, qz/llq21l on [0, t]. Then
for all r [0, T]

TR,c)(Z(’))+ {q(r)" q W’(O, z) satisfies (4.3) andq(t) W(t, z)+ on [0, r[}.
In particular, the above happens when for almost all s[0, T], the adjoint A(s)* is

single-valued and Lipschitzian on its domain of definition.
Proof Fix r[0, T], b TR,.c)(Z(r))+, t[0, r[, c W(t,z). By Theorem 4.1

applied, with the family of closed convex processes {G(s)} and the convex cones

for s<t,
Q(s) +c for s t,

(s t, t)Q(t) for s > t,

using (4.8), we prove the existence of q 6 W’(0, -) satisfying (4.3) such that q(-)= b,
(q(t), c)>-O. Since c W(t,z) and t[0, -[ are arbitrary, by the assumptions of
Theorem 4.1, q(t) W(t, z)+ on [0, -[. 1-]

COROLLARY 4.8. Assume that (Hi) holds true and that there exist linear operators
A(s) L(’, ’) satisfying (H2), (H3). Then for all z e (0, T),

TR,c)(Z(r))+ {q(r)"--q’(s) A(s)*q(s),

(q(s), z’(s))= min (q(s), e), q(s) W(s, z)+ in [0, z[}.
eF(z(s))
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Proof. The transposed linear operator A(s)* is equal to the adjoint process in the
sense of Definition 3.1 (see Rockafellar [25]). Since for all be Tg(,c)(z(z))/, the
solution ofthe linear equation -q’(s) A(s)*q(s); q(z) b is unique, the proof folloWs
from Theorem 4.7. [-!

THEOREM 4.9. Let Rc( T," denote the restriction of the reachable map R( T,. to
the set C. Then for every convex cone Qc Tc(z(O)),

Tgaph Rc(T,.)(z(O), Z(T))+

c {(Tr-q(0), q(T)): q6 W"(0, T) satisfies (4.3) andTr Q+}.
Proof By Theorem 2.6,

(4.13) Te,raphRc(T,.)(z(O),z(T))+C{(w(O),r(T,O)w(O)): w(O) G Tc(Z(0))}+.
We replace closed convex processes {A(s)} by {G(s)} from Lemma 4.4 and keep the
same notation for the reachable map of the inclusion

w’(s) e O(s)w(s) a.e.

Then by (3.4), (4.13) we obtain

Tgraph Rc(T,.)(z(O), z(T))+ C {(a, ( T, 0)a)" a Q}/,

and from Lemma 3.5 we deduce that for all (p, q) Tgraph Rc(r,.)(Z(0), z(T))/ we have
p + (T, 0)*q Q+. Lemma 3.4 ends the proof. [3

Remark 4.10 (On the Hamiltonian inclusions). For all x, pI the Hamiltonian
of F is defined by

H(x,p)= sup (p,e)= sup (p,e).
F(x) F(x)

If (H) holds true, then H is locally Lipschitz on Dom F R (see, for example, [9]).
Let us assume that for all s, Dom A(s)* is a subspace of 1" and A(s)* is linear on
Dom A(s)*.

Consider an absolutely continuous solution q of (4.3) defined on the time interval
[0, T]. Pick any s]O,l[ such that (q(s),z’(s))=mineF(z(,)(q(s),e),-q’(s)=
A(s)*q(s). Set t]=-q and fix any u. Let vA(s)u and Vh -- V (when hO+) be such
that z’(s) + hVh co F(z(s) + hu). Then for all w we have

lim sup
ho+ h

H(z(s)+ hu, t(s)+ hw)- H(z(s), t(s))

lim sup
ho+ h

(t(s) + hw, z’(s)+ hVh)--(l(S), z’(s))

(w, z’(s))+(C(s), v)
>--_ (w, z’(s))+(q’(s), u)= ((q’(s), z’(s)), (u, w)).

In particular this yields

(4.14) (-gl’(S), z’(s)) OH(z(s), gl(S))

where OH denotes the generalized gradient of H (see [9]). Hence in this particular
case for every solution q of (4.3), -q is a solution of the Hamiltonian inclusion (4.14).
It may happen that for a family of closed convex processes satisfying (H2), (H3), the
only solution of (4.3) is q---0, and at the same time the Hamiltonian inclusion (4.14)
has solutions different from zero (see the example from [18]). Hence in this particular
case it is more convenient to use the adjoint inclusion (4.3) than the Hamiltonian
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inclusion (4.14) to estimate the cone TRr,c)(z(T))+. In a more general case we do not
know how to compare solutions of (4.3) and (4.14),

5. Application: high-order maximum principles.
5.1. Minimization with respect to the final state. Let U be a compact metric space

andf: I x U " be a continuous function, g " -, C c R". Consider the following
optimal control problem:

(5.1) minimize g(x

over the solutions of the control system

f x’(t)=f(x(t), u(t)) a.e. in [0, 1],
(5.2)

x(0) c, u(t) u is measurable.

Set F(x)=f(x, U) for all x. By the Filippov Theorem [1, p. 91] solutions of
the control system (5.2) and the differential inclusion

x’(t) F(x(t)) a.e. on [0, 1],
(5.3)

x(O)C

do coincide.
THEOREM 5.1. Assume that a trajectory control pair (z, t) solves the above problem

andfor a constant L and all u U,f( ., u) is L-Lipschitzian on a neighborhood ofz([O, 1]).
If g is differentiable at z(1) and for almost all t, f(., u(t)) is differentiable at z(t), then
there exists q WI’(0, 1) such that

of-q’(t)= q(t)-x (z(t), fi(t))

(5.4)

(5.5)

(5.6)

(q(t), z’(t))=min (q(t) f(z(t) u)) a.e.
uU

q( 1 g’( z( )), q(O) Tc (z(O))+,
q(t) W(t, z)+ for all [0, 1[.

Proof By the assumptions, the set-valued map F defined above satisfies (H1).
Moreover, for almost all s [0, 1], (O/Ox)f(z(s), a(s)) dF(z(s), z’(s))
d co F(z(s), z’(s)). Set A(s).=(O/Ox)f(z(s), a(s)). Since [IA(s)ll -<- L, then A(s) is L-
Lipschitz. Hence (H2), (H3) hold true. On the other hand, for every solution x of (5.3)
we have g(x( 1 )) g(z( 1 )) >- 0, which yields

Vw TRI,c)(Z(1)) g’(z(1))w>--O,

g’(z(1)) Tn,c)(Z(1))+.
Corollary 4.8 ends the proof.

COROLLARY 5.2. Under all assumptions of Theorem 5.1, assume that for some
e [0, 1[, W(t, z)+= {0}. Then z(1) is a critical point of g and if g is locally C at z(1)

then g"(z(1))_->0 on TR.c)(z(1)). In particular, this happens when Tc(z(O))+={O}.
Proof Let q be as in Theorem 5.1 and let be such that W(t, z)+= {0}. Then

q(t)=0 and, by the uniqueness of q, q(1) =0. Hence, by (5.5), g’(z(1))-0. Assume
next that g is locally C2 and fix we Tn.c)(Z(1)). Then for some hi-0+, wi- w,
z(1)+hweR(1, C) and since z solves the problem (5.1), (5.2), g(z(1)+hiwi)-
g(z(1))=1/2g"(z(1))wiw,h2+o(h2)>-_O. Taking the limit, we end the proof.
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5.2. Minimization with respect to both endpoints. Let f, U be as in 5.1 and
q:R2n -> R be a given function. Consider the problem

(5.7) minimize q(x(0), x(1))
over the solutions of the control system (5.2). If a trajectory-control pair (z, a) solves
the problem (5.7), (5.2) and q is differentiable at (z(0), z(1)), then

V(w(0), w(1)) TgraphRc(,,.)(Z(0),Z(|)) q’(z(O),z(1))(w(O), w(1))->0,

i.e., rp’(z(0), z(1)) is in the positive polar of the tangent cone. Let W(t, z) denote the
cone of variations of reachable sets R(., z(0)).

THEOREM 5.3. Assume that a trajectory-control pair (z, ) solves the above problem,
fsatisfies all the assumptions of Theorem 5.1, and q is differentiable at (z(0), z(1)). Then
there exists q W’(O, 1) satisfying (5.4), (5.6) and such that

q(1) =Ox2 rp(z(0), z(1)), q(O) Tc(z(O))+
0

-Ox--- rp(z(0), z(1)).

Proof By the proof of Theorem 5.1 the family of maps A(s)= (O/Ox)f(z(s), (s)),
se[0, 1] satisfies (H2), (Ha). We already know that ’(z(0), z(1))e
TgraphRc(l,.)(z(O),z(1))+. Fix be Tc(z(O)). Applying Theorem 4.9 with Q=+b we
deduce that the solution q of (5.4) satisfying q(1)=(O/Ox2)q(z(O), z(1)) verifies

g0(z(0), z(1)) (+b)+- q(0).

Hence (q(O)+(O/Ox)q(z(O),z(1)), b)>-O. Since q does not depend on b, we obtain
that q(O)+(O/Oxl)o(z(O),z(1)) Tc(z(O))+. It remains to show that q satisfies (5.6).
Set g(x) q(z(0), x). Then g’(z(1)) (O/OXz)q(z(O), z(1)). Clearly, (z, 0) is an optimal
solution of problem (5.1), (5.2) with C {z(0)}. Applying Theorem 5.1 with C {z(0)}
we end the proof.

COROLLARY 5.4. Under all assumptions of Theorem 5.3 assume that for some
re[0, 1[, W(t, z)+= {0}. Then (O/Ox)q(z(O), z(1)) e Tc(z(O))+, (Oq/Ox2)(z(O), z(1))
O. Moreover, if Tc(z(O))+= {0}, then (z(0), z(1)) is a critical point ofo, and ifo is locally
C2 at (z(0), z(1)), then rp"(z(0), z(1))>-_0 on Tgr,phR(..)(z(O),z(1)).

The proof follows by the same arguments as in Corollary 5.2.

5.3. Closed-loop control systems. Let U: --m be a set-valued map with com-
pact nonempty images, let C be a nonempty subset of ", and let f: Rn x -> " be
a locally Lipschitzian function, g:" --> [. Consider the following control problem:

(5.8) minimize g(x(1))

over trajectories of the control system

x’(t) =f(x(t), u(t)) a.e. in [0, 1],
(5.9)

x(O) C, u( t) U(x( t)) is measurable.

Set F(x) {f(x, u): u 6 U(x)}. It is clear that every trajectory of (5.9) is a trajectory
of the differential inclusion

x’(t)F(x(t)) a.e. in [0, 1],
(5.10)

x(O)C.
LEMMA 5.5. IfU is upper semicontinuous, then the set oftrajectories ofthe closed-loop

control system (5.9) do coincide with the set of trajectories of the differential inclusion
(5.10).
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Proof We must show that, with every trajectory x wl’l(0, 1) of the inclusion
(5.10),we can associate a measurable function u: [0, liaR" satisfying

x’(t)=f(x(t), u(t)), u(t) U(x(t)) a.e. in [0, 1].

For all t[0,1] set O(t)={u U(x(t))" x’(t)=y(x(t),u)}. Then for almost all t
[0, 1], /(t) is a closed, nonemp set. We claim that U is a measurable set-valued
map. Indeed fix a closed subset C c" and observe that the set

D:={(t,f(x(t), u))" t[0, 1], u U(x(t))f’]}
is closed. Moreover,

{t" J(t)#Q}={t" (t,x’(t))O}.

Thus {t: /(t)fq (} is a Lebesgue measurable set and, since is an arbitrary
closed subset of ’, we proved that U is measurable. From the measurable selection
theorem (see, for example, [26]) follows the existence of a measurable selection
u(t) (x(t)), [0, 1]. The very definition of the map ends the proof. [3

In the theorem below we assume that f(x, U(x)) is regular in the following sense:
If for some x and t7 U(x), q ql 0 we have

sup (q,f(x, u))= (q,f(x, tT)), sup (q,f(x, u))= (q,f(x, )),
ucU(x) ucU(x)

then for some h => 0 q ,q. Geometrically this means that every boundary point of
cof(x, U(x)) has at most one normalized outer normal.

THEOrEM 5.6. Assume that a trajectory control pair (z, ft) solves the problem above,
and thatf is differentiable at (z(t), a(t)), g is differentiable at z(1), U is Lipschitzian on
a neighborhood of z([O, 1]), and f(x, U(x)) is regular Further, assume that there exist
closed convexprocesses B(s) c dU(z(s), a(s)) satisfying (H2). Then there exists a solution
q 6 W1’(0, 1) of the inclusion

of ), Of
-q’--x(Z(t), (t) q+B(t)*(z(t), q

satisfying (5.5), (5.6) and the minimum principle

(q(t), z’(t))= min (q(t),f(z(t), u)) a.e.
ueU(z(t))

Proof From differentiability off at (z(t), a(t)) we deduce that for almost all
and for all w "

Of (z(t) a(t))w+Of (z(t) (t)) dU(z(t) (t))wcdF(z(t) z’(t))w.
OX OU

Hence the closed convex processes

a(t):= Of (z(t), tT(t)) + of
Ox uu (z(t), f(t))B(t)

satisfy (HE) (H3). Since z is the minimizing trajectory for all we T.c)(Z(1)),
g’(z(1))w>-O. Thus, g’(z(1)) T.c)(Z(1))+. We apply Theorem 4.7. Let q, q2 be two
solutions of (4.3) such that q(t)= q(t) O. Then q .0 on [0, t] and

(q,(s),z’(s))= min (q(s),e) a.e.,
ecF(z(s))

(q(s),z’(s))= min (q(s),e) a.e.
eaF(z(s))
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Sincef(x, U(x))is regular q,(s)/[[q,(s)ll q2(s)/llqz(s)ll a.e. in [0, 1] and, by continuity
of q(.) we obtain q,/llq][ q-/llqll. Hence the result will follow from Theorem 4.7
if we show that

of (z(t), fi(t))* + B(t)* Of (z(t) fi(t))*a * c -x O--’
Fix pA(t)*q. Then for all wRn, vB(t)w

(p, w)<-(q, Of/Ox(z(t), a(t))w+Of/Ou (z(t), a(t))v)

=(Of/Ox(z(t), a(t))*q, w)+(Of/Ou(z(t), a(t))*q, v)

and therefore

(p-of/Ox(z(t), ft(t))*q, w)<=(of/Ou(z(t), (t))*q, v).

By the definition of the adjoint process

Of )* B(t)* Of
p--x(z(t), fi(t) qe --u(Z(t), fi(t))*q,

and we finally obtain

Of -uOf (z(t)’ (t))*p-x (z(t), (t))*q+ B(t)* q.

The proof is complete.
The next result is an extension of the main theorem from [22].
THEOREM 5.7. Assume that a trajectory control pair (z, ) solves the problem (5.8),

(5.9) and that f is differentiable at (z(t), (t)), g is differentiable at z(1), and U is

Lipschitzian on a neighborhood of z([0, 1]). Further, assume that for almost all there
exists a selection u,(x) U(x) that is differentiable at z(t) and satisfies u,(z(t))= a(t).
Then there exists a solution q W’(O, 1) of the equation

(Of Of On, )-q’= q --x (Z(t), (t))+--u (Z(t), (t))-’x (z(t))
(5.11)

(q(t), z’(t))= min (q(t),f(z(t), u)) a.e.
uU(z(t))

satisfying (5.5) and (5.6).
The above theorem was proved by Leitmann in [22] without the inclusion (5.6).
Proof The set-valued map F(x)=f(x, U(x)) satisfies the hypothesis (H) on a

neighborhood of z([0, 1]). Moreover, the linear operators

Of of Ou,
A(t)=’-x(Z(t), u(t))+-u(Z(t) (t))-x(Z(t)) tel0, 1],

verify (H2) and (U3). Since z is the minimizing trajectory for all we TR(.c)(z(1)),
g’(z(1))wO. Thus g’(z(1)) TR(t.)(z(1))+ and the result follows from Corollary 4.8
and the inclusion W(O, z)+ Tc(z(O))+. [3

5.4. An implicit dynamical system. Consider a continuously ditterentiable function
f: Rn n __> m and a function g R" , C ".

Here we study the problem

(5.12) minimize g(x 1 ))
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over the absolutely continuous solutions of the implicit dynamical system

(5.13) f(x(t),x’(t))=O a.e. in[0, 1]

satisfying the initial point constraint

(5.14) x(O)C.

Such systems arise as models for nonlinear circuits. In general they cannot be reduced
to the state variable form z’=f(z, t) or to the control system (5.2) (see [6, p. 147,
bibliographical comments].

Set F(x)= {v:f(x, v)=0} and consider the differential inclusion

(5.15) x’(t) F(x(t)) a.e. in [0, 1].

Clearly solutions of (5.13) and (5.15)do coincide. Moreover, by continuity off,
graph (F) is a closed set. The following result is proved in [15]:

LEMMA 5.8. Assume that for all 2 R" there exists e > 0 such that

(5.16) lim inf inf IIf(x, v)ll > 0.
vll--, IIx-ll_-<

Then F has compact images. If, moreover, for all (x, v)graph (F) the derivative
(O/Ov)f(x, v) is surjective, then Dom F is open and F is locally Lipschitzian on it, and

kerf’(x, v)= graph (dE(x, v)).

In particular, this implies that dF(x, v) is a closed convex process.
LZMMA 5.9. Under all assumptions of Lemma 5.8 for every solution x of (5.13)

there exist L> 0 such thatfor almost all s [0, 1], dF(x(s), x’(s)) is L-Lipschitz on Rn and

f;of ),of kerOf (x(s),x,(s
dF(x(s),x’(s))*q -x (x(s)’x’(s) "-v (x(s)’x’(s))*- q ifqe

Ov
))+/-

otherwise.

Proof. Fix a solution x of (5.13). Since the derivative Of/Or is surjective on graph
(F), for all (x, y)e graph (F) there exists p >0 such that

Of (x, )({u(5.17)

Since fe C, the assumption (5.16) implies that there exists a compact set K such that
for almost all s el0, 1], (x(s), x’(s))e K. This, (5.17) and continuity of Of/Or imply
that for some p > 0 and almost all s . [0, 1

Of (x(s), x’(s))({u elR’" ]lull < 1}).

Using Theorem 10.1 of [15] again, we deduce that for some L>0 and almost all
s[0,1], dF(x(s),x’(s)) is L-Lipschitz on a neighborhood of zero. Since
dF(x(s), x’(s)) is a convex process, we finally obtain that it is L-Lipschitz on . By
the definition of the adjoint process p dF(x(s), x’(s))*q if and only if

(p, -q) (kerf’(x(s), x’(s))) Im f’(x(s), x’(s))*.

Hence for all (p, q)e graph (dF(x(s), x’(s))*) there exists a e N’ such that

Of ), Of (x(s) x’(s))*oz.P =xx (x(s), x’(s) ee, -q =--v
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Since (Of/Ov)(x(s), x’(s)) is surjective, the adjoint linear operator (Of/Ov)(x(s), x’(s))*
is injective and hence invertible on

Im (x(s) x’(s))* ker_---(x(s), x’(s))
OV

Thus,

f(x(s) x’ ),qe kerry (s)) Of (x(s), x, of
-P =xx (s))* vv (x(s), x’(s))*- q.

THEOREM 5.10. Assume that z solves the problem (5.12)-(5.14), f satisfies all the
assumptions ofLemma 5.8, and g is differentiable at z(1). Then there exists q e w’(0, 1)
satisfying

of (z(s), z’(s))* of ),_,(5.18) q’(s) =-x -v (z(s), z’(s) q(s) a.e.,

(5.19) q(1)=g’(z(1)), q(s) e ker--v(X(S),X’(S))
(5.20) min {(q(s), e): f(z(s), e)=O}=(q(s),z’(s)) a.e.,

(5.21) q(s)e W(s,z)+ forse[O,l[.

Proof For all we TR(.c)(Z(1)), g’(z(1))w>--O. Hence g’(z(1))e TR(.c)(Z(1))+.
Since the solution of(5.18) is uniquely defined, we may apply Theorem 4.7 with closed
convex processes {dF(x(s), x’(s))}.ct0.l. Lemma 5.9 ends the proof.

6. An impulse closed-loop deterministic control problem. Let U :R" ::X R" be ,a

set-valued map with compact nonempty images, let C be a nonempty subset of
and let f: R" x" [" be a locally Lipschitzian function, g :R" R.

Further, let V" R" v be a set-valued map of shift parameters and " I" xv
be a given function.

Consider the closed-loop control system

x’(t)=f(x(t),u(t)), u(t)eU(x(t)) a.e. in[0,1],
(6.1)

x(O) c.
A sequence {(ti, vi): 1,. , j} is called an impulse strategy of a left-continuous

trajectory x’[0, 1 - ", if 0 t -<. =< tj 1, and for all

(6.2) v, e V(x( ti)),

(6.3) x e W’(t,, t,+),

(6.4) x(ti+ x(ti)+ (x(ti), Di),

and x satisfies (6.1) with a measurable control u. Such trajectory x is called admissible.
This type of system is met in a number of optimal control problems in economics

and management (see, for example, [7, pp. 281-285]). We refer to [5], [24], and the
references therein for previous results on discontinuous optimal trajectories.

Consider a function g:" -. The problem we study here consists in characteriz-
ation of a solution z to the problem

(6.5) min {g(x(1)): x is an admissible trajectory}.

The approach is essentially the same. So we shall only stress the main points. For all
x e set F(x)=.f(x, U(x)). We prove Lemma 6.1 exactly as we did Lemma 5.5.
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LEMMA 6.1. If U is upper semicontinuous, then the set of admissible trajectories
coincide with the set ofleft-continuousfunctions x’[0, n satisfyingfor some 0 tl <-

"<= b 1 and some vi V(x(ti)) the following relations"

X G wl’l(ti, ti+l),

(6.6)
x’( t) F(x( t)) a.e.,

x(O) e c,
x( ti+) x(ti) + q(x( ti), vi).

THEOREM 6.2. Assume that a trajectory-control pair (z, ) solves the problem above
and let {(ti, vi):i 1,..., l} be a corresponding strategy. Further, assume that U, , g,
fsatisfy all the assumptions of Theorem 5.7, that q is differentiable at (z(ti), v), andfor
all there exists a differentiable at z(ti) selection i(x) V(x) such that ui(z(t))= vi.
Then there exists a (left-continuous)function q:[0, 1]- satisfying (5.5), (5.11) and
such that for all

(6.7) q Wl"(ti, ti+l),

(6.8) q(ti)=q(ti+) id+-x(z(ti), vi)+-D(z(ti) vi)-x(z(ti)
(6.9) q( ti+) Tq(z(ti),V(z(ti)))(((z( ti), vi))+.
Furthermore, we have the Jbllowing:

(a) If the right derivative z’(t+) does exist, then

min (q(ti),f(z(ti), u))>-(q(ti+), z’(ti+));
U(z(t))

(b) If the left derivative z’(t-) does exist, then

min (q(t,+),f(z(ti+), u))>-(q(t,), z’(ti-));
U(z(ti+))

(c) If z has the right and left derivatives at ti, then

min (q(t,+),f(z(ti+), u)= min (q(ti),f(z(ti), u))=(q(ti), z’(ti-))
U(z(ti+)) U(z(ti)

(6.10)
=(q(ti+),z’(t+)).

When U does not depend on x the assumption that f(x,. is locally Lipschitzian
can be omitted and we have Theorem 6.3.

THEOREM 6.3. Let U be a compact metric space of controls, V be a set of shift
parameters, f: x U --> be a continuous function, and o x V-->. Assume that a
trajectory-control pair z, u) solves the problem

(6.11 minimize g(x 1 ))

over the solution of the system

x’(t)=f(x(t), u(t)), u(t) U a.e. in [0, 1],

x(O) C andfor some 0 <--___" <-- tj 1,
(6.12)

v V and all i, x W’( t, t+),

x( ti+) x( ti) -t- (X( ti) Vi)
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and let {(ti, t)i)’.i: 1,’’’, I} be a strategy of z. If f, g satisfy all the assumptions of
Theorem 5.1 and q(., vi) is differentiable at z(ti), then there exists a left-continuous
function q:[0, 1]->R" satisfying (5.4), (5.5), (6.7), (a)-(c) of Theorem 6.2 and

(6.8’) q(ti) q(t+) id +xx (z(t,), v)

(6.9’) q(t,+) e T((,,.v(o((t), v))/.

As in 2 we associate the reachable set R(t, C) at time with the differential
inclusion (6.6).

To prove the Theorem 6.2 we need the following (simple) lemmas.
LMMA 6.4. For all 1,. , l- 1 set

Ci R( ti, C) U {x + (x, v): x e R( ti, C), v e V(x)}.

en
T,t,,).vt,t,,)))((z(ti), vi))a Tc,(Z(ti+)).

The proof follows from the inclusion z(t) + (z(ti), V(z(ti))) = C and the
definition of the contingent cone.

LEMMA 6.5. For all l, , I- 1 set

A, id+0 (z(t,), v,) +0
Ox (z(ti), vi)(z(ti)).

Then

A,( TR(,,.c)(Z( ti))) Tc,(Z( ti+)).

Proof. Fix l<=i<-l-1, we Tg(,,.c)(Z(t)) and let hj-O+, wjw be such that
z(t,) + hw R( t,, C). Then

z( t,) + hiw + (z( ti) + hwj, vi(z( ti) + hjwj))

a az(t,+)+ hjwj+ (z(t,), v,)hjw)+ (z(t,), vj) (z(t,))h)w) + o(h))e C.

The definition of the contingent cone ends the proofi
LEMMA 6.6. Assume that z has the right derivative z’(t+) at ti and let u U(z(ti)).

en the solution w of the linear system

[of of au, ]w’ (z(t), fi(t))+(z(t), a(t))(z(t)) w,

satisfies

W(ti)-- Aif(z(ti),

Then

W(ti+l) e TR(t,+,,C)(Z(ti+l)).

Proof Fix h - O+ and let x be a solution of the inclusion

x’(t) e F(x(t)) a.e. in [t, ti+,],

x(ti) z(ti), x’(ti) f(z(ti), u).

x(ti+ hj)= z(ti)+ hjf(z(ti), u)+o(hj)e R(ti+ hj, C),
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and therefore

x( ti + hi)+ p(x( ti + hj), vi(x( t, + hi))) z(ti+) + hjAif(z( ti), u)+ o(hi).
Thus

x( t, + h) + ,(x( t, + h), v,(x( t, + h))) z( t, + h) + h[A,f(z( t), u) z’(t,+)] + o(h)
and Aif(z(ti), U)--z’(ti+) can be seen as a variation of R(., C) at (ti, x(ti+)). The
proof then follows by the same arguments as Theorem 2.4.

LEMMA 6.7. Assume that z has the left derivative z’(ti-) at ti. Then for all u
U(z(t,+))

f(z(t+), u)-A,z’(t,-) Tc,(z(t,+)).

Proof. Fix hi->o+, u U(z(t,+)) and set

x. := z(t,- h)+ (z(t,- h), (z(t,- h))).
Since F is locally Lipschitzian there exists M > 0 such that, for all j and
dist (f(z(ti+), u),

F(x.i + ti + hi)f(z( ti+), u)) <= M(llx z(t/)11 / hillY(z( t,/), u)ll) O(h.).
This and Filippov’s Theorem imply that

x.i+ hif(z(ti+), u) R(ti, C)+ o(h).
The definitions of x and of the contingent cone end the proof.

LEMMA 6.8. For all pc TR(ti+,.C)(z(ti+l))+ there exists q wl’(ti, ti+) satisfying
(5.11), such that

(6.13) q(ti+)=p, q(ti+) T(z(,i),v(z(,,)))((z(ti), vi)) +,
(6.14) q(ti+)Ai TR(,,.c)(z(ti)) +.
Moreover, q satisfies (a)-(c) of Theorem 6.2 with q(ti)=q(ti+)Ai.

Proof. Consider the differential inclusion

x’(t)f(x(t), U(x(t))) a.e. in[ti, ti+],
(6.15)

X( i) Ci

and observe that its reachable set R(ti+l, Ci) at time ti+ is contained in R(ti+, C).
Thus p T,,+,.c,)(z(ti+))+. By Corollary 4.8 applied on the time interval [ti, t/+l] to
(6.15) and linear operators

of Of 0u___,A(t)=--x (Z(t), a(t))+u (Z(t), a(t)) ox (z(t)),

there exists q W’(ti, ti+) satisfying (5.11) such that q(ti+)=p and

(6.16) q(ti+) Tc,(z(ti+))+.
Then (6.13) follows from (6.16) and Lemma 6.4 and (6.14) results from (6.16) and
Lemma 6.5. Lemma 6.7 and (6.16) imply Theorem 6.2(b). Since q solves the linear
equation (5.11), Lemma 6.6 implies that for all u U(z(t))

(q(ti), Aif(z(ti), u)-z’(ti+))>-O.

Hence we have Theorem 6.2(a). On the other hand, by [13]

Z’( ti-- CO F(z( ti-)), z’( ti+ co F(z( ti+)).
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This and (a), (b) imply that

(q(t,), z’(t,-))<= min (q(t,+),f(z(t,+), u))
U(z(ti+))

<=(q(ti+), z’(ti+)) <-<- min (q(t),f(z(ti), u))<=(q(ti), z’(tg-))
U(z(ti))

and claim (c) follows.
Proof of Theorem 6.2. Since z is an optimal, trajectory, g’(z(1))w>=O for all

we TR.c)(z(1)). Thus, g’(z(1)) TR.c)(z(1))+ and we may apply Lemma 6.8 with
p g’(z(1)). Set

q(tt-) q(tt-+)At- TR(t,_,,c)(Z(tl-)) +.
Then Lemma 6.8 can be applied again with p q(tl_). We complete the proof using
an induction argument and Lemma 6.8.

Observe that the Lipschitz continuity of f(x,.) is needed to prove the local
Lipschitzianity of the map x-->f(x, U(x)). When the control map U does not depend
on x, the set-valued map x-->f(x, U) is locally Lipschitzian and therefore the same
proof implies Theorem 6.3.

Remark. Theorems 6.2 and 6.3 can be stated together with a higher-order condition
on the adjoint vector q. However, we do not do so here to simplify the presentation
of the result.

7. Examples.
Example 1. Smooth control system. Consider the following optimal control problem

in

minimize y (1)

over the solutions of control system

x’= 1 + u(x + y2), U {0, 1},
(7.1)

y’=u(2y-x), x(0) y(0) 0.

Set a 0. Then z(t) (t, 0) is a solution of (7.1). Moreover, q (0, 1) verifies the
maximum principle (5.4). On the other hand, setting u= 1, we obtain the following
Taylor expansion of the corresponding solution (x, y) of (7.1)"

2

X(t) tx’(O) +- X"(O) + O( 2) +--+ O(t2),

t2
"(0

t2
y(t) ty’(O)+y + o( 2) -+ o(t2).

Hence z(t)+t2(1/2,-1/2)6R(t,O)+o(t’), and therefore (1/2, -1/2) W(O,z). But
((0, 1), (1/2,-1/2)) < 0. Comparing with (5.6), we deduce that the pair (z, ) is not optimal.

Example 2. Implicit dynamical system. Consider the following problem in

minimize 2 sin y(1) x(1)

over the solutions of the implicit system

(7.2) +exp (3)-2)- 16x2-exp (4x-y) =0, x(0)=0, y(0)=0.

Then (7.2) satisfies all the assumptions of Lemma 5.8. Observe that z (x, y)= 0 is a
solution of (7.2). Set q-= (-1,2) and

F(0) {(u, v)" u4+exp(u-Zv)-l=O}.
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Then for all (u, v)eF(O), u-2v<=O. Hence min{(q,e): eF(0)}>--0. Therefore q
verifies the maximum principle (5.18)-(5.20). On the other hand, the trajectory t
(-t2,-2t2) is a solution of (7.2). Hence (-1,-2)e W(O,z) and ((-1,2)(+1,-2))=
-3 <0. Consequently (5.21) does not hold and therefore the zero trajectory is not
optimal.

Example 3. Differential inclusion. Consider the problem

minimize g(x(1))

over the solutions of the differential inclusion

(7.3) x’F(x), x(0) Xo

where F :N" := " is a set-valued map with convex images satisfying (H) and g :N" [

is a differentiable function.
The high-order variations for this problem can be studied via an extension of Lie

brackets to set-valued maps. Although, repeating arguments from [14], we can do it
for general trajectory z of (7.3) at every point where z is twice continuously
ditterentiable, the calculations are quite lengthy. This is why in this example we only
treat the case

0 F(xo)

and the constant trajectory z-= Xo using the ready results from [14].
From now on we assume that 0e F(xo). To state a second-order condition for

optimality we recall the following definition.
DEfINiTiON 7.1. Let Q F(x). We set

[F, F]o(x) {dF(x, a)b dE(x, b)a: a, b Q}.

The following theorem tests for optimality the constant trajectory z-= Xo.
THEOREM 7.2. Let A dF(xo, O) be a Lipschitzian closed convex process, Q F(xo)

be a convex set suck tkat
(i) 0 e r int Q;
(ii) F is lower semicontinuously differentiable on Xo Q (see [14]).

If z---Xo is optimal tken tkere exists a solution q of tke differential inclusion

-q’6A*q, q(1)=g’(xo)

satisfying the minimum principle

min (q(t),e)=O for all e [O, 1]
F(xo)

and the second-order condition

q(t) (dF(xo, 0)Q)+, q(t) ([F, F]o(Xo))+

for all [0, [.
Proof Fix tel0, 1[. By [14, Thm. 5.2], dF(xo, O)Qc R(t, Xo). From the proof of

Theorem 6.1 in [14] we deduce that IF, F]o(Xo)C R(t, Xo). Since z --= Xo is optimal,
g’(xo) TR(,xo)(Xo)+. Theorem 4.2 ends the proof. [3

Final remark. It is clear that the creation of a differential and "variational" calculus
of set-valued maps (applied to reachable sets) is needed to make the field of applications
broader. Special difficulties arise at all points where the trajectory tested for optimality
is not continuously differentiable. Until now, this difficulty has not been overcome by
any theorem in the literature concerning high-order necessary conditions. It is usually
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assumed that the optimal trajectory is C (or piecewise C) (see, for example, [20],
[19], [4]). But, because of the Lavrentiev phenomenon, such an assumption is not
reasonable. This is why we state necessary conditions here using "general" variations
of reachable sets.

Acknowledgment. I thank Professor J. Zabczyk for bringing to my attention the
applicability of the results to the considered impulse control problem.
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NONLINEAR OBSERVER DESIGN BY OBSERVER
ERROR LINEARIZATION*

XIAO-HUA XIA AND WEI-BIN GAO’

Abstract. This paper studies the observer design problem by the observer error linearization approach
for nonlinear systems with and without inputs. Necessary and sufficient conditions for the existence of the
linearization transformation are derived. For nonlinear systems without inputs, the conditions are shown
to be corrections to an existing result. A computation procedure and a different set of necessary and sufficient
conditions based on the computation procedure are presented.

Key words, linearization, nonlinear observer, observer form, canonical forms, observability
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1. Introduction. Consider nonlinear systems of the following form:

(1.1a) =f(x,u), xRn, uRp,

(1.1b) y=h(x), yR"

where for each u, f(., u) V(Rn), the set of smooth vector fields on R n, h(x)=
(h(x),..., h,,(x)) r, hi(x) C(R"), the set of smooth functions on R n, i= 1,.-., m,
and f is smooth with respect to u.

The observer error linearization problem is stated as follows.
Given a nonlinear system (1.1), and an initial state x, find (.if possible) a

neighborhood U of x, and a coordinates transformation

(1.2) z= F(x) (or x= W(z)= F-’(z))
defined on U, a pair of matrices (C, A) in dual Brunovsky canonical form with
observability indices k,..., k,,, i.e.,

(1.3a) A

0-1 0"2 0"m

10

0
0

0

10

0 0
0

10

0-1
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O" 0" O-

(1.3b) C

0 010 00 0 00

0 000 01 0 00

0 000 00 0 01

where tri .i=1 ki, 1,. ., m, and a mapping a h( U) x R t’ R" such that

(1.4) h(W(z))=Cz,

(1.5) F,f(W(z), u)=Az+a(Cz, u)

for all z F(U), u Rp, where F, is the Jacobian of F.
If this problem is solvable, then in the new coordinates, the system (1.1) is in the

form

(1.6a) . Az + a(y, u) g(z, u),

(1.6b) y Cz

and then an observer for system (1.1) can be constructed easily so that the observer
error satisfies a linear dynamical system (for details, see [6]).

A nonlinear system in form (1.6) is said to be in observer form. This approach
for nonlinear observer design was first proposed by Krener and Isidori [1] and Bestle
and Zeitz [2] independently as the loose-sense mathematical dual 0f that proposed by
Jakubczyk and Repondek [3] and Hunt and Su [4] for the exact linearization problem
of nonlinear systems. Necessary and sufficient conditions in terms of differential
geometry are derived in [1] for nonlinear systems without inputs when m- 1.

Recently, Li and Tao [5] obtained a different set of conditions described as rank
conditions of matrices for single-output nonlinear time-variable systems.

For the most general cases, Krener and Respondek [6] give a very good characteriz-
ation of the approach.

In this paper, we shall consider the observer error linearization problem for
nonlinear systems both with and without inputs. Some new results are presented. As
a consequence, a correction to Theorem 5.1 in Krener and Respondek [6] is made.
Moreover, our method for dealing with systems with inputs is different from that of
[6]. We will give a computation procedure for the transformation. Based on this
computation procedure, a different set ofnecessary and sufficient conditions is obtained.

The organization of the paper is as follows. Sections 2 and 3 deal with systems
without inputs. Section 2 is devoted to necessary conditions and 3 to sufficient
conditions. Based on the discussion in the previous sections, we consider systems with
inputs in 4. Section 5 contains examples and 6 conclusions.

2. Necessary conditions. In this section and in 3, we consider systems without
inputs. Let us first analyse the problem as follows.

If the state transformation exists, then from (1.5), we have in coordinates rep-
resentation

OW
(2.1) f(x)= W,g(z)=-’z g(z).
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Partially differentiating both sides of (2.1) with respect to z0 results in

(2.2)
of(x) o(ow) owog(z)
OZij OZij -Z g(Z) 40Z OZij

but

(2.3)
of(x) of o w
OZij OX OZgj

(2.4) Oz’-- g(z) =x O’- g(z) -x f(x),

o w og(z)
(2.5)

OZ OZij

oW

OZo+I
OW Oa

OZ OZik

i=l,...,m; j=l,...,ki-1,

i=l,...,m; j=ki.

By substituting (2.3)-(2.5) for (2.2), we obtain

(2.6) Oz!i+l-Ox Ozo Ox
f i=l,...,m; j=l,...,ki-1,

OW Oa Of OW O
(2.7)

OZ OZik OX OZik OX

in other words,

OWOW
ad(__j.),(2.8)

Ozo+ Ozii
j 1," ", ki- 1,

OW Oa
(2.9) ad(_,.)

OZ OZik

oW
OZik

These can be rewritten as

oW oW
(2.10) -ad (-.f)

0 Z(j.+ 0Z
j=l,...,ki-1,

k. OW
(2.11)

O W Oa
=ad(,_f)---,

OZ OZik OZil
,m.

On the other hand, from (1.4) we have

(2.12) hp( W(z)) cpz, p 1,..., m

where cp (0... 010... 0) with .the unit in the (P=l ki)th position.
Partially differentiating both sides of (2.12) with respect to zi, we may have

(2.13) (dhp, O W/Ozi) i,. lj,ki, i= 1,. , m; p 1,. ., m; j 1,. ., ki
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where 6 is the Kronecker delta. By (2.8) and the Leibniz rule, we see that

(dhp, 0 W/Ozo) (dhp, ad(_y)o W/Ozo_l)

(2.14) L(_f)(dhp, a W/azo_)-(L(_f)(dhp) a W/ozo_)

(Lf(dhp), O W/Ozi_), i, p l, m; j= 2, ki,

so formulae (2.13) imply, for i= 1,..., m,

(2.15) (L:-’(dhp), O W/Ozi,}= Si.p .i.k,, P l, m; j= l, ki.

Thus, the problem is reduced to the investigation of the solvability of (2.10),
(2.11), and (2.15). We may formulate the analysis above as a theorem.

THEOREM 2.1. The state transformation (1.2) transforms the system (1.1a)-(1.1b)
into system (1.6a)-(1.6b) if and only if Wand a satisfy (2.10), (2.11), and (2.15).

Remark 2.2. Note that (2.15) are linear algebraic equations in 0 W/Ozi. For each
i, there are mki equations altogether. If mki > n, then these equations are overdeter-
mined, and if mki < n, they are underdetermined. Therefore, O W/Ozil may not be
uniquely obtained. When the observability indices are identical, i.e., k k2
then 0 W/Ozl is uniquely determined.

Yet, the solvability of these linear algebraic equations is always guaranteed by a
simple consequence of the necessary conditions developed below.

THEOREM 2.3. The observer error linearization problem is solvable only if there exist
m-tuple of integers (kl,... k,), k > k2 >...> km >0, and ’ ki n, such that wei=1

have the following:
(i) If we denote (with a possible reordering of the hi’s)

(2.16) Q {Li:-’(dh,)" i= 1,..., m;j= 1,...,

then

(2.17) dim span Q n

in a neighborhood of x.
(ii) If we denote

(2.18) Qj {L-’(dhi)" i= 1,..., m; k 1,..., k}-{L-’(dh)}

forj- 1,..., m, then

(2.19) span Q span Q (q Q

forj=l,. .,m.
Remark 2.4. Condition (i) means that the nonlinear system is observable in some

sense.
Remark 2.5. Condition (ii) means that in representing those 1 forms in Qi- Q f3 Qi

as linear combinations of the forms in Q, the coefficients attached to the 1 forms in
Q-Q f3 Qi are zeros. This is a dual result of 1 in Hunt and Su [4].

Proof of Theorem 2.3. If z F(x) or x W(z) is the state transformation, then
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is nonsingular. Denote the matrix O(x) as

dh
L(dh,)

(2.20) O(x)

L.(dh,,)

L’ -idh)fm

and consider the matrix product O(x). 0 W/Oz.
From (2.10) and the Leibniz rule, it is easy to see that

(2.21) O(x)
o w
0-7--

0 1

.." x 0 0

X

X

0 0

1

1 X X

The matrix in the right-hand side of (2.21) is nonsingular. This implies (i).
Now we prove (ii). Obviously,

(2.22) span Qi -span Q Qi, i= 1,..., m,

so, if we can prove that dim span Q-<_ dim span Q Q, we then have (ii).
On the one hand, because of (i), it is clear that

(2.23) dim span Q f3 Q ik + ki+ +" + k,, 1

for 1,..., m. On the other hand, by (2.13) and repeated use of the Leibniz rule,
we may have

(2.24) (L.-’(dhp)O W/Ozj.) O

for i=l,...,m; k=l,...,k-l; j=l,...,i; s=l,...,k.-ki+. That is,
0 W/Ozl, ," , 0 W/Oz, k,_k,+," , 0 W/Ozi_, , 0 W/Oz_k,_,_,+, 0 W/Oz annihi-
late the one forms in Q. Because of the independence of 0 W/Oz;’s we deduce that

dim span Qi-<- n -(k,- ki) (k_- k)- 1
(2.25)

So, from (2.23)
dim span Oi < dim span Q f3 Qi.

This completes the proof. [3

COROLLARY 2.6. If conditions (i) and (ii) of Theorem 2.3 hold, then the linear
algebraic equations (2.15) are solvable.
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Proof By (ii) and Remark 2.5, we know that (2.15) are in fact equivalent to the
following equations (write g for O W/Ozi)"

(2.26) (dhl, g) O (dhi, g) O,

(Lsdh,, g)= O (Lrdh,, g)= O,

ah , 0... ,-I ah ,

(dh,+l, g)=0" (dhn, g)=0

(L.rdh,+l, g) 0... (Lsdhm, g) 0

L dhi+ g}=O... {L,,,-’ dhm,

Solutions always exist for these ik + ki+ +. + k, equations, since dim span [Q U
{t’-l(dh)}]

Now let g, g be solutions to (2.15), and define a matrix as follows:

(2.27) ((x) (gl ad(_j,)g’...
As in the argument of Theorem 2.3, we have that Q(x) is nonsingular if the system

is observable (that is, if O(x) is nonsingular). Thus from (2.11) we have

Oa O_,(x) adk.(Lf)g(2.28)

Another necessary condition can be derived by (2.28).
THEOREM 2.7. A necessary condition for the system (1.1) to admit an observerform

(1.6) is that there exist solutions g, g" of (2.15) such that

(2.29) rank
O [O-’(x) d’-r)g’ ]

[ h(x)

Proof. If the state transformation x W(z) exists, then we have

(2.30) y (Z,k, Zmk,,,) T h(x).

However, from the previous remark, (2.10), and (2.11), we have

Oa
(2.31

OZik

where

(2.32)

0-’(x) ad:.r)g’ bi(y)= bi(h(x))

b(y) (bioo(Y) b,,,k,,,__,(y))

Oa(y) aa(z,k,, Z.,k,,,)
Oyi OZiki

is dependent only on y, so
kl(x) ad_.r)g b(h(x))

rank
0

O’-- d-’(x) ad k rank
O

(:o.)g Ox bm((x))
h(x) h(x)

oh
rank- m. [3

Ox

3. Sufficient conditions. We have already seen from the previous section that the
observer error linearization problem is transformed to the study of the integrability of
the partial differential equations (2.10) and (2.11) and the solvability of the linear
algebraic equations (2.15). By considering (2.15) and (2.11), we have obtained the
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necessary conditions. In this section we turn our attention to the integrability of the
partial differential equations (2.10) and (2.11). As remarked by Krener and Respondek
[6], the integrability of (2.10) implies the integrability of (2.11). We will show that the
converse is also true. And the integrability of (2.10) and of (2.11) leads to sufficient
conditions for the observer error linearization problem.

First, consider (2.10); we then have Theorem 3.1.
THEOREM 3.1 The observer error linearization problem is solvable if and only if

there exist m-tuple ofintegers k, , k,, ), k >- k >=. km > O, and i= ki n, such
that we have the following:

Conditions and ii in Theorem 2.3 hold.
(ii) There exists a mapping ch of some open set V of R" onto a neighborhood U of

x and vector fields g , , g satisfying

(3.1)

such that

(3.2) k-g. .g’ .ad k -lgm
Oqb (g ad(-.r)g ad(’-.r) ad(-.c)g" ("-’.r go(z)
Oz

for all z V.
Remark 3.2. The gi’s satisfying (3.1) can always be found if Theorem 3.1(i) holds.

As a matter of fact, we need to solve only the set of equations

(3.3) LI--1.I (dhj), g’)= ti,.j 61,k., i,j= 1,..., m; l= 1,..., ki.

These are just the linear algebraic equations (2.15). Thus, Corollary 2.6 and (1) imply
the solvability of (3.3). [3

Remark 3.3. Equations (3.2) are, in fact, (2.10). So, the theorem implies that the
integrability of (2.11) is guaranteed by the integrability of (2.10). Also, we can show
the converse (see Xia and Gao [7]).

Proof of Theorem 3.1. The necessity follows easily from Remarks 3.2 and 3.3 and
Theorem 2.3.

Sufficiency. Suppose (1), (2) hold. As in the proof of Theorem 2.3, we may
immediately note that the matrix

dhl
Lr(dh)

Lk -1. (dh)
kl--lgl gm[g ad_..r)g ad_..) ad_.r)g ad k’_’).)--gm]

dh,,

Lf(dhm)

Lk --idhm)fm

has rank n in a neighborhood U of x. Therefore, the vector fields ad._.r)g , i--
l, , m; j 0, , k- 1 are linearly independent in the neighborhood U of x.

Let z R", such that b(z) x. From the linear independence of the vector fields
on the right-hand side of (3.2), we deduce that & has rank n at z, i.e., that & is a
ditteomorphism of a neighborhood of z onto a neighborhood of x.
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Set W b, or F I]) -I, and

0 0
(3.4) F,f F-’(z)=fl, 0--+’’" +fk,

OZlk,

By (2), the mapping b is such that

so that

0

OZm,

0 ) ch-’(x) ad{_.l.)gi(x)4),
oZo+

F, ad{_f)g F-l(z)_

for i=l,...,m;j=O,...,ki-1.
Using (3.4) and (3.5), we obtain, for i= 1,..., m; j =0,..., ki-2,

...Aj+I i F-F, ’i-.s (z) F,[-f, ad/_.-g] F-(z)

[-F,fo F-’(z) F, ad (-.l)g F- (z)]

il 0 0
q- ff-fmk,,,--,10Zll OZmk,, OZij+l

Of,, 0 Ofm,,,, 0

OZij+l OZll 0Z/j+I OZmk,,,

Because of the linear independence of the O/Ozij’s, this implies

0f,
(3.6)

Ozj+l
6,!" 6k,+2.

We then deduce that f,,... ,f,,, depend only on Z,k,,’’" Zrnk.... and that f0 for
1, , m; j 2, , ki, is such that f0 z,..j_ depend only on Zlk,, Zmkm. In

other words, we have

F,f F-l(z) Az + a(Z,k, ,’" ", Z,,k,,,)
where a is a suitable mapping of Zik,, and this shows that condition (1.5) holds.

Moreover, since, by (3.1).

for i,j 1,. ., m; l= 1,. ., ki, we have that

Ohjo F-1

OZil

for i,j 1,. ., m; 1,. ., k. In other words,

0
--(hoF-l(z))=C.
Oz

This implies that condition (1.4) holds.
The integrability of the partial differential equations (3.2) may be expressed in

terms of a property of the vector fields on the right-hand side (see Spivak [8]).
THEOREM 3.4. The observer error linearization problem, is solvable if and only if (i)

and (ii) in Theorem 2.3 hold and there exist vector fields g 1,..., g,, satisfying (3.1)
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such that

(3.7) adg-.r)g’ adl_y gJ]=0

for i, j= l, m; k=O, ki-1; /=0,. .,kj-1.
Now, several consequences of the results above are immediate.
COROLLARY 3.5. A nonlinear system (1.1a)-(1.1b) admits an observerform (1.6a)-

(1.6b) with the observability indices in the pair (C, A) all identical if and only if:
(i) dim span Q n;
(ii) [ad_rg i, ad (_.f)g 0,

for i,j 1,..., m; k, 0,..., ki- 1, where gi is the vector field determined by (3.1).
Proof. If we notice that when k k2 k,,, Q Q Q, then the proof is

trivial. E
Also, if we prolong the linear algebraic equations such that g can be uniquely

defined, a sucient condition follows.
COROLLARY 3.6. Let g.i be the vector field defined by the following n equations"

(3.8) Lg,Lh ..i" t.k,, 1," ", m; 1," ", k,

for j 1,.’’, m, then the observer error linearization problem is solvable if conditions
(3.7) hold.

Remark 3.7. Now we can see that the conditions in Theorem 5.1 of[6] are sucient
but not necessary, as a counterexample in the next section will show.

Remark 3.8. The partial differential equations satisfying condition (3.7) can be
integrated by standard methods as outlined in [8]. The computation algorithm in Hunt
and Su [4] can also be used to solve these equations.

The state transformation can also be obtained by considering the integrability of
(3.11). This has been done in Xia and Gao [7] for nonlinear systems without inputs.
In [7], a computation procedure is proposed, and based on the computation procedure,
we obtained a different set of necessary and sucient conditions. For comparison with
the previous result and for the development of the next section, we briefly review some
results in [7].

A COMPUTATION PROCEDURE.
(i) Compute O(x) defined in (2.20).
(ii) Choose solutions g,..., g of (2.26) or (2.15), and compute O(x) defined

in (2.27), and b’s defined in (2.31).
(iii) If b’s are functions of y (i.e., Zk,," ", Z,,,), solve the following equations:

Oa
(3.9) b, (y).

Oy

(iv) Compute the state transformation

(3.10) z=F(x)=

as follows"

z(x)

z,,(x)

z..,’(x)

.z,,,(x).

(3.11a) Zik,(X) hi(x) for i= 1," , m,
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(3.11b) zU(x) LrZu+l(X)- aij(h(x))

for i=l,...,m;j=ki-1, ki-2,...,2,1.
(v) Redefine ao(Xlk,, ", X,,k,,,) aio(Y) Lizl(x), for i= 1,.
Before we introduce the results, some conventions are necessary.
For multivalued functions g (gl, ", gm), g gi(Y,,

the following mn x m matrix as [Og/Oy], i.e.,

Og___2 Og Ogl

Ogm Ogm Ogm

Oyl Oy2 Oym

1

,m.

Ym) Rn, we denote

An mn m matrix A partitioned as follows will be denoted as A,

Al A2 Al,, n

(3.13) = A21 A2z. A,. n. (au),,. A.

[Al Amz A,, n

1 1 mnm

An mn m matrix A is called block symmetric if A,..i’s in the partitioned A in
(3.13 satisfy

Au Aji i, j 1,’’’, m

and the block symmetrical property of an mn m matrix A is denoted as

/ =/T

Now, we are ready to introduce our results.
THEOREM 3.9. The system (1.1) admits an observer form (1.6) if and only if there

exist m-tuple of integers k , kin), k >= k2 >=" >= km > O, and i= k n, such that"
(1) Conditions and ii in Theorem 2.3 hold.
(2) There exist solutions g , , g to (2.26) such that condition (2.29) in Theorem

2.7 holds.
(3) If we denote an mn m matrix S(x) as

(3.14) S(x) 0--- I -(x) adf)g’l(Ox)r[Ox(Ox)r]-l"OX O--l(x)--kao( ’_"f)g

then S(x) is block symmetric, i.e.,

(3.15) S(x)=(S(x)) .
Remark 3.10. This theorem guarantees the computability of the procedure. We

see that step (iii) is the most difficult part of the procedure. Under the conditions of
this theorem, the partial differential equations (3.9) are usually referred to as exact
equations. Solutions of exact equations are easier to obtain. So, from the computational
point of view, the method here is more convenient than the method we used when
solving the partial differential equations (3.2).
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Remark 3.11. From this theorem, it is easily seen that the integrability of (2.11)
implies the integrability of (2.10).

Remark 3.12. The proof of this theorem can be found in [7]. From the proof, we
can see that there are some abundances in (3.9). In fact, equations concerning aio,

i= 1,. ., m, in (3.9) can be dropped. Thus, we need to check appropriate conditions
of lower-dimensional matrices. For details see [7] and the next section.

4. Systems with inputs. In this section, we consider systems with inputs. From the
previous discussions, it is easily known that (2.10), (2.11), and (2.16) hold in this case,
except that L.r and ad(_.l- are replaced by L.r(.,, and ad(_.r(.,u)) respectively. Throughout
this section, for notational simplicity, we will assume that L.. and ad(_.r stand for L.r(.,,
and ad(_.t.(.,u)) respectively. Now the matrices O defined in (2.20) and t defined in
(2.27), respectively, are u dependent. A u-dependent proposition is true if it is true
for any u. Thus, the necessary conditions developed in 2 are also valid here. We
remark that the nonsingularity of the matrix O(x, u) relates to a kind of observability
property of the system (see [9]). To derive sufficient conditions, we note that the,

mapping a must satisfy some extra requirement because it is now u dependent. In this
section, we will give a modification of the computation procedure introduced above.

First, we check each step in the computation procedure. Steps (i) and (ii) will
present no problem. Step (iii) needs some modification. This is because there will be
certain restrictions on the dependence of the mapping a(y, u) on the inputs u to
perform step (iv).

We explicitly do as follows. From step (iv), we have

Zik,-.i Lj’hi x L- a,,,_ Ltaik,-.i+ ai,,-.i

L.hi(x)_ ii: oa,,,_, Oh. f Oa,k,_+.____._____A oh. f_
Oy Ox Oy Ox

for 1,. , m; j 0, 1,. , k- 1. Now, since

we have

If we denote

Oai_ (Oa Oa] r
mr

Oy \’Y Ym/
b i b ’

Ziki_j L.h,(x)_ Lr-.-, (b r Oh
ig,-. bg,_.) f aiki_

s=l

& iki_.j aikj._j.

o
(4.1) bp+i(x, u)=/(71o""" lkl_l"’" 0’’’ k,,,--1) T

for i= 1,..., m, then we will have the extra equations the mapping a must satisfy

Oa
(4.2) b+,(x, u)

Ou

for i= 1,..., m. Therefore, we have a modified computation procedure.
(i) Compute O(x, u) defined in (2.20).
(ii) Choose solutions g,. ., g’ of (2.26) or (2.15), and compute 0(x, u) defined

in (2.27) and b’s defined in (2.31) and (4.1).
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(iii) If bi’s are functions of y and u, then solve the following equations"

Oa
(4.3a) bi(y, u), i= 1, p,

Oa
(4.3b)

Ouj
bp+(y, u), j 1, m.

(iv) Compute the state transformation as follows:

(4.4a) Zik,(X)= hi(x) for i= 1,..., m,

(4.4b) zo(x) Lrzi+(x)- ai(h(x), u)

for i=l,...,m;j=ki-1,...,1.
(v) Redefine aio(y, u)= Lrzil(x)-;ti(x, u), for i= 1,..., m.

Now, we have to show that if a transformation exists (it is easily seen that all the
above steps are computable), then the computation procedure shown above does give
the transformation. Moreover, for the computation of step (iii), we must find conditions
that ensure the integrability of (4.3), and we have to show that the z,..j’s computed in
step (iv) are independent of the inputs u. This leads to the sufficient conditions below.

THEOREM 4.1. The system (1.1) admits an observer form (1.6) if and only if there
exist m-tuple of integers k , kin), kl >- k2 >-" >- km> 0, and i= ki n, such that"

(1) Conditions and ii in Theorem 2.3 hold.
(2) There exist solutions g , ,gm to (2.26) such that

I
(4.5) rank OOx [ b,(x., u) m

1

k h(x)

where the bi’s are from (2.31) and (4.1), and the Ai’s are from step (v).
(3) If we denote an m +p) n m + p) matrix S x, u) as

O Oh T Oh Oh 7" --1
0

(4.6) S x, u)= -x
b,+p X,

-x -O-x -x -u
then S(x, u) is block symmetric, i.e.,

(4.7) S(x, u)= (S(x, u)) r.
Proof. Necessity. We only prove (3); the other conditions are similarly proved, as

are the necessary conditions proved in 2.
If the state transformation exists, then from the above analysis, the following

equations are satisfied by the ditterentiable function a(x, u),

Oa
(4.8a) Oyi-bi(y’u) fori=l,...,m,

Oa
b,,+j(y, u) forj=l,...,p(4.8b)

Ou
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where, by abuse of notation,

b,(y, u)= bi(h(x), u)= bi(x, u)

and the last terms of the equality above are computed in step (ii) of the procedure.
By condition (2), they are functions of y and u.

So, by Lemma 4.1 of Xia and Gao [7],

Ob 7-

(4.9, [0 0] =([-fy 0])
But, again by abuse of notation,

Obi Oh Obi
Oy Ox Ox

Multiplying both sides by (Oh/Ox) r, and noting that Oh/Ox(Oh/Ox) is an m x m
nonsingular matrix, we have

(4.10)
Oy -Ox

From (4.10), we see. immediately that

(4.11) [0_yb Ob] u).

Hence, (4.9) gives (4.7). This completes the proof of necessity.
Sufficiency. By (2) we know that the bg’s are functionally dependent with h(x).

This implies that the b’s are functions of h(x), or y. And by (3), the same argument
as in the proof of necessity will show that (4.9) holds. This in turn implies the
integrability of (4.3). Moreover, a direct computation shows that the z0’s are indepen-
dent of the inputs u.

Thus, we need only to show that the transformation z F(x) given by the above
computation procedure does transform system (1.5) into (1.1).

As a matter of fact, we have

0
(4.12) :i= F,2=-- F(x)2

Ox

and from step (iv) and (v),

(4.13) g(z, u)= Ltz(x)= 0__ F(x)f(x, u).
ox

It can be shown that (O/Ox)F(x) is nonsingular, so (4.12) and (4.13) imply

=f(x, u)

and (4.4a) gives

y= Cz= h(x).

This completes the proof of the theorem. [3

Also, we see that there are some abundances in (4.3). We can drop the equations
concerning ai0, i= 1,..., m, in (4.3). Let /i be the corresponding vector functions
obtained by deleting the (o- + 1)th entries, 0, 1, , m 1, and O’o is assumed to be
zero. Then, by considering the integrability of the corresponding equations in almost
the same fashion, we have Theorem 4.2.
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THEOREM 4.2. The system (1.1) admits an observer form (1.6) if and only if there
exist m-tuple of integers kl , k,, ), kl >= k2 >-" >- km > O, and i= ki n, such that
we have the following"

(1)’ Conditions (i) and (ii) in Theorem 2.3 hold.
(2)’ There exist solutions gl,. ,gm to (2.26) such that

(4.5)’ rank -:--
Ox

/ l(X, /,/)

bl(X,U)

h(x)

--m.

(3)’ If we denote an (m +p)(n m) x (m +p) matrix S’(x, u) as

(4.6)’
b,(x,u)

0
S’(x, u)= o--

u)

then S’(x, u) is block symmetric, i.e.,

S’(x,u)=(S’(x,u))

5. Examples.
Example 1. Consider the system

11 X12

12 X12X21

221 Xl2.

Yl Xl I,

Y2 X21,

Since

dh,=(1 0 0), Lt.(dh,)=(O 0), dh2=(0 0 1),

Lr(dhe)=(O X21 XI2)=0 dhl+xe,(Lf(dhl))+xl(dh),

the coefficient before Lr(dh) is x21 # 0, and so, by Theorem 2.3, it is not transformable
to an observer form.

Example 2. Consider the system

(5.1)

11 X12,

712 X12X21,
Yl Xl I,

Y2 X21

This system is in special observable form, thus from the discussion of Example 7.4 of
[6], it is transformable to an observer form. (This can also be seen in our next example.)
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But system (5.1) does not satisfy (5.4) in [6]. Since, gl, g2 defined by (3.8), i.e.,
(5.3) in [6], are gl= (0 0) , and g2._ (0 0 1) , and since

Ox
g

Ox Ox
g x

0

[ad(_.,.gl, g] -1 0.

0

That is, condition (5.4) in [6] fails.
Example 3. Consider system (5.1) again. Since

dhl=(1 0 0), Lc(dhl)=(O 0), dh2=(O 0 1),

Lr(dh2)=(1 0 0)=dh,+0.tt.(dh,)+0.dh2
with k 2, k2 1, condition (i) of Theorem 3.1 is satisfied.

Moreover, consider (3.1). Obviously, g (0 0)r. To determine gZ, we have only
two equations:

(5.2) (dhl, g2)= O, (dh2, g2)= 1.

It can be easily seen that g2= (0 Xll 1)r is a solution to these equations. And since

and thus

[g g2] 0g Og g2
g2

0 0 0 0
g= 0 0 =0,

Ox
g

Ox x
0 0 0 0

gl Of Og Ofg 0 x2 x12 1 X21ad(_f)
Ox

g --x f -x
0 0 0 0 0

Og 0
[ad(_.r)g, g2] x ad-l)g -0-- (ad(-c)g )g2

I lI l I1 0 0 x 0 0 1

0 0 0 0 0 0 0

similarly,

[ad(__j.g, gl] 0.

x 1 1
1 0 0

=0;

Therefore, (3.7) holds. This implies that the partial differential equations (3.2), which
can now be explicitly written as

0 x x,, o,(z),(5.3) Oz-
0 0 0

are integrable. In fact,
z12

(D Zll q-" Z12Z21

Z21
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is a solution to (5.3). Hence, under the coordinates transformation

X11 Z12, X12 Zl "3t- ZI2Z21 X21 Z21

or

ZI1--XI2XllX21 ZI2 Xll Z21 X21

system (4.1) is transformable into an observer form

:/,, -Zl2 -y,
212 Zl ql_ Z12Z21 Z11 .+. YiY2,

21 zl2 Yl,

Yl ZI2,

Y2 z21

By employing the computation procedure, we can obtain the state transformation
much more simply. For this example, choose g and g2 as before, and now

0 1 0 1Q(x)=(g ad_./.)glg) 1 x21 xl
0 0

x2 xli yz y
1 0 1 0

Integrating the above equations, which are much more simple than (5.3), we have

a(y)= YlY

Y

and step (iv) gives the state transformation just obtained.
Example 4. Consider the system

1 XlX3 XlX24 X2X - X2X3X24 X2X- (X22 - X4) ’/+ (X3- X24) u2,

32 Xl X2X3 "t" X2X24 "t- 112,

23 2X3X4 2x34 + X2U X4ll 2, 4 X3 x24 ’t U2

Yl X2, Y2 X4.

Since

0 0 0

1 -x3 -k- x] -x:, 2x:x4O(x, u)=
0 0 0 1

0 0 1 --2X4

is nonsingular, the system is observable with observability indices kl k 2. Now
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g’(x,u)=(1 0 0 0) ,gz(x,u)=(x2 0 1 0),and
O(x, u)= (g ad(_f)gg ad(_.r)g2)

0 1 0

00 00 01 24 J’
i’ O-’(x, u)(ad_,r)g’ ad_f)g2) (bl(x, lA), b2(x, u))

0 U

u 0

0 0

and b3(x,u) computed by (4.1) is b3(x,u)=(x4 2u xz 2u) . It is easily seen that
b, b2, b3 are functions of y, yz, and u. Now the matrix S(x, u) is

S(x,u)=

o olo
o OlO
OlO
olo o
OlO
OlO o
Io oOi
Io oOi

120 O
1 olo
0 012

Obviously, S(x, u) is block symmetric. Finally, the computation procedure yields

a(y, u) (y2u u yu u2) T

and the state transformation

The observer form is

z(x)=F(x)

X X2X if- X2X24]
I

X X24
x4 d

y2u, ,2 z + u 2,

3 Y u, 4 Z3 + u2

6. Conclusions. In this paper, we have identified a class of nonlinear systems
whose observer design problem can be solved by the observer error linearization
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approach. We have considered systems both with and without inputs. For systems
without inputs, we have obtained a set of necessary and sufficient conditions in terms
of the Lie algebra, which is a correction to a theorem in [6]. Moreover, we have
proposed a computation procedure for the practical computation of the state transform-
ation, and on the basis of this computation procedure we have derived a different set
of necessary and sufficient conditions described in rank conditions of matrices. It is
noted that our approach in dealing with systems with inputs is different from that of
Krener and Respondek in [6]. Also, it may be of interest to consider output coordinates
change that will certainly enlarge the class of nonlinear systems. For this point, we
refer the reader to the paper mentioned above.

However, it should be noted that the conditions given here depend on the choice
of solutions to the linear algebraic equations (2.26). How to choose these solutions
remains open. But, as have been seen, the conditions are useful in understanding the
observer error linearization problem and in giving various sufficient conditions.
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Abstract. This paper studies the question of quasi- (approximate) reachability of the standard observable
realizations of pseudorational impulse responses introduced by the author. The framework places the current

theory of retarded and neutral delay-differential systems into a unified input/output framework. Several
necessary and sufficient conditions for quasi-teachability are derived. In particular, new criteria for quasi-
teachability and eigenfunction completeness are obtained for general delay-differential systems with no
restriction on the type of delays. Furthermore, as a byproduct, the theory leads to necessary and sufficient
conditions for approximate left coprimeness of matrices with distribution entries. Examples are discussed
to illustrate the theory.
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left coprimeness, distributions, delay-differential systems

AMS(MOS) subject classifications. 93B05, 93C20

1. Introduction. Consider the following delay-differential system of neutral type:
d N N

a--Z x( t) Fx( t) + 2 Fix(l-hi)q- 2
i=1 i--1

(1.1)

I+ E(z)x(t+z) dz+Gu(t),
-h

where 0< hi < h2 <"" < hN- h. Approximate controllability of this system has been
investigated by a number of authors ([6], [12], [13], [18]). One of them, Manitius [14],
15], gave a complete rank condition for the retarded case (i.e., F_i--0, 1, , N).
O’Connor and Tarn [17] extended his results to the neutral case, but gave a complete
algebraic condition only for the case N 1 with no distributed delays. Salamon [20]
extended these results to the case with delays in input, as well as giving the discussion
of the general case using the notion of small solutions. However, a concrete algebraic
criterion has not been obtained for the case when there is any distributed delay;
obtaining such a criterion in the situation with general delays is left as an open problem.
In view of the complexity of formulas there, it appears to be difficult to obtain a
generalization in this setting.

These approaches all associate an a priori chosen function state space model (e.g.,
M2- or W-) to (1.1) and then discuss approximate function space controllability
(teachability) there. There are, however, cases in which a priori association of a state
space is either inappropriate or inconvenient. For example, in the study of a servo
problem, we often need to consider a reference signal generator, which is specified by
the transfer function, and this transfer function does not easily fall into the existing
category of function space models. The recently introduced control scheme called
repetitive control [8], [9], [16], which uses a model 1/(exp (Ls)- 1), is a typical example
of such a case. Another example where a priori association of a state space causes
difficulty is the case of (1.1), in which there is a pole-zero cancellation. In such a case,
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although we may expect to obtain an irredundant model after pole-zero reduction, the
reduced state space will not be M2 or W, because these spaces are not closed under
such an operation.

In view of these, it is also desirable to develop an approach more directly associated
with transfer functions, impulse responses, and realization theory, so that the analysis
is not affected by the presumptive choice of a state space.

In finite-dimensional systems, it is well known that reachability (controllability)
can be studied from both internal and external points of view. It is also known that
the latter is advantageous in relating reachability to irredundancy of the external
representation. For example, given a fractional representation Q-(s)P(s) (Q, P=
polynomial matrices) of a transfer function, we can always associate with it a standard
observable realization EQ (known as the Fuhrmann realization), and this realization
is reachable if and only if the matrices Q and P are left coprime [5]. It is, therefore,
natural to attempt to generalize this fact to infinite-dimensional systems. However, in
spite of a number of investigations on fractional representations of irrational transfer
matrices (e.g., [2], [3], [10], [25]), the reachability question above has not been studied
in connection with the external behavior.

It is then natural to ask the following questions in this context"
(i) Given a transfer matrix of a delay-differential equation, what can be said

about its realization? Is there an analogue of the Fuhrmann realization in this context?
(ii) If there is, what can be said about its reachability in terms of the transfer

matrix (or its fractional representation) ?
The first question has been studied in [28], and it has been shown that a precise

analogue of the Fuhrmann observable realization exists. This has been done by
introducing a class of fractional representation called pseudo-rational. At least all
transfer matrices of delay-differential systems belong to this class. (In some other
frameworks (e.g., [2], [3]) using the algebra s of stable impulse responses, this is not
true.) Concerning (ii), it is also shown in [28] that the obtained observable realization
E (see 2 for the definition) is approximately controllable (from here on we use the
term quasi-reachable for consistency with [28]) if and only if the associated fractional
representation of the transfer matrix is left coprime in some weaker sense. However,
this condition gives only an abstract condition, and its consequence on a concrete
reachability criterion has not been fully investigated there.

In this paper, we shall derive necessary and sufficient conditions for this teachabil-
ity and coprimeness according to the above program. The results, when specialized to
delay-differential systems, generalize the existing ones to those for systems with dis-
tributed/noncommensurable delays. To see the basic idea of the method, let us first
write the transfer function of (1.1) in the folllowing form, by supplementing a fictitious
output equation y(t) := x( h)"

W(s)=

(1.2) O:=[e-"(sI-Fo)-, e(-"+h"(Fi-sF_i)-(s)],
P:=G.

Their inverse Laplace transforms induce the following representation for the impulse
response matrix A"

A=Q-1.p,

(1.3) Q:= 6-,(3’I Fo) -Z
P := G,
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where := Dirac distribution at 0, ’ := its derivative, -a := Dirac distribution at -a.
These entities are most naturally investigated in the convolution algebra ’(R-), which
is the space of Schwartz distributions having compact support contained in (-, 0]
(see the end of this section for the definition).

By using the convolution algebra structure of g’(R-), we will prove the
following:

(i) The Fuhrmann-likeobservable realization :Q is spectrally complete (i.e., the
space spanned by eigenfunctions is dense in the state space) if and only if the matrix
Q assumes full rank near the origin (see 3 for a precise statement).

(ii) EQ is quasi-reachable if and only if it is spectrally reachable (i.e., any
eigenspace is reachable) and the matrix [Q, P] assumes full rank near the origin.

In the above results, Q admits any type ofdelays (distributed/noncommensurable).
Therefore, they generalize the existing criteria by Manitius [14], O’Connor and Tarn
[17], and Salamon [20] to the general case with no restrictions on the type of delays.

The paper is organized as follows. In 2 we review the basic realization framework
given in [27]-[29], especially a type of fractional representation and its associated
observable realization Eo. Section 3 gives a general necessary and sufficient condition
for eigenfunction completeness, in 4, this result is applied to derive conditions for
approximately controllability. Section 5 gives an application to delay-differential sys-
tems along with the discussion of an example. It is seen that the obtained criterion is
simpler than the discussion involving small solutions.

Notation and conventions. In what follows, the following notation will be used.
All vector spaces and function spaces are considered over a fixed field k, which is
either R or C. Functions and distributions are also k-valued. As usual, for a set V, V
denotes the set of n-fold direct product of V. For a vector x V, x r denotes its
transpose. If V is a topological space, we endow V" with the usual product topology.
For a .ring (or algebra) R, R "" denotes the set of p x rn matrices with entries in R.
When R is also a topological space, RP’ is understood to be endowed with the
product topology as above. To simplify notation we may sometimes drop these super-
scripts; for example, when it is clear that x(t) is an n-vector, we may write x(t) L2[0, T],
instead of writing x(t)(L2[O, T]) n. We shall always consider the bilateral Laplace
transform and regard the one-sided Laplace transform as a special case of it. The
Laplace transform of a distribution a (if it exists) will be denoted by d(s).

We assume standard knowledge on distribution theory, such as can be found in
Schwartz’s account [23]. Some familiarity with basic notions of the theory of locally
convex topological vector spaces is also assumed [21], [23]. However, some of the
following function spaces, although quite fundamental, may not be encountered in
standard textbooks (see [26], [28] for details).

L2[a, b] := the space of Lebesgue square-integrable functions on [a, b].
Loc[0, ):= the space of functions square-integrable on every bounded interval.
i2:= t_J_-i L2[-n, 0] as a set. This space is endowed with the natural inductive

limit topology [21], [26] induced by the sequence of spaces {L2[-n, 0]}:.
(R) := the space of C-functions defined on R with the usual topology (Schwartz

[23]).
@’(R) := the space of distributions on R. The support of a distribution ce will be

denoted by supp a. When a (@’(R)), supp a is understood to be the union of the
supports of its entries.

[0, c):= the space of C-functions defined on [-o, ) having compact support
contained in [0, ).
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@(-00, 0] := the space of C-functions defined on (-00, 00) having compact support
contained in (-oo, 0].

@’[0, oo):= the dual space of @[0, ).
9_ := the space of distributions on R with support bounded on the left. This is an

algebra with respect to convolution with idenity 6 (the Dirac delta distribution at the
origin). The delta distribution at point a will be denoted by 6a, and its derivative will
be denoted by 6’,. Convolution will be denoted by., as usual.

9’__ := the space of distributions on R with support bounded on the right. This is
also a convolution algebra with identity 6.

q’(R) := the space of distributions on R with compact support.
q’(R-) := the space of distributions on R having compact support contained in

(-, o].
Throughout the paper, duality will be denoted by (.,.), that is, the value of a

distribution a evaluated at a test function o will be denoted by (a, o) or by (o, a).
Among the spaces above the following inclusions hold:

9(-00, 0] c a c ’(R-) ’(R) 9_, ’(R-) ’(R) 9’_.

9(-00, 0] is dense in f, and is dense in ’(R-). The space 9’[0, c) is not a subspace
of 9_, but there exists a surjective (continuous, of course) projection 7r: 9_ 9’[0,
which is induced from the obvious canonical inclusion j: 9[0, oo)-, 9_, that is,

(1.7) (era, ):= (a, jq).

2. Preliminaries. Consider the usual linear (zero-initial state) input/output corre-
spondence:

io(2.1) f(w)(t) A(t-r)co(r) dr,

where co is an input and A is an impulse response matrix that does not necessarily
induce a finite-dimensional realization. For the purpose of realization theory, it is
convenient to convert (2.1) to another form. In view of shift-invariance and causality
of (2.1), it can be written as

(2.2) f(w)(t)=I[oo A(t-z)co(r)dr
if the input co is applied on (-oo, 0] and has compact support. Since the system must
be causal, observation of all f(co)(t) for all t=>0 must be enough to determine the
internal state space structure from (2.2) [27]. We thus take the input function space to
be fY" (m := number of input channels), and the output function space F p (p := number
of output channels), so that inputs are applied before time zero and outputs are
observed after zero. These spaces are naturally equipped with the left shift operators
{o,}, t_-> O:

(o.,co)(s):={(s-t) for s <-t,
for 0<= s =<0, co E

(2.3)
(o-,,)(s) := ,/(s t), ,,/ r .

Thus we define a (constant, linear) input/outrnapf to be a continuous linear map that
commutes with these left shifts [27]. It is known [26] [27] thatf can then be represented
by (22), where A is a p x rn matrix (Radon) measure on [0, oo).

Now note that (2.2) can be written as

(2.4) f(co) r(A co), w ft",
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where r is the truncation operator defined by (1.7). The matrix measure A here is
called the impulse response matrix of the input/output map f Let us introduce a
fractional representation for such impulse response matrices.

DEFINITIONS 2.5. Let Q be a p x p matrix with entries in ’(R-). Q is said to be
of normal type if the following conditions are satisfied:

(i) Q is invertible over @ with respect to convolution, i.e., det Q (computed in
terms of convolution) is invertible with respect to convolution;

(ii) ord (det Q)-=-ord (det Q),
where ord a denotes the order of a distribution a [23]. An impulse response matrix
A is said to be pseudo-rational if it can be written in the form

(2.6) A-r(Q-’* P)

for some matrices Q and P over ’(R-), where the p p matrix Q is of normal type,
Although not all impulse response matrices are pseudo-rational, at least all

delay-differential impulse responses are known to be pseudo-rational [29], [30]. As
can be seen from (1.2) or (1.3), there will be no difficulty in dealing with the distributed
delay case.

We now define the standard observable realization E associated with an impulse
response matrix A Q-1. p. Let X be a subspace of F p defined by

(2.7) X:={x(t)rP; rr(Q* x) 0}.

The condition 7r(Q * x)= 0 is clearly equivalent to supp (Q x)c (-c, 0]. By the
separate continuity of convolution, X is a closed subspace of F p. The family {or,} of
left-shift operators constitutes a strongly continuous semigroup in F p, and X is easily
seen to be a cr,-invariant subspace of F p. Let F denote the infinitesimal generator of
this semigroup o-, in X; this is nothing but the differential operator d/dt. Define E
as follows:

(2.8) State space Xo.

State transition equation:

(2.9) q(t, x, u):= cr,x + rr(A * crl, u), x X, (or,u)(s):=u(s+t),

where the right-hand side is the state at time resulting from input u and
initial state x;

Output equation"

(2.10) y Hx := x(0).

This definition yields the mappings g" i X and h" X o F as follows:

(2.11) g(co) := cp(T, 0, CrrW),

(2.12) h(x)( t) := Her,x, >= O.

Here T is any positive number such that [-T, 0] supp w and (crrw)(t):=w(t T).
It is easy to see that (2.11) is independent of the choice of T. We say that E realizes
an input/output map f (or its impulse response A) if f= hg; it is quasi-reachable
(commonly referred to as approximately controllable) if the reachable set g(O’) is
dense in X o; topologically observable if h is a topological isomorphism; and topologi-
cally observable in bounded time if X o is topologically isomorphic to h(X )l_o, rj for
some T > 0.

Eo is easily seen to give a realization of A. Furthermore, it is known that this
realization possesses various desirable properties.
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THEOREM 2.13 [27]-[29].- (i) ,Q is.always topologically observable in bounded time.
This ,means that the initial .state determination is well posed, and can be done based on
the output data y(t)l[o,T on a uniformly bounded time interval [0, T].

(ii) Eo is quasi-reachable, if and only if the matrices Q and P are approximately left
coprime, i.e.,

(2.14) Q g. + P S, --->

for some sequences R, and S, of matrices with entries in ’(R-).
We shall investigate the quasi-reachability of E using (ii). To this end,.we shall

need some technical lemmas which we now summarize.
For a distribution q e ’_, define r(q) to be the supremum of the support of q, i.e.,

(2.15) r(q) := sup {t supp q}.

The following lemma is a consequence of the well-known theorem of Titchmarsh on
convolution [4, p. 224].

LEMMA 2.16. For , @’,
r(cp , )= r(q)+ r(qt).

In 3, we need to use a representation of the dual space of X . To this end, we
first introduce the following duality between IIp and FP:

(2.17) (to, y):= wT(z)y(--Z) dr= wr(-’)y(") dr= (to T * y)(0).

Then f and F turn out to be topologically dual to each other [29]. (Needless to say,
(fF)’ F.) With respect to this duality, we have the following lemma.

LEMMA 2.18. Let X be as above, where Q is of normal type. Define the polar
orthogonal complement) ofX o by

(X):={wfP; (w, y)=OforallyX}.

Then,

(2.19)

(X)= {w e f"; to
T
* Q-’ $’(R-)}

{QT, q; q e ((-c, 0])"}.

Proof Suppose that g belongs to the right-hand side of (2.16) and y belongs to
X o. Observe that

(2.20) (Q , y) (bT, Q, y)(0).

Q, ), has compact support contained in (-oo, 0] because y belongs to X o. Then the
right-hand side of (2.20) is clearly zero, which implies that the left-hand side of (2.19)
contains the right-hand side.

Conversely, suppose that to tip belongs to (X o)o. Suppose first that w belongs
to (-co, 0]. Take any ((-oo, 0])p. Then y:=cr(Q- *)X. Since it is easy
to see that rr(w T * rr(Q-l

* ))= r(to T* Q-’ p), we have

r(to T * Q-’ * q)(0)= =(to T * rr(Q-’ * ())(0)= (to T * rr(Q-’ * q))(0)

=(to, r(Q-’ * q)) 0

because to e (X O)O. Since this is true for any 6_, q (t > 0), we have r(to r * Q- * q)
O, and hence to

r Q- q ($’(R-))p. Since this holds for any q e (’(-, 0])p, we
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must have to’* Q-(’(R-))p. Thus to=Qr, O for some O(’(R-))p. Since
@(-c, 0] is dense in f, this implies that to belongs to the second term of the right-hand
side of (2.19). Then by continuity, we see that this is true for any w X o.

We denote the right-hand side of (2.19) by oX. Then we have the following lemma
characterizing the dual space of X .

LEPTA 2.21. The dual space (X o), qf X o is topologically isomorphic to OP/oX.
Proof The proof is immediate from Lemma 2.18 and Schaefer [21, Chap.

4, 4].
Before closing this section, we give a remark on another "realization" obtained

from Eo. Introduce the graph norm to the domain D(F) of the infinitesimal generator
F of the shift semigroup ,, i.e.,

x ,: := x + Fx I[,
where Ilxll is the norm in X o. Restricting g, to D(F), we get another strongly continuous
semigroup. Let us restrict the class of input and output functions to the spaces analogous
to and F p that locally belong to the class of the first-order Sobolev space W. Then
the state transition and the output equation given by (2.9) and (2.10) are well defined,
and we obtain a well-defined system with state space D(F) (although with different
input/output spaces). Denote this system by E. The following proposition, which
claims the equivalence of quasi-reachability of E and E, will become necessary in
5 for discussing the M2-reachability and W-reachability for delay-differential

systems.
PROPOSITION 2.22. E is quasi-reachable if and only if E is also.
Proofi See Appendix A for the proof.

3. Eigenfunction completeness. Let E be the system defined in the previous
section. We shall investigate the completeness of eigenfunctions of this system. As
noted in 2, the results below apply to neutral systems with distributed delays as well
as those with noncommensurable delays. Let us first note that this system shares some
nice spectral properties of delay-differential systems.

THEOREM 3.1. Let E be the system given by (2.9), (2.10). Let g(F) denote the
spectrum ofthe infinitesimal generator F ofthe transition semigroup ,. en thefollowing
statements hold"

(i) g(F) ={h eC; det Q(A)=0};
(ii) Every h (F) is an eigenvalue, and the generalized eigenspace M, correspond-

ing to A, has finite dimension.
(iii) dim M m (det Q(s), h), where the right-hand side denotes the multiplicity

of h as a zero of det O(s).
(iv) A vector v belongs to Mh if and only if it is expressible in the form

v
j

a+l,
=0

where

^) (("-’)(A)/(m 1)
a

=0.

Here ((’) is the ith derivative of, and m is the multolicity gh as a zero g det O(s).
For a proo5 see [28]. The last statement is not given in [28], but it is obtained

via minor modification of the proof given in Hale [7].
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Let M :=span {Mz; A or(F)}, i.e., the space spanned by all generalized eigen,
spaces. Let us prepare the following terminology.

DEFNXON 3,2. The system E is said to be spectrally complete if the above-
defined space M is dense in X o.

We raise the following question. Under what condition is E spectrally complete?
In other words, when is the set of all eigenfunctions complete in X?

The same problem has beer, studied for retarded delay-differential systems by
Manitius [13], [14] and by O’Connor and Tarn [17] for neutral systems, in the latter
treatment, a concrete condition is given only for the case of one point delay. We shall
generalize the results of [17] to o. When specialized to delay-differential systems,
this means that there is no restriction on the type of delays involved. As we shall see,
the generalization here clearly exhibits the fact that spectral completeness depends
only on the local behavior of Q near the origin.

The following lemma is an immediate consequence of Lemma 2.21, which asserts
that the zero element of the dual space of X o is precisely oX"

LEMMA 3.3. M is dense in X if and only if the following statement is true" If
q fP satisfies , qk) 0 for all q M, then q belongs to oX.

The following proposition gives a characterization for the statement (q, qg)= 0
for all qk M"

PROPOSITION 3.4. An element q fV’ satisfies (q, q)=O for all q in M ifand only
f q3(s) TO(S)-I is an entire function of s.

Since we have Theorem 3.1, the proof is entirely similar to that for the correspond-
ing result of O’Connor and Tarn [17], and hence is omitted.

The following stronger version of Lemma 3.3 is also an easy consequence of the
separate continuity of the bilinear functional (.,.), the denseness of c g’(R-) and
Proposition 3.4.

PROPOSITION 3.5. y_,o is spectrally complete (f and only if (s)rO-(s)=entire,
q (g’(R-))p, implies qr , Q- g,(R-))p.

Proof Necessity. Take any q (g"(R-)) such that q3(s)rt-l(s) is entire. Take a
sequence {O,}e @(-oe, 0] such that

(3.6) supp Pn [-1/n, 0];

(3.7) j pn(t) dt= 1.

Then it is well known (e.g., Schwartz [23]) that (i) p, q- o, and (ii) p,, fP. It
follows that p, q satisfies the same hypothesis as q, so that p,, q must belong to
(xQ)O T -1oX. Hence p,, q Q all belong to (g’(R-))p by Lemma 2.18. Since
{p,, r, Q-} is convergent, it follows that qr, Q- belongs to (g’(R-))n.

Sufficiency. Conversely, suppose that q P satisfies q(s)r(- =entire. Then we
have q r, Q-1 t

r e (g’(R-)) by hypothesis. Since there exists a sequence {to,} c fn
that converges to to, we have qr= lim to r, Q, which implies q oX by Lemma 2.18
Hence, by Lemma 3.3, 5? is spectrally complete.

The proof of the following key lemma will be given in Appendix B.
LEMMA 3.8. Let q (g’(R-))’ and suppose that (s)r(-l(s) is an entire function.

Then q" Q-1 belongs to (g’(R))p, i,e., each of its entries is a distribution with compact
support (which is not necessarily contained in (-oo, 0]).

This lemma shows that if 0 is orthogonal to M, then it is always expressible as
q Qr, q for some q in (g’(R))p. However, this does not necessarily belong to
(g’(R-))", i.e., its support may not be contained in (-oe, 0]. Therefore, the condition
of Proposition 3.5 may not be satisfied. To obtain a condition for spectral completeness,
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we need only to exclude the possibility of o (’(R-))v, but 0 (’(R-))p. This leads
to the following theorem.

THEOREM 3.9. The system E is spectrally complete if and only if there exists no

ff (’(R))p such that r(q)> 0 and r(q T * Q)-<0.
Proof In view of the definition of r(q), 0 (’(R))p belongs to (’(R-))p if and

only if r(q)<_-0. Then the theorem is immediate from Proposition 3.5 and Lemma
3.8. V1

To give a more concise expression to Theorem 3.9, let us prepare the following
algebraic notions.

LEMMA 3.10. Let J := {q ’(R-); r(o) < 0}. Then J is a prime ideal of g"(R-).
Proof That J is closed under addition is obvious. Suppose q J and a g’(R-).

Then we have

r(a * q)= r(a)+ r(o)<= r(q) < 0,

by Lemma 2.16. Hence a q J, so that J is an ideal.
Now suppose that a b J, i.e., r(a * b)< 0. Since

r(a * b)= r(a)+ r(b)

by Lemma 2.16, either r(a)< 0 or r(b)< 0. That is, a J or b J. Thus J is a prime
ideal.

Lemma 3.10 enables us to form the quotient ring (algebra) /:= ’(R-)/J,, and
this ring is an integral domain (i.e., it has no zero divisors) because J is a prime ideal.
Therefore, we can further construct its quotient field ff (the field of fractions formed
by elements of s). Let 0: ’(R-)- , denote the composition of the canonical projec-
tion: q’(R-)-* J--’(R-)/J with the inclusion: J- ft. In what follows, when we
speak of the rank of a matrix W (’(R-))pm over , we shall always mean the rank
of the matrix O(W) considered over . Observe that an element w ’(R-))P is nonzero
when considered over g (or if) if and only if r( w)= O.

We are now ready to state and prove the main result of this section, which is a
generalization of the existing results in [14], [17], [20]. Note that no restriction on the
type of delays is imposed.

THEOREM 3.11. The system is spectrally complete if and only if
(3.12) rank. Q =p,

where is the field introduced above.
Proof Necessity. Suppose that det Q 0 over o. Then there exist a 1," ", % ,

not all zero, such that ai * qi 0 where qi is the ith row of Q. Since each a is an
element of the quotient field of ’(R-)/J, this means that there exist al,’", ap
’(R-)/J, not all zero, such that a. q 0. In view of the definition of the ideal J,
we see that there exist bl,..., bp ’(a-) such that r( b* qi)<0 and r(bi)--O for
some i. Let ro := r( bi * qi), and put

0 := 6--to* [b,. ., bp] r

Then r(ff) > 0 but r(0r, Q) _< 0, and hence by Theorem 3.9 this system is not spectrally
complete.

Sufficiency. Conversely, suppose that rank Q=p over o but there exists
(g’(R)) such that ro := r(0)>0 but r(0 r Q)_-<0. Put

:= -o* -TThen 0 belongs to (’(R-))P, r(q) 0, and r(q
rank Q =p over . [3

Q)< 0. But this clearly contradicts
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The following corollaries are now easy to prove.
COROLLARY 3.13. Suppose that Q can be written in the form

(3.14) Q=Qo+Q,,

where Qo is atomic at the origin and supp Q is contained in (-o% to] for some to < O.
Then ,o is spectrally complete if and only if
(3.15) rank Qo(A) p

for some A C.
Proof. In view of the well-known result on distributions atomic at the origin, each

entry of Qo is a polynomial in the derivative ’ of the Dirac distribution [23]. Hence
its Laplace transform is a polynomial in s. By Theorem 3.11, E is spectrally complete
if and only if rank Qo =p over . In view of the definition of the ideal J, this is true
if and only if det Qo is a nontrivial polynomial of ’. This is clearly equivalent to
condition (3.15).

COROLLARY 3.16. Consider the scalar case, that is, assume that the number ofoutput
channels p 1. The system E is spectrally complete if and only if r( Q)= O.

Proof. The proof is immediate from Theorem 3.11. l-]

Remark 3.17. The relationship of the above theorems in terms of the existing
results is now clear. For simplicity, consider the scalar case. If the system E is not
spectrally complete, then r(Q)< 0; that is, Q can be written as Q -a * Q for some
a > 0 and Q1 ’(R-) with r(Q) 0. We then easily see that X
Here L2[0, a] is nothing but the totality of"small solutions" considered in the literature
[13], [20] (see Fig. 1).

Remark 3.18. The theorems above include some of the classical results oneigen-
function completeness. For example, consider the simplest case Q(s):=
eS-l(Q =’-1-). It is easy to see that X is the space of locally L2 functions on
[0, o) of period 1. The set of eigenfunctions is {exp (2nTrjt); n 0, +1, +2,. .}, and
since r(Q)= 0, this set of eigenfunctions is complete in X o, as expected.

THE PART CORRESPONDING TO

THE "SMALL SOLUTIONS

FIG.

t
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4. Necessary and sufficient conditions for quasi-reachability. In this section, we
shall further assume that our impulse response matrix A (Q-1. p) is a regular
distribution (i.e., locally integrable function) in a neighborhood of the origin. Since all
strictly causal impulse responses satisfy this requirement, this is not a very severe
restriction. Then it follows that q := Q-1 P-A must be a distribution belonging to
’(R-), and so is Q q. This implies that A can be rewritten as

A=Q-’ , P-=Q-’ ,(P-Q, ).

Obviously, the new pair (Q,P-Q, ) is also pseudo-rational, and by this
modification, the truncation mapping r becomes unnecessary. In what follows, we
shall assume that (Q,P) satifies this condition, i.e., A=Q-, P. (Note that the
modification above does not change any of the conditions of the subsequent theorems.)

We are now ready to state and prove the following necessary and sufficient
condition for quasi-reachability. As is the case with Theorem 3.11, there is no restriction
on the type of delays involved.

THEOREM 4.1. The system EQ is quasi-reachable if and only if the following two
conditions hold"

(4.2) (i) rank[((Z),fi(,)]=p forallZC;

(4.3) (ii) rank. Q, P] p.

Proof Necessity. Condition (i) is clearly necessary, since it is a condition for
spectral reachability (see [28]). Suppose that condition (ii) fails. Then there exist
a,’’’,apG, not all zero, such that a r [Q, P]=0 in 0% (a =[a,..", ap]:r). This
readily implies that there exists (’(R))p such that r(tp)>0 but r(O* Q)<_-0,
r(q, r * P)<_-0. If were quasi-reachable, there would exist sequences {R,} and {S,}
of matrices over ’(R-) such that

(4.4) Q g, + P S, -> 6I,

i.e., Q and P are approximately left coprime by Theorem 2.13. Taking the convolution
of (4.4) with p r from the left, we see that the sequence q Q, R, + qr, p, S, in
(’(R-))p must converge to q,r ((R-))p (because r() > 0). But this is clearly
impossible.

Sufficiency. Conversely, suppose that the above two conditions hold. Since
rank Q, P] =p over , there exists a matrix K consisting only of zeros and ones such
that rank Q + PK p over . Furthermore,

(4.5) rank [0(h) +/5(h )K,/5(h )] rank [(h ),/5(h )] =p

for all h C. According to Lemma 4.11 below, the pair (Q + PK, P) is pseudo-rational.
Thus we may consider the system E(/P defined by the pair (Q+ PK, P); this system
is quasi-reachable because it is spectrally reachable and, in addition to that, spectrally
complete by Theorem 3.11. Therefore, by Theorem 2.13, there exist sequences {R}
and {S} of matrices over ’(R-) such that

(4.6) Q + PK]

Thus

(4.7) Q, R, + P , [KR, + S,]-> 8Ip,
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so that the pair (Q, P) is also approximately left coprime. Then again by Theorem
2.13, the system EQ is quasi-reachable.

In view of Theorem 2.13 we have simultaneously obtained the following theorem.
THEOREM 4.8. The pair (Q, P) is approximately left coprime, i.e., there exist

sequences of matrices R, and S, over ’(R-) of appropriate sizes such that

Q.R,+P.S,6I in(’(R-))p

if and only if the above conditions (4.2) and (4.3) hold.
Proof The proof is immediate from the fact that (Q, P) is approximately left

coprime if and only if o is quasi-reachable.
The following corollaries are also direct consequences of Theorem 4.1.
COROLLARY 4.9. Consider the scalar input/output system, i.e., the case m =p 1.

The system ,Q is quasi-reachable (and hence canonical) if and only if
(i) rank ((h),/5(h)] 1, for all C;
(ii) max {r(Q), r(P)}-0.
Proof The proof is immediate from Theorem 4.1.
COROLLARY 4.10. Consider a pair (Q, P) such that Q and P can be written in the

form

Q Qo+ Q, P= Po+P,

where Qo and Po are atomic at the origin, and supp Q, supp P c (-,-to] for some

to> 0. Then Z js quas.i-reachable (and hence canonical) if and only if
(i) rank Q,(h ), P(h )] p for all ;t C;
(ii) rank Qo(h ), rio(h )] p .for some C.
Proof Observe Q--- Qo and P-= Po modulo the ideal J. Then the result follows by

the observation that rank [Qo, Po] =p over if and only if the above condition (ii)
holds as in the proof of Corollary 3.13.

It remains only to prove that the pair (Q + PK, P) considered above is pseudo-
rational.

LEMMA 4.11. Suppose that a pseudo-rational impulse response A Q- P satisfies
the hypothesis of the beginning of this section. Then the impulse response given by
Q + PK]- P, where K is a constant matrix, is also pseudo-rational.

Proof We need to show the following:
(i) Q+ KP is invertible over

_
with respect to convolution;

(ii) ord (det Q + KP)-I) -ord (det Q + KP));
(iii) [Q+ PK]-. P is a valid impulse response.

Let us first show that (31+ AK)- exists. Since we have assumed that A is a regular
distribution (i.e., a locally integrable function) in a neighborhood of the origin, we
may decompose A as A Ao+ A, where Ao is locally integrable and supp A
for some to> 0. It suffices to show that the Neumann series

(4.12) Y (-AK)"
n=:0

converges in _. In view of the topology of @_ (Schwartz [23]), it is enough to see
that the series (4.12) is convergent when applied to any C-function o with compact
support. Note here that the support of A]’ eventually becomes disjoint with that of o.
Then, expanding (Ao+A)" by the binomial formula, and using the fact that the
Neumann series (4.12) converges whenever A is a locally integrable function, we can
easily show that (4.12) actually converges in _. Clearly, (4.12) gives (6I + AK)- and
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it is also a measure. Writing [Q + PK]-1 as

(4.13) [Q+PK]-=[I+AK]- , Q-,
we see that [Q+ PK]-- exists and is given indeed by (4.13).

Let us prove ord (det [Q+ PK]-i) -ord (det [Q+ PK]). Since ord (a */3) =<
ord a + ord/3 is always valid, and since det [I + AK]- is clearly a measure of order
zero, we have

(4.14) ord (det Q + PK]-) <- ord (det Q-),

by (4.13). Conversely, since Q- =[8I+AK]. [Q+ PK]- and since det[8I+AK] is
also a measure of order zero, we have

(4.15) ord (det Q-) ord (det Q + PK]-),

so that ord (det Q-)= ord (det [Q+PK]-). Now rewriting (4.13) as

(4.16) Q+ PK Q [I + AK],

we also see that ord (det Q+ PK]) ord (det Q). Hence bythe identity ord (det Q-)
-ord (det Q), we have ord (det [Q+ PK]-) -ord (det [Q+ PK]).

Finally, since [I+AK]- is a measure, [Q+PK]-. P=[I+AK]-. Q-.
P [I + AK]- A assumes the same regularity as A. Hence it is an impulse response
matrix.

5. Application to delay-differential systems. Consider the following neutral delay-
differential system (with noncommensurable delays)"

d N

(5.1) dX(t)=Fox(t)+ Fx(t-h)+ F_(t-hi)+Gu(t),
i=1 i=1

where 0 < h < h2 <" < hu. Let us temporarily take the output equation to be y(t)
x(t-hN). It is then appropriate to take Q and P as follows"

(.2) Q:=[’_,,I-_Fo-

(5.3) P:=
NLet r:= h-h_(ho:=O), and X := Rp x= (L[0, r]) p, where p is the dimension of

x. Then, the realization Eo corresponding to the factorization Q- P turns out to be
of the following "M-type""

d Fox+E,= [Fi+FoF_,]z,(O) + u(t)
(o/O)z(O)(5.4)

F(x, z) + Gu(t),

where x Rp and zi(O) (L2[0, r]). Here the domain D(F) of the operator F is given
by

D(F) := {(x,z)X; zi(W[O, ri])p, z,(r,)=x+ F_izi(O),
(5.5)

z(r) z_(o), = 2,..., N}.

(For details, see [30]; the difference between neutral and retarded is expressed in the
definition of D(F).)
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THEOREM 5.6. The neutral system Q, where Q and P are given by (5.2) and (5.3),
is quasi-reachable if and only if

(i) rank [AehN;I ehNFo--_, e(h-h’)x Fi -,, Ae(h-h’) F_i, G] p for every A C;
(ii) rank [FN +AF_N, G] p for some A 6 C.
Proof The proof is immediate from Corollary 4.10. FI
Theorem 5.6 extends the result of O’Connor and Tam 17] to the noncommensur-

able delay case. It is also easy to consider the generalization to systems with distributed
delays and to those with delays in input via Corollary 4.10, but the condition will look
a little more involved for the distributed-delay case (in such a case, Theorem 4.1 is
the final form). Note that there is no need to consider noncommensurable delays in
any special way, since this is automatically taken care of by the framework itself.

Remark 5.7. According to Salamon [20, p. 39], the W2-model of the neutral
system (5.1) is nothing but the restriction of the M2-realization (5.4) to the domain
D(F) of the infinitesimal generator F. In view of Proposition 2.22, this means that
quasi-teachability is invariant for both systems. Thus the above condition also applies
to the W-model.

The following example is taken from Salamon [20, Ex. 4.3.10].
Example 5.8. Consider the following neutral delay-differential system:

(t)--X(t)+ f--1

x2(t + r) dr + ga(t 2),

0

:2( t) x2( + x3( + r) dr,
--1

Ig3( t) u( + r) dr.
-1

In conformity with the discussion there, take matrices 0 and/3 as follows"

(5.9) (:= 0 se-I (e’-l)/s /3:-- 0

0 0 se (e"-l)/s

It is easy to check that condition (i) of Theorem 4.1 is satisfied. Condition (ii) is also
satisfied; i.e., the system is quasi-reachable. In fact, the matrices Q and P take the
following form when considered over the ring ’(R-1)/J

(5.10) Q
0 0 -8’ 0

0-6 [1] /3_. 0

0 0 0 []

where [1] denotes the equivalence class in g’(R-)/J of an element that is identically
1 for -e =< =< 0 and zero for t_-> 0. Since this function has a jump of 1 at the origin,
the determinant (with respect to convolution) formed by the second and third columns
of 0 and/5 is equal to -6, so that the pair ((,/5) assumes full rank over the quotient
field . Hence by Theorem 4.1 the system o is quasi-reachable.

Salamon [20] claims that this system is not quasi-reachable, contrary to the
conclusion above. A detailed analysis shows that it is impossible to take a nontrivial
small solution in his discussion [20, p. 155], and the system is in fact quasi-reachable.
As can be seen from above, our test relying on (5.9) is much simpler than a discussion
involving small solutions.
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6. Concluding remarks. We have proved necessary and sufficient conditions for
our standard observable realization EQ to be quasi-reachable (and hence canonical in
the sense of [27]). When we choose Q asa delay-differential operator, these results
extend the known results on quasi-teachability of delay-differential systems. In par-
ticular, the results do not require any restriction on the type of delays (points or
distributed). Aside from this,the approach here has the following advantages"

(1) It is suitable for the situation in which a priori association of a state space is
not appropriate. Arecently introduced control scheme called repetitive control is an
example of this situation. The method here can be effectively used for proving the
internal model principle for this nonclassical servo problem [8].

(2) The framework is closed under pole-zero cancellation. The existing state space
approaches using M2 or W, etc. do not possess this property.

(3) As a result of dealing with the input/output behavior, it clarifies the role of
the distribution algebra g’(R-), which has not been considered in the literature. This
is much more general than that considered by Manitius [14] (his algebra is not
applicable to neutral systems).

(4) By virtue of the investigation of the convolution algebra structure, the obtained
criterion (Theorem 4.1) is much simpler in the general case. The existing method
requires an individual inspection of the nature of small solutions, which can often be
quite complicated (see Example 5.8).

Appendix A.
Proof of Proposition 2.22. Sufficiency is obvious since D(F) is always dense in

X Q (Yosida [31]).
Suppose that E is quasi-reachable. Take any x in D(F). Denote the reachable

set of Z by XR. We need to find a sequence in XR converging to x with respect to
the graph topology of D(F). By hypothesis, the closure of X in X 9 is the whole
space. Hence there exists a sequence {Yn} in X such that Yn Fx in X . Let us again
use g to denote the linear map sending inputs to states under the assumption of
zero-initial state for Z v. Let un be an input such that yn g(u,). Define

v(t) := I un(-)d-.

In view of the shift invariance of g and the fact that F is just the differential operator
in X , it is easy to verify that g(v,) - x + Xo in X Q, where Xo is some constant function.
Since x and x + x0 belong to X , Xo does also. If Xo were zero, there would be nothing
left to prove, because we would have Fg(v,)= g((d/dt)v,)= g(u,) x and therefore
find a desired sequence {g(v,)}. Suppose Xo 0. This means that zero is an eigenvalue
of F and Xo is an eigenvector. By the assumption of quasi-reachability, every eigenvector
must be reachable, and hence there exists Vo such that Xo g(vo). Now let w, := vn Vo.
It readily follows that g(w,) x, and Fg(w,,) Fx in X so that g(w,) x in D(F).
This completes the proof. [3

Appendix B. We give a proof for Lemma 3.8. Let us first prove the following lemma.
LEMMA B1. Let q(s) and q(s) be entire functions of exponential type, i.e., there

exist C, K > 0 such that

IO(s)l -< C e KII, [q(s)[-< C e : I1.

Suppose that /(s)q-l(s) is an entire function. Then it is also an entire function of
exponential type.
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The result is nontrivial because, although q(s) is of exponential type, there is no
a priori guarantee that q(s)- is of exponential type near a zero of q(s). Indeed, the
proof requires a deep result on the growth order of entire functions due to Lindelf.

THEOREM B2 ([11], [1, Thm. 2.10.1]). Let f(s) be an entire function of order 1,
i.e., for any e > 0

If(s)l <-- exp
for all sufficiently large Isl, Let n(r) be the number of zeros off(s) in the circle Is <= r,
and let , ., n, be the (nonzero) zeros off(s), counted according to multiplicities.
Then f( s) is of exponential type if and only if

(i) n(r) -< O(r);
(B3) (ii) S(r):= Elc,,lr 1/,
is bounded with respect to r.

Proof ofLemma B1. Let f(s):= O(s)q(s) -1. Writing q(s) and q(s) in the form of
the Hadamard factorization theorem [1, Thm. 2.7.1], we readily see that f(s) is of
order 1. Since all zeros of q(s) must be cancelled by zeros of 0(s), it is clear that n(r)
of f(s) is at most of O(r). It remains to check the above condition (ii). Let
{:,..., :,,...} and {’ol,"’,’on,’" "} be the sets of (nonzero) zeros of q(s) and
q(s), respectively. Let S(r), S2(r) be the S(r)-functions for p and q, respectively.
Again by the fact that all zeros of q(s) are cancelled by those of 6(s), we have

IS(r)[
1

[.,,I--<r :n [r,,l=<-r "On

--<
and the right-hand side is bounded by hypothesis on q, q. Hence f(s) is also of
exponential type.

We are now ready to prove Lemma 3.8.
Proof ofLemma 3,8. Since Q-= (det Q)- (adj Q), we can apply the following

argument to each entry of g, T, Q-, so we assume that 0 and Q are scalar distributions
without loss of generality.

Case 1. Suppose that f(s)-d/(s)Q-(s) has only finitely many zeros. Then by
the Hadamard factorization theorem 1, Thm. 2.7.1] we see thatf(s) must be of the form

n
(B4) f(s) C exp (as). H (s-A,),

i=1

where C and a are suitable constants. Since , Q- is Laplace transformable, there
exist b,/3 e R such that its Laplace transform eb"f(s) is bounded by a polynomial in
[sl for Re s >/3 (Schwartz [22], [23]). In order that (B3) satisfy this requirement, the
above constant a must be a real number. Then it is clear that its inverse Laplace
transform is a distribution with compact support.

Case 2. Now consider the case in which f(s) has infinitely many zeros. Since

0 * Q- is Laplace transformable (i.e., f(s) is inverse Laplace transformable), there
exist b,/3 R such that ebsf(s) is bounded by a polynomial in [s for Re s >/3. We can
take a vertical line Re s =/3’ such that there are infinitely many zeros of f(s) except
on this line. Collect suitably many of them, say h,.. , An, so that

(as) f(s) :=f(s)/(s hi) (s-

remains an entire function and satisfies

(B6) [ef(s) _-< C/[s[ Re s fl’
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By suitably shifting the coordinates, we may assume that this vertical line Re s =/3’ is
the imaginary axis. Denote this shifted function by f(s). It is easily seen that this
shifted f(s) is square integrable on the imaginary axis and that it satisfies the estimate

(B7) If(s)l =< M exp (glsl)

for some constants M and K. Then by a special version of the Paley-Wiener Theorem
(Rudin 19, Thm. 19.3]), we see that f(s) is a Fourier transform of a function F(t) L2

that has compact support in I-K, K]. This means that f(s)=f(s-’) is a Laplace
transform of F(t) exp (/3’t), which still has compact support. In view of (B4), 0 * Q-
can be obtained by applying the differential operator (d/dt-A)... (d/dr-An) to
the inverse Laplace transform off(s), and hence q Q- has compact support. [3
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A ROBUST ADAPTIVE MINIMUM VARIANCE CONTROLLER*

L. PRALYt, S.-F. LIN$, AND P. R. KUMAR

Abstract. This paper addresses the twin questions ofperformance and robustness ofan adaptive controller
for single-input, single-output, linear, stochastic systems. The authors present an adaptive controller that
has the following properties:

(1) Attaining optimal regulation and tracking in the ideal, minimum phase, known upper bound on
system order, known sign and lower bound for the leading coefficient (bo), positive real condition on noise
case, and self-tuning in a Cesaro sense to a minimum variance regulator in the case of pure regulation.

(2) Providing mean square stability when the system is of minimum phase, with known upper bound
on order but not necessarily satisfying a positive real condition on the noise.

(3) Providing mean square stability when the system is in a graph topological neighborhood (ofcomputable
size) of an ideal plant as in (1), and the statistical properties of the disturbance are violated.

(4) Continuing to stabilize the system when the adaptation gain is prevented from vanishing.

Key words, robustness, performance, adaptive control, optimal control, minimum variance control,
graph topology, minimum variance regulator, self-tuning regulator

AMS(MOS) subject classification. 93C40

1. Introduction. Over the past 15 years, stochastic adaptive control theory has
seen much development. The notable pioneering contributions of Astr6m and Witteno
mark [2] and Ljung [14], [15] analyzed, respectively, the possible equilibrium values
of the parameters to which an adaptive control law could converge, and the stability
properties of these equilibrium points. This set the stage for the subsequent rigorous
development of the foundations of the asymptotic theory of the so-called self-tuning
controllers.

In 1981, Goodwin, Ramadge, and Caines [6] were able to successfully use some
extensions of the martingale convergence theorem to show the convergence of a certain
stochastic Lyapunov function. They were thus able to establish that for a variety of
stochastic gradient algorithms the time average of the squared tracking error is almost
surely optimal, a property we shall refer to as self-optimality. These results were then
extended by similar arguments to some other algorithms; for example, an adaptive
controller based on a modified least-squares estimate was analyzed by Sin and Goodwin
[24]. In 1985, Becker, Kumar, and Wei [3] addressed the issue of convergence of the
parameter estimates, and, in so doing, they also established the convergence of the
adaptive regulator. By exploiting some geometric properties of the parameter estimate
sequence, and some subsequent probabilistic analysis, they were able to show that
while the parameter estimates converge almost surely (a.s.), they do not converge to
their true values. Instead, the parameter estimate vector converges to a random scalar
multiple of the true parameter vector. However, since the particular control law used
for the regulation problem employs only ratios of estimates of individual parameters,
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the adaptive control law remains invariant under scaling of the parameter estimates.
Hence convergence of the adaptive regulator to the true optimal regulator takes place
almost surely. This result therefore proved the so-called self-tuning property of the
adaptive regulator. Recently, this self-tuning property has been extended by Kumar
and Praly [11] to the tracking problem, where the goal is not to regulate the system
output to stay close to zero, but to track a given reference trajectory while optimally
rejecting the noise entering into the system. The essential difference between the
regulation and tracking problems is that in the former problem it is not necessary to
estimate the coefficients ofthe colored noise polynomial (in the ARMAX representation
of the system), while in the latter it is necessary to do so if we want to track arbitrary
reference trajectories. Since an additional number of parameters have to be estimated
in the tracking problem, it turns out that more "excitation" of the system is needed.
This excitation is in turn guaranteed if the reference trajectory is sufficiently exciting
of appropriately high order (see Kumar and Praly 11]). In many practically important
situations, such as, for example, the set-point problem, however, the reference trajectory
may only be a constant level, which is sufficiently exciting of order one, or some other
trajectory that has a low order of excitation. In these situations, it turns out that not
all the coefficients of the colored noise polynomial need be explicitly estimated, but
rather knowledge ofa smaller set ofparameters derived from the coefficients is adequate.
This allows the design of an adaptive tracker that uses a smaller dimension parameter
estimator (which is still of larger dimension than is needed in the regulation problem).
Such smaller dimensional adaptive trackers have also been proved to be self-tuning
(see Kumar and Praly 11]).

The successful results quoted above essentially show that the adaptive regulators
and trackers tune themselves to optimal regulators and trackers for the unknown system.
Inevitably, such results are crucially dependent on making some "exact" assumptions
about the unknown system being controlled. In particular, for such exact asymptotic
optimality and strong convergence results to hold, it has been assumed that the
stochastic system being controlled is linear, of minimum phase, of known order, and
the disturbance entering into the system is a stochastic process satisfying some specified
statistical properties.

Assumptions of the above type have been called "ideal" assumptions, and ques-
tions have been raised, especially in deterministic adaptive control (see Egardt [5],
Rohrs, Valavani, Athans, and Stein [22], and Ioannou and Kokotovic [7]), about
whether the adaptive controllers designed on the basis of these assumptions, and for
which a successful "ideal" theory has been built, are robust with respect to these
assumptions. Specifically, do "small’ violations of these assumptions lead to drastically
different behavior from that predicted by the ideal theory?

The order requirement arises since we must choose the dimension of the adaptive
regulator before we can tune it. However, the true system need not necessarily be (and
is frequently not) of the exact order that is assumed. It is well known that "small
perturbations" of an nth-order linear system can lead to systems of arbitrarily high
order.

Regarding the disturbance, the assumption made is that it is a stochastic process
with a rational spectral density, and thus is representable as the output of a system
driven by white noise. Moreover, the order of this "coloring" filter is assumed known.
Finally, it is also assumed that the noise satisfies a certain "positive real" condition.
This is essentially a requirement that the disturbance be close to a white noise and be
not too colored. However, none of these assumptions need be strictly satisfied in
practice. The positive realness condition also arises in recursive system identification
using the pseudolinear regression method (see Solo [25], Ljung and S/Sderstr/Sm [16],



A ROBUST ADAPTIVE MINIMUM VARIANCE CONTROLLER 237

and Kumar and Varaiya [12]). It is basically a pseudogradient condition (see Ljung
and S6derstr6m [16] and Kumar [10]) guaranteeing that the direction in which the
parameter estimates are recursively adjusted (in the types of recursive identification
algorithms being employed) is appropriate.

Regarding the minimum phase restriction, it is well known (see Astr6m 1 ], Peterka
[17], Shaked and Kumar [23], and Kumar and Varaiya [12]) that when a stationary
control law that minimizes the output variance is used to control the system, then the
control actions used become unbounded if the system is of nonminimum phase.
However, for adaptive control where a nonstationary, nonlinear control law is used, it
is not necessary that the minimum phase assumption be satisfied in order for the
control inputs to be bounded. Hence the minimum phase assumption is a restrictive
condition; it is easily violated by a very fast unstable zero that corresponds to a very
small numerator perturbation of the transfer function.

Much attention has therefore been given in recent years to the issue of robust
adaptive control, especially in deterministic adaptive control, to determine under what
conditions signals in the system remain bounded under violations of assumptions (for
example, see [8], [9], [20]). In the adaptive control of stochastic systems, however,
noise is an essential feature of the system, and it is of interest not only to guarantee
boundedness of signals, but it is also important to reject the noise optimally, or at
least much of it. Thus, performance of the adaptive control algorithm in rejecting the
corrupting noise, and thus tracking the desired reference trajectory with small tracking
error, is also an important goal in stochastic adaptive control.

In this paper, therefore, we address the twin questions of performance as well as
robustness of adaptive control laws for linear stochastic systems. In particular, we
address the issue of adaptive controllers that are performance-optimal when the ideal
assumptions are satisfied, and that are robust with respect to perturbations of the system
from the ideal assumptions.

We will consider two types of perturbations of the system from optimality. First
we consider perturbations of the coefficients of the colored noise polynomial that can
be large and that allow gross violation of the positive real assumption. This problem
has been treated by Egardt [5] for bounded noise and extended in Praly [18] for
mean-square bounded noise.

Second, we consider system perturbations. Vidyasagar [26] has identified the
appropriate topology on the set of linear systems, called the graph topology, which is
the weakest topology such that there is a stabilizing linear controller for a nominal
ideal system that remains stabilizing, and such that the closed-loop transfer function
is continuous (uniformly over all frequencies) when perturbations with respect to this
topology are allowed. Thus, for any given weaker topology which thus allows more
perturbations, there is not necessarily any single linear control law that continues to
maintain stability. Since self-tuning or adaptive control is really an online or real-time
search over the space of linear controllers, we cannot expect to do better than allow
for perturbations with respect to this graph topology. Thus while (nonadaptive) linear
controllers are designed for perturbations with respect to the graph topology from a
given nominal system, adaptive control laws should be designed to maintain stability
with respect to the graph topology from all possible nominal systems. This indeed is
the goal of this paper. We will achieve it by extending the approach of Praly [19] to
the vanishing gain case.

Last, asymptotic optimality and convergence results for adaptive controllers rely
on adaptive parameter adjustment schemes that use an asymptotically vanishing step-
size, i.e., the gain converges to zero. However, to maintain the ability to adapt, the
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gain should be nonvanishing. Thus we also need to analyze the effect of nonvanishing
gain on the ideal adaptive control algorithm.

In this paper we therefore exhibit an adaptive controller for linear stochastic
systems that is optimalfor all ideal plants, and remains stable with respect to violations
of the positive real condition, and with respect to perturbations of the system, in the
graph topology, from all ideal plants. Moreover, we show that stability is preserved
when the gain is prevented from going to zero.

Specifically, we present an adaptive controller for which we prove the following
performance and robustness properties:

(1) Attaining optimal regulation and tracking in the ideal case when the system
is of minimum phase with a known upper bound on the system order, and when the
coefficients of the colored noise polynomial satisfy a positive real condition (Theorem
5.1). In the case of the regulation problem, we also show that the adaptive controller
self-tunes in a Cesaro sense to minimum variance regulator (Theorem 5.2).

(2) Providing mean-square stability when the system is of minimum phase with
a known upper bound on the system order but does not necessarily satisfy a positive
real condition (Theorem 4.6).

(3) Providing mean-square stability when the system is in a graph topological
neighborhood of computable size of an ideal system as in (1) (Theorem 6.8).

(4) Continuing to stabilize the system when the adaptive gain is prevented from
vanishing to zero (Theorem 7.7).

There are still many unresolved questions. Maybe the most important is to
determine whether adaptive controllers without the modifications we have used are
already robust, even though our modifications are well motivated. Moreover, we have
not really been able to deal with the removal of the minimum phase assumption, even
though, as we will show later, our adaptive controller is robust with respect to graph
topological perturbations that do result in nonminimum phase systems.

2. The adaptive controller. In this section we present our adaptive controller. In
the next five sections we analyze the effect of the adaptive controller when it is applied
to a variety of systems satisfying varying assumptions. (Thus we are reversing the usual
order of presentation, where the intended systems are first described before the adaptive
controllers are defined!)

We will suppose that the system under control is a single-input, single-output
system with input sequence u(t) and output sequence y(t). We will also suppose the
following:

(A2.i) The reference trajectory y"(t) is bounded.

There are several fixed parameters that are chosen a priori. We choose the
following:

(A2.ii) Three integers nR, ns, and nc (which describe the dimensions of our
adaptive controller, but not necessarily those of the system);

(A2.iii) Two positive numbers 0 < Ao < )tl (which serve as bounds on certain eigen-
values);

(A2.iv) Three positive numbers p > 0, tro > 0, and K > 0;

(A2.v) A parameter vector 0 of dimension (nR + ns + nc + 2) whose first com-
ponent is larger than or equal to tro;

(A2.vi) An integer d _-> 1 (which models the delay but may not be equal to it).
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We use the regression vector c(t) defined as

ck(t):=(u(t), u(t-ns), y(t), y(t--nR), y’(t+ d--1), y"(t + d-nc)) r.
Given O(n), F(n), and p(n) > 0 for all n -<_ t- 1, and having applied a new control

input u(t-1) and observed a new output y(t), we recursively define the adaptive
controller as follows"

(2.1)

(2.2)

p(t):=p(t-1)+max (p, llck(t-d)ll2), t>=l

p( t_ d) := oh(t-d)
p’/2(t

(we choose p(t) 0 for =< 0),

(2.3) g(t) :=

(2.4)

l + r(t-d)F(t-d)(t-d)’
e(t) := y(t)-Or(t-d)(t-d),

e(t)
(2.5) g’(t) := 1/2p (t)

(2.6)

(2.7)

(2.8)

Fl(t) F(t-d)-g(t)F(t-d)(t-d)r(t-d)F(t-d),

F(t):=(1 A--I)F’(t)+AoI (wechoose AoI<=F(O)<-A1 I)

01(t) := O( d) + g( t)F( d)( d).( t),

(2.9) 02(t) := 01(t) + max (0, tro- s(t)) FI(t______)
Fll(t)

where

s(t) := first element of the vector 02(t),
FI(t) := first column of the matrix F(t),

Fll(t) := (1, 1)th element of F(t),

(2.10) 0(t) := 0 +(02( t)- 0 e) min (1 KA1 )oll 0i-- 011
Finally, the control input is defined implicitly through

(2.11) Or(t)6(t) y’(t + d).

Explanation ofadaptive control algorithm. There are essentially only three features
of our adaptive control law that are different from the usual adaptive control laws.

Normalization. The sequence p(t) is a normalization (or scaling) sequence. The
vector 4S(t-d) obtained by normalizing (i.e., dividing) b(t-d) by pl/2(t) is then the
normalized regression vector, and similarly ,(t) is the normalized prediction error. These
normalized signals are then used to update the parameter estimates.

Condition number bounding. The matrix F(t) is what is usually called the "covari-
ance matrix." It is well known in recursive identification (see Lai and Wei [13] and
Kumar and Varaiya [12]) that if the condition number of the so-called "covariance
matrix" remains bounded as t- , then the parameter estimates converge to their true
values. Equation (2.7) ensures that the eigenvalues of F(t) remain within the interval
[Ao, All, thereby keeping the condition number uniformly bounded. (In fact, as the
reader can verify, any F( t) >- Fl( t) satisfying the property that its eigenvalues lie in
the interval [Ao, A] can be used.)
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Parameter estimate projection. Finally there is a set of two modifications that
ensure that the parameter estimates are kept bounded, while at the same time making
sure that the first component of the vector 0(t) (which is an estimate of the so-called
"high-frequency gain" of the system) is kept positive and bounded below. This is done
in two stages. The first stage, (2.9), ensures that the first component is larger than tro.
The second stage, (2.10), keeps the parameter estimates inside the sphere with center
and radius KA 1/Ao by projecting them radially onto the surface of the sphere whenever
they wander outside.

Remarks on modifications. The reasonableness of the modifications of normaliza-
tion and eigenvalue bounding can be seen from the following calculation. Normal
unmodified adaptive control laws using least-squares parameter estimates would use
the (d interlaced) recursions

O(t)=O(t-d)+
R-l( d)qb( d)

l + qb T d)R-l( d)qb( d)
(y( t) oT( t-- d)dp( t- d)),

R(t)-- R( d) / qb( d)b T d).

These recursions are clearly equivalent to

O(t)=O(t-d)+
R(t-d))-l b(t-d)

p(t) pl/2(t)

qbr(t-d)(R(t-d))-lqb(t-d)1 + i?-2) p(t) pl/2(t)

(y(t)- Or(t d)(t- d)
pl/2(t)

R(t-d)..)
-1

O(t) O(t d) +
-"’p-(-t; (t- d)

(t).
I + T(t_d)(R(t-d)) -’

p(t)
qb(t-d)

Thus we see that modified adaptive control uses F(t-d) instead of (R(t-
d)/p(t)) -1. This is reasonable since R( t- d)/p( t) <-_ I, and F(t-d) also has a lower-
bounded minimum eigenvalue. Hence both R-l(t-d)/p(t) and F(t-d) are of the
same order and grow at the same rate. Last, the bounding of the maximum eigenvalue
of F(t-d) is a reasonable effort at keeping the condition number bounded.

An intuitive rationale for the introduction of normalization is the following. Let
us consider the case where the system is not of the order assumed. Then, generally we
can assume that the system can be represented in the following form (which also allows
infinite-dimensional systems):

y(t)=ay(t-1)+bu(t-1)+ (aiy(t-i)+[3iu(t-i))
i=2

where the summation represents the portion of the system dynamics that has not been
modeled. Then, under the-assumption that ns--nR=O, we have th(t-1)=
(u(t-1),y(t-1)), and so for any 0=(01, 02) T,

y(t)-r(t-1)O=(a-O2)y(t-1)+(b-O1)u(t-1)+ (aiy(t-i)+fliu(t-i)).
i=2
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This modeling error may be unbounded irrespective of the choice of 0. However, the
neglected component can be bounded by

(ce,y(t-i)+fliu(t-i))
i=2

it’[3i y2(t-i)+u t-i)
i=2 i=2

bythe Cauchy-Schwarz inequality. Noting that i=2 (y2(t- i)+ u(t i)) <- p(t), where
pl/:(t) is the normalization factor, we see that ly(t) (t 1)01 <= Mo, when {cei} and
{/3i} are in 12. Hence the error due to mismodeling is bounded when we use the
normalized quantities instead of the original variables. This is the heuristic reason for
our use of normalization.

The purposeful bounding of the parameter estimates (by keeping them in a certain
sphere), which is our last modification, does not cause any problems, at least when
the "true parameter vector" is known to satisfy a similar bound, thus allowing conver-
gence of the parameter estimates to their "true values" if that is necessary. As we show
later, there need not even be a "true parameter vector" for this modification to be
reasonable. In fact, Egardt [5] has shown that some sort of parameter boundedness
is necessary for good behavior. Similarly, keeping the first component of the parameter
estimates bounded below is tolerable at least when the true parameter vector also has
the same lower bound on its first component.

It should be noted that our bounding of the eigenvalues of F(t) is somewhat
similar to the case of the stochastic gradient algorithm (see Becker, Kumar, and Wei
[3]). In fact, the stochastic gradient algorithm is a special case of our modified adaptive
controller that is obtained when we choose Xo X in (2.7). In general, however, we
expect that the initial transient performance of the adaptive controller will be closer
to the least-squares algorithm, but that the asymptotic convergence rate will be governed
by that of the gradient algorithm, although we have not been able to establish either
of these results analytically.

The modifications present in our adaptive controller, which were first proposed
in Praly [21], therefore, all stem from reasonable motivations. In what follows we
actually show the power of these modifications in a variety of situations.

3. Some properties of the adaptive controller. Interestingly enough (and very useful
to us), the adaptive controller that we defined earlier satisfies some useful conditions
irrespective of the system to which it is applied.

Let us define O as the intersection of the closed sphere with center 0 and radius
K, with the closed half-space So=> tr0 (where So first component of vector 0 O). Note
that by construction (see (A2.v)) 0 belongs to O. For any 0 O, we define the prediction
error by

(3.1) wo(t) :: y(t) 0 Tb(t d)

and its normalized version by 0(t) := Wo(t)/pl/Z(t).
We wish to emphasize that the results of this section are obtained without any

assumptions on 0(t). The following preliminary results are of much interest, and will
be very useful to us. Since they are a direct consequence of our definitions, their proofs
are omitted.

LEMMA 3.1.
(i) l=>g(t)>-l/(l+Al);
(ii) If 0 (R), then o(t) oll--< K,, for some constant K
(iii) p(T) > t=l II(t- d)ll 2.
Proof The proof is trivial. [-!
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It should be noted that g(t) is the only eigenvalue of the matrix [I-
g(t)F(t-d)h(t-d)fr(t-d)] that is not equal to 1. Since (2.8) can be rewritten as
01(t)=[I-g(t)F(t-d)f(t-d)r(t-d)]O(t-d)+g(t)F(t-d)h(t-d)(t), it is
then clear that g(t) tells us how contractive the homogeneous part of this update
equation is, and (i) provides a lower bound on the rate of convergence ofthe parameters.
Statement (ii) above merely makes note of the fact that 0(t) is kept bounded.

LEMMA 3.2. Define a Lyapunov function Vo( t) := O(t) O) TF-I( t)( O( t) 0), for
0 (R). Then

Vo( t) <- Vo( t- d) + ff2o( t) g(t) ’2(t).

Proof
Step 1. (Fl(t))-1= F-l(t-d)+ (t-d)r(t-d). After some algebra and (3.1),

we have

(3.2) (01(t)-O)7"(F’(t))-l(ol(t)-O) Vo(t-d)+ o(t)-g(t)2(t).

Since (Fl(t))- >=F-(t) and because of (3.2), we have

(3.3) (01(t)--o)TF-l(t)(Ol(t)--O)<= "Co(t--d)+ ff;2o(t)--g(t)P.2(t).

Step 2. Let A’(t)=(O2(t)-O)rF-l(t)(O(t)-O)-(Ol(t)-O)’F-(t)(O(t)-O).
Then some algebra yields A’(t) (02(t) + 0(t) 20) rF-(t)(O(t) O(t)).

Now we consider two cases.
Case 1. If tro<-S(t) then 01(t) O(t) and so N(t) =0.
Case 2. If cro > s(t) then

O’0- S(t)A_’(t) 02(t) + 01(t) 20) Te
Fll(t)

o- So(t)
-F(t) [s(t)+(-s(t))+s(t)-Zs]<--O (sinces(t)<tro<So)

where e (1, 0,. , 0) T

Hence, in any case we have

(3.4) 02(t) 0) rF-l( t)( 02(t) O) <= Vo(t- d) + ff20(t) g(t) ’2(t).

Step 3. For convenience, let M and d denote

Ml:=(O(t)-O)rF-l(t)(O2(t)-O) and

Now consider two cases again

dl:= K A-- 1

;to o2(t) 0 II"

Case 1. If d => 1, then 0(t) 02(t) and so M Vo(t).
Case 2. If dl < 1, using (2.10) and the Cauchy-Schwarz inequality, then

M1- Vo(t)=(O2(t)+ O(t)-20)rF-l(t)(O2(t)-O(t))

(_d2,)llO2(t)_Oll z a K O= O

1]02(t)-Oll 2

[1-d2-2(1-dl)d,]>O.,

Hence, in any case, M >= Vo(t) and the result follows
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The above recursive bound on the "Lyapunov function" will be useful sub-
sequently.

LEMMA 3.3.
(i) So(t) --> cro;
(ii) I]0(t)ll _-< II011 + K(A,/Ao)=: R;
(iii) e(t)= y(t)- ym(t);
(iv) IIo(t)-o(t-d)ll<-Vl(1 +/o)lO(t)l;
(v) For any 0), e2(t)<-_p(t)(l +Al)(Vo(t-d) Vo(t))+(l +A1)w20(t)

and 0 <-_ Vo(t) <- V4 TM 1/Ao(K + K(A1/Ao))2.
Proof Formulas (i)-(iii) follow almost by definition.
(iv) Because []g(t)F(t-d)(t-d)]l_--</2, it follows that

(3.5) 01(t) O(t- d)ll--< --[o(t)[.
From the algorithm, we can easily see that

(3.6) 02(t) 01(t)) 7"F-1 (t)( 02(t) 01(t)) (O’o-- S(t))2

o

(3.7) l102(t)_Ol(t)l12 Aa (o Ilo(t-d)-O t)ll =,
(3.8) IIo(t)-o=(t)ll<=llo2(t)-o(t-d)ll
Using (3.7) and (3.5), we have

(3.9) 02(t) 01(t)[I 2 <=o I’( t)l"

Combining (3.8), (3.9), and (3.5), we have

o(t) o(t- d)ll--< o(t) 02(t)11 / o=(t) o(t- d)ll-<- 2110=(t) O(t- d)ll

_--< l+oo)l’(t)[.
(v) From Lemmas 3.2 and 3.1(i),

’2(t)
<-- g( t).2( t) <= Vo( t- d) Vo( t) + ff2o( t),
I+A1

and the bound on e2(t) follows readily. On the other hand,

Vo(t)<--llo(t)-oll =<-- -Ol[/g,o/
and the claimed bound follows, since IIo-o11_-< K due to the requirement that
OO. [3

The first result above merely states that the subsequent projection onto the surface
of the sphere continues to preserve the property (i). The fourth result above gives a
bound on the increments of the parameter estimates in terms of the normalized errors,
while the last result gives a bound on the normalized errors themselves.

This last result is fundamental. It shows that insofar as the norms of the sequences
are concerned, the adaptation law may be regarded as a static gain operator with
inputs wo(t), /p(t) and output e(t). The gain from w2o(t) to e2(t) is simply (1+A1),
which increases as the speed of adaptation measured by the largest eigenvalue A1 is
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concerned. It tells us that the error given by the parameter estimates will be smaller
than x/1 +A1 times the error given by any vector 0(R). The gain from p(t) to e2(t) is
(l+A)(Vo(t-d)-V(t)). Suppose now that, due to the boundedness of V0(’), the
"mean" value of Vo(t-d)-Vo(t) is close to zero. Then boundedness of e2(t) will
follow from the small gain theorem [4] if the operator e(t)- x/p(t) has bounded gain
and the operator e(t)- wo(t) is an operator whose gain multiplied by x/1 + A is smaller
than 1. Moreover, since this result holds for all 0 (R), we have

1 t+" 1 +r

"t= e(i)<= =tE p(i)(1-A)(Vo(i-d)-Vo(i))+(l+A)minoo 1 t=t2., Wo(i)

for all t-> d and T. This tells us why optimality can reasonably be expected to hold.

4. Stability in ideal, not necessarily positive real case. In this section we analyze
the performance of the adaptive controller when it is applied to minimum phase
ARMAX systems of known order. We do not make the usual positive-real assumption
on the coefficients of the colored noise polynomial; in fact, we do not even assume
any stochastic properties of the disturbance except for mean-square boundedness.
Nevertheless we show that the adaptive controller proposed in the previous section
mean-square stabilizes the system. (In the next section we show that stability result
can be strengthened to one of optimality when a positive real condition is satisfied.)

We consider therefore the following ideal system"

(4.1) A(q-)y(t) q-dB(q-1)U(t)+ C(q-1)w(t), >- 1

where

A(q-) 1 + ., a,q -i B(q-) biq-’ bo O, C(q-) 1 + ciq-’
i=1 i=0 i=1

Note that we assume the following:

(A4.i) Positive numbers ,o, A, delay d and reference output y"(t) are the same
as that used in the adaptive controller (see 2).

We only assume that the noise or disturbance {w(t)} is mean-square bounded, i.e.,

1
(A4.ii) lim sup - w2(t) -<_ K < a.s.

Tcx

Regarding the polynomials A, B, and C, we make the following assumptions.

(A4.iii) B(z) has all zeros outside the closed unit disk.

-1), and C(q-1), there exist polynomials S*(q-1), R*(q-), andGiven A(q-1), B(q
Q*(q-1) so that

(4.2)
(4.3)

S*(q-1)A(q-1)+ q-dR*(q-’)B(q-’)= B(q-1),
S*(q-’) Q*(q-’)B(q-1).

We will assume that, with ns and nR corresponding to the choices in the adaptive
controller, we have

(A4.iv) S*(q-1) is of degree ns,

(A4.v) R*(q-1) is of degree rig, i.e.,
R

S*(q-1) Y’. s*q-’ and g*(q-1) r*q-.
=0 =0

We define

(4.4) 0* (So*, s*s, ro*,’’’, r*R, 0,..., 0),
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and make the following assumptions:

(a4.vi) (0 0") T(0 0") _-< K;

(A4.vii) So* => tro, where So* is the first component of 0".
With these assumptions in hand, we can proceed to our proof of stability. In what

follows we denote the components of 0(t), the parameter estimate, by

(4.5) O(t)=(So(t),. ",S,s(t), ro(t)," ", r,,(t),-c,(t),. .,-c,c(t)) .
As we have observed at the end of 3, we must first understand how the normalizing

sequence p(. is related to eZ(t), the sum of the squares of y(. and u(. ).
LEMMA 4.1.

Tp<=p(T)<-K2 Y’, Y"2(t) + 2 (e2(t)+w2(t)) +To forsomeconstantK2.
t=l t=l

Proof Let

chr(t) := (u(t-1), u(t- ns), y(t), y(t-- nR), y"(t + d--1),

(t+d-nc)),
or(t) :-- (Sl(t),""", Sns(t), ro(t), rnR(t), -cl(t),""",-Cnc(t)) r.

Note that these "reduced" vectors are obtained by removing the first component
from the vectors 4)(t) and O(t). From Lemma 3.3(iii) and assumption (A4.iii), we
obtain that

T T--1

(4.6) [[4(t-d)llZ<=C Z (Y2(t)+e2(t)+w(t)),
t=l t=l

for some constant C1. From (2.1) we have

T

(4.7) p(T) <- Tp+ E (u2(t-d)+l]chr(t-d)[[2)
t=l

Using (2.11), (4.6), and Lemma 3.3(ii), we get

E u d)=
y (t+d) t)b (t) 2

,=1 ,=1 So(t)

2 r 2R2 ,
(4,8) <----tr--o Z y"(t)+----3- [14,(t-d)ll 2

t=l O’ t=d+l

T
<-- C E (ym2(t) + e(t) + wZ(t))

t=l

for some constant C2

When we combine (4.6)-(4.8) the result follows. [3

The following is a technical result that we use below.
LEMMA 4.2. Let v(t)>=0 be a sequence of positive real numbers for all >= 1. If
T1/T t=l v(t) <- V, for all T>-_ 1, then

q+k v(t) ( q+ k)(i) t=q+lt-<V l+log whereq>=l;

q+k v( t) V
(ii) Y <-- (q+k)l- whereq>=l, O<-a<l.

t’-q+l 1 a
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Proof Let X(T) (1/T) 2 ",=1 v(t); then v(t)= tX(t)-(t- 1)X(t- 1).
q+k v(t) q+k 1

(i) Y, 2 X(t)-X(t- 1)+- X(t- 1)
t=q+l t=q+l

+ X(t- 1)
=X(q+k)-X(q)+ 2

t=q+l

NV 1+ NV l+log
t=q+l q

+ v(t) + (t-l)
(ii) 2 2 --X(t)-X(t-1)

t=q+l t=q+l

N(q+k)-X(q+k) + 2 (t-l) X(t-1).
,=q+l (t-l)

If 0 a < 1, then (t 1) a(t 1)-. Therefore we have

E (t-1
)

a E t- (q+k) 1-

=q+l (t-1 =q+ 1-

Hence the result follows.
LEMMA 4.3. For any , 0 < 1, and with Vo(" the sequence shown to be bounded

in Lemma 3.3, there exists a constant C such that
q+k

t(Vo(t-d)-Vo(t))C(q+k), qdl.
t=q+l

Proof The proof is by induction. Consider the case where d 1. Then,
q+k

t=q+l
t(Vo(t-1) Vo(t)) (where0 -< Vo(t) <- V4fromLemma3.3)

q+k

<=qaV4+oV4 (t-1)-l<=2V4(q+k).
t=q+l

The induction is now on d. Suppose that for i= 1,..., d- 1 there exist Ci such that

q+k

E t(Vo(t-i) Vo(t))<--Ci(q+k), q>-d.
t=q+l

Then, let us consider
q+k

=q+l
t(Vo(t-d)- Vo(t))

q+k q+k

t(Vo(t-d)-Vo(t-d+l))+
t=q+l t=q+l

t(Vo(t-d + l)- Vo(t))

q+k

t=q+l
t( Vo( t- d) Vo( t- d + 1)) + Cd-,(q + k)

<=2(q+k)(d-1)V4+(2V4+Cd_,)(q+k)=: Cd(q+k)

and the induction is complete. [3

We now reinterpret Lemma 3.3(v) to show that (t) is small in the mean-square
sense. This will then show that the operator e( t) - x/p( t) can be considered small in
the mean static gain operator, at least as far as norms are considered. Unfortunately,
this property holds true only for time intervals where p(t) is much larger than t.
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LEMMA 4.4. There exist almost surely finite random variables and such that for
X’q+ksome given e>0, q+l<=t<-q+k, q>=l if t/p(t)<=e then ,,=q+l

L+ ev(1 + A1) log (q+ k)/q.
Proof From Lemma 3.3(v) and Lemma 3.2, we have

q+k

(4.9)
t=q+l

2(t) C0 - (1 + A,) min vZo(t)
0O t=q+l

for some constant Co. By the definition of 0", we have

(4.10) Wo.(t) Q*(q-l)C(q-’)w(t).
TBecause w(t) is almost surely mean-square bounded, i.e., lim sups- (1 / T) t=

a.s., Q.(q-1) and C(q-1) are polynomials, from (4.10) we see that there exists an
almost surely finite random variable such that

1 T

(4.11) sup - E w.(t) -<_ ff a.s.
t=l

If t/p(t)<--e, then o.( t) <- e( Wo.( t)/ t) for t[q+l,q+k], q>-l. Combining this
inequality, Lemma 4.2(i), and (4.11), we have

E (-2(t)=Co+(l+A1)e l+log
q+

L+ e(1 + A 1) log
q + k

=q+l q q

With Lemmas 4.1 and 4.4 now established, we are in a position to "close the
loop." To do so we need an appropriate version of the small gain theorem given in
the next result.

LEMMA 4.5 (Bellman-Gronwall Lemma). If p( T) <- M4T+ Mzp( To) +
T-, 2( t)p( t), then/t=To+l

p(T) <= M4T+ M2p(To)
T-1 T-1 T--1

H (1 + yK’2(t))+ )’/4 t’2(t) H (1 +
t= To+l t= To+l i=t+l

for some positive constant M2 and some positive random variable 114.
Proof The proof uses mathematical induction and we provide a sketch. For

T To+ 1 statement is obviously true. Suppose that the statement is true for To + 1 _-< T _-<

T1, then p(TI+l)<-44(T+l)+Mzp(To)Xl+ylI4X2, where

Tl T1
XI:=I+T ’, ’2(t) H (l+y’2(J)) H (l+y’2(J))

t= To+I j= To+I j= To+I

and

T T1
X2:-- 2 t,z(t)+ Y ,2(t j2(j) H (1+ y,2(i))

t= To+l t= To+l j= To+l i---j+

T1 T
’. t’2(t) I-I (l+y’2(i))

t= To+l i=t+l

We now show that the adaptive controller mean square stabilizes the system under
the assumptions stated at the beginning of this section. Note that we are not assuming
a positive real condition on the noise.
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THEOREM 4.6. For system (4.1), subject to the assumptions (A4.i)-(A4.vii), our
algorithm ensures that:

1 7‘

(i) limsup- ] yZ(t)< a.s.,
T-oo t=

1 7‘

(ii) limT‘_sup - t1= u2(t) < c a.s,

Proof For (given by (4.11)), Kz (given by Lemma 4.1), and A1, there exist
random variables t and t such that

(4.12) d 1- K2g(1 + A1) and 0 < c < 1 a.s.

Suppose now that there exists a time interval (To, T1] such that

T
p(T)-

where T may be infinite. (Note that if such an interval does not exist, then we are done.)
Because y’(t) is uniformly bounded and w(t) is almost surely mean-square

bounded, by means of Lemma 4.1, there exists
M" T+ K2 t=T-1 e2(t) almost surely.

Since e(t)=(O*-O(t-d))rd(t-d)+wo.(t), from Lemma 3.1 and (4.11) there
exist M2 and/3 such that Z 7‘0 eZ(t)< Mzp( To)+ 1/3 Tot=l

Using this inequality and the Bellman-Gronwall Lemma, we have
T--1 T--1 T--1

P(T)<=4T+Msp(To) [[ (l+K2Z(t))+K2]4 t2(t) 1-[ (l+K2’(i)).
t= To+I t= To+l i--t+l

q+k 62 K2/, 1--From Lemma 4.4 and (4.12), we have l-I ,=q+l (l+K2 (t))<=e (q+k)/q) .There-
fore there exists an almost surely finite random variable M6 such that

(4.13) p(T)<I(/I6[T+p(To)(T-1) T-1

+(T--1)l-,=To+lt62(t)
Choosing 0=0* in Lemma 3.2, we have (1/(l+A))?.z(t)<=(Vo.(t-d)-Vo.(t))+
.(t). Hence we get

T-1 T-1

tag’E(t)--<--(l+A1) t(Vo.(t-d)-Vo.(t)+zo.(t)).
t=To+l t= To+I

From Lemmas 4.3 and 4.2(ii), we have
7‘-’ w2*(t)

< M7(T- 1) at)<=cl(r-1) +(l+A,)g 1-
t:To+ t:To+

for some//7. We can rewrite (4.13) as p( T)/T <= -’/6(1 + 1/g +//7). Hence there exists
a random variable gl such that

T
->Y>0.(4.14)

p(T)--
T-dFrom Lemma 3.1(iii), we know that 1/g > (1/T) ],= yZ(t). This implies that

TlimsupT‘_ool/TYt=lYZ(t)< a.s. Similarly, lim supr_ (1/T) T

a.s.

5. Optimality in the ideal, positive real case. Now we turn attention to the so-called
ideal case, where the noise satisfies a positive real condition, and show that the preceding
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stability results can be improved to prove that the sample mean-square variance of the
output error is actually optimal. Also, in the case of regulation, we prove that the
adaptive controller self-tunes in a Cesaro sense to a minimum variance regulator.

Given the system in the previous section, let us suppose that the polynomials

S

S(q-) := E s,q-’ and R(q-) := riq
-i

=0 =0

satisfy the equations

(5.1) S(q-1)A(q-1)+ q-dR(q-)B(q-1)= C(q-)B(q-1),

(5.2) S(q-) Q(q-)B(q-1).

Then we can define 0(t): (So,’", s,s, ro,"’, r,,-c,’.’,-cnc) 7"

Regarding the noise {w(t)} we assume the following:

(A5.i) It is a martingale difference sequence on a probability space (12, F, P).

Specifically, denoting by Ft the sub-r-algebra generated by the observation up to
and including time t. We assume that:

(A5.ii) E{w(t)lF,_}=O a.s.;

(A5.iii) E(w(t)lF,_}= r2 a.s.;

(m5.iv) sup, E(lw(t)12+lF,_}<oo a.s. for some 6>0.

Next, let v(t):=Q(q-)w(t); then
d-1 d-.1

(5.3) E(v(t+d)lF,)=Z q=:v2 a.s. where Q(q-1) := E
=0 i=0

Clearly the minimum tracking variance is v2 (see Kumar and Varaiya [12]). We
now show that our adaptive controller achieves this optimal tracking performance.

THEOREM 5.1. Suppose that the system (4.1) satisfies assumptions (A4.i), (A4.iii)-
(A4.vii), and (A5.i)-(A5.iv). Furthermore, assume the positive realness condition

T+dsuplC(e’’)-ll<l/x/l+A, and also that 00. Then limT_.l/Tt=a (y(t)--
y"(t)) v almost surely.

Proof. From (5.1) and (4.1), it is easy to see that (e(t)-v(t)) is F,_d-measurable.
Now let

(5.4) z(t- d):= e(t) v(t),

(5.5) b(t) := (0- O(t))rdp(t),

(5.6) h(t) := b(t) z( t);

then it is eagy to see that C(q-)z(t)=b(t). Hence h(t)=(C(q-)-l)z(t).
Because C(ei’) is strictly inside the circle with center 1, and radius l/x/1 +

there exists a positive e such that E= (z2(J)/( 1 +A)-h2(j)) -> e E=I z2(J) for all t.
Let us define a function

(5.7) S(t):= ]r-A -h2(j-d)-ez2(J-d) t>=d+l
j=d+l

with S(d):=0. Obviously, $(t)>=O for t>=d and

S(t)-S(t-1)=z2(t-d)-h2(t-d)-ez2(t-d) for t=>d+l.
I+A1
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Since WoO( t) e( t) b( t- d), from Lemma 3.2 and (5.4) we get

Voo(t)<= Voo(t-d)+(o(t)-6(t-d))-g(t)O2(t)

Voo(t-d)+(e(t-d)+e(t))2-2(e(t-d)+e(t))6(t-d)+6(t-d)
g(t)(e(t d) + e(t))

where 6(t-d):= b(t-d)/p/2(t), (t) := v(t)/pl/2(t), and e(t-d):= z(t-d)/pl/2(t).
Taking the conditional expectation and using Lemma 3.1(i),

I)
2

E{V(t)IF’-a}<= V(t-d)+(1-g(t))-+(e(t-d)-6(t-d))2-1--l+A1 2(t-d)
v S(t-1)-S(t) e22(t_d)"<= Voo( d) + (1 g(t)) ---777,,+

P(ptt) t)

However,

and so,
T

t=d+l

Because

<
S(t-1) S(t-1) S(d)

<
p(t) --p(t-1)’ p(d) dp

7" 1-g(t) M1 7"

E{Vo(t)[Ft-d} <-- ., Vo(t-d) +v2 E +-e E (t-d).
,=d+, ,=d+l p(t) dp ,=d+l

1--g(t) T(t-d)F(t-d)c(t-d)
p(t) p(t)(l+ (t-d)F(t-d)(t-d))

A,dpr( t- d)dp( t- d)
p(t)(p(t)+ ,6(t- d)6(t- d))

p(t)-p(t-1)<A1 p2(t p(t--1) p(t)
T

This implies that t=d+, (1-g(t))/p(t)A,/dp.
Taking unconditional expectation, and noting that Voo(t) is bounded (surely),

w 2(t-- d)} < M2. Hencethere exists M2 such that eE{t=d+

(5.8) ’e’t)-v’)’< a.s.
,=d+ p(t)

From Kronecker’s lemma and (4.14), we get

(5.9) lim
1 r

r (e(t)--v(t))2=O a.s.
t=l

Hence E{(y(t)-y(t))2lF_d} E{(e(t)-v(t)+v(t))2F_a}=(e(t)-v(t))2+v.
Now, continuing as in Lemma 7 of Becket, Kumar, and Wei [3], we get the desired

result.
It should be noted that as (1 + Aa) increases, the speed of adaptation is increased.

However, the condition sup ]C(e)-l]<l/41 +Z then becomes more stringent,
requiring that the noise be even closer to pure white noise. Hence we see that A allows
a tradeoff between the rate of parameter convergence and the tolerance of the algorithm
to colored noise.
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In fact, we can even prove that the adaptive regulator self-tunes in a Cesaro sense
to the set of optimum minimum variance regulators. To exhibit this result, we concen-
trate temporarily on the regulation problem. In this case,

y" (t) 0 for every t,

07"(t)=(Ol(t), O,s+l(t), O,s+z(t)," ", O,,s+,,+z(t)),
qb r(t) (u(t), u(t- ns), y(t), y(t-- nR))

and (2.11) can be rewritten as

(5.10) OT(t)dp(t) =0.

Let us define R’(q-1, O( t)) := Yi=o Ons+z+i( t)q -i and S’(q -1, 0(t)) := y"si=o Oi+( t)q-
Then from (5.10), we have u(t)=-(R’(q-, O(t))/S’(q -1, O(t)))y(t).

Note that D:= {OIR’(q-1, O)S(q-) S’(q -1, O)R(q-1)} is the set of parameters
that yield a minimum variance regulator. We now have the following result on self-
tuning in a Cesaro sense.

TTHEOREM 5.2. For every open set O D, lim-_ 1/Tt=l l(0(t) O)= 1 almost
surely, where 1(.) is the indicator function.

Proof Because z(t)=y(t+d)-Q(q-1)w(t+d) E{y(t+d)[Ft}, from (5.9) we
know that (14.i) in Becker, Kumar, and Wei [3] is true. From Lemma 3.3(iv), we have

[lO(t)-O(t-d)llz<--2A’ 1 + vo/ o(t)
+

o(t) .]"

It is easy to see that {X(t):=YI= (v2(i)-v)/i; F} is a martingale. Due to (A5.iv)
X(t) converges and so on (vZ(t)-v)/tO almost surely and this implies vZ(t)/t-O
almost surely. Because lip is the upper bound of t/p(t) for every > 0, so vz(t)/p(t)
(v=(t)/t)t/p(t)-O almost surely. Combining with (5.8), we get I]O(t)-O(t-d)ll2-O
almost surely. Therefore (14.ii) in [3] is true.

From Lemma 3.3(ii), (5.10), Theorem 4.6(ii), and Lemma 3.3(i), we can see that
(14.iii)-(14.vi) in [3] are true. Hence our result follows from Theorem 19(ii) in [3].

6. Robustness of optimal adaptive controller. Having proved in the previous section
that our adaptive controller yields optimal performance for ideal systems, we now turn
in this section to proving that the preceding adaptive controller is robust. This means
that if mean-square stability holds for an ideal system IIo (and it does, as we have
shown), it will continue to hold for all systems in an open neighborhood of Ho. For
this to make sense, we need to define a topology on the set of linear systems. We will
consider the graph topology (see Vidyasagar [26]) and show that the adaptive controller
applied to systems in a graph topological neighborhood retains mean-square stability.
Furthermore, we will also give lower bounds on the size of these graph topological
neighborhoods.

Let F be the set of proper rational functions F(q) whose poles are all in the open
unit disk. F is equipped with the norm y(. ), defined as y(F):= suplq[= IF(q)[, for all

T x2(t).F F. For a sequence x(t), we define its /-norm as
We will prove that our adaptive controller stabilizes nonideal systems H if they

satisfy the following assumptions:

(A6.i)

(6.1)

Let the system H be described by the equation

a(q)y( t) B(q)u( t- 1)+ C(q)w( t), t>_l
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where A, B, C F, A, B are coprime, B/A is a proper rational function,
A(c) 1 C(c), and the noise is a stochastic process that satisfies merely

r w2(t)) 1/2< V, where V is a deterministic finite number. (ThisSUpT (1/Tt=l
clearly holds if, for example, the noise is bounded.) We also assume that
lym(t)[<=M for all t>O and y’(t)=u(t)=y(t)=w(t)=O for all t<=O.

Because B(q) is an analytic function outside the unit disk, we can write a Laurent
series B(q)=Yi__ohiq -i and, for d->_2, set p(q-1) equal to yid= hq-i’, otherwise it
equals zero, and D(q):= Fi=o h+d-lq .

It is easy to see that

(6.2) B(q) p(q-l) + q,-dD(q)"
Note that for the ideal system Ho (as in 5), Po(q-1) 0 and Do(q) Bo(q-1) F.

Because Iio is minimum phase, Do(q) is strictly stably invertible. Motivated by this,
we assume the following"

(A6.ii) D(q) is an invertible element of F (i.e., D(q) and D-(q) belong to F, or
we can say D(q) is a unit of F).

For a system II, we define

T(q) (A(q),. q-nsA(q), q-lB(q),. q-",+)B(q), 0,..., O) r.
With D(q) a unit of F, for every 0 we can define a new element of F by

(6.3) Ho(q) := 1 D-(q) TT(q)O.
Clearly y(H0) is a continuous function of 0. Hence we can choose 0 O so that
y(Ha) =< y(H0) for all 0 60. Next we assume the following:

(A6.iii) y(Ha) < )’h, where Yh 1/)’4 l/x/1 + A1
(A6.iv) T(P)<(Th-T(Ha)/(T(D-)(kT(D-I)T(A)+k2+ka(Th-T(Ha)))Td3-)),

where kl, k2, and k are strictly positive constants given in the Table 1 in
the Appendix (as is )’3 also).

We illustrate these assumptions by the following two examples.
Example 1. Consider the adaptive controller with ns =0, nR =0, nc =0, i.e.,

qb( t) (u( t), y( t)). We now examine the above assumptions by allowing only one
parameter to vary. Consider 0 (1, r), which denotes that the adaptive controller is
associated with the idealized plant

(1 + rq-)y(t)= u(t- 1)+ w(t).

However, suppose that the true plant is given by

A(q) l + aq- + a_q-2, B(q)= l, C(q) =1.

Then straightforward computations give

T(q) (1 + aq-l + a2q -2, q-1),
Ho(q) -q-(a + r+ a2q-)

D(q)=l,

and it follows that

y(H0) sup /(al + r)2 + 2a2(a + r) cos a +a la + rl + la21.
0<c 2,rr

Therefore we get g= (1,-a,) T, Ha -a2q -2, and )’(Ha)= Jail.
Hence, for this problem, with the expression of )’h, assumption (A6.iii) is just

equivalent to a=l < 1/,/1 / ,.
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Note that all the other assumptions are satisfied. Thus by this inequality we see
that A1 also allows a tradeoff between the rate of parameter convergence and the size
of the allowed value of a2 (see also the last comment of 5).

Example 2. To illustrate that our assumptions do not require the system to be of
minimum phase, we now consider ns =1, nR=0, nc=O, d=2, i.e., b(t)=
(u(t), u(t- 1), y(t)). We now study the assumptions bythe variation oftwo parameters,
so suppose that 0 (1, s, r)7"; this clearly corresponds to an adaptive controller for an
idealized plant:

(1 + aq-1)y(t) q-lu(t- 1)+ w(t).

However, suppose that the true plant is (1 + aq-a)y(t)=(b+ q-)u(t-1)+ w(t). Then
we have

T(q) (1 + aq-’, q-’(1 + aq-1), (b+ q-1)q-1), D(q)= 1,

P(q-)=b, Ho(q) -q-i(a + s + rb + (as + r)q-1).

Therefore we get

3’(no --la + s + rbl + las + rl, T(Ho)=0, 0= 1, 1-ab’l-ab

Hence all the assumptions are satisfied if (A6.iv) holds, i.e.,

Ibl< h

kl(1 + lal) + k+ k3)’h3’3’

which reduces to

{ {(Ibl 42(i+,,)R(+Ial)+R,/i+,,+24 +--o,/L +2(lal+lbl)+2

+3+
supy’

I+--(I+R2) + <1.
p . o-o o.o J

Note that the actual plant has a zero at -1/b. Thus we see that if the plant is
nonminimum phase, then we can model the unstable zeros by delays, provided these
zeros are large enough. We notice that by reducing the size of the parameter domain
(i.e., by decreasing R and increasing O-o), we allow smaller unstable zeros. This is a
manifestation ofthe well-known fact that high gains may cause problems in the presence
of unmodeled dynamics.

We see also that the threshold for the unmodeled unstable zero depends on the
/o-norm of the forcing signals w and ym of the closed-loop system. This is a manifes-
tation of its nonlinear nature. However, since these norms are divided by v/, we can
overcome this difficulty by choosing the threshold p in (2.1) proportional to the square
of these norms.

We consider a graph topology constructed from the set F. All the properties of
[26] can be rederived here. Specifically, this topology is the weakest one such that
feedback stability is robust and closed-loop transfer functions are continuous (with
respect to the "sup" norm). Since this topology on the collection of systems II follows
from the topology on r3, our robustness result follows from the following theorem.

THEOREM 6.1. The set of (A, B, C) satisfying assuptions (A6.ii)-(A6.iv) is open.
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_Proof. The set

(, F, H, o)l, F, H, GF, F U, y(H)< Yh,

yh y(H)
(G) <

y(F)(k,y(F)y()+ k2+ k3(Yh-- y(H)))yd3-1(, , )
is an open set of F6 where U denotes the set of units of F. This holds since U is an
open subset of F, and the mapping F-l-> F is continuous on U (see [26]).

Let us prove that the mapping (A, B, C)--> P is continuous. Using the Cauchy-
d-2Schwarz inequality, and Parseval’s theorem (see [4]) we have y(P)-<i=o ]hi[ <--

v’d-ly(B). Since the mapping (A,B, C)-->P is linear, and as we have just shown,
also bounded, this proves that it is continuous. This implies that the mapping
(A, B, C)- D is continuous, and (A, B, C)---> Ho is continuous, for any fixed 0. Hence,
for any fixed 0, the mapping (A, B, C)- (D, Ho, P) is continuous.

Therefore the Set

0o := {(A, B, C)ID U, y(H0)<

y(P)<
,. e( Uo) }y(D-’)(k, y(D-’)y(A)+ k2+ k3(’Yh-T(Uo)))’Ydj-’(A, B, C)

is open, and therefore U 0,o 00 is also open. The result follows.
Before showing the proof of Theorem 6.8, the main robustness theorem, we need

some results. As Lemma 3.3 shows, it is sufficient to prove that the operator e(t) --> /p(t)
has a finite gain and the operator e(t)- w(t) has a gain bounded by 1/v’l+hl. In
what follows, we use a number of positive constants ai,/3i, y, 6i, V/, and ki, given in
Table 1 in the Appendix, that depend on T(A), T(B), T(C), M, V, K, R, nc, ns, nR,

/x, d, p, ho, h, and cro.
LEMMA 6.2.
(i) p(t)>=p(t--1);
(ii) [[dpll<=p(T+ d)<- llqb[I2+ Tp+ V1;
(iii) 1/2([luHt / Ilyl[,) -<- I1 11, <--  ,llull, / 211yll, / %/o.1;
(iv)
Proof Formulae (i) and (iv) are immediate.

T(ii) Since p(t+d)-p(t+d-)<-_P+ll4(t)ll, we have E,=l(P(t+d)-
p (t + d 1 )) <-_ Tp + & T. Choosing V := p(d), we find that p T+ d)

(iii) The left-hand inequality is obvious; for the right-hand side,

114, t-< (1 / ns)llul]+(1 + nR)lly[[t + nctM2.
Now choosing /1 :-- /1 + ns, 3’2 := /1 + FIR, and al := MVc, we get the result.

LEMMA 6.3. p(t + 1) <_-- yp(t).
Proof

(6.4) ly(t+ 1)l -< w(t/ 1)1 + (B)II u II, / /(A- 1)Ilyll, + T(c- 1)11 w[I,.
Define &’(t):=(u(t-1), ", u(t-ns),y(t), ",y(t-nR),ym(t+d-1), ",y’(t+
d-n)) and O’(t):=(Sl(t), ,s,s(t) ro(t), r,R(t),-Cl(t), ,-c,c(t)) T. Then
the control law becomes

(6.5) u(t) =ym(t + d)- orT(t)r(t)
So(t)
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By Lemma 6.2(ii) we have

(6.6) 4,( t)ll 2 p(t + d 1)+ y2(t) + M2.

Putting (6.5) and (6.6) together, we have

(6.7) u2(t) <= 2_ (M + R2(p(t + d 1) + y(t) + M2)).
o-o

Next, with Lemma 6.2(ii), we have

(6.8) ll4,(t-d / 1)ll=<-p(t)+u2(t-d / 1)+y(t-a + 1)+ M.
From (6.4) and Lemma 6.2, we have

y2(t- d + 1)--- [I w(t- d + 1)1 / (T(B) / T(A- 1))(llullt-a / Ilyll,-)

(6.9) +

V o(t).

Combining (6.7)-(6.9), we have

p(t+ 1)p(t)+p+ II(t- d + )11 =

N 2+R
e O(t)+ I+R y=(t-d+l)+M+o+ (I+R)

2 v (c-
I+R +2((B)+ (A- !)) +

+[2+ZRg ++ +M( + R ()
P Po

=: r,(t).
LZMMA 6.4.

II,- (D-’)E(A)IlYlI, + (C)ll wll, + (P)II u II,-,].

Proo Using (6.2), we have D(q)u(t-d)=A(q)y(t)-C(q)w(t)-
P(q-’)u(t-1), that is, u(t-d)=D-’(q){A(q)y(t)-C(q)w(t)-P(q-)u(t-1)}.
The result follows.

The next lemma is immediate.
LZMMA 6.5.
(i) Ilyll, Ily
(ii) II(t)ll , fo to, where , M.
We therefore see from Lemmas 6.2, 6.4, and 6.5 that the operator e(t)p(t)

has a bounded l-gain, neglecting T(P).
LZMMA 6.6.

wall, (Ha)llY II, + (D-’)(P),(II II,-, + ,)+ (D-1)II wli, + (D-’)M.
Prooy

T(q)y(t)=[B(q)(6(t-) W(q-’)(t+d-))+C(q)U(q-’)w(t)]
where

U(q-’) := (,..., q-, o,..., o, o,...,o)L
W(q-’) := (o,..., o, o,-.., o, q-’ q-")
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From (3.1), (6.6), and the equality above, we have

D(q)w( t) [D(q)- Tr(q)]y( t) + V(q-)U4( t- 1)

rB(q) W(q-1)ym(t + d 1) + rC(q) U(q-1)w(t).

Using (6.3), we get

w(t) H(q)y(t)+ D-l(q)P(q-1)rdp(t 1)+ D-l(q)rC(q)U(q-1)w(t)
D-l(q)TB(q) W(q-1)ym(t + d- 1).

Hence

wall, (na)llY II, / Y(D-)Y(P)R([Iqbi[,- + 01)

+ 3"(D-’)R3"(B)VcMs/+ 3"(D-1)R3"(C)s/I+ ns IIw[I,.
If we choose a2:=R3"(B)vc, fll:=R, and a3:=R3"(C)v/l+ns, the result
follows. I:]

If we neglect the last three terms, this lemma and Lemma 6.5 tell us that the gain
of operator e(t) w(t) is 3’(H).

LEMMA 6.7.

I[yml[tMx/r<aapl/9-(t) wherea4:= M/v/ft.
Proof From the fact that ly’(t)l<=M and Tp<-p(T), the result follows.
Our result on the robustness of the adaptive controller with respect to the graph

topology is given by the following theorem.
THEOREM 6.8. Under assumptions (A6.i)-(A6.iv), the adaptive controller infeedback

with the system II, yields mean-square bounded inputs and outputs.
Proof As observed at the end of 3, and due to the lemmas above, we can use

a small gain argument.
T-dBecause p(T)/T >- 1/T,= yZ(t), if we can prove that there exists N so that

(6.10) N> p(T)
T

then lim SUpT- 1/T ]= y2(t) < 03. Similarly, we will have lim SUpT"
T1/T Y,--1 u (t) <.

We now prove (6.10).
TFrom Lemma 3.3(v), we get [lell2<-(l+,,)Z,=(v(t-d)-V(t))p(t)+

(1 + A1)][w]]-. Let

(6.11) A2( r) := max \0, ,=, (Vo(t-d)- V(t)) p(T)] and 3’4:=(1+A,) 1/’,

then

(6.12) lie[IT 3"4A( r)p’/2( r)+ 3’411 w[[ T.

From Lemma 6.6 and Lemma 6.2(ii), (iii), we have

wall, <-- y(na)llyll, / 3"(D-1)3"(P)l(Pl/(t- 1 + d)+
(6.13)

+ 3’(D-’)a3 Vx/+ 3’(D-’)ce2Mv/.
Substituting (6.13) into (6.12), with Lemmas 6.5 and 6.7 we obtain

Ilell r -< 3’4A(T) + 3’43’(D-1)3’(P)fll 3"a3-1]p’/(T) + 3’43’(D-’)3"(P),a,
+ Y4(H)IIelIT + [.3"a3"(H)M + 3’43’(O-1)(ce3 V+ a2M)]/-.
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Choose/32 := fl ’)/4, V2 :- ")/4M 1 "---" ’)/4g13, 3 :-- ’)/4101, 05 :-- ’4e2M; then

(6.14)

(1 3/4y(H)) --(y4A( T)+ f123,’(D-1)/(P)’ya3 -1) pl/2(T._.___) -1

4-T + V23,(H)+ 8,(D V

+ as/(D-) + 4-
From Lemmas 6.4 and 6.2 we have

u T- <---- r(D-1)[ T(A)Ilyll / r(c) v4-/ 2r(P)p’/2( T+ d 1)].
Using this inequality and Lemma 6.2, we have

p’/(T) y, y(D-’)y(A)IlYI] T + Y, Y(D-’)y(C)V
+ 2yl

Choose 4=2T, 2 yy(C), V3=, and y5 yr(A); then

(1 r(D-1)r(P)r-4) pl/(T)

(6.15)

where we let
From assumption (A6.iii), there exists e > 0, so that 1- (H)4 e. Substituting

(6.14) into (6.15), we get

(6.16)

r(o-1)r(e)4r-

1
NM+Mo

where

Mo:= (D-)V++

M:=+((D-)’+ 7) 7(D-)(P)3.

From assumption (A6.iv), we know that (P)(D-)(4+(((D-)s+
)/e))-< 1. For convenience, define n := 1-(D-)(P)(4+(((D-)s+
)/e))7- > 0. Choose some fixed such that

(6.17) 0<<

Case 1. For each time T such that (T)N , (6.16) can be rewritten as

( n-- T4(T + TsT(D-1))(r))"’l/2(r) M1
Let

M2 := r/- a > 0 (from (6.17));
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then

Hence p(T)/T is bounded almost surely.
Case 2. Consider some time interval, say (To, T), such that

(6.18)

P ’/Z( T) <= ( M-o + Mo) 1

p’/(T) (M,) 1

"--’---> -+Mo
M2
for every T To, T) (where T1 To may be infinite),

=< + Mo4Z,

On such intervals, we necessarily have A(T)> 6 for every T (To, T). From
(6.11), A(T) > 6 yields

r p(t) 32(6.19) t=l (V(t-d)- V(t)) p->
r Vo(t), T>0. Note thatDefine W0(T) E,=r_a+

VO(T) VO( T d) for T >_- 1. Because 0 <- Vo(t) _-< V4, We have
Wo( T)- WO( T- 1)

(6.20)
From (6.19), we know that

0 <= Wo(T) <- dV4.

(6.21)
T

E (Wo(t-1)- W(t)) p(t) 6"
,=, o( ri >

We define

(T )W(T) E WT
p(t+l)-p(t)

,=, p(T+l)
+
W(0)p(1)
p(T+ 1)

Note the following:
(i) From (6.20), 0 <= W( T) <- dV4;
(ii) From (6.21), ] T

,=1 (Wo(t- 1)- W(t))(p(t)/p(T))> 32;

p(T) +(1-p(T))W(T);(iii) W](T) W T-
p( r+1---- p( r+ 1-------

(iv) From (ii) and (iii),

W(T-1) W T) > 62 p( T+ I) p(T)_|._z_|
2

>
p(T+l)-p(T)

p(T+ 1) \’3] p(T)
T6(To, T1).

hence for any Te(To, T), we have Y,T=To+, (p(t+l)-p(t))/p(t)<=(y3/6)2V4d. Since
p (t) is increasing,

log p(T)<(2) 2 p’/2(T) ([(y3] 2 )p( To + 1) V4d or ,/2(
-<_ exp V4d

p To+l) 2\6/
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From Lemma 6.3 and (6.18), we get

/91/2(T) 3( 1 ) (l__(3 2

-<_--- M,"oo+Mo exp
\2\6]

V4d"

Cases 1 and 2 tell us pl/2(T)/ is bounded.

7. Stability with nonvanishing adaptive gains. In the previous sections the gain of
the parameter estimates, or equivalently the stepsize of the adaptation algorithm, has
been allowed to converge asymptotically to zero. Indeed this is necessary if we
asymptotically want to achieve optimal tracking. However, this vanishing gain also
causes the adaptive controller to have asymptotically diminishing ability to adjust to
system changes. Hence, in practice, adaptation gains are frequently prevented from
going to zero. Therefore in this section we address the nonvanishing gain case of our
adaptive controller.

We choose such that 0 < < 1. Let F’ be the set of proper rational functions
F(q) whose poles are all in the open disk of radius . F’ is equipped with the norm

y(F) sup IF(q)l, F
Iql=

For a sequence x(t), we Oenne its l()-norm as Ilxll:=Z --’x(t). Note that ift=l
F(q)F’ and z(t)= F(q)x(t), then ]]zlly(F)llxl].

Let us consider system II, which can be described as follows"

(A7.i) We suppose that the true system satisfies

(7.1) a(q)y(t)=B(q)u(t-1)+C(q)w(t), tl

where A, B, C F’, A, B are coprime, B/A is a proper rational function,
and A()= 1 C(). Regarding the noise w(t) we will merely assume that
it is bounded, [w(t + 1)[ where V is a deterministic finite positive number.

As before we will also assume that lye(t)[ M for all > 0 and

y(t)=u(t)=y(t)=w(t)=O forallt0.

Because B(q) is an analytic function outside the disk of radius , we can write
a-2 hq_i.a Laurent series B(q)= hq-i and state that if d >2, then P(d-)==oi=0

otherwise it equals zero and D(q)==oh+a__q- It is easy to see that B(q)=
p(q-1)+ q-aD(q)" Then we assume the following"

(A7.ii) D(q) is an inveible element of F’.

As before, we define

T(q) := (A(q), q-"A(q), q-B(q), q-",+’)B(q), 0,..., 0)

For any 0, we define Ho(q):= 1 D-(q) T(q)O and choose
y(Ho), for all 0 . We also make the following two assumptions"

(A7.iii) y(H)< y where Yh := 1/y4;

(A7.iv) y(P)<(y-y(Ho))/(y(D-’)(kay(D-1)y(a)+ks+k6(y-y(Ho)))y’)
where k4, ks, and k6 are strictly positive constants given in Table 1 in the
Appendix (as is Y0 also).
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Because the mapping F(q)-+ F(txq) is an isomorphism on the field of rational
functions, all the properties of [26] can be used here. In particular we obtain a topology
that is the weakest one, such that feedback tz-exponential stability is robust.

TrEOREM 7.1. The set of (A, B, C) satisfying assumptions (A7.ii)-(A7.iv) is open.
Proof The proof is the same as in Theorem 6.1 except that we need to prove that

d-2the mapping (A,B,C)-+P is continuous. Note first that y(P)<-Y,i=o[hi[tz -i and
X"-’ -’</d I(Y,=o -2,)1/2hitz Now, using Parseval’s theorem, we havei=0 ]hi[Ix

2 --2i=ohi/x -_<suplql>=+,{B(q)[ 2. Hence y(P)<-v’d-ly(B) proves that the mapping
(A, B, C)-> P is continuous.

Now we define a new normalization sequence"

(7.2) p(t)=l2p(t-1)+max(p, llrb(t-d)ll2), t>-I

where p (t) 0 if <_- 0 and 0 < p < o.
It is important to note that in going from (2.1), where we had simply 2 1, to

(7.2), we have made our assumptions more restrictive. This can be seen by comparing
Theorems 6.1 and 7.1, In the latter we need /x-exponential stability, whereas in the
former mere exponential stability is sufficient. In particular, this means that in the
latter case we cannot neglect a pole-zero pair that nearly cancels and that corresponds
to an eigenvalue larger than/x in modulus. We can also note that for the first example
of 6, we now obtain the restriction

The following lemmas are essentially similar to those in 6, and so we abbreviate
the proofs.

LeMMA 7.2.

(i) tz-rlw(T)l =< Ilwl[--< a3IUI’-Tv’
(ii) /z-2’p(t)-> tz-2(’-)p(t 1);
(iii) 1/2(llullr + Ily[[) 5-1[4,11 <-- ’Y9[lUIIT
(iv) ll61}r<= y81x-r+ap’/2( T+ d)<= }16l}r+ V6lUb-T -’1" V5.
Proof (i) The proof follows from the definition of the norm Ilwllr as Ilwll-

E,=/xr -2’w2(t) and from (A7.i), which assumes Iw(t+l)] <= V.
Inequality (ii) follows from (7.2).
(iii) [14,11<=(+ns.)z-2"llull+(+n,)z-".llYl[+ncM(t,-’-"/(1-z)). Now

-..choose Y9 vci + 7,/x- , y, v’i + nntz and O6 M(.c/4l-/.,2) and the result
follows.

T+d -2t 2 -2d 2T.(iv) tz-2{r+a)p(T+d)>=E,=, Ix II(t-d)ll =>, 11611
When we choose y8 =/x a, the left inequality in (iv) follows. On the other hand,

when we use
T+d

E
t=l

_[1 -,’- +

t=l

r+a
-2,p Ix-2(1- t,-. * 2 P,

,= 1-tx
the right-hand side inequality in (iv) holds if we choose

,/i
Vs a /1

Lepta 7.3. p(t 1) =< y20p(t).
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Proof If we use ly(t+ 1)llw(t+
t+l r(c a)ll w II, instead of (6.4), and

’+,(A- 1)]]yll, +

y2(t-d + 1)<=[Iw(t-d + 1)1 + (3’(n) +/zy(A- 1))/z

(11 II,- + [[yll,-) + ’-+’3,(c- )11 wll,_]

_<-[2(y(B)+tzy(A 1))l-dy8+(l+y(C 1)/x)63 pp] 2p(t)

instead of (6.9), then we get the desired .result.
LEMMA 7.4.

u - a3’(D-)(/(A)IIYIIr + ’(C)ll wll +-(P)II u -),

Proof Because D(q)u(t-d)=A(q)y(t)-C(q)w(t)-P(q-1)u(t-1), we have

The next result is immediate.
LEMMA 7.5.

(i) Y T =< Y + e T

(ii) IlY IIT --<-- M(/x -2T (1 )/(1 -/x2)) ’/2 <= as/X -T.

LEMMA 7.6.

IIWSIIT <= y(H8)llyll T + y(D-1)y(P)/36(ll b r_l + ce,)+ y(D-’)a9/x -r + y(D-’)alollWllr.

Proof The proof is similar to that of Lemma 6.6. l-]

THEOREM 7.7. Under assumptions (A7.i)-(A7.iv), the adaptive controller in feed-
back with the system II, yields bounded inputs and outputs almost surely.

Proof From Lemma 7.2(iv) and (iii), we have 1/2tz-Ty(T)<=/x-p/2(T+ d). If we
can now prove that there exists N < oo almost surely so that

(7.3) p /2(T)<N forT>0,

then clearly y(T)<=2pl/2(T+ d)<2N, so we will have shown that y(T) is bounded
almost surely. A similar situation holds regarding u(T) also.

So we only need to prove (7.3). From Lemma 3.3(v), we have

e 2 _<- (1 + A,)/-p(T)A(T) + (1 +, 1) wll 2
where

(7.4)
T

A2(T):=max 0, E (V(t-d)- V(t))tz2(T-’)
O(t)

,=, p(T)]"

Thus

(7.5) -TIlelJT 3/4 p /(T)A(T)+ y4IIwO[IT where ’y4--V/1-FA1

From Lemmas 7.6 and 7.2, we have

(7.6)
wll T < T(Hff)IIyll T + T(D-’)’y(P)Ivtx-Tp’/2(T)’yIdo+’

+ T(D-’)T(P)4+ "y(P-’)(ce9 + e,o V)/.t -T
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where 37 :-" 6’Y8[-61-d and t4:-" 36al Substituting (7.6) into (7.5), we obtain

IIe <-- ’yaJtZ TO 1/2( T)(T) + 4(n)Ilyll + (D-’) T(P)8- 1/2(T)T
(7.7)

+ T(D-)T(P)as + T(O-)(a11 +aV)-T

where f18 := 47, 5 := 44, 11 := a9T4, and a:= a1083T4.
From Lemma 7.5, we have [[yllTllymll+llellT8- +llell. Using this, we

rewrite (7.7) as

(! r4T(n))II e 11T T4a(T) + r(D-)?(P)8?] /(T)+ ?(D-) ?(P)5
(7.8)

+ [r4r(H)as+ r(D-)(a + al2 V)]u-L
From Lemmas 7.4, 7.2, and 7.3, we have

u 11T- r(O-1)[ r,llY + r(P)aU-’/(T)r,-1 + asU-V]
where := a?(A), 7 := 28, and 8 := T(f)d3

From Lemma 7.2(iv), (iii), and this last inequality, we have

-T 1/2(T) < r9 rll 6 -(T-d) W5+ V6 -(T-d)

Y8 Y8 Y8 Y8 Y8

8 /

1
_

Vs E -r a

8 8 8 8
If We choose

69 := Y9 67 Y14 :"-
Y9 "}/11 Y9

Y8 Y8 3"8 Y8

Y8 Y8 3’8

then the inequality above becomes

(1 T(D-1)89T(P)Taff’)tz-Yp 1/2(T)
(7.9) --<__ [’y(D-1)’Yl408--] T,3te8 + T(D-’)86V+ a7 + V8]-T

+[(V-1)14+ 13] llel]T + V7.

From assumption (A7.iii) there exists e > 0 such that 1 (H)4 e. Substituting (7.8)
into (7.9), we have

1
T(D-’) T’4 + 13T(D-1)89T(P)Tff1-

(7.1o)
(T4A(T) + T(D-’)T(P)flsT1) p,/2( T) Mo+ grM,

where

3/(D-’) T14 + ’Y13 ,y4,Y(Ht) 08 + ,y(D-1)(o, 1-4- 012 V)] "+- T(D-’)’Y1408 + 1308

+ T(D-1)t6 Vq- a7 + V8,

T(D-1)T14+ T13 y(D-1)y(p)ts5+ V7.
E



A ROBUST ADAPTIVE MINIMUM VARIANCE CONTROLLER 263

Now, assumption (A7.iv) implies

T(P)T(D-’)(9 + f18 T(D-’)T14+8 ’)/13) ’yld;l < 1.

Hence, there exists r/> 0 so that

r/:= 1 y(D-1)y(P)(89+ ’Y(D-1)’)/14-13 ’Yl3 38) ld0-1.

Now we choose and fix a 6>0 that satisfies 0< 6 <(’08/(’)/4[’}/(D-l)’Y14+13])) and
examine two cases.

Case 1. If for each time T, A(T)-< 6, then from (7.10),

(D-1)’Y14-1- /13 4zT))pl/2(T) < Mo+tzM1
E

Hence

8(Mo+/zM1)01/2(T) <= 1)
"". N1

r/e e(D- T4 at- /1316/4

and so p(T) is bounded.
Case 2. Suppose, however, that there is a certain time interval (To, T1) such that

p 1/2(To) -< N1,

(7.11) 1/2(T) > N1 for T e (To, T1) (where T1 To may be infinite),

pl/2( T1 N1"

On such an interval, we must have A(T)> 6 for T e (To, T). From (7.4) we get

T

’, V(t- d) V(t))tx 2(T-d)
p(t)

< 62
,=1 p(T)

T V(t), for T > 0, thenLet us define W(T):= E,=T-a+I
T --2t

E (Vs(t-d)-Vs(t)) tX_2TPp(t)
t=l [ (T)

T --2 tp
t=lE (W(t- 1) W(t)) txtX-2rP (t)(T)

Note that 0 <= W(T)<= dV4, for T=> 0.
If we now define

T -2(t+l)p(t + 1)- Ix-2tp(t)
Wa(T) := E W(t) Ix

t=l tx-2(r+p(T+ 1)
W(0)/x--p(1)+ tz-2(T+l)p(r+ 1)’

then

(7.12)
T -2

E (W6(t-1)-W(t)) tx tp(t)
-2

,=, tx Tp( T) W’’( T- 1) W(T) > 62.



264 L. PRALY, S.-F. LIN, AND P. R. KUMAR

Note that because Wo(T)<= dV4, it follows that W’(T)<-dV4. It is easy to see that

W(T) Ix p T)
-2(T+l)

IX p(T+ I)
W(T 1)+ 1

_2

)IX Tp(T)
W(T).-2(T+)p(T+ 1)

Using (7.12) we have

W T 1) W(T)

IX p( T) (62+ W( T))- 1---2(T+l)p T+ 1)

> IX (T+I)-IX Tp(T)
--27"

IX p( T)

_2T

)IX p( T)
W( T)--2T+)p(T+ 1)

Hence,

T -2(t+ -2tp., tx p(t+ 1)--Ix (t) T

t=To+ Ix p(t) T0+l

2(YlO [W(t_l)_ W(t)]

( ’YlO 2

<= dV4 for T(To T1).
\/

Because Ix-2tp(t) is increasing with respect to time t, from the last inequality we get

1.
< exp dV4Ix-2To+lp(To+ \l

and so again p(T) is bounded.
When we combine Cases 1 and 2, the theorem is proved.

8. Conclusions. Here we have analyzed the twin issues of obtaining both good
performance and robustness out of an adaptive controller for linear stochastic systems.

For minimum phase plants of known order, with a known compact set containing
a stabilizing regulator, and for which we know the sign and a lower bound for the
leading coefficient ofthe control polynomial, we have shown that our adaptive controller
yields mean-square bounded inputs and outputs. If the noise additionally satisfies a
positive real condition, then we have shown that the adaptive controller is asymptoti-
cally optimal in the sense of minimizing output error variance. We have also presented
a ,graph topological neighborhood of an ideal plant, such that the system is mean-square
stabilized even when that system is not ideal and when the statistical properties of the
noise are violated. This holds true whether the adpative controller is used in a vanishing
or a nonvanishing gain mode.

Several open problems remain. It is still not known whether the standard self-tuning
regulator using a least-squares parameter estimate is mean-square stable, let alone
optimal. Moreover, it is not known whether the unmodified adaptive controller
possesses good robustness properties. The first question deals essentially with the loss
of identifiability, and the consequent unboundedness of the condition number of the
so-called "covariance matrix," when the parameter estimates converge. Unfortunately
the second issue cannot really be resolved until the first issue is better understood.
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Appendix.

TABLE

y32=2+try) Re +
p
+1+ M2(I+R2)

+ 1+o’ R2 +2(y(B)+y(A_l))+T,(C__l,
x/

V

2 R+ 0+M(I+R)+My2o + .2 + 0"20 crg

+ 10.o R 2((B)+(A-1))l-ya+(l+(C-1)tx)3
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PROPERTIES OF THE RELAXED TRAJECTORIES OF
EVOLUTION EQUATIONS AND OPTIMAL CONTROL*

NIKOLAOS S. PAPAGEORGIOU’t

Abstract. This paper considers a class of nonconvex control problems in a Banach space, governed by
a semilinear evolution equation and establishes the existence of admissible pairs. Then the introduction of
measure-valued controls convexities the system, and under general assumptions it is shown that the set of
trajectories of the original system is dense (in an appropriate topology) in the set of relaxed trajectories.
Some useful topological properties of the set of relaxed trajectories are also determined. Furthermore, some
optimization problems are solved and in many cases the values of the original and relaxed problems are
shown to be equal. Finally, another relaxation result is proved for a different class of systems, described by
a general nonlinear evolution equation.

Key words, evolution inclusion, measurable multifunction selection, evolution operator, weak com-
pactness

AMS(MOS) subject classification. 49A20

1. Introduction. It is well known to researchers working in optimal control theory
that to guarantee existence of optimal "state-control" pairs we need, among other
things, a convexity hypothesis on a certain orientor field. The well-known property
(Q) of Cesari is an example of such a hypothesis. It was first introduced by Cesari
[12a] to prove the lower semicontinuity of the cost functional and since then it has
become a popular tool among people working on variational and optimal control
problems. This is very nicely exemplified in Berkovitz [7] and Cesari [13].

When this convexity hypothesis is no longer satisfied, to have optimal solutions
we need to pass to a larger system, in which the orientor field (also known as the
velocity field or tangent bundle) has been convexified. Such a convexification, on a
control theoretic level, corresponds to the introduction of measure-valued controls.
Those controls are called "relaxed controls" (see Warga [37], [38]) or "chattering
controls" (see Gamkrelidze [22]) or "sliding regimes" (see Filippov [21]) or "general-
ized curves" (see Young [39]). Here we adopt the name "relaxed control," which is
more widely used among mathematicians working in control theory. Having introduced
this augmented system, it is natural to ask what the relation is between the set of
relaxed trajectories and the set of original trajectories. More precisely, given the fact
that under mild assumptions the relaxed problem has a solution, we would like to
know whether every relaxed optimal trajectory can be approximated arbitrarily close
by trajectories of the original system.

For finite-dimensional control systems this problem has already been studied in
the literature. For details we refer to the books of Gamkrelidze [22], Hermes and
LaSalle [24], and Warga [38]. For infinite-dimensional systems, where most of the
results concern linear systems, the most general of such results appears to be that of
Ahmed [2]. However, the main theorem of that paper (Theorem 5.2) has a serious gap
in its proof and, in our opinion, is incorrect. Namely, Ahmed [2, p. 262] claims that
yn_ y strongly in the Lebesgue-Bochner space LP(E) (we use the notation of [2]).
However, such a conclusion is not justified from the properties of the sequence {yn},
and additional, considerably stronger conditions are eventually needed to get this

* Received by the editors October 2, 1987; accepted for publication (in revised form) May 24, 1988.
This research was supported by National Science Foundation grant DMS-8602313.
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strong convergence in LP(E) (for details, see the results of Brooks and Dinculeanu
[8], Castaing 10], and Gutman [23]). After all, it is well known (among people working
on differential inclusions; see Aubin and Cellina [4]) that to have a relaxation result
(even for finite-dimensional differential inclusions), we must have a Hausdorff-
Lipschitz orientor field (unless we are dealing with a semilinear inclusion, in which
case the solution admits an integral representation in terms of the evolution operator).
Given that a control system, under very general measurability hypotheses, can be
written as an equivalent evolution inclusion (deparametrization), to have a relaxation
result for the control system, we need the resulting velocity field (i.e., the union of all
vector fields over all admissible controls), to be Hausdorff-Lipschitz in the state
variable. However, in Ahmed’s work [2], which deals with general nonlinear systems,
this is not the case. In this paper, by using some recent results on measurable
multifunctions obtained in [27], we are able to overcome the difficulties that have
appeared in Ahmed’s work. In fact, a crucial point in our approach is the relative
compactness of the set of original trajectories, which is achieved through appropriate
hypotheses on the evolution equation describing the dynamics of the system. Neverthe-
less, the work of Ahmed [2] is still valuable because it suggests way to address the
relaxation problem for infinite-dimensional systems. In this paper, we adopt some of
those ideas and techniques which, combined with other tools from different areas, give
us two relaxation theorems: one for semilinear and the other for nonlinear infinite-
dimensional control systems. We also go beyond Ahmed [2] and study the properties
ofthe set-relaxed trajectories and their dependence on the relaxed controls that generate
them. We also prove that, even in the absence of a relaxation result, we can show
under mild assumptions on the cost functional that the value of the original optimal
control problem equals the value of the one that is relaxed. We conclude with some
examples from distributed parameter systems.

2. Preliminaries. Let (1, ) be a measurable space and X a separable Banach
space. Throughout this paper we will be using the following notation:

Pf(c)(X) {A
___
X: nonempty, closed, (convex)},

Pw),)(X) {A X: nonempty, (w-)compact, (convex)}.
A multifunction F:f-P:r(X) is said to be measurable, if for all zX, to-->

d(z,F())=inf{llz-xll: x F(o)} is measurable. When there is a tr-finite measure
/x(.), with respect to which E is complete, the above definition of measurability is
equivalent to saying that Gr F {(to, x) f X: x F(w)} E B(X), where B(X) is
the Borel o’-field of X (graph measurability of F(. )). We use S(1 <-p_-<) to denote
the set of selectors of F(.) that belong in the Lebesgue-Bochner space LP(X), i.e.,
Sv={fLP(X):f(to)F(to)tx-a.e.}. This set may be empty. When F(.) is Lp-

integrably bounded (i.e., F(. is measurable and to IF(,o)ll-- sup {[Izll: z F(,o)}
LPl))), then S . Using S], we can define a set-valued integral for F(. by setting
JF= {jf:f S]}. We also use SF to denote the set of measurable selectors of F(. ).

Let Y, Z be Hausdorff topological spaces and let G" Y 2{} be a multifunction.
We say that G(. is upper semicontinuous (u.s.c.) (respectively, lower semicontinuous
(1.s.c.)), if for all V_ Z open, G+(V) {y Y: G(y)

_
V} is open (respectively,

G-(V) {y Y: G(y) fq V } is open). Observe that when G(.) is single-valued,
then the notions above coincide with the continuity of G(.). If X is a metric space
on Py(X) we can define a metric, known as the Hausdorff metric, by setting: h(A, B)
max (sup d (a, B), a A], sup d (b, A), b B]). IfX is complete, then so is (Py (X), h).

Let Z be a separable, complete metric space (i.e., a Polish space) and B(Z) its
Borel o--field. By MI+(z) we will denote the space of probability measures on Z. A



RELAXED TRAJECTORIES 269

transition probability is a function h " x B(Z) [0, 1] such that for every A B(Z),
h(., A) is E-measurable and for every o, h(w,.) M+(Z). We use R(, Z), to
denote the set of all transition probabilities from (ll, E, z) into (Z, B(Z)). Following
Balder [5] (see also Warga [38]), we can define a topology on R(, Z) as follows.
Letf" g x Z R be a Carath6odory function (i.e., o -f(w, x) is measurable, x f(w, x)
is continuous, and ]f(oo, x)[<=a(w) /z-almost everywhere, with a(.)L) and let
I.’R(I,Z)R be defined by I.(h)=nzf(Oo, z)h(w)(dz)di(oo). The weakest
topology on R(,Z) that makes the above functionals continuous (for any
Carath6odory integrand f(., )) is called the weak topology on R(I, Z). Observe that
when is a singleton, then R(I, Z)= M+(Z), and the weak topology just defined is
nothing else but the well-known narrow topology on M+(Z) (see Dellacherie and
Meyer 17]).

In the rest of this section, for the convenience of the reader, we state without
proof (although detailed references are given) some theorems that we will need in the
sequel.

We start with the Arzelfi-Ascoli Theorem for vector-valued functions. A proof of
this result can be found in Carroll [9, Thm. 8.18, p. 34] (see also Lakshmikantham
and Leela [28, Thms. 1.15, 1.1.6, p. 5]).

THEOREM 2.1 (Arzelh-Ascoli). Let Y and Z be Hausdorff topological spaces with
Y locally compact. Then K C Y, Z) is relatively compact for the topology of uniform
convergence on compacta if and only if K is equicontinuous and for all y Y, K(y)=
{f(y)" f6 K} is relatively compact in Z.

We will use this theorem twice, in the proofs of Theorems 3.1 and 6.1. In the first
case Y T [0, b]_ R+ and Z 14, a separable Hilbert space with the strong (norm)
topology. The equicontinuity follows from the fact that the continuous functions in
question have an integral representation in terms of an evolution operator S(t, s) that
is compact for t-s>O and hence has nice continuity properties. The pointwise
relatively compact range requirement follows from the compactness of S(t, s) for

s > 0 and the Ridstr6m embedding theorem (see below), which tells us that a certain
set-valued integral, containing the functions at translated by S(t, 0)Xo, is compact.
In the second case (proof of Theorem 6.1), again Y= T=[0, b], while Z Xw is a
separable, reflexive Banach space with weak topology. Here the equicontinuity is a
consequence of some a priori estimates that can be deduced from the hypotheses on
the data of the problem. On the other hand, the functions are bounded uniformly in
by a constant M (see the proof of Theorem 6.1), and in a separable, reflexive Banach

space, the closed balls with the weak topology are compact and metrizable. The
metrizability then justifies the sequential compactness that we have.

Now let us state the Rdstr6m embedding theorem, which as we say above, will
be used in connection with the Arzel-Ascoli Theorem. The interested reader can find
more details in Hiai and Umegaki [25, 3].

THEOREM 2.2 (Rb.dstr6m). Let X be a separable Banach space. The metric space
P(X), h) can be embedded as a convex cone in a separable Banach space f( such that"

(i) the embedding is isometric; (ii) addition in X induces addition in Pk(X); (iii)
multiplication by nonnegative real numbers in f( induces the corresponding operation in
Pkg.(X).

This theorem allows us to view integrably bounded multifunctions with values in
Pkg.(X) as -valued functions belonging in the Lebesgue-Bochner space L()). There-
fore the set-valued integral of such a multifunction will produce a set in Pk(X).

In some cases we will need to guarantee that the set of admissible controls is
nonempty, or to express a selector ofthe field ofvelocities as a vector field corresponding
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to an admissible control function. This can be done with an application of the so-called
"Aumann Selection Theorem." The version presented here is due to Saint-Beuve [33,
Thm. 3]. Recall that a Souslin space is a Hausdorff topological space V such that there
exists a Polish space W and a continuous map from W onto V (recall that a Polish
space is a complete, separable, metrizable space). Clearly every Polish space (for
example, a separable Banach space) is Souslin. However, in general, a Souslin space
need not be metrizable. Consider, for example, a separable Banach space with the
weak topology. This is Souslin but not metrizable.

THEOREM 2.3 (Aumann). Let (f, E, tz) be a g-finite measure space, V a Souslin
space, and F" f-2{} a graph-measurable multifunction. Then there exist 5;-measur-

able functions fn :f V such that F(to)
_

{fn(to)’}nl tz-almost everywhere.
If 5; is /z-complete in the theorem above, then the conclusion will hold for all

to fI. Finally, if there is no measure /z on (f, 5;), then the selectors fn(.) will be
E-measurable, where 5; is the universal tr-field corresponding to 5;.

Another result of measure-theoretic nature that we will need is a "projection
theorem," known in the literature as the "Arsenin-Novikov Theorem." The version
we present here is due to Dellacherie [16] and Saint-Beuve [34, Thm. 1].

THEOREM 2.4 (Arsenin-Novikov). Let X, Y be Polish spaces with B(X) and B(Y)
the corresponding Borel r-fields. Let K B(X) x B(Y) be such that for all x X, K (x)
is tr-compact in Y. Then projx K B(X).

Note that instead of (X, B(X)), we could have considered any standard measurable
space.

In our work (see the proof of Theorem 6.3), Y W, a weakly compact, convex
set of a separable Banach space. Recall (see Dunford and Schwartz [19, Thm. 3,
p. 434]), that W with the weak topology (denoted by Ww) is metrizable, and hence a
Polish space. On the other hand, in that proof we will have K B(X) x B(W). Since
B(Ww)

_
B(W), to apply the Arsenin-Novikov Theorem, we need to know if equality

can hold. This is guaranteed by the following result of Edgar [20, Cot. 2.4]. Recall
that a norm [[. on a Banach space X is called a "Kadec norm" if and only if the
weak and norm topologies of X coincide on Sx- {x X: ]]x]] 1}. We say that X
admits a Kadec norm if and only if there is an equivalent norm that is a Kadec norm.

THEOREM 2.5 (Edgar). Let X be a Banach space that admits a Kadec norm. Let
Xw denote the Banaeh space X with the weak topology. Then B(X)= B(Xw).

Every weakly compactly-generated Banach space (in particular, every separable
Banach space) admits a Kadec norm.

Finally we make a straightforward but nevertheless useful observation. Suppose
T [0, b] R+ and Z is a compact Polish space. Then the Carath6odory integrands
on T x Z can be identified with the Lebesgue-Bochner space L(C(Z)). To see this,
associate to each Carath6odory integrand 4(’,’) the map t ch(t,’) C(Z). Now,
from the Riesz Representation Theorem we know that [C(Z)]* M(Z) is the space
of all bounded Borel measures on B(Z). So M(Z) is a separable, dual Banach space
and hence has the Radon-Nikodym property. This observation combined with Theorem
1 of Diestel and Uhl [18, p. 98], tells us that [L(C(Z))]*= L(M(Z)). So the weak
topology on R(T, Z) coincides with the relative w*(L(M(Z)), Ll(C(Z)))-topology
(see Warga [38]). This fact will be useful in the study of the relaxed control system,
where the control functions are transition probabilities.

3. Existence and relaxation results. Let T [0, b] be closed and bounded. Let H
be a separable Hilbert space and X a separable, reflexive Banach space with the
following properties: X is dense in H, and the inclusion of X in H is continuous. We
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identify H with its dual (pivot space) and denote by X* the topological dual of X.
So X HX*. By I]’11 (respectively, I’1, I1"11.) we will denote the norm of X
(respectively of H, X*). We also use (.,.) to denote the inner product in H and by
(.,.) the duality brackets for the dual pair (X, X*). The two are compatible, i.e., if
x X c__ H and h 6 H

_
X*, we have (x, h) (x, h). Also as our control space we take

Z, a Polish space. We consider the following distributed parameter control system:

2( t) + A( t)x( t) --=f(t, x(t), u(t)),

x(0) Xo, uSb.

We will make the following hypotheses concerning the system above:

(H(A)) For t T, A(t):X- X* is such that:
(1) A(t)(. is linear, monotone;
(2) For every x6 X, t’, T Ila(t’)x-a(t)x[[.=< kit’- t[ []x[], k>0;
(3) [[a(t)xll.<-c+clllx[[ almost everywhere c1>0, c>_-0;
(4) (a(t)x, x) >- CzllXl[ 2, c2 > 0.

(H(f)) f: T x H x Z - H is a function such that:
(1) (t, z)-f(t, x, z) is measurable;
(2) x-f(t, x, z) is continuous;
(3) If(t, x, z)[ c(t)+ b(t)lx[ almost everywhere with a(. ), b(. ) L2+.

(H(U)) U’To2{} is graph measurable.

Let g L2(X*) and consider the following evolution equation:

)( t) + A( t)x( t) g( t),
(*)’

i(0) =Xoe X.

Because of hypothesis (H(A)), from Proposition 5.5.1 of Tanabe [35], we know
that (.)’ has a unique strong solution belonging in

W(T) {x(. L2(X): 2( L(X*)}
_
C( T, H).

Furthermore, there exists a strongly continuous evolution operator S(t, s) e L(H), with
respect to which the unique strong solution of (*)’ has the following integral rep-
resentation:

x(t) S(t, O)xo/ S(t, s)g(s) ds.

We make the following hypothesis concerning S(t, s):

(Hc) For all t> s, S(t, s) is compact.

Note that because of (H(U)), by Aumann’s Selection Theorem (see Theorem 2.3
above), we have that Sj # .

First we will establish the noneriaptiness of the set of admissible "state-control"
pairs for system (*).

THEOREM 3.1. If (H(A)), (H(f)), (H(U)), and (He) hold and u Su, then there
exists x(u), admissible.trajectory of (*) corresponding to u(. ).
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Proof First we obtain an a priori bound for the solutions of (,). Let x(. be such
a strong solution. Since IIS(t, s)ll<=M rot all O<--_s_<-_ t<=b we have that

Ix()l--< lxol + MIf(s x(s), u(s))l ds

--< Mlxol / M(ce(s)+ b(s)lx(s)l) ds

[x(t)[<-M([xol+ll[[)+M b(s)lx(s)l ds.

Applying Gronwall’s inequality, for all T we obtain

[x(t)l M(Ixol / I1 [1) exp Mllbll Mz.
Now let f" T H Z H be defined by

If( t, x, z), Ixl <- M2,
f(t, x, z)

f( t, (M2x/Ixl), z), Ixl > M2.
Thus f(t, x, z) =f(t, pa42(x), z), where P42(’) is the Mz-radial retraction in H

Recalling that PM2(’) is Lipschitz continuous, we deduce that f(t, x, z) has the same
measurability and continuity properties as f(.,., ), i.e., (t, z) f(t, x, z) is measurable
and x-f(t, x, z)is continuous. Furthermore, If(t, x, z)] q(t)= a(t)+ b(t)M2 almost
everywhere, q(. ) L2.

Let B(q)= {g L2(H): Ig(t)l<=q(t) a.e.}_ LZ(H).
Pick g B(q) and consider the following evolution equation:

( t) + A( t)x( t) g( t),
(,)(g)

x(0) Xo.

From Theorem 4.2 of Barbu [6, p. 167], we know that (,)(g) has a unique strong
solution in W(T). Let r:B(q)-C(T,H) be the map that assigns to each gB(q)
the corresponding unique strong solution of (*)(g). We claim that r(. is continuous.
So let g, g in B(q). Then we have

r(g,)(t) x(t) S(t, O)xo+ S(t, s)g(s) ds,

r(g)(t) x(t)= S(t, O)xo+ S(t, s)g(s) ds

=::> ix,(t) x( t)[ <= Mllg, gll, <= Mx/-61lg, gll - 0

x,x in C(T,H)

r(. is indeed continuous as claimed.

Now let W be the subset of C(T,/4) defined by

W- {r(g) C( T, H): g
_
B(q)}.

The new claim is that W is compact in C(T, H).
To this end let x W and let t’, T, < t’. We have

[x(t’)-x(t)l<=[S(t’,O)xo-S(t,O)xol+ IIS(t’,s)[llg(s)l ds
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Because of the strong continuity of the evolution operator S(t, s), given e >0
there exists 61 > 0 such that if It’- t] < 61, then

E
Is(t’, 0)Xo- s(t, 0)Xol <-.

3

Also
t’ I t’

IIs(t’,s)lllg(s)l ds-<=M Ig(s)l ds,

and since the Lebesgue integral is absolutely continuous, there exists 82 > 0 such that
if It’- t[ < 82, then

M [g(s)l ds <-.
3

Finally, because of hypothesis (He), from Proposition 2.1 of [30], we know that
S(t, s) is continuous in the operator norm topology, uniformly for all s (0, t) such

that t-s is bounded away from zero. So let 83 > 0 such that

IIS(t’,s)-S(t,s)lllg(s)l ds<=2M Ig(s)l ds<-.
--t t_t 6

Also we can find 84 > 0 such that for It’-tl < 84 we have

’-53 E
IIs(t’, s) s(t, s)ll Ig(s)l ds <-.

6

So, finally, for 8 min (81,82, 83, 84) and for It’- tl < , x(. W, we have [x(t’)
x(t)[<eW is equicontinuous. Also note that sS(t,s)B(q)(s) is a measurable,
and, due to hypothesis (He’), a Pke(H)-valued multifunction. Thus, using Rfidstr6m’s
Embedding Theorem (see Theorem 2.2 in this paper), we have that for all x W and
all T, x(t) S(t, 0)Xo+o S(t, s)B(q)(s) ds Pke(H). Finally it remains to show that
W is closed in C(T, H). Let xn x in C(T, H) xn e W. Then we have

x.(t) S(t, O)xo+ I] S(t, s)g.(s) ds, g. B(p).

Note that since L2(H) is Hilbert, B(q) is sequentially w-compact. So by passing
to a subsequence if necessary, we may assume that gn -- g B(q) in L2(H) (Alaoglu’s
Theorem). Then we have

S(t, s)g,(s) ds S(t, s)g(s) ds

x(t): S(t, O)xo+ S(t, s)g(s) ds

==> x= r(g) W

W is closed.

Therefore, invoking the Arzel/-Ascoli Theorem, we get that W is compact in
C(T, H). Let F: W L2(H) be defined by

F(y)(. )= f(., y(. ), u(.)).
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Exploiting the continuity of y-->f(t, y, z), through the dominated convergence
theorem we get that F(.) is continuous. Furthermore, note that for every y W,
F(y) B(q). Then let k: W- W be defined by k ro F. Clearly k(. is continuous.
Applying Schauder’s Fixed-Point Theorem to get x W such that k(x) xx(. ), we
solve (.)(g) with g(t)=f(t,x(t),u(t)). As in the beginning of the proof, through
Gronwall’s inequality, we get that Ix(t)l <- M2f(t, x(t), u(t))-- f(t, x(t), u(t))x(.
is the desired admissible trajectory of (*). Iq

As we mentioned in the Introduction, to solve optimization problems involving
(*) and obtain optimal admissible pairs, we need some kind of convexity hypothesis
on the orientor field f(t, x, U(t)). Here we drop this convexity hypothesis and instead
pass on to a larger system with measure controls, known as "relaxed controls." This
then raises the fundamental question of how much we enlarged the set of trajectories
of the original system. The next theorem answers this question by stating that this
process does not essentially alter the original solution set.

First let us introduce this new, larger system, known as the "relaxed system":

(t)+A(t)x(t): fzf(t,x(tl, z)A(tl(dz),

x(0) Xo, S..
Here E(t) {A M+(Z) A(U(t)) 1} and Sz is the set of transition probabilities

that are selectors of E(. ). We will denote the set of trajectories of (.)r by Pr and those
of (*) by P. Note that since 3(U(t))c_E(t), we have P Pr and if the hypotheses of
Theorem 3.1 are satisfied, P # Pr . More specifically, given any relaxed control
)t Sz, if we set f(t,x(t),A(t))=zf(t,x(t),z)A(t)(dz), then working as in the proof
of Theorem 3.1, we can show that there exists a relaxed admissible trajectory x(A)(- ),
corresponding to A.

To get a useful relation between P and Pr, we need the following stronger
hypotheses.

(H(f)) f" T H Z- H is a function such that:
(1) -f(t, x, z) is measurable;
(2) x -* -f(t, x, z) is continuous, monotone;
(3) (x, z) -f(t, x, z) is continuous from H Z into Hw
(4) If(t, x, z)l =< re(t) + b(t)]x] almost everywhere, with ce(. ), b(. L+.

(H(U)) U" T- Py(Z) is a measurable multifunction.

THEOREM 3.2. If hypotheses (H(A)), (H(f)l), (H(U)I), and (Ho) hold and Z is a

compact Polish space then ( # P Pr and the set is convex (the closure is taken in

C(T,H)).
Proof From Theorem 3.1 we know that P # and clearly P P. Take y P and

for s T set

K(s) {f(s, y(s), u)" u U(s)},

K(s)={f(s,y(s),A)=fzf(S,y(s),z)A(dz)’AE(s) }.
Our claim is that Kr(s)=conv K(s). Because Z is compact, it is easy to check

that Kr(s) Psc(H). Thus, since 6(U(s))c_Z(s), we get that conv K(s) K(s). On
the other hand, let v Kr(s). Then

I’v= f(t, y(s), z)A(dz)
z
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for some A Z(s). From Theorem 12.11 of Choquet [14] (see also Corollary 3 of Balder
[5]), we know that there exist 6(u.(s)) and A. [0, 1] such that Zk=l ,k8(Uk(S))= tX.
in the narrow topology. So we have that

f(s, y(s), z)tzn(s)(dz) Akf(S, y(s), Uk(S)) f(s, y(s), z(dz))
k=l

=f(s,y(s),A)

=:> conv .K (s)
_
Kr(s)

conv K(s)= gr(s).

Also note that if {u,(. )},__> is a Castaing representation of the measurable multi-
function U(. (see Wagner [36]), then because of H(f)(1) we have that

K(s) =cl {f(s, y(s), u,(s))" n >= 1}.

Because of (H(f)l) (1) and (2), for every n >= 1, s -f(s, y(s), u,(s)) is measurable==>
s- K(s) is a measurable Pw(H)-valued multifunction (recall that Z is compact and
f(t, y(t),.) is continuous from Z into Hw). Invoking the Krein-Smulian Theorem
(see Diestel and Uhl [18, Thm. 11, p. 51]), we deduce that s conv K(s) is a P,.(H)-
valued, measurable multifunction. Now from Corollary II of [27] we know that
S1K w---S1g

From Proposition 3.1 of [31] we know that S:,. is w-compact in L(H), and since
the space is separable we deduce that the weak topology on S is metrizable. NoteKr
that g(.) =f(.,y(.), A(.)) S,.. So according to the above, we can find g, S: such
that g, - g, g, S. A simple application of the Aumann Selection Theorem gives us
u, S such that g,(s) =f(s, y(s), u,(s)) almost everywhere. Let x,(. be the original
trajectories corresponding to the control functions u, (.). From the proof of Theorem
3.1, we know that {x,(. )},=el is relatively compact in C(T, H), and so, by passing to
a subsequence if necessary, we may assume that x, - x in C(T, H).

Now, note that

d

d-- ly(s) x. (s)l 2 2())(s) 2,(s), y(s)- x,(s))

2(-A(s)y(s)+f(s, y(s), , (s)) + A(s)x,(s)

f(s, x,,(s), u.(s)),y(s) x.(s)).

Exploiting the monotonicity of A(s)(. ), we get

d
--[y(s) x. (s)l 2 -< 2(f(s, y(s), A (s))-f(s, x.(s), u.(s)), y(s) x.(s)).
dt

Integrating both sides we get

ly(t)-x.(t)[<-_2 (f(s, y(s), A(s))-f(s, y(s), u.(s)), y(s)-x.(s)) ds

+ 2 (f(s, y(s), u,,(s))-f(s, x,,(s), u,,(s)), y(s)- x.(s)) ds.

Exploiting the dissipativity property of f(t,., z), we get that the second integral
is less or equal to zero. So

ly(t)-x,,(t)lZ<=Z((g-g,,, y-x.))



276 NIKOLAOS S. PAPAGEORG1OU

where ((.,.)) denotes the duality brackets for the pair (L(H), L(H)). Recall that
gn-- g in L(H), while y-xn- y-x in L(H). Therefore

((g gn, y xn))--> O

=:> [y(t)- xn(t)[2" lY(t) x(t)l 0 for all T,

y x, i.e., y P (the closure in C(T, H)).

Finally we will show that P,. is closed in C( T, H). So let Yn - Y in C( T, H), Yn 6 Pr.
By definition we have

ioy,(t) S(t, 0)Xo+ S(t, s)f(s, yn(s), An(s)) ds, y,, S.

From Theorem V-1 of Castaing and Valadier 11 we know that S is w*-compact
in L(M(Z)). Since this topology on S is metrizable (see Dunford and Schwartz
[19, Thm. 1, p. 426]), by passing to a subsequence if necessary, we may assume that
An-- , in L(M(Z)). Then using Theorem 3.1 of Jawhar [26], we get that

y,(t) y(t) S(t, 0)Xo+ S(t, s)f(s, y(s), A(s)) ds, A e Sx

==> y 6 Pr
Pr is closed in C(T, H)

P=Pr inC(T,H)

and it is clear that P is convex.
Remarks. Scrutinizing the proof above, we can see that instead of the dissipativity

hypothesis on x-f(t, x, z), we could have assumed that xf(t, x, z) is Lipschitz
continuous. Also it is clear now that the attainable set of (,) is dense in that of (*).

4. Relaxed trajectories. We start with a result describing the dependence of the
relaxed trajectories on the relaxed controls that generate them.

Such a continuity result gives us valuable information about the topological
structure of the set of relaxed trajectories and is an indispensable tool in establishing
the existence of optimal "state-control" pairs in various optimal control problems
(see 5).

From 3 we know that, given )t S, there exists a unique relaxed trajectory x(h)
corresponding to it (uniqueness follows from the dissipativity hypothesis on f(t,., u);
see hypothesis (H(f))(2)). In the next theorem we examine the continuity properties
of the map - x(h) from S R( T, Z) into C(T, H).

TrEOrEM 4.1. If hypotheses (H(A)), (H(f)), (H(U)), and (H) hold and Z is

compact, then x(h) is continuous from S R(T, Z) into C(T, H).
Proof By identifying the Carath6odory integrands with the separable Banach

space LI(c(z)), we see that the R(T, Z)-topology on S coincides with the relative
w*(L(M(Z)),L(C(Z))) topology (recall that (L(C(Z))*= L(M(Z))) and the
latter is metrizable). So we will work with sequences. Let h, h in R(T, Z)h, .
By definition we have

x,(t) S(t, 0)Xo+ S(t, s)f(x, x,(s), z)A,(s)(dz) ds.

Let h H. We have

(h, xn(t))=(h,S(t,O)xo)+ (g(h)(s,x,(s), .),,,(S))ods
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where g(h)(s, Xn(8), )= (h, S(t, s)f(s, x,(s), )) C(Z) and (.,.)o denotes the duality
brackets for the pair (C(Z), M(Z)). We may assume that xn(’)- x(. in C(T, H).

Note that sup{l(h,S(t,s)(s, xn(s), z)-.f(s,x(s),z)))l:zZ}=l(h,S(t,s)(f(s,
xn(s), zn)-f(s, x(s), z,)))l, for some zn Z depending on (h, t, s). Since Z is compact,
by passing to a subsequence if necessary we may assume that z,- z. Then from
hypothesis (H(f)2)(3) we have that

[(h, S( t, s)(f(s, Xn(S), Zn) f(s, X(S), Z)))I -- 0= g(h)(s, x,,(s), )- g(h)(s, x(s), .) in C(Z)

g(h)(.,Xn(’),.)-g(h)(.,x(’),.) inL’(C(Z))

because of the dominated convergence theorem. Since A,,- A in L(M(Z))
[LI(C(Z))]*, we get

(g(h)(s, Xn(S), .),An(S))ods--> (g(h)(s,x(s), "),(S))ods.

Thus in the limit we have

(h,x(t))=(h,S(t,O)xo)+ h, S(t,s)f(s,x(s),z)(s)(dz) ds

----x(t) S(t, 0)Xo+ S(t, s) f(s, x(s), z)A(s)(dz) ds

x=x(a)

A - x(A is continuous on Sa R T, Z) as claimed.

An immediate, interesting consequence of Theorem 4.1 is the following theorem.
THEORFM 4.2. Ifthe hypotheses of Theorem 4.1 hold, then Pr is compact in C( T, H).
Proof Recall that Sx is w*-compact in L(M(Z)) and is weakly compact in

R(T, Z), and the map I-/ x(1) is continuous (Theorem 4.1). Therefore x(Sx)= Pr is
compact in C T, H).

Remark. We could have deduced Theorem 4.2 from the proofs of Theorems 3.1
and 3.2, where we say that Pr is closed in C(7; H) and lives inside a compact subset
of C(T,H).

5. Optimal control problems. As we have already mentioned, the introduction of
the larger relaxed system, guarantees the existence of an optimal solution. This is
illustrated by the following general result.

Consider the relaxed control system (,), with the following cost functional:

J,.(x, I) L(t,x(t),z)A(t)(dz) dt.

We will make the following hypotheses concerning the integrand L(., .,. )"

(H(L)) L" TxX xZ- R RU{+oo}:
(1) (t, x, z) - L(t, x, z) is measurable,
(2) (x, z) - g(t, x, z) is 1.s.c.,
(3) q(t) <_- L(t, x, z) almost everywhere, with 0(" - L1.

Let mr inf {J(x, u)" (x, u) A(xo)}, where Ar(xo) is the set of relaxed admissible
pairs.
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TI4EOREM 5.1. If hypotheses (H(A)), (H(f)l), (H(U)), (He), and (H(L)) hold and
Z is compact, then there exists (x, A) Ar(xo) such that mr J(x, A ).

Proof Let {(Xn, An)}n__>l be a minimizing sequence in Ar(xo). Recall that S. is
w*-compact in L(M(Z)) and because of the metrizability of this relative w*-topology
((LI(C(Z)) being separable), by passing to a subsequence if necessary, we may assume
that An - ,. Identifying as before LI(C(Z)) with the space of Carath6odory integrands,
we see that ,n - , in R(T, Z) with the weak topology. Applying Theorem 4.1 we get
that x(,,) x, - x(,) x in C(T, H). Recalling that every lower semicontinuous
measurable integrand is the limit of an increasing sequence of Carath6odory integrands,
from the definition of the weak topology on R(T, Z) (see also Balder [5] and Jawhar
[26]), we have that

limJr(x,n) > L(t,x(t),z)A(t)(dz) dt

==> mr >-- J(x, a ).

But (x, A)e Ar(xo). Therefore, mr J(x, A) as claimed by the theorem. [3

Remark. If J(x, u)= ob L(t, x(t), u(t))dt is the cost functional for the original
system and m inf {J(x, u): (x, u) A(x0)}, the value ofthe corresponding optimization
problem, then if the cost functional is upper semicontinuous on C (T, H) x R T, Z),
the space R(T, Z) endowed the weak topology, then, because of the density result
proved in Theorem 3.2, we have that m mr.

Here is a more general situation, for which this equality of the values of the two
problems is still true.

We will need the following stronger hypotheses on L(., .,.).

(H(L)I) L T x X x Z- R is an integrand such that:
(1) -* L(t, x, z) is measurable;
(2) (x, z)-* L(t, x, z) is continuous;
(3) [L(t,x, z)l<=qq(t)+O2(t)r(x) almost everywhere, with (.), 2(’)

L and r: X- R bounded.

THEOREM 5.2. If hypotheses (H(A)), (H(f)), (H(U)I), (Uc), and (H(L)) hold
and Z is compact, then there exists (x, A Ar (Xo) such that Jr (x, A mr and m mr.

Proof From Theorem 5.1 we know that there exists (x, A) Ar(xo) such that

mr=J(x,A).

Note that we always have m <- m. On the other hand, using Corollary 3 of Balder [5],
we can find u, St such that (u.)- , in R(T, Z) with the weak topology. Then from
hypothesis (H(L)) we have that

L(t,x(t),u(t))dt- L(t,x(t),z)A(t)(dz)dt=mr

We conclude this section with a time optimal control problem. So let V: T PI (H)
be a moving target set that is u.s.c, from T into Hw. Our goal is to reach V(.)
in minimum time. We will make the following controllability type hypothesis:
{t T: V(t) fqPr(t)}.
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THEOREM 5.3. Ifthe hypotheses ofTheorem 4.2 hold, then there exists a time-optimal
relaxed control.

Proof. Let " inf { T: V(t) 71Pr(t) }. Let tn $ ’. Then there exist xn Pr such
that x(t) V(t) Pr(t). Using Theorem 4.2 and passing to a subsequence, we may
assume that Xn-XPrXn(t)--X(’)Pr(’). Also x(’)w-limV(t)_V(’)
x(’) V(’)f3 P(’). Let A S be the relaxed control that generates x. This is the
desired relaxed time-optimal control. [3

6. Nonlinear evolution equations. We can also have a relaxation result for evolution
equations that is more general than the results for semilinear equations considered in
the previous sections.

Let (X, H, X*) be a Gelfand triple of spaces as before and let Z be a separable
Banach space (control space). Consider the following nonlinear, infinite-dimensional
control system:

2(t)+a(t, x(t), u(t)) 0,

x(0) Xo, uS.
By P we will denote the set of admissible trajectories of (**).
We will need the following hypotheses.

(H(A)I) A: T x X x Z- X* is an operator such that:
(1) - A(t, x, z) is measurable;
(2) (x, z)- A(t, x, z) is sequentially weakly continuous;
(3) x A(t, x, z) is monotone;
(4) IlA(t,x,z)[l.<-a(t)+ClllXll p-’ almost everywhere, with c G Lq,

c1>0, l<p<, 1/p+l/q=l;

(5) <A( t)x, x> >- cllxll almost everywhere, with c2 > 0.

(H(U)2) U: r--> Pwkc(X) is integrably bounded.

The first theorem describes the topological properties of P. Its proof is based on
a pair of simple lemmata that produce some a priori bounds implied by hypotheses
(H(A),).

LEMMA 6.1. Ifhypotheses (H(A)) and (H(U)2) hold and Xo X, then P is relatively
weakly compact in L X).

Proof From Barbu [6], we know that P # . Let x(. ) P. We have

(2(t), x(t)) (-A(t, x(t) u(t)) x(t)) a.e., u S

d
12-dlX(t) +2(A(t,x(t), u(t)),x(t))=o a.e.

Because of hypotheses (H(A))(1) and (2), - (A(t, x(t), u(t)), x(t)) is measur-
able. So integrating and using hypothesis (H(A))(5) we get

<=0]x(b)l2- Ixol 2 / c=llxll
P is bounded in Lp (X).

But Lp(X) is reflexive, since X is. So from Alaoglu’s theorem we get the conclusion
of the lemma. [3

As before, we can have a compactness result for the set of admissible velocities
of (**). Let us denote this set by the suggestive notation/5.
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LEMMA 6.2. Ifhypotheses (H(A),) and (H(U)2) hold and Xo X, then is relatively
weakly compact in Lq(x*).

Proof Recallthat Pc_ W(T)D c-_- Lq (X*). Let v e U’ X). Then for x e Pwehave

(( t), v(t)) dt -(A( t, x,( t), u( t)), v( t)) dt

<= IIe(t,x(t), u(t))ll.[[v(t)[ dr.
o

Applying H61der’s inequality and using hypothesis (H(A))(4), we get

IlA(t,x(t), u(t))ll,I}v(t)ll dt IlA(t,x(t), u(t))ll dt
o

(()+

P

But from Lemma 3.1 we know that sup {]x[] v x e P} M < m. Hence we get

where ((.,.)) denotes the duality brackets between L(X) and Lq(X*). Therelre, we
finally have that

sup {((*, v)): Ilvll 1} II*ll, [llll
P is bounded in Lq(X*)

ff is relatively weakly compact in Lq(X*).

Now we are ready for the theorem on the topological properties of P. A result of
Ahmed and Teo [3] is similar but concerns a smaller class of nonlinear systems with
more restrictive hypotheses.
TozM 6.1. If hypotheses (H(A)) and (H(U)2) hold and Xoe X then P is

relatively sequentially compact in C T, Xw).
Proof Let R {y e Lq(X*): 5a y(s) ds X for all A g T, Lebesgue measurable}.

Clearly R is a linear subspace of Lq(X*). Let {y,}, R, y, & y in L(X*).
Then for every x e X we have

(x(s)x. y..(s)) as--. (xa(s)x. y(s)) ds.

(x, f4Y"(s) ds)(X, fAY(S) ds )"
Since XHX* with all injections continuous and dense, we deduce that

A y,(S) ds y(s) ds in X. But X, being reflexive, is w-complete. So for all A T
Lebesgue measurable, we have Iay(s)dsXyeRR is a reflexive, separable
Banach space in Lq (X*).

Next, for A T Lebesgue measurable, consider the linear operator K (A): R X
defined by

ioK (A)(y) x( t)y( t) dr.
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For every x* . X*, we see that y (x*, K (A)(y)) is a continuous linear functional
on R. Thus we can find g(x*)(.) U’(X) such that

(x*, K(A)(y)) (g(x*)(s), y(s)) ds_-<_- [[g(x*)(s)]]" ds

Also, since xe P, is X*-absolutely continuous and so from Diestel and Uhl
[18, p. 217], we have that

x(t+ h)-x(t) (s) ds

and because Xo X, we get x R. Then if we set A t, + h] we have

(x*, x(t + h) x(t)) (,*, K (a)())

and since, by Lemma 6.2, P is Ln(X*)-bounded, we deduce that P is w-equicontinuous.
Furthermore, for every e T and every x e P, we have

From the uniform boundedness principle, we get that for all T and all x P,
x(t) B(0, M) {z X" Ilz[ N M}, which is w-compact. So invoking the arzelfi-ascoli
Theorem (see Theorem 2.1 in this paper and Theorem 1.1.6 of [28]), we have that P
is relatively sequentially compact in C(T, Xw).

To system (**) we associate the following relaxed system:

() + [ a( , x( ), z)a )( dz) O,
(**)

x(0) Xo, e S

where as before, Z(t) { e M(Z): A (U(t)) 1} and S are the transition probabilities
that are selectors of Z(. ).

We will need the following stronger version of hypothesis (H(U)2).

(H(U)3) U" T P.(Z) is measurable and U(t) W almost everywhere with
WePw(z).

Recall (see Dunford and Schwartz [9, Thm. 3, p. 434]) that the weak topology
on W is metrizable. So W with the weak topology is a compact Polish space.

By Pr we will denote the set of trajectories of (**). Clearly P Pr. AS we did for
P, we can have that Pr is relatively sequentially compact in C( Xw). In fact we can
say more.

THEOREM 6.2. If hypotheses (H(A)) and (H(U)3) hold and Xo X, then Pr is
sequentially compact in C Z Xw).

Proof It suffices to show that Pr is sequentially closed in C (T, Xw). Let x, x in
C Z Xw) with x, Pr. We have

.(t)+ z a(t, x.(t), z)a.(t)(z) =O,
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Since W with the weak topology is a compact Polish space, Theorem V-2 of
Castaing and Valadier [11] tells us that S is w*-compact in L(M(Z)) (recall that
L(M(Z))=(L(C(Z)))*). So by passing to a subsequence we may assume that
A- A. Then we have

x,(t)-Xo+ A(s, x,(s), z)A,(s)(dz) ds
W-- x(t)-Xo+ A(s,x(s),z)A(s)(dz) ds
W

xP

P is sequentially compact in C T, Xw).

Next we prove a relaxation result, involving the sets P and Pr. For this we will
need the following stronger version of hypothesis (H(A)).

(H(A)2) A(t, x, z) A(t, x)-f(t, x, z) where A" T x X X* satisfies (H(A))
(without z) and f" T x H xZH satisfies (H(f))(1), (3), (4) and

(6) If(t, x’, z) -f(t, x, z)[ k(t)[x’- x[ almost everywhere, with k(. L.
Also recall that if fL(n), the weak norm of f(.) is defined by Ilfllwt’

sup {1, f(s) ds[" t’, t6 T}.
TnEOREM 6.3. If hypotheses (H(A)2) and (H(U)3) hold, Xo X, the embedding

X H is compact and Z is as before a separable Banach space, then # P Pr and the
set is convex (the closure is taken in C( Z Xw)).

Proof Let xP(xo) and let e>0. Set F( t, x) f( t, x, U(t)) and F(t,x)=
wf(t,x,z)Z(t)(dz).

Since Sac. S in L(M(Z)), working as in the proof of Theorem 3.2, we
can show that F(t, x)= conv F(t, x). Also by definition we have

GrF={(t,x,y) TxHxH" yF(t,x)}

{(t, x, y) T x H x H" y =f(t, x, u), u 6 U(t)}.

Set

Then

k(t,x,y,u)=y-f(t,x, u) andl(t,x,y,u)=d(u, U(t)).

GrF={(t,x,y) TxHxH" k(t,x,y,u)=O,l(t,x,y,u)=O}

projrnH [(t, x, y, u)" k(t, x, y, u) 0, l(t, x, y, u) 0].

Note that both k and are B(T)xB(H)xB(H)xB(W) measurable. From
Theorem 2.5 of this paper (Edgar’s Theorem), we know that B(Z) B(Zw), where Zw
is the Banach space Z with the weak topology. Hence B(Z)71 W B(Zw)71 W, which
implies that B(W) B(Ww) (again Ww is the set W with the relative weak topology).
But recall that Ww is a compact Polish space. So applying Theorem 2.4 (the Arsenin-
Novikov Theorem), we get

projrnxn [(t, X, y, u)" k(t, x, y, u) 0, l(t, x, y, u) 0] B(T) x B(H) x B(H)

Gr F B(T) x B(H) x B(H).
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So F(.,.) is graph measurable. This allows us to apply Theorem 2 of Chuong
[15] and get that Sv(.,x()) is dense in Sco.v F,.(.,x(.))

introduced earlier. Hence, for every n>l= we can find fneS F(.,.(.)) such
that II-LIIw-0, where g(t)=2(t)+A(t,x(t)). Now consider the multifunction
Ln" T- 2z n >- 1 defined by

Ln( t) {u e U( t)" f( t) f( t, x( t), u)}.

From the definition of F(.,. it is clear that for all e T, Ln(t)# . Let {x,}ml
be dense in X and consider the following functions:

h(t, U)=(X,,fn(t)--f(t,x(t), U)).

Because of hypotheses (H(f)l) (1) and (3) we see that for every m >- 1, t- hn(t, u)
is measurable and u- h(t, u) is continuous. Hence we deduce that (t, u)- hnm(t, u)
is jointly measurable and so we have that

{(t,u)6 TxZ" h,(t,u)=O}6B(T)xB(Z) foreverym_->l.

Now observe that

Gr Ln [ f3ml {(t, U) TxZ" h(t, u)=0}] f3Gr U.

Recalling that Gr U B(T)x B(Z) (hypothesis (H(U)3)), we conclude that for every
n _>-1, we have

GrLn6B(T) XB(Z).

So we can apply Theorem 2.3 (Aumann’s Selection Theorem) to find un" T- Z
measurable, n_-> 1, such that un(t) Ln(t) almost everywhere. So we have that fn(t)
f(t, x(t), u,(t)) almost everywhere with un e S.

Let Yn(’) be the unique strong solution of the original control system (**)
corresponding to the admissible control u,(. ). From Theorem 6.1 we know that P is
relatively sequentially compact in C(T, Xw). So by passing to a subsequence, if
necessary, we may assume that y,--> y P in C(T, Xw). Then for any x X we have

r/

mix(t) Yn (t)l 2 2(:(t) -.gn(t), x(t) Yn(t))
dt

2(-A(t, x(t))+ g(t)+ A(t, yn(t))-f(t, y,(t), un(t), x(t)-- yn(t))

=elx( t) yn( t)[

<= (g(s) g,(s), x(s) y,(s)) as k(s)lx(s) y,(s)[ 2 as.

We know that y,-y in C(T, Xw). So yn(t)-- y(t) in X, and since by hypothesis
X imbeds compactly into H, we get that y,(t)- y(t) in H. Also, by construction,
[[g-f,[[w - 0. Therefore fn -- g in LZ(H) and in the limit as n we obtain

[x( t) y( t)[ - k(s)lx(s) y(s)[ 2 ds.
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Invoking Gronwall’s inequality, we get that x y. So we have that x belongs in
the closure of P in C(T, Xw). Since x e Pr is arbitrary we have that Pr_ P. On the
,:ther hand, P P, and by Theorem 6.2, .P,. is sequentially compact in C(T, X,).
Therefore we conclude that P Pr as claimed in our theorem. []

Remark. From the proof above it is clear that the Lipschitz condition in the state
variable of the vector field A(t, x, u) is essential in obtaining the density result. There
is also the counterexample due to Plis (see Aubin and Cellina [4]), showing that even
for differential inclusions in R2, to have a relaxation result we need a Lipschitz
hypothesis.

The relaxation result tells us that "essentially" we can have the same attainable
set by economizing on the set of controls.

7. Examples. In this section we present two examples from control systems
governed by partial differential equations that illustrate the applicability of our results.

Example 1. Let W be an open domain in R" with smooth boundary W G and
et T=[0, b]. On T x W we consider the following distributed parameter control
system:

ox( , y)
oy ,:,

p(t, y)-y--/=f(t, x(t, y), u(t, y)),

x(t, y) 0 on T F, x(0, y) xo(y) on {0} x W, lu(t, Y)I c(t) almost everywhere.
Here p" T x ’-. R+ is k-Lipschitz in the t-variable, C 1- in the y-variable and- p( t,. )11 L. Also e" T- R+ is measurable.
Let X Ho(W), H L2(W), X* H-l(W) (H( W))*.
For e T, let A t)" X - X* be the linear operator defined through the Dirichlet form

k=l W Oy aye,

y setting (A(t)x, v)= a(t, x, v) for all x, v e X.
Because of our hypothesis on p(.,.), we have that A(t)x is k-Lipschitz for

x e X. Also for x, v e X, we have

(A(t)x- A(t)v, x- v)= a(t, x, x- v)- c(t,

w k-- Oy aye, aye,

Furthermore, for x X we have

=sup ((A(t)x, v): I[vll---< 1}

sup (c(t, x, v)" Ilvll 1}

=sup V p(t, y) O__x_ 0___ dy" ]]vii 1
w l Oyk Oyk

Invoking the Cauchy and Poincar6 inequalities, we finally have that

I[A(t)x II, lip(t) I]llx ][.
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Finally if x e X, through Poincare’s inequality we deduce that

(A( t)x, x): I p( t’ y)
Wk=l

ey_->allx[[.
From all of the above, we see that hypothesis (H(A)) is satisfied.
Next assume that f: T x W x R x R" R is a function such that it is measurable

in (t, y, u) e T x W x R and continuous in x e R (so jointly measurable in all variables).
Also assume that

If(t, y, x, u)[ <= (t, y) + b(y)lxl a.e.

where c(., e L2(T x W) and b e L(W). Let F" T x L2(W) x Lm( W).-> L2(W), be
defined by

F( t, x, u)(y) f( t, y, x(y), u(y)),

From Krasnoselski’s Theorem we know that x- F(t, x, u) is continuous, while
(t, u)-, F(t, x, u) is measurable. Furthermore we have

So F(., .,.) defined as above satisfies hypothesis (H(f)).
Next let U" T Pj. (H) be defined by

U(t) {u L2( W)" lu(z)[ -< c(t) a.e.}.

Clearly, since c(. is measurable, U(. is also measurable. Thus hypothesis (H(U))
is satisfied.

Finally, note that the family of linear operators {A(t)" e T} generates an evolution
operator S(t, s) that is compact for s > 0 (see Martin [29] or Pavel [32]). Therefore
hypothesis (He) is satisfied. Then Theorem 3.1 gives us the existence of admissible pairs.

If f(t, y, x, u) =fo(t, y, x) u, where fo" T x W x R R is measurable in (t, y),
continuous, dissipative in x, and [fo(t, y, x)u[ <-a(t, y)+ b(y)[x[ almost everywhere as
above, then the Nemitsky operator F(t, x, u)(.) =fo(t,., x(.)) u(.) satisfies
hypothesis (H(f)l). Also if c(t)= for all t T, then for all te T U(t)c_ B(O, cA(W))
is equal to a ball of radius cA (W) in L2(W), which is compact-metrizable in the weak
topology. Hence if Z B(0, M), then all hypotheses of Theorem 3.2 are satisfied and
we have that the set of trajectories of the original system (***) are dense in C(T, H)
in those of the convexified (relaxed) system (the one with orientor field Fr(t, x)=
conv F(t, x)). Also, Theorems 4.1 and 4.2 are satisfied and we have information about
the properties of the set of relaxed trajectories. Furthermore, the results on the optimal
control problems are also valid.

Example 2. In this example, we consider the following nonlinear distributed
parameter system (we use the multi-index notation)"

Ox( t, y)
Oy

E (-1)llD"A,(t, y, x," Dx,..., Dxm-’) B(t)u(t, y),

Dtx=O on TxF, I/3]<_-m-1,

(***) x(0, y)= xo(y),

u(t,-) V a.e. with V_ L2(W), w-compact.
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As in the previous example, W is a bounded domain in R with regular boundary
OW=F.

For the functions A we assume the following:
(1) (t, y)--> A(t, y, to," "’, r_) is measurable;
(2) (ro,’", rm-)-> A(t, y, ro, rm-) is continuous;
(3) IA(t, y, r)l-< g(t, y) + c Y--0 Ir[ almost everywhere g L(T x W);

r= (r,. ., r,_).
(4) Elsl-<m-1 (As(t, y, r)-As(t, y, v), rs -vs)>--O.
To the differential operator in divergence form

A(t)x= 2 (-1)lSlDSAs(t,y,x,Dx,’’’,Dm-’x)

we associate the following Dirichlet form:

p(t, x, v) E I (As(t, y, x, Dx,..., D-lx), Dvs) dy.
Isl--<rn-1 w

For p: T wm’2( W) W"’2(W) R we assume that p( t, x, x) c’{Ixll Pm,p for all
x Win’z(W). Let A(t)" W"(W) - W-’z(W) W’2( W))* be defined by p(t, x, v)
(A(t)x, v) for all x, v W’2(W). It is easy to see that because of (4), A(t)(.) is
monotone.

We will show that A(t)(.) is sequentially weakly continuous. Let x,- x in
W’2(W). Since W"2(W) W-I’(W) compactly (see Adams [1]), we have that
x,- x in W’-I’(W). So if is the Nemitsky operator corresponding to A, from
Krasnoselski’s theorem we have that ,s(t)(x,)- fis(t)(x) in L(W) and by passing
to a subsequence if necessary, we may assume that A,(t)(x,)(y)o A,(t)(x)(y) almost
everywhere :=>As(t, y, x,, Dx,, , Dm-lxn) As(t, y, x, Dx, , D"-Ix) almost
everywhere. Using (1) and (3) and the dominated convergence theorem, for every
z W"(W) we get

lim (A(t)x,, z) (A( t)x, z)

=:> A(t)x, -- A(t)x in w--m’2(W),

and so we have shown the weak continuity of A(t)(. on Wn’2( W)o
Also, through Pettis’ Measurability Theorem (see Diestel and Uhl [18]), it is easy

to check that A(t)x is measurable.
Furthermore,

IlA( t)x[[_, ( t) + ClIXlIm._ a.e.

with (. ) L2 and from (5) we have that

(A( t)x, x) > c’llx[[

for all x 6 W"2(W).
Let f" T L2(W) - L2(W) be defined by f( t, u)(. B(t)u(. and Z S, which

is w-compact in L2( T, L2(W)), and hence a compact Polish space for the weak topology.
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Let Xo(" e W"2(W). Take X W’2(W), H L2(W) and X* W-’’2(W). Then
(***)2 can be written as the following evolution equation:

Yc(t)+A(t, x(t))=f(t, u(t)),
(***)

x(0) Xo, uZ.

Then trajectories of this system are dense in the trajectories of the convexified
system. Furthermore, those relaxed trajectories form a sequentially compact subset of
c(r, Xw).

Acknowledgment. The author expresses his gratitude to Professor L. Berkovitz and
the referee for the constructive criticisms and suggestions that improved the material
of this paper considerably.
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EXISTENCE OF OPTIMAL STRATEGIES IN ZERO-SUM
NONSTATIONARY STOCHASTIC GAMES WITH
LACK OF INFORMATION ON BOTH SIDES*

ANDRZEJ S. NOWAK?

Abstract. This paper studies a zero-sum discrete-time stochastic game model with Borel state and action
spaces. The law of motion of the system in the model is assumed to be nonstationary. Following M. Schil,
at each stage of the game every player is assumed to know the sequence of states occurring up to this stage,
but has no explicit information about his opponent’s previous decisions. Under certain semicontinuity and
compactness conditions, the existence of a value is proved for such a game and the existence of optimal
(e-optimal) universally measurable strategies for the minimizer (maximizer). This essentially improves a

result of Schil on this subject.

Key words, zero-sum nonstationary stochastic games, imperfect information, minimax theorem,
universally measurable strategies
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1. Introduction and a minimax theorem. In this paper we study a two-person
zero-sum nonstationary stochastic game introduced by Schil [18]. It is assumed that
at every stage of the game neither player has any explicit information about his
opponent’s earlier choices. We assume, however, that every player knows the sequence
of states of the system occurring up to this stage and remembers all his previous
choices. Our aim is to prove that in Sch/il’s game every player has an optimal (or
e-optimal, e > 0) strategy independent of any probability distribution of the initial
state. This is an essential improvement of Sch/il’s theorem from [18]. For a more
extensive discussion of our results, see Remarks 1-4.

Let X be a Borel space, i.e., a nonempty Borel subset of a complete separable
metric space. We assume that X is endowed with the relative topology and the Borel
or-algebra (X). By a//(X) we denote the r-algebra of all universally measurable
subsets of X (see [1, Chap. 7, Appendix B]). Clearly, (X)c 0//(X). Let P(X) be
the space of all probability measures on (X). We shall assume that for every Borel
space X, P(X) is given the weak topology (see [1, Chap. 7]).

Let X and Y be Borel spaces. By a universally measurable transition probability
from X to Y we mean a universally measurable mapping from X to P(Y). It is
known that every universally measurable transition probability f: X- P(Y) may be
identified with a function f(. I" ), so that, for each x X, f(. x) P(Y), and for each
B Y3(Y), f(B I.) is a universally measurable mapping from X to [0, 1] (see [1,
Lemma 7.28]).

Let X1, X2,’’’ be a sequence of nonempty sets. The Cartesian products of
X1,..., Xn and X1, X2," ", are denoted by X... Xn and XX2..., respectively.
Let X1, X2," be Borel spaces. Throughout this paper we assume that the product
spaces X... Xn and XX2"" are given their product topologies and product o--

algebras. It is well known that the product tr-algebra 90(X) (X) in XI"" Xn
is equal to (X X). A similar result is also valid for the product space XX2" ",

[1, Prop. 7.13].

* Received by the editors December 15, 1986; accepted for publication (in revised form) May 17, 1988.
? Institute of Mathematics, Wroctaw Technical University, Wyspiafiskiego 27, 50-370 Wroctaw, Poland.
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A zero-sum nonstationary stochastic game with lack of information on both sides is
defined by a sequence of objects {Sn, An, Bn, tn+l, un n 6 N}, where:

(i) Sn is the state space at time n N and is assumed to be a Borel space.
(ii) An and Bn are the action spaces at time n 6 N of players I and II, respec-

tively. It is assumed that An is a Borel space and Bn is a nonempty compact metric
space.

Let H1 S, Hn S1AB Sn-An-Bn-Sn, H= SABS2A2B2 .. Then Hn
is the set of histories of the game for horizon n N, while H is the set of all infinite
histories of the game.

(iii) {tn+} is the law of motion of the system; tn+ is a Borel measurable transition
probability from HnAnBn to Sn+, n N. We assume that t,+ is .dominated by a
probability measure qn+ P(Sn+). The density cn+ of tn+ with respect to qn+ is
assumed to be a Borel measurable function on Hn+ such that, for each al,..., an
and s,"’,sn, sn+, cn+(s,a,’,’",sn, an,’,sn+) is lower semicontinuous on
B...

(iv) un is the payofffunction of player I at stage n N (-un is the payoff function
for player II). It is assumed that un is a nonnegative Borel measurable function on

HnABn such that, for ach s,. ., sn and a, , an, un(sl, a, .,. , sn, an,’) is
lower semicontinuous on B B. Of course, ewry un may be recognized as a function
on H. Doing so, we assume that the squenc {un is nondecreasing and u limn un
is the infinite horizon payofffunction for player I.

The game is played as follows. The players observe an initial state s $ and
independently choose actions a A and b B, rspectively. Then the system moves
to a new state s S_ according to the probability distribution t_(. s, al, b) on which,
knowing s S, th players choose independently a A and b B, respectively.
The system moves to a new state s S according to the probability distribution
t(. Is, a, b, s, a, b) and so on. The result of such an infinite sequence of moves
is a point h H and player II pays player I the amount u(h). Note that at each stae
n of the gam every player knows the sequence of states s,..., sn and his own
previous choices.

We put H’, H12= S1, uln S,A,... Sn-,An-lSn, H2, SIBI"" Sn-,Bn-lSn, for
n _>-2. Let Fn (Gn) be the set of all universally measurable transition probabilities from
Hn(H,,) to An(Bn). A universally measurable strategy for player I(II) is a sequence
f= {f,} (g {gn}), where f, Fn(gn Gn) for each n N. Denote by F(G) the set of
all strategies for player I(II).

Let E,,, Eg., E,.+, denote the conditional expectation operator with respect to

fn Fn, gn Gn, tn+l, respectively. By the Ionescu-Tulcea Theorem [10, Prop. V.I.1]
and [1, Lemma 7.28], each pair of strategies f= {fn}, g= {gn}, together with the law
of motion {tn+}, uniquely defines a universally measurable transition probability
Pg(. [. from S to AIBS2A2BS3"" such that, for every Borel measurable function
w: HnAnBn - R (n N) bounded below, we have

E(w,f, g)(sl) :-- I w(h)Pg(dh lsl) (E’Eg’E’2 E._,Eg._,E,,,Ey.Eg.w)(sl),

where Sl 6 S1. (Here w is also regarded as a function on H.) Thus, each pair f g of
strategies defines an expected payoff to player I at an initial state Sl $1 to be

E(u,f, g)(s,)-- f u(h)P(dhls,).
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Under our assumption (iv), from the monotone convergence theorem and Fubini’s
theorem we infer that, for each s $1, f= {fn} F, g {g,} G,

E(u,f, g)(s) lim E(u,,f, g)(s)

(1) lim (Ef, Eg, Et2 Ef,_Eg,_Et,,Ef,,Eg,,Un)(s)

lim (EglEflEt.... Eg,,_lEf,_Et,Eg,Ef,,u,,)(s).

From now on we assume that

(v) E(u,f g)(sl) < for all S ( SI,fE F, g G.

Define, for each initial state s S,

v,(s)=sup inf E(u,f, g)(s) and v*(s)= inf sup E(u,f, g)(s).
fF gG gG fF

Then v,(v*) is called the lower- (upper-) value function of the game. If v, v*, then
this common function is called the value function of the game and is denoted by v.

Suppose the value function v exists. A strategyf* F is called e-optimal for player
I for given e > 0 if

inf E(u,f*,g)(sl)+e> v(s) provided that v(sl)<,

1
inf E(u,f*,g)(s)>- ifv(sl)=.
gG I?,

A strategy g* G is called optimal for player II if

sup E(u,f, g*)(s) <= v(s) for all s S.
fF

Here is the main result of this paper.
MINIMAX THEOREM. Assume (i)-(v). Then the stochastic game has a valuefunction,

which is universally measurable. Player II has an optimal universally measurable strategy
while, for any e > 0, player I has an e-optimal universally measurable strategy.

Remarks. (1) The same information structure is considered in Sch/il’s stochastic
game model [18]. It should be noted, however, that, for any pair of strategies f F
and g G, the payoff for player I in Schfil’s game is the expectation of E(u,f, g)(.)
with respect to a probability measure p P(S), called the probability distribution of
the initial state. Thus, the optimal (e-optimal) strategies in Sch/il’s approach depend
on p. Such strategies are often called in the literature/5-optimal (or e-/5-optimal) (see
[6], [16], [18]). The optimality criterion considered in this paper is essentially stronger
than that of Sch/il 18]. For example, every optimal strategy for player II is/5-optimal
for each probability distribution p of the initial state.

(2) From [18], it follows that our game has a value for each initial state, but to
prove the remaining details of the Minimax Theorem we have to do some extra work.
We consider an auxiliary game in which the strategy sets are the spaces II(A) and
II(B) of probability measures induced by strategies of players I and II, respectively
(see 2). Our approach is then based on the equivalence of the weak topology and
the ws-topology of Schil [16] in H(B) proved by Nowak in [15] (see Lemma 6) and
the minimax selection theorem of [12]. We note that the issues described above do
not arise, if we restrict attention only to/5-optimal strategies as in 18].

(3) Our convergence assumption (iv) includes the discounted and positive stochas-
tic games (see, for example, [9], [11] and the references therein). It is worth noting
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that optimal strategies for player I need not exist even if he has finite action spaces
(see, for example, [3], [9]). Therefore, we make no compactness assumptions regarding
the action spaces of player I.

(4) Imposing certain semicontinuity and compactness conditions on player I, as
well as a stronger convergence assumption on the n-stage payoff functions u,, we can
restrict ourselves to Borel measurable strategies (see [12, Remark 3]).

(5) Universally measurable strategies have been broadly used in control and
gambling theory (see, for example, [1], [2], [7]). They have been applied to zero-sum
stochastic games by Nowak in 11], [12], and [14].

(6) Nonstationary stochastic games with standard information structures where,
at each stage of the play, every player has full information about the states of the
system and decisions made by the players in the past, have already been studied in
[13], [14], and some of the references therein. It should be noted that the approaches
taken in [13] and [14] cannot be applied to the present model. We hope that the
methods used in this paper can also be applied to some more general models of games
of incomplete information.

2. Proof of the main result. Let F,(G,) be the set of all transition probabilities
from F, (G,) that are independent of the initial state sl e $1. We put 12 and
G1G2"’, and further, we put A=AISzA:S3... and B= B1SzBzS3"". To each
f= {f,} F is associated a probability measure Ps=fqzfq3... on N(A), given by
the product measure theorem of Ionescu Tulcea (see [1, Prop. 7.45] or [10, Prop.
V.I.1 ]). (Recall our assumption (iii).) Similarly, to each g e ( is associated a probability
measure Pg on N (B).

We put II(a)= {P.t. e P(A)"f F} and II(B)= {Pg e P(B): g G}.
From the proof of Proposition 7.45 in [1], we infer the following lemma.
LEMMA 1. For each f6 1: and g G, there are Borel measurable transition prob-

abilities f F. and g. G., n N so that PI Py and Pg P., where f= {f,,} and

In the remainder of this paper, we assume that P(A), P(B) are given the weak
topologies and 1-I(A), II(B) are endowed with the relative topologies and Borel
r-algebras.

LEMMA 2. (a) II(A) is a convex Borel subset of a Borel space P(A).
(b) II(B) is a compact convex subset of a Borel space P(B).
Proof By Lemma 1, we can restrict ourselves to Borel measurable transition

probabilities in the definitions of II(A) and II(B). The spaces P(A) and P(B) are
Borel by [1, Prop. 7.13 and Cor. 7.25.1]. Now (a) follows from [17, Thm. 7.11] and
[19, Lemma 7.2] while (b) is a corollary to [16, Thm. 5.6] and [17, Thm. 7.11].

Results closely related to Lemma 3 below have appeared in dynamic programming
and gambling literature (see [19, p. 885], [8, 4], [7, Lemma 3.3(b), Remark 3.1]).

LEMMA 3. (a) Letf= {f} be any strategy ofplayer I. Then s - (flq2f:zq3 ")("
is a universally measurable mapping.from S to II(A).

(b) Let p" S- II(A) be a universally measurable mapping. Then there exist uni-
versally measurable transition probabilities f, F, n N, so that q(s)(.
(fq2fq3 )(" [s), for every s,

Proof Part (a) follows from [10, Prop. V.I.1] and [1, Lemma 7.28]. The proof of
(b) is similar to that of Lemma 3.3(b) in [7]. The transition probabilities in (b) are
constructed inductively by means of 1, Prop. 7.27] and a characterization of the space
of probability measures induced by strategies (alias policies) given by Strauch [19,
Lemma 7.2] and Hinderer [6, Lemma 13.1 ].
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Remark 7. Replacing II(A) by II(B) in Lemma 3, we get a similar result concerning
strategies of player II.

Let us put A A An, B B1 Bn and S $2 Sn, n >- 2. The elements
of An, B n, and S will be denoted by a n, b n, and sn, respectively.

For each f= {f,} F and n _-> 2, there exists a universally measurable transition
probability fn =fl’" "f, from S to A such that, for every bounded below Borel
measurable function w" SnAn- R, we have

(Ef,,w)(sn):= f w(s",an)fn(dan[sn)=(Ef," Ef.w)(s), snSn,

(see [1, pp. 175-177] or [10, Prop. V.I.1]). Here Ey,,w is the conditional expectation
of w with respect to fn. Similarly, to each g={gn} G, we associate universally
measurable transition probabilities gn(n->2) from S to Bn. We write Eg,, for the
conditional expectation with respect to g n.

Let q be the product of probability measures q2,"" ", qn. The expectation with
respect to q is denoted by Eq..

LEMMA 4. Assume Pf Py for somef= {fn} andf= {fn} belonging to F. Then, for
each n => 2, we have f" (. s n) f (. s") almost everywhere q

Proof Let n >_-2 be fixed. From [1, Props. 7.19, 7.20], it follows that there exists
a sequence {win} of bounded continuous functions on A that separate elements of
P(An). Of course, for each m N and every Borel subset C of Sn, we have

f w,xc dPf f w,xc dPf

where Xc means the characteristic function of C. By Fubini’s theorem, it follows that
Eq,,Ef,,w,.xc Eq,,Ey,, w.,xc, for each C (Sn), m N. Thus, for every m N, there
is C., J(S with q C., 0 and Ef,,w., Ey,, w., on S C.,. Define C
Then qn(C)=0 and Ef,,w,.= Ey"Wm on S-C, for each meN. Since {Win} separates
elements of P(An), the result follows. 1-]

Remark 8. It is obvious that if Pg P for some g, G, then a similar result is
in force for the transition probabilities g and n(n =>2) determined by g and
respectively.

Let un" HnAnBn - R be an n-stage payoff function ofplayer I. From our assumption
(iii) and (1), it follows that, for each s S, f= {fn} F, and g {gn} G, we have
(cf. 17, 7])

(2) E(un,f g)(s,) (Eq,,Ef,,Eg,,U,,C Cn)(S,) (Eq"Eg"Ef"unc2

Moreover, we have

(3) (u.,f, g)(s,) (F..,,u.c c.)(s,) (FZz,,u.c c.)(,),

where E,(E) is the expectation with respect to p P.r (7 Pg), s S.
Define F {f F: o Py}, Gr {g G" 3’ Pg}, where o H(A), y II(B).

From Lemma 4, Remark 8, and (2) it follows that if 0H(A) and TII(B), then
E(un,f, g)(s) has the same value for every f F and g Gv. Therefore, for each
p H(A) and yH(B) and s S, we may define

U(q, y)(s,):= E(u.,f g)(s,),

where f(g) is an arbitrary element of F(Gv). Further, for every q II(A), y e II(B),
and s S, we put

U(o, y)(s,)= lim Un(o, y)(s,).
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By the monotone convergence theorem

(4) U(q, y)(s,)= E(u,f g)(s,),

for every ’sl St, q H(A), 3/e H(B), and fe F, g e Gr.
The following lemma is obvious.
LEMMA 5. For each initial state s S, we have

v,(s,) sup inf E(u,f g)(s,) sup inf U(q, y)(s,),
j’/ g( g,II(A) TII(B)

v*(s,) inf sup E(u,f, g)(Sl)-- inf sup U(q, y)(s,).
g( fl TII(B) qII(A)

Recall that II(A) (II(B)) is given the relative weak topology from P(A)(P(B))
and the Borel tr-algebra.

LEMMA 6. The function U:I-I(A)I-I(B)S R defined by (4) is Borel measurable.
Moreover, for each Sl $1, q II(A), the function U(q, )(sl) is lower semicontinuous
on H(B).

Proof Let n => 2 be fixed. The function u,c2’’, c, is Borel measurable and lower
semicontinuous in the actions of player II. Under our compactness assumption (ii),
there exists a nondecreasing sequence of bounded Borel measurable functions
w:H,A,B, R, k N, such that WkU,C2"’’C, as k, and, for each k N, w is
continuous in the actions of player II [17, Eq. (4.1)].

Define

w(, r)(s,):= (EE.rw)(s,),

where s S, q H(A), 3’ H(B), and f is an arbitrary element of F. Clearly, Wk is
a well-defined function on H(A)H(B)S. Note that, for each q H(A), f F, Es,,Wk
is a bounded Borel measurable function on SSnBn. Moreover, Ej.,,Wk depends con-
tinuously with respect to b B n. By Lemma and 15, Thm. 1, Remark 2], the function
3/ (EvEf,,Wk)(S) is continuous on H(B) for each q H(A), f F, sl S. (This is a
consequence of the equivalence of the weak topology on H(B) and the ws-topology
of Schil [16] proved in [15].)

Let y II(B) be fixed. Then Wk(q, y)(Sl) (EEg,,Wk)(S), s S1, q H(A), and
g is an arbitrary element of Gv. Applying standard arguments and Proposition 7.25
of[l], we infer that (q, s) (EEg,,wk)(s) is a Borel measurable function on 1-I(A)S,
for each g Gv. Thus, we have shown that Wk(q, ")(sl) is continuous on II(B), for
every s S, q II(A), k N, and Wk(’, 3/)(" is Borel measurable on II(A)S, for
each y II(B), k N. This implies that Wk is Borel measurable [5, Thm. 6.1]. By the
monotone convergence theorem, WkUn on II(A)II(B)S as k-, and U,’U as
n . This completes the proof of the required properties of the function U. [3

LEMMA 7. For each sl S, o II(A), and y H(B) the functions U(., y)(s) and
U(p,.)(s) are affine on H(A) and H(B), respectively.

Proof The proof follows from (3) and Lemma 2. [3

ProofofMinimax Theorem. By Fan’s Minimax Theorem [4, Thm. 2] and Lemmas
2, 6, and 7, the zero-sum game with payoff function U(.,. )(s) has a value, for each
s S, which (by Lemma 5) is equal to v(s), the value of our stochastic game at an
initial state sl. Using Lemmas 2, 6, and the minimax selection theorem given as Theorem
2.2 of 12], we infer that the value function is universally measurable. Moreover, from
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inf
3,oil(B)

[12, Thm. 2.2], it follows that there exists a universally measurable mapping y*"
II(B) such that

sup U(q, y*(sl))(sl) v(sl) for all s S,
qII(A)

and, for each e > O, there exists a universally measurable mapping (*: $1 - FI(A) such
that

U(q*(Sl), y)(s)+ e > v(s,) provided that V(Sl) <

1
inf U(q*(s,),y)(Sl)>- when v(sl)=Oo.

/cll(B)

Appealing now to Lemma 3, Remark 7, (3), and (4) we note that y*(q*) determines
an optimal (e-optimal) strategy for player II (player I).

Aeknowlelgments. The author is grateful to the editor and two anonymous referees
for splendid editorial work.
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THE EXISTENCE OF A MINIMUM PAIR OF STATE AND POLICY
FOR MARKOV DECISION PROCESSES UNDER THE

HYPOTHESIS OF DOEBLIN*

M. KURANO

Abstract. This paper studies the average-cost Markov decision process with compact state and action
spaces and bounded lower semicontinuous cost functions. Following the idea of Borkar’s excellent papers
[SIAMJ. Control Optim., 21 (1983), pp. 652-666; 22 (1984), pp. 965-978], the general case where irreducibility
is not assumed is considered under the hypothesis of Doeblin and the existence of a minimum pair of state
and policy, which attains the infimum of the average expected cost over all initial states and policies, is
established. Further, it is proved that under additional weak conditions there exists an optimal stationary
policy in the usual sense.

Key words. Markov decision process, average cost criterion, Doeblin condition
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1. Introduction and notation. The study of the average-cost Markov decision
process with general state and action spaces has been done by Ross [14], Tijms [15],
Kurano [10], and others. But as far as the author is aware, they have treated the case
in which there is a single ergodic class and approximate recurrency under all policies.

In this paper, we treat with the general case, in which several ergodic classes and
transient sets are permitted for the Markov process induced by any randomized
stationary policy, under the compactness of state and action spaces. And introducing
the hypothesis of Doeblin [7], we show the existence of a minimum pair of state and
policy, which attains the infimum of the average expected cost over all initial states
and policies. Further, under additional weak conditions it is proved that there exists
an optimal stationary policy in the usual sense. Here we do not use the traditional
approach taken by Ross [14], Tijms [15], and others which treats the problem as a
limiting case of the discounted cost problem. To prove the existence of a minimum
pair of state and policy we apply the direct method by the empirical distribution, which
Borkar [4], [5] uses to establish the existence of optimal stationary policies for
countable-state Markov decision processes in cases where a single communicating
class exists under any stationary policy.

For examples of treatment of the general (multichain) case with the finite or
denumerable state space, see Deppe [6], Howard [9], Schweitzer [16], and Zijm [17].

In the remainder of this section, we shall establish the notation that will be used
throughout the paper and define the problem to be examined. Also, a minimum pair
of state and policy is defined. In 2 and 3, we give the existence and characterization
of minimum pairs under the hypothesis of Doeblin. In 2 it is proved that there exists
a subset C of the state space such that there is a minimum pair only for all initial
states belonging to C, implying the existence of an optimal stationary policy for these
initial states. The extension of these results to all of the state space is done under
additional assumptions in 3. Finally, in 4, the more general case is discussed under
some continuity conditions.

A Borel set is a Borel subset of a complete separable metric space. For a Borel
set X, x denotes the Borel subsets of X. A Markov decision process is a controlled

* Received by the editors July 27, 1987" accepted for publication (in revised form) May 18, 1988.
t Department of Mathematics, Faculty of Education, Chiba University, Yayoi-cho, Chiba, 260, Japan.
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dynamic system defined by four objects: S, {A(x), x S}, , and Q, where S is any
Borel set representing the state space of some system and for each x S, the admissible
action space A(x) is a nonempty subset of some Borel set A such that {(x, a)" x S,
a A(x)} is an element of Ns x NA, the immediate cost function e is a real-valued
Borel measurable function on S x A, and Q(. Ix, a) is the law of motion, which is taken
to be stochastic kernel on 3s x SxA; i.e., for each (x, a) SxA, Q(.Ix, a) is a
probability measure on Y3s; and, for each De Y3s, Q(DI’) is a Borel measurable
function on S x A.

Throughout this paper, the following assumptions will remain operative"
(i) S and R := {(x, a)]x S, a a(x)} are compact;
(ii) c is a nonnegative real-valued bounded lower semicontinuous function;
(iii) whenever X "-> X, a,- a, Q(’lXn, a,) converges weakly to Q(.Ix, a).
The sample space is the product space (S x A) such that the projections X,,

A, on the tth factors S, A describe the state and the action of the tth time of the
process (t >- 0).

A policy is a sequence 7r=(Tro, Tr, "o’) such that, for each t->0, 7r, is a
stochastic kernel on 3a x S x (A x S)’ with 7r,(A(x,)lXo, ao," ", a,_, x,) 1 for all
(Xo, ao," ", a,-1, x,) Sx (a x

Let H denote the class of policies.
We denote by T(A[S) the set of all stochastic kernels , on 3AXS with

(A(x) Ix) 1 for all x S.
A policy 7r (Tro, 7rl,"" ") is a randomized stationary policy if there exists a

T(AIS) such that 7r,(’]xo, ao,...,x,)=(.Ix,) for all (xo, ao,’",x,)
S x (A x S)’ and t-> 0. Denote the corresponding policy by

For any D 3s, we denote by B(D--> A) the set of all Borel measurable functions
u" D- A with u(x) A(x) for all x D.

A randomized stationary policy ( is called stationary if there exists an f
B(S- A) such that a({f(x)}lx)= 1 for all xS. Such a policy will be written byf().

We denote by H’ and H", respectively, the sets of all randomized stationary and
stationary policies. For any Borel set X, we denote by P(X) the set of all probability
measures on X.

Let H, (Xo, Ao," ’’, A,_, X,). It is assumed that, for each 7r= (Tro, 7r,.. ")H,
Prob(A,D, IH,)=Tr,(DIlH,) and Prob(X,+,D21H,_l,
Q(D2lx, a) for every D 3A and D2 Ns.

Then, for each 7r II and initial state distribution v e P(S), we can define the
probability measure P; on fl in an obvious way.

We shall consider the following average cost criterion.
For any policy r and initial state distribution , P(S), let

O(u, 7r)= lim sup E E c(X,, A,) T,
T =0

where E . is the expectation with respect to P.
Let $(v) inf.ct $(v, r) and * infc,s) $(v). Then we say that (v, r) .

P(S) H is a minimum pair if $(v, r) * and r* H is optimal if $(x, r*) $(x, r)
for all x 6 S and r 6 II, where the initial distribution degenerate at the point x is
denoted by x.

2. The existence of minimum pairs in $ x II". In this section we use the hypothesis
of Doeblin [7], and give the characterization of minimum pairs.
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For any T(AIS), the t-step transition probabilities are defined by

O(l(.lx, )= f Q(.[x, a)(dalx),

Q(’+’)(" Ix, )- f Q(’)(.lx,, ,)Q(’(dx, lx, q,) (t>- 1).

Unless stated otherwise, the following hypothesis holds throughout this paper.
Hypothesis (Doeblin [7]). There is a finite measure y of sets D s with y(S) > 0,

an integer and a positive e, such that

Q((Dlx,)l-e if y(D)e, forallT(A[S) andxS.

For any Borel set X, we denote by C(X) and C(X), respectively, the sets of all
bounded continuous and lower semicontinuous functions on X. Let {s} be dense in
S and define f C(S) for i,j 1, 2,... by

f(s) 2(1 -jd(s, si))VO

where d is the metric defined in S and x v y max{x, y}. Let M {fj: i,j 1, 2, .}.
Then M is separating, i.e., whenever n,, P2 P(S) and fidP,=fidP2 for i, j=
1, 2,. ., we have P P (for example, see [8]).

Let us prove the following result using the idea given by Borkar [4], [5].
LEMMA 2.1. For any (, ) P(S) H, there exists a P(R) such that

(2.1) f c(x, a)(d(x, a)) (, ),

Proof For any given (u, ) P(S) H, we consider {Xt, , 0, 1, .} governed
by P. For simplicity put P P and E E. Then by the stability theorem of Lobve
11 ], we have, P-almost surely,

(2.3) lim {g(x,)- [g(x,)l ,_,]} T= 0 for all g M,
r =0

where N=(Xo,o,...,X,,) is the sub--field generated by H and ,. Let
T-1r =,=o c(X,)/T (T 1). Then, since E[lim infr gr]N 0(, ), we have

P(lim inf r N 0 P, )) > 0,
r

so that there exists a sample path m such that (2.3) and lim infr gr N 0( P, ) hold.
Now, let us construct the probability measure for which (2.1) and (2.2) hold by

using the fixed sample path m , which is suppressed for notational convenience.
For this m , there exists a subsequence { .} for which (2.3) and the following (2.4)
hold:

(2.4) lim 0r (, ).

For any D R, define the empirical probability measure T by

T--1

(D) E Io(X,, ,)/T (T 0),
t=0
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where, for any set G, lc is the indicator function of G and I(y) is equal to 1 if y G
and equal to 0 otherwise.

Since R is compact, P(R) is also compact in the topology of weak convergence
[3], so that there exists a probability measure/z P(R) such that/x, converges weakly
to x along a subsequence (also called {} by abuse of notation). We shall show that
this/x has the desired property.

By the definition of/xr, (2.3) and (2.4) are rewritten, respectively, by

(2.5) lim [f g(x)pt-(d(x, a))- f pt_(d(x, a)) f g(x’)Q(dx’,x, a)] =O
and

for all g M

(2.6) lim |c(x, a)(d(x, a))<=b(v, n-).
d

By the weak continuity of Q, for each g M, g(x’)Q(dx’]x, a) is continuous in
(x, a) S x A, so that, as j-eo in (2.5), we get (2.2). Also, since e Cs(Sx A), there
exists a nondecreasing sequence {b,}c C(SxA) for which bk-*e as k-oo.

By (2.6), we have for each k->_ 1,

limf chk(x, a)pt(d(x, a))= f qbk(x, a)pt(d(x, a))<-q(v, r).

As k- oo in the above, using the monotone convergence theorem we get (2.1). [3

THEOREM 2.1. For any (v, r) P(S) xII, there exists a (Vo, (o)) P(S) xII’ such
that

(2.7) 4’( Vo, (o)) _<_ q( v, r).

Proof For(v, n-) P(S)xII, let P(R) be such that (2.1) and (2.2) hold. Then,
we can decompose the probability measure/ into Vo P(S) and @ T(AIS) such that

tz(D x Dz) f @(Dlx)vo(dx) for any D s and Dza
D

(for example, see [1]).

Let Q(. Ix, @)-- Q(. Ix, a)C’(dalx). Then since M is separating, by (2.2) we have

Vo(.) f Q(’lx, @)vo(dx),

which means that Vo is a stationary absolute probability measure for the Markov process
induced by {Q(.]x, @)}. Hence, we have q(Vo, @()) c(x, a)pt(d(x, a)), so by (2.1)
we get (2.7).

Here we can give the main result, which states that there exists a minimum pair
in SxH".

THEOREM 2.2. There exists C s with T(C) > e and) II" such that (x, f(oo))
S x II" is a minimum pair and Q(Clx, f(x))= 1 for all x C.

Proof Let e. be such that e, > 0 and e 0 as n - o0. From the definition of b*,
there exists a sequence {(v ", zr)}c P(S)xH for which it holds that

(2.8) b(v",r)<-q*+e, for all n->_ 1.
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From Lemma 2.1, for each (vn, r") there exists a t P(R) satisfying (2.1) and (2.2)
with respect to/x ".

Also, from (2.1) and (2.8) we have

(2.9) [ c(x, a)tx"(d(x, a)) - q* + e, for all n _-> 1.
3

From the compactness of P(R), without loss of generality there exists a/z P(R) such
that/x" converges weakly to/x P(R) and satisfies (2.2). Also, for a nondecreasing
sequence {bk}c C(SxA) with thkc as koo, we have, from (2.9),

4)(x, a)"(d(x, a)) <-_ * +

As n- oe and k-* ee in the above, using the monotone convergence theorem we get

(2.10)

Since /x satisfies (2.2), if we decompose x into , P(S) and T(AIS), , is a
stationary absolute probability measure for {Q(.lx,)}. Thus, by (2.10) we get
0(P, ())--< 0", which implies from the definition that

(2.) (, )) *.
Now we consider the Markov process induced by { Q(. Ix, )}. Then by the theory of
Markov processes, under the hypothesis of Doeblin [7], we can define a decomposition
ofthe state space S into a transient set and a finite number ofergodic sets C, C2, , C
with y(Cj) > e for all 1 =<_ j -<_ k.

Here we define a yjP(Cj)(I<-j<-_k) by

yj (.) lim P(r)(. x, ) for each x C,
T--

r- Q(,)(. ]x, )/T and QO)(. Ix, ) Iixl(-). Also we havewhere P(r)(-! x, q) Z, :o
u(.)= Pr)(.[x, ),(dx) for all T_-> 1.

Hence, as T-* oo in the above, using the dominated convergence theorem we get
k

(2.12) v(.): 2 y.(.)v(Cj).
j=l

Let c(x, )= c(x, a)(da[x). Then, by definition of qJ(x, (oo)), we have that,
for any x e C,

(2.13) (x, (I)()) =limsupr- f c(x’, )P(r)(dx’[x, ()

I c(x’,,),(ax’).
C

On the other hand,

4(, ,(oo) f c(x, ),,(dx)

,,(c.)I c(x,,),(dx)
C

k

E ,(c.)(x, ,()

from (2.12)

for any xj C/ (1 =<j k) from (2.13),



MARKOV DECISION PROCESSES 301

so that since q(x, @()) _-> q* for all x S, it holds from (2.11) that for C with v(C) > 0,

(2.14) q(x, ()) q* for all x C.
Now we prove that @() above can be replaced by a stationary policy. First we show
that for each Q with v(Q)> 0, there exists anf B(C- A) and a Borel measurable
function v. such that

(2.15) Q(Clx,(x))= l,

(2.16) v.i(x)+q*>=c(x,(x))+ f v.(x’)Q(dx’lx,(x)) forallxQ.
Ci

The inequality above will be used to show that f) is optimal for all initial states
belonging to Q.

Using the theory of Markov process again, we find that, if 1Q, 2Cj,’’-, dCj are
the cyclically moving classes in C and x 1C, the following holds:

d

(2.17) lim Q(,a+m-)(. Ix, ) mY(’) and y(.) Y mY(’)/d.

For T>_-I andxC,let
[T/d]d-I

E,)(c(X,,A,)-O*),

where for a real number z, [z] is the largest integer equal to or less than z. Then, from
(2.13) and (2.14) we can rewrite, for any x Q,

[T/did-1

O
c(x’, ){Q(’)(dx’lx, )-y(dx’)}

[T/d]-l

2
t=O

So, since the convergence in (2.17) is uniform and exponentially fast and c is bounded,
limr_ Vf(X) exists and is finite. Let v(x)= limT_oovf(x) for each x Q.

Then by the definition of v it holds that

(2.18) vj(x)+ b* f c(da[x)(c(x, a) +f v(x’)Q(dx’[x,a)}.
Since C is an invariant set, Q(C[x, a)(dalx) 1 for all x C, so that for each x C
(2.19) Q(CIx, a)= 1, (. Ix)a.s.

Here, let

R= (x,a) Q(GIx, a)=l,xeC,aA(x),v(x)+4,*>-c(x,a)+ v(x’)Q(dx’lx, a).

Then, by (2.18) and (2.19), (Rxlx)>0 for all x C, where

Rx {a A(x)l(x, a) R}.
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Thus, from the selection theorem of [2], there exists anf./e B( C./-+ A) such thatj.i(x) Rx
for all x C.

Clearly (2.15) and (2.16) hold for this f.
Let C UC, where the union is over all j{i] v(Ci) > 0}. For any f B(S- A),

if we define f B(S-, A) by

=(x) ifxGandu(Cj)>0,
f(x) [)(x) otherwise,

it holds from (2.15) and (2.16) that

(2.20) Q(CIx, f(x))= 1 forallxe C,

(2.21) v(x)+qt*>=c(x,f(x))+[ v(x’)Q(dx’[x,f(x)) forallxC,

where v(x) vj(x) if x with v(C./) > 0.
Let us show that 0(x, f(o)_< , for all x C by the same way as the proof of

Theorem 7.6 in 13].
For x C, from (2.21) it holds that, for each t->_ 0,

E}o0) [c(X,, zX,)]-<_ @* + E.}, Iv(X,)- v(X,+,)].

Therefore,
T-I

O(x,f()=limsup 2 E.},[c[X,,At)]/T
T-oo t=0

_-< q* + lim sup (v(x) E.},,[ v(X,)]/T)

Theorem 2.2 does not establish the existence of a minimum pair for all initial
statesmonly for those in a Borel subset C of S. At the same time, it shows the existence
of an optimal stationary policy for these restricted initial states. In the next section,
the extension of these results to all of S is done assuming additional conditions.

3. Optimal stationary policies. In this section we discuss the existence of optimal
stationary policies under the following two conditions.

Condition A (Reachability). For any x S and D s with y(D) > e, there exists
a r H such that

)P O {XtD} =1,
t=0

where e and y are as in the hypothesis of Doeblin.
Condition B. One of the following two conditions is satisfied"

(B1) For y as in the hypothesis of Doeblin, y(OD)=O if y(D)>0, where OD is
the boundary of D.

(B2) For each De s with y(D)> e, Q(D]x, a) is continuous in (x, a)SxA.
Now we can state the following theorem.
TJEOREM 3.1. Under Conditions A and B, there exists an optimal stationary policy.
To prove Theorem 3.1 we need several lemmas.
Let C and f 6 B(S- A) be given in Theorem 2.2 and F S-C.
Let g inf { >= 0IX, C}, where inf h ec.
For any xF, let r be such that P(U,=o{X, C})= 1, whose existence is

guaranteed by Condition A.
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For this 7r, we define 7r*= (fro*, 7r*,...) by, for each D

ID((X,)) if _-> ?,
H,)

"n’(DIH,) if t< ?.

We note that P.(CJ ,=o {X, C}) 1.
LEMMA 3.1. O(x, 7r*)= 0".
Proof For simplicity set E E.. Since O(x,f() 0* for all x C, it follows

from the definition of 7r* that for any k_>-0 with P.(?= k)> 0,

lim sup E c(X,, A,)
T t=k

lim E c(X,, A,)
To t--k

Also,

[ [(T-1)^k0(x, 7r*)_-< k E lim sup E c(X,, A,)
=0 [_ T--> =0

+ E limsup E c(X,, At)
=0 T-,c =( T- k+

where a ^ b min {a, b}.
Since c is bounded, the first term of the right-hand side of the above inequality

is zero, so that by (3.1) we get

)O(x, Tr*)<--qJ*P. U {X,C} =O*.
t=0

For u C,-(F), we define Ku, for each x F, by

(3.2) Ku(x)= ,A()inf {O*Q(C*lx, a)+ fz u(x’)Q(dx’lx, a)},
where C*-- ( under (B1) and C*= C under (B2), and ( is the set of interior points
of C.

LZMMA 3.2. U C,. (F) implies Ku C. (F).
Proof Let u C(F). Under (B 1), y(() -> e, and from the weak continuity of Q,

lim inf,_,,o,_, Q(( Ix’, a’)=> Q(( Ix, a), which means that Q((71 x, a) C(FxA).
Also, u(x’)Q(dx’lx, a)e C,.(FxA), so that gu C,(F) (cf. [1], [12]).
Under (B2), similarly Ku
LEMMA 3.3. Let v be a bounded Borel measurable function on F such that

(3.3) v Kv.

Then, v (x) <- O* for all x F.
Proof For x F and 7r*e II as in Lemma 3.1, let

Br(x, 7r*) 0*P*(X, C* for some -_< T).
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For simplicity set P P. and E EX.. We have

B(x, r*)- E O*O(C*]X,,+/-,)Io,...,,.

(v(N-[v(x,+,,,l,,]) o,...,, from(.3
t=0

v(x)-H.P(FforallONtNT) for someH>0.

Thus, as T in the formula above, we get

lim Br(x, *)= O*P U {X, C}

Proof ofeorem 3.1. For any >0", let v0 and v+=Kv(nO). Then
we observe from Lemma 3.2 that v C.(F) and vv+0* for all n0. Let
v=lim v. Then KvNKv=v+(nl), which implies KvNv. On the other
hand, for any > 0,

(3.4) +Kv>O*O(CIx, a)+ j- v(x’)Q(x’lx, a) forsomeaeA(x).

By the monotone convergence theorem,

i f v.(x’)O(dx’lx, a)= f v(x’)O(dx’,x, a).

Hence, from (3.4) we have

+Kv>O*Q(Clx, a)+ v,(x’)Q(dx’lx, a)

v+(x) for all n N and some N.

As n in the above, + Kv(x) v(x), which gets Kv(x) v(x) when 0.
From the discussion above, we have v Kv.
By Lemma 3.2, we get v N 0". Hence, if we let min {kl v,(x) < } and F

{x F (x)= k} for each k 1, it holds that

(3.5 F= u F.
k=l

Bythe selection theorem (cf. [1], [12]), for each k there exists anf B(F A)with

(3.6) v(x) *Q(CIx,f(x))+ J v_,(x’)Q(dx’lx, f(x)) for all x F.

Now, considering (3.5), we define f B(S A) by

f(x) ifx C,f(x)
tf(x) ifxF for somekl.

Here, we consider the stationary Markov process induced by {(.Ix, f(x)}. For each
k 1, it holds from the definition of F that Q(F_llX, f(x))>O for all xF, so that
by (3.5) F is a transient set, which implies p,(U_o{X C})= 1 for all x F, where

Using Lemma 3.1, we get O(x,f() 0* for all x
Remark. We introduce the following condition to consider the unichain case.
Condition C. For anyf B(S A), the Markov process induced by {Q(. Ix, f(x))}

has only one ergodic set.
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Examination of the discussion in 2 and 3 shows that there exists an optimal
stationary policy under Conditions B and C. These are extensions ofthe results obtained
in [14], [15] by approximating the average cost problem by the discounted cost
problems.

4. Further results. In this section we derive the general results under the following
continuity condition.

Condition D. The following hold:

(D1) For any G s, Q(G[.) C(R).

(D2) For any sequence {xn} and x in S with xn x as n oo and any a A(x),
there exists a sequence {an} with an A(xn) and an a as n

THEOREM 4.1. Suppose that Condition D holds; then there exists a decomposition
of S"

S--- F U S1U U Sr, F ?s,
(4.1)

Sf3S;=ch (i #j),

and a stationary policyfo and constants ce, era," ., ce with the following properties"
(i) 6(x,f) 6(x) for all x S* and 6(x) cfor each x Si (1-<- i r), where

S U 7=1 Si
(ii) Each Si(1 <- <- r) is invariant for the Markov process induced by
(iii) 6(x,f)) <-_ O(x, 7r) for all x F and any 7r II with

(4.2) P(X, S* for some >- O) 1.

Proof By Theorem 2.2, there exists a constant a, a set S Ys with y(S1)> e,
and a stationary policy yo) for which 6(x,f)) 6(x) l and O(Slx, fl(x))= 1
for all x S1, where y and e are as in the hypothesis of Doeblin. We note that S
corresponds to C in Theorem 2.2. Put Do S and D S-Do. If we set, for each

x, a) > 0 for some a A(x)}, Dj is open. In fact,
let {xn} be any sequence such that xn Dj and xn x as n oo. Then for any a A(x),
by (D2) there exists a sequence {an} with an cA(xn) and an a as noo. From (D1),
we have Q(Dj_llx, a) =limn_, Q(D./-llxn, an) =0.

In the case where D=U D, from the selection theorem (for example, [1]),
there exists an f B(D A) such that for each j=> 1

Q(D;_lx,(x))= max O(Dj_llx, a) forallxDj.
aA(x)

Here we define f by

fl(x) ifx
f(x)

I.f(x) if x D.

Clearly, Pc(X Sl for some _--> 0) 1 for all x e D, so that by Lemma 3.1, O(x,f()
a. Thus, putting F D, the proof is complete.

In the case where D U___l D, let G D-Uj=l D. Then, using (D2) we can
prove that Q(G[x, a) 1 for all x e G and a A(x), where G is the closure of G. We
note from the hypothesis of Doeblin that 3’(G)> e.

Here, we apply Theorem 2.2 to the sub-Markov decision process with the restricted
state space G. Then there exists a constant a2, a set $23 with 3,($2)> e and a
stationary policy f2() for which q(x,f2))=O(x)= a2 and Q(S2[x, f2(x))= for all
xS2
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For any given g B(S A), we define f B(S-> A) by

f/(x) ifxSi, i=1,2,
[ g(x) otherwise.

Then we observe that q(x, jT())= ai if x Si, i--1, 2. Now, putting Do-- $1 $2 and
D S- Do, we repeat the discussion above. Since T(S) ( oo, by repeating this method
successively we come to the conclusion that there exists a decomposition (4.1) and
f B(S- A) satisfying (i) and (ii). If we let Go-S* and for each j-> 1,

G= x6F- U GilQ(Gj_,]x,a)>OforsomeaA(x)
i--1

where

(4.5) U(x, a, u)= c,Q(S, lx, a)+ u(x’)Q(dx’[x, a) for x F and a A(x).
i=1 F

Let Vo=-max{ai;i=l,’’’,r} and vn+=Uv,(n>-O). Then, clearly vn >- vn+(n >- l)
and vn C(F). If we put v lim,_.oo v,, v C(F) from Dini’s Theorem.

Also, similarly as the proof of Theorem 3.1, we get

(4.6) v(x) Uv(x) for all x F.

Now we define, for each x F and r II,

B(x, r)- lim BT(x, r),
T

where

BT(x, "n’)= a,P
i=l

(X, S for some 0_-< _-< T).

Let r be any policy satisfying (4.2). Then it is easily proved that

(4.7) O(x, or) B(x, r) >- v(x) for all x F.

Here, again by the selection theorem, there exists an f* B(F- A) such that v(x)
U(x,f*(x), v) for all x F. Using this f*, we define f B(S-. A) by

f(x)=
(x) ifx S*

(f*(x) ifx F.

From (4.3) we observe that f() satisfies (4.2). Therefore,

v(x) lim Urv(x) >-_ lim Br(x,f()) B(x,f())
7"400

which implies (iii) from (4.7).

Acknowledgments. The author expresses his thanks to the referees and an associate
editor for their many valuable comments and suggestions that improved the presentation
of the material.

we have

(4.3) F=U Gj,
j=

where F S- S*.
For u C(F), we define Uu by, for each x F,

(4.4) Uu(x) inf U(x, a, u),
aA(x)
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CONTROL PROBLEM WITH CONVEX CONTROL CONSTRAINTS*
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Abstract. The problem of existence of a regular synthesis for the linear time-optimal control problem
with convex control constraints is studied. A regular synthesis on the whole reachable set cannot be established
for this problem by direct use of Brunovsky’s general existence theorem. This is in accord with the example
of a nonsubanalytic reachable set due to Lojasiewicz and Sussmann IS. Lojasiewicz, Jr. and H. J. Sussmann,
"Some examples of reachable sets and optimal cost functions that fail to be subanalytic," SIAM J. Control
Optim., 23 (1985), pp. 584-598]. A closed subset H of the reachable set K that has Lebesgue measure zero
is constructed and the existence of a regular synthesis on K- H is proved.

Key words, control theory, linear time-optimal problem, regular synthesis, reachable set, subanalytic set
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1. Introduction. The class of linear time-optimal control problems is one of the
simplest and most developed classes of optimal control problems. Linear time-optimal
control problems having polyhedral control restraint sets and satisfying a normality
condition are the first larger class of problems for which the existence of a regular
synthesis has been proved [2]. This result was obtained by using the method of
subanalytic sets, which has found wide application to other problems in control theory
as well.

Using the abstract theorem on the existence of regular synthesis I-3] (ERS theorem)
the existence of a regular synthesis for the linear-quadratic problem (LQ problem) has
been proved in [4]. The control set is a polyhedron and a normality condition is
assumed. A certain generalization of the LQ problem is given in [6], which contains
a proof of the existence of the regular synthesis for a linear-convex problem (LC
problem), the system is linear, the Lagrangian is convex and strictly convex in the
control variable, and the convex compact control set is given by analytic inequalities.

All the classes of problems [2], [4], [6] mentioned have one common property
derived from the application ofthe method of subanalytic sets: they admit a subanalytic
regular synthesis, e.g., all the cells of the regular synthesis are subanalytic sets. From
this property it follows that the whole reachable set is subanalytic.

The results achieved in control theory using the method of subanalytic sets seem
to indicate that subanalyticity is a property of other, larger classes of control problems.
Hence the paper by Lojasiewicz and Sussmann [8] was a surprise. It presents some
examples of rather simple problems that do not possess the property of subanalyticity.
This is first of all an example of a linear control system with a convex control set. In
this example the reachable set is not subanalytic, and therefore the optimal control
problem for this system does not admit a subanalytic regular synthesis on the whole
reachable set. So, in this case, the applicability of the method of subanalytic sets in
control theory reaches its limits.

Here we deal with the same class of linear time-optimal control problems with a
convex, compact control set given by analytic inequalities. For this class of problems
we investigate the existence of a subanalytic regular synthesis. From [8], however, it

* Received by the editors September 8, 1986; accepted for publication (in revised form) May 13, 1988.
This paper is part of the author’s doctoral thesis written at Comenius University.

? Institute of Applied Mathematics and Computing, Comenius University, Mlynski dolina, Bratislava,
Czechoslovakia.
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is evident that a subanalytic regular synthesis does not exist on the whole reachable
set. Therefore, using the ERS theorem, we construct a closed subset H of the reachable
set K, and we prove the existence of a regular synthesis on K-H, the cells being
subanalytic subsets of K-H ( 1-6). In 7 and 8 we prove that the Lebesgue
measure of H is zero, i.e., K-H almost exhausts K.

2. The linear time-optimal control problem. We consider the time-optimal control
problem given by the linear system

(1) .= Ax+ Bu

where A, B are n x n and n x m matrices, respectively, n -> m, rank B > 1, and the
n x nm matrix (B, AB, A2B, , An-B) has rank n.

Here the class of admissible controllers consists of measurable functions defined
on intervals [0, T], T>0, with values in the set Uc Rm. The initial point is Xo R
and the target point is : 0 R ".

The control restraint set U is a compact, convex set, 0 int U and it is assumed
to be of the form

U= {u Rm/gi(u) <=0, S, cJ*u <= dJ, j P}

(* stands for transposition), $ {1,. , s}, P {1,- , p}, where
(a) gi. R" --> R, S, are analytic functions, c R ’, d R-(b) Mi(u) (a2g’(u)/cu2) > 0 for u U, S;
(c) If for a U we have g() =0 for P1 P and cJ*a d forj $1

_
S, then

the vectors (cgg(u)/cu)*, c , PI,j S, are linearly independent;
(d) Among the inequalities defining U there are no redundant ones, i.e., for every

iS there exists a uR such that g(u)>0, gk(u)<=O, c*u<--d for k
S-{i},jP, and for every j P there exists a u R" such that c*u> d,
ck*u<=d k, g(u)<--O for kP-{j},iS.

Before presenting the last assumption about the set U we introduce some notation.
We define

UI {u R"/g’(u) =0, I, g’(u) < O, : I, cJ*u dJ, j J, cJ*u < dJ, j
_
J}

for every index set 1 J, where I
_

S, J
_

P, and [at / IJI--< m, 111 being the cardinality
of L

The sets UI can be empty for some/, J. For I , J , U is the interior of
U. We shall call the index set I x J admissible if [zl / J! <- m and UIj is not empty
and denoted by IJ. Instead of U we shall sometimes write U, Uj, or Uo, respectively,
when J=, I=, or IJ=.

Now we return to the formulation of the assumption for U.
(e) For every U, J admissible, there are z, z2 such that the vectors

B(z z2), AB(z- z2), ., A"-B(z z) are linearly independent.
For given Xo R we will denote by LT(xo) the time-optimal control problem just

formulated.
Let us note that for our purpose it is sufficient if the assumptions (a), (b) are valid

on some neighbourhood of U.
Assumption (e) will also be called the normality condition. From this condition

it follows that the LT problem is normal in the sense of [9].
A controller u(t) and its response x(t), [0, T], will be called extremal for the

LT problem (with respect to a nonzero solution ,(t) of the adjoint equation , -A*$)
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if the triple x, u, 0 satisfies the maximum condition

O(t)*Bu(t)=max O(t)*Bu
uU

almost everywhere on [0, T].
We recall some well-known properties of the linear time-optimal control problem

that are valid under our assumptions (cf. [7], [9]).

(LT1) If 0 =< T1 < T2, then K (T1) c_ int K (T2) (K (T) is the set of all initial points
x from which (1) can be steered to the origin using an admissible controller
defined on the interval [0, T]).

(LT2) The reachable set K (i.e., the set of all points x from which (1) can be
steered to the origin using an admissible controller defined on some finite
interval) is an open subset of R n.

(LT3) For given x K there exists a unique extremal controller ux(t) defined on
[0, Tx]. This extremal controller is optimal.

(LT4) The function T(x) associating with every x the minimal time Tx in which
(1) can be steered from x to zero is continuous on K.

Our aim is to investigate the existence of a subanalytic regular synthesis for the
problem LT(x), x K. As in the LQ problem and the LC problem we use the ERS
theorem.

3. The solution of the maximum condition. To verify the hypothesis of the ERS
theorem we must express the solution of the maximum condition as a function of p.
Since U is compact, for each p R -{0} there exists a w U such that the linear
function H(u)--4,*Bu has its maximum in w,, i.e.,

(2) q,*Bw, max tp*Bu.

Contrary to the LC problem, the solution w, of condition (2) is not uniquely
determined by the value in general. For example, if Ker B* or B’q, is from the
convex cone generated by the vectors c,j J, we can choose for w,, u U, or u Uj,
respectively.

We denote by ($) the set of all solutions w, of the condition (2) for given 0.
In the sequel we decompose the space of the adjoint variables into two sets WA

and W,. The solution of (2) will be uniquely determined by on WA, which enables
us to use the procedure from [6] on WA. First, we introduce some notation and prove
some lemmas.

If a property V V, respectively) holds for every I (j J), then we shall write
V (Vj) instead of V, I V., j J).

In the same way as in the LC problem [6] we can prove the following lemma
about an analytic stratification of U.

LEMMA 1. Thefamily of the sets Uu, IJ admissible, is an analytic stratification of U.
COROLLARY 1. Let IJ be an admissible set. Then dim Utj m-(]II+lJ]) and UIj

has at most a finite number of components.
The proof follows from the linear independence of the vectors (Ogi(u)/Ou) *, c ,

I, j J. The finiteness of the numbers of components follows from the semianalyticity
of U.

Further, we define

(3) W,j= {q, R"-{O}/#(d/) Uu }
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for every IJ admissible. It is easy to see that for IJ= the set Uj =int U and
WIj Ker B*-{0}. Instead of WIj we shall sometimes write WI, Wj, or W0, respec-
tively, when J , I , or/J . However, any statement about IJ, I, or J admissible
will be understood to hold for the case IJ , I , or J as well.

Because of the positive homogeneity of H in the sets Wj, IJ admissible,
completed by the point zero, are cones. These sets cover R -{0}. In contrast to the
LC problem the sets WIj, IJ admissible, do not partition the space R -{0}.

Example. Let the restraint set U be given by the inequalities

u,, u,+u+ul,

and let n m 3 and B be an identity matrix. We denote
2U,2 { u R3/u, , u, + u+ u 1 },

2 2=1},U, {u G R3/ul <, U +u+u
U2 { u R/ u, , u+ u+ u< 1 }.

The sets U, U1, U form an analytic stratification of U defined in the general case
above. The corresponding set W is the closed circular cone with the vertex in the
origin of the space of adjoint variables and with the axis . The set Wz is the positive
half-axis , W is the open circular cone R- W12-{0}.

As with the LC problem, we can prove a lemma about subanalyticity of Wj and
the necessary and sufficient condition for Wj in our LT problem. The proofs of
these lemmas are the same as the corresponding ones for the LC problem.

LEMMA 2. For every IJ admissible the set Wj is a subanalytic subset of
LEMMA 3. Let R"-{0}, IJ admissible. en WIj if and only if there exist a

u Uij and a O, L b2 O, j L such that

k Ou /

u is a solution of (2) for given .
Remark 1. Let u Uj, H admissible. By the symbol C, we denote the convex

cone generated by the vectors (Og(u)/Ou)*, c , Lj J. Then Lemma 3 can be written
in the form

(5) *w,= C..
UIj

COROLLARY 2. For every J admissible the set Wj is a closed subset of R"-{0}.
Proof Evidently B*Wj C,, where u is an arbitrary chosen element from Uj.

The set C, is closed for every u Uj and therefore its B*-preimage is closed.
COROLLARY 3. (a) dim B*Wj [J[ for every J admissible.
(b) If J] m k, then dim Wj n k.
(c) dim Wo<n-1.
Proof Assertion (a) is a corollary of the linear independence of the vectors

c, j L J admissible.
Condition (b) follows from the fact that a linear mapping does not increase the

dimension of an analytic manifold.
If J=, then JI m-m, and because of m > 1 we have dim Wo=dim Wj

n-m<n-1.
COROLLARY 4. For every IJ, J’ admissible, such that J’ J the inclusion Wj,

holds.
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Proof Let q Wj,; then according to Lemma 3 there exist b >-- O, j J’ such that

-B*q+ Y. bJc =0.
jeJ

We take a =0, i I, b i =0, j J--J’, and an arbitrary u e Uj. Then, for q, a
I, bJ, j J, u, condition (4) holds and therefore p W. This completes the proof.

For every IJ admissible we define the set VIj by

W,-W iflllO,
(6) V,=

Wtj-,U_jWj,= if II[=0.

As in the case of W’s instead of Vj we shall sometimes write V, Vj, or Vo, respectively,
when J=;, I=;, or IJ=.

LEPTA 4. For every d/ Vu, IJ admissible, IJ such that either III 0 or IJI- m,
there is a unique solution w, of the maximum condition (2).

Proof Let VIj, IJ admissible, III 0. Then there exists a w+ UI such that

(7) d/*Bw+ max *Bu.
uU

Let + U,j,, + w+, be such that

(8) *B+ max *Bu.
uU

Then it follows immediately from (7), (8) and from the convexity of U that for every
A e[O, 1]

(9) b*B(hw + (1 h)q,) max d/*Bu.
uU

Hence ff,(h)=hw+(1-h)ff is a solution of the maximum condition for every
)t [0, 1], i.e., ff(h) is a maximum of a linear function on a compact set. Since
q, V, q Wo and therefore w6(h) is from the boundary of U for every h [0, 1].
From the definition of U (the strict convexity and the linearity of the inequalities
defining U) it can be seen that if the segment ff(h), h . [0, 1], is from the boundary
of U, then there is a J" admissible such that fie(h) U,, for every h (0, 1) and J"_ J’,
J"_ J. Consequently, q W,,___ Wj, which contradicts the definition of V.

Let q V, IJI m; then there exists a unique we U since U is a vertex of U.
Now, because of the same argument as in the case of III 0 we obtain the uniqueness
of w,U.

COROLLARY 5. The sets V, IJ admissible, form a partition of R -{0}.
Proof. Due to the definition of the sets VI they cover R-{0}. First, we prove

that if IJ is admissible such that either III 0 or [dl m, then Vj f-) V,, for every
I’J’ admissible, IJ I’J’.

Let VI f’) V,,. Then there are we, w () such that w U, w, U,,.
w, whichAccording to Lemma 1 we have UI f-) U,, ; and therefore w6 contra-

dicts Lemma 4.
Now we prove that if J is admissible, J < m, then Vj fq V,=; for every J’

admissible, J’ J, [J’[ < m. Let p V f’)V,. Then there exist w, U, w U, and
2w w. Due to the definitions of U and w there is J" admissible, J"___ J, J" J such

that b Wj,,. This contradicts the definition of V.
We denote

(10) WA= U
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where the union is taken over all IJ admissible such that either III 0 or IJI m.
Further, we denote

(11) Wy (R -{0}) WA.

Since the sets Vu, IJ admissible, form a partition of R"
holds:

-{0} the following relation

(12) Wv= U Vj= U Wj.
ISl<m IJl<m

COROLLARY 6. The set WA is an open subset of R"-{0}.
This follows immediately from (10)-(12) and Corollary 2.
Now it is easy to see the geometric meaning of the definitions of WA and Wr:

WA is the complement of Wy in R"-{0}; Wy is the union of the polyhedral cones
Wj of dimensions smaller than n; Wj is the B*-pre-image of the convex cone generated
by the vectors e j, j J.

From Lemma 4 and the definition of WA the uniqueness of solutions of the
maximum condition for WA follows. This enables the definition of a function w(q)
on the set WA by the formula w(q,) (0).

LEMMA 5. The function w( O) is continuous on its domain of definition.
The proof follows much the same lines as that of the similar lemma in [6] and

therefore is omitted.
Remark 2. The uniqueness of the solution of the maximum condition (2), Lemma

3, and the linear independence of the vectors (Og (u)/Ou)*, cJ result in the uniqueness
of the numbers a , bJ from Lemma 3. For this reason we can define the functions
al(O), bJ(O) on VII for every IJ admissible.

4. Properties of the function w(). In the previous lemmas we have shown that
the function w($) possesses properties on the set WA similar to the analogous function
w(x, ,) mentioned in the LC problem. The fact that it is continuous and satisfies the
maximum condition has enabled us to prove in the LC problem that the functions
wt(x, ,) can be extended as analytic functions to neighbourhoods of the closures of
the sets Wt. In this section we prove a similar property for the function w(,) on Vu.
The closures and neighbourhoods of the sets Vu, H admissible, where either [I 0
or IJI- m, will be considered as subsets of WA. We denote by ClA the relative closure
in WA.

The proofs of the next three lemmas follow the same pattern as the proofs of the
similar lemmas in [6]. Therefore we do not present their proofs.

LEMMA 6. Let IJ be admissible such that III 0. Then int Vu .
LEMMA 7. Let IJ be admissible such that I . Then

(13) ClA Vu U VI,j,
1,J,_lJ

where the union is taken over all I’J’ admissible such that I’J’ IJ.
LEMMA 8. Let IJ be admissible, III 0, let qJ ClA Vu. Then there is an admissible

set I’J’, I’J’_ IJ such that VI,j, and the functions a t’, bj"

defined for I’J’ satisfy

ai(t)--0 for iI’-I,

bJ(O) =0 forjJ’-J.
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Remark 3. Because of Lemma 8 we extend the functions a I, bJ defined on Vu to
cla VIj by the formulas

ai(0) a’i(0), iI,

bJ(0) b(4,), j J

for 4, cla gij- gj. Here a ’i, b are, respectively, the ith component of the function
a r from Lemma 8 and the jth component of bJ’ from Lemma 8.

LEMMA 9. Let IJ be admissible, ]I] # 0. Suppose for R’, U, >= O, J >- 0
the conditions

(Ogi(Ou)*/(14) -B*+,2, ’ + Y /c =0,
.j J

(15) gl(a) =0,

(16) c*a=d

hold, where > 0 for at least one L Then there exist a neighbourhood 0 of and
analytic functions a’(),/3J(0),u(0) defined on 0 such that ce’(t)=’,/3J(q), u and the equations

-B*O+ I oi(o)(Ogi(u(O)))*+ ZOU jJ

gt(u(O)) O, ca*u(qt)=da

hold for every q, 0 and a(q,) > O.
Proof Let us define the function

F R Rlrl RIJI R --> R RI*I RIJI

by the formula

F(O, a’, bJ, u)
(u)) *

B*O+, a\ Ou
+ bcj

.jG_J

g’(u)
ca*u-da

Then F(4,, , bJ, a)=0. We denote

MI() E iMi(), GIj() ((OgIo(ul)) : )C
J

il

where M(u) has been defined in 2. The matrices MI (t) and Gu(t) are of the types
n m and m (111 / IJI), respectively. The matrix M,(fi) is positive definite and accord-
ing to [5]

det
0F(q, c’,/J, ) det.( M, (t) Gu())O(a’, bJ, u) G,a(a)* 0

det M,() det (Gu()*M()- G,j()) # O.

The statement of our theorem follows immediately from the implicit function
theorem.

Remark 4. From the previous lemma we obtain

(7)
o(u, a’, M,(a) G,,(a)
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Then, using Frobenius’ formula [5] we obtain

(18)

(19)

-’ Gu )-’ G*M-f B*,(M-[’- M-[’ Gu(G*M,

O(a’, b
G*gM-[ Gu )- G*M-f B*.

THEOREM 1. For given Vu, H admissible, where either [I 0 or [J] m, there exists
a neighbourhood Bu of ClA Vu in WA and an analytic function wu(t)) defined on
such that wu(d/)= w(O) for every b ClA Vu.

Proof The statement of this theorem for IJ admissible, [I1 0, can be proved
from Lemmas 6-9 by a procedure similar to the one by which Theorem 3 of [6] is
proved from Lemmas 5-8 in the LC problem.

If ]J] m, then the function w(O) is constant on Vj and therefore the assertion
of this theorem is trivial.

Now, the example from 3 will show that for VIj, IJI < m 1, the function wu(O)
defined on Vj cannot always be continuously extended to the neighbourhood of the
closure of Vj in R"-{0}.

Example. Let U1, U2, U2, W1, W2, W2, B, m, n be as in the example of 3.
Then, by (2), w, u (u, u2, u3) can be expressed as a function of 0 (qq, 02, 03)
on V2 W12- W2, i.e.,

u =-, u + u+ u3 l,

t) 2au + b, I[i2 2au2, Ill 2au3.

Solving this system, we obtain

L/1 :,

b/2 i/t2.k/-"/ (2/q2 + q32),

u, +,45/(2,/+ + +).

It is easy to see that, for example,

lim U2(J
q2-*O
q3O

does not exist and therefore the function W12(0)--’(l.l(), U2(I/I), 1,3() cannot be
continuously extended to W2.

The example shows that the LT problem does not in general satisfy Assumption
2 of the ERS theorem and therefore the existence of a regular synthesis cannot be
proved directly using this theorem on the whole reachable set K. In 6 we shall define
a subset H of K such that the existence of a reg,ular synthesis can be proved on K H.

First, we shall extend the set Wa to a set WA which will include the sets Vj, ]J[
m- 1 and we shall prove an analogue to Theorem 1 on a. We denote

(20) A WA Vj

(21) Wz U V, U W,.
IJl<m-1 IJl<m-1
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Because of Corollary 5,

(22) WA R"-{0}- Wz
and from Corollary 3 it follows that

(23) dim Wz < n- 1.

LEMMA 10. The sets cla V,IJ admissible such that either IIl0 or IJi=m,
cover WA.

Proof Because of Corollary 5 the sets Vj, H admissible and such that either

II 0 or IJI- m, form a partition of WA. Let J be admissible, IJI--m- 1. Then Uj is
an open segment of a line; because of the boundedness of U and Lemma 1 there exists
I’J’ admissible such that J I’J’ and II’l+lJ’l- m. It follows from Corollary 4 and
the definition of the sets Vu that Vj

_
ClA Vt’,, which completes the proof.

COROLLARY 7. For every component X of VIj, IJ admissible, where either II[ 0 or

IJI m, there exist a neighbourhood Otj of cl, X in WA and an analytic function wj

defined on Otj such that wj b w(O), X.
Proof Let IJ be such that I[ + IJI m. Then dim Uj 0 and w(O) is constant on

each component of Vtj. Therefore, wj()= w(q)/Vj can be extended as constant to
a neighbourhood of the relative closure of Vj in WA.

Let Vj be such that III 0 and IJ[ < m-1. Due to the definitions of WA and
WA, CIA Vj--cla Vj and the statement is a direct corollary of Theorem 1. I3

5. Finiteness of the number of switchings. In this section we demonstrate a connec-
tion between w(q) and extremal controllers and we prove that these controllers have
a locally finite number of switchings.

The function w(0) has not been defined on Wy (for Wy see (12)). Because of
-A*the normality condition and analyticity of e 0, for every q R -{0} and for a finite

A*til]Jinterval there is at most a finite number of points t 0 such that e Wv. This
enables us to define the function v(0, t)" R" R - R" be the formula

v(O,t)=w(e-a*’O).
Moreover, if we take into account the continuity of w(0) on the complement WA of
Wy (Lemma 5), we obtain the following two properties of v(O, t).

LZMMA 11. The function v(O, t) is a measurable function of for every given
LEMMA 12. For every to R"-{0} there exists a set H c R of measure zero such

that for each R H, v( ., t) is continuous at qo.
We define the function F’(R"-{0}) x [0, )- R by the formula

(24) F(O, T) e-Atnl)(O, t) dt.

THZOtEM 2. The function F( O, T) is continuous. The range of F is the reachable
set K.

Proof The continuity of F is a consequence of Lemmas 11 and 12 and the
boundedness of v(O, t). Since F is continuous in T uniformly with respect to ,, the
function F(4,, T) is continuous.

The inclusion range F_ K being trivial, we prove K
_
range F. Let x K. Due

to (LT3) there exists an extremal controller ux(t) steering x to the origin in time T.
Let O(t) be a corresponding adjoint solution. Since v(O(0), t) is uniquely defined as
a solution ofthe maximum condition for every [0, T] outside a finite set, v(O(0), t)
ux(t) holds almost everywhere on [0, T]. As u,(t) steers x to the origin on [0, T], we
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have

x e-A’Bux(t) dt e-A’Bv(q,(O), t) dr.

Now it is easy to see that (q,(0), T) F-l(x) and that the range of F contains K. g]

From the theorem just proved and from the uniqueness of the extremal controllers
(LT3), we obtain the following corollary.

COROLLARY 8. If (b, T) F-l(x), then v(b, as a function of [0, T] for fixed
q, is the unique extremal controller steering x to the origin.

THEOREM 3. For every compact subset M of the reachable set K there exists a
,(M) > 0 such that an extremal controller of the LT(x) problem has at most , switching
points for every x M.

Proof. Due to Corollary 8 it suffices to prove that if x e M, (,, T) F-(x), then
the function v(q,, .), e [0, T], has at most (M) switching points, where u(M) is
independent of x. That means we need to verify only that for fixed , the curve e-A*t
crosses at most ,(M) times from one set VIj to another.

Let M be a compact subset of K. Its pre-image under the continuous map F is
a closed subset of the space (R -{0})x R of the variables (,, T). Due to (LT4) the
set F-I(M) is bounded by a constant T1. We denote

M1 {g, R"/(q,, T) F-I(M) for some T, IOl 1},

M2-- {e-A*t Rn/d/e M, 0<= <- T}.

The sets M1 and M2 are compact.
Consider the partition of the space R -{0} of q, into the sets Vu, IJ admissible.

The vector field -A’q, and the partition satisfy the assumption of Theorem II in
11 ]. By this theorem there exists ,(M_) > 0 such that every trajectory e-A*’o, q, MI,
e [0, T1] crosses from one member of the partition to another at most ,(M) times.

This completes the proof.

6. Domain of the existence of a regular synthesis. In 4 we showed that in general
the LT problem does not satisfy Assumption 2 of the ERS theorem on the whole space
R -{0} of the adjoint variables. We found, however, that on the open set WA c R {0}
the assumption is satisfied. In this section we construct an open subset of the reachable
set K, such that the extremal responses going from the points of this set to the origin
stay in it, and such that the corresponding solutions 0(t) of the adjoint equation are
from WA. We shall prove the existence of a regular synthesis on this subset.

We have

(25) C {q, R"/Iq,[ 1 and there exists a e R such that e-A*td/ Wz}.

.Remark 5. From the maximum condition (2) it is easy to see that if w is a solution
of (2) for given ,, then w is a solution of (2) for every c, c > 0. Therefore w(,)=
w(cq,),c>O. Since the solutions d/(t)=e-A*tq, are homogeneous in , then
also v(cqJ, t)= w(e-A*tc) W( e-A*t) w(e-A*tlll) l)(llt t). Therefore F(c, T)
F(g,, T) as well, where F is the function defined by (24).

Since the set Wz completed by the origin is a cone, we have the following:
(a) F(cCx[O, T))= F(C x[0, T)), where cC={cq,/q,e C}, c>0;
(b) If xe K-F(Cx[O, oo)) such that F(q,, T)=x, then there does not exist a

[0, az) such that e-A*tt WZ.
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We denote

(26) H F(C x [0, o)).

LEMMA 13. The set H is a closed subset of the reachable set K for the LT problem.
Proof Let {xn}->x, x,,H, xK. Let {On, Tn} be a sequence of points from

C x[0,) such that F(On, Tn)=x,. From Corollary 8 and (LT3) it follows that
T, T(x,), i.e., Tn is a minimal time for LT(xn). Because of (LT4) there exists To T(x)
such that {T,}--> To. Since C is compact there exists a subsequence
convergent in C. Let {q%}- o, 0o C. Due to the continuity of F it follows that
x lim,_oo x, limk F(0,k, T,,) F(qJo, To). Therefore x H. [3

As a direct consequence of Lemma 13 and (LT2) we obtain Corollary 9.
COROLLARY 9. The set K- H is an open subset of
Since K-H is an open subset of R and the extremal trajectories of the points

from K- H stay in K-H, we can consider on it the existence of a regular synthesis
in the sense of the definition of [3].

In this section we shall prove the existence of a regular synthesis for the LT(x), x
K-H We use the property that Assumption 2 of the ERS theorem can be replaced
by an assumption that the functions wj(O) can be extended as analytic functions
along the solutions of the adjoint system in our case (here the target point is from the
interior of K).

THEOREM 4. 7he LTproblem admits a regular synthesis in the sense of[3] on K H.
Proof The the:-rem will be proved using the ERS theorem.
Assumption 1 of the ERS theorem is satisfied trivially.
For the sets N and the functions w of Assumption 2 we take the sets Nj

(K-H) x (/, IJ admissible such that either III #0 or [JI m, and the functions
w’j(x, )= Wlj(O) (for wj see Corollary 7). The sets Nj and the functions wj satisfy
all the required assumptions except the one stating that they can be extended as analytic
functions to a neighbourhood of NI in R"x (Rn-{0}). This hypothesis from [3] is,
however, unnecessary. The proof of the ERS theorem [3] uses only the fact that w
can be extended as an analytic function to a neighbourhood of N along the flow of
the differential equation [3, Eq. (12)]. This means in our case that the function w.(O),
defined and analytic on V, can be extended as an analytic function to the set

--A*Cj { R -{0}/30o Vj, > 0, such that 0 e ’o}. This holds by Corollary 7.
The first part of Assumption 3 of the ERS theorem is satisfied due to (LT3). The

second can be proved in the same way as the similar assertion in [6].
Assumptions 4-6 of the ERS theorem follow from the argument of Theorem 3

and (LT4). Assumption 7 can be proved in the same way as in [6].
In the following two sections we shall prove that the set H is "small." For the

criterion of "smallness" we shall take its Lebesgue measure to be zero. The proof
consists of two steps. The first step proves that the function w(O) can be extended as
a locally Lipschitz continuous function in a weakened sense to a part of Wz. The
second step uses a countable covering of C x [0, oo) such that the function F(O, T) is
locally Lipschitz continuous on every element of this covering.

7. Lipschitz continuity of w(O). In this section we study the Lipschitz continuity
properties of w(0) on the set C. Some properties of w(0) on C- Wz follow from the
previous sections: w(0) is continuous on C- Wz (Lemma 5) and w(0) is analytic on
every Vj f3 C and can be analytically extended to some neighbourhood of the closure
of Vj C in C- Wz (Theorem 1). The following lemma is a direct consequence of
[11, Lemma 1] and the mentioned properties of w(,) on C- Wz.
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LEMMA 14. The function w(q) is locally Lipschitz continuous on C- Wz, i.e., for
every compact subset K ofR" Wz there is an L > 0 such that Iw( O,) w( O2)[ L[Ol q21
for every qq, 02 K 71 C.

In a series of lemmas we shall find an upper bound for Ow(O)/OO given by (17)
and (18).

Let A be the p x r matrix with elements aij. We denote by [Ai and IIAII, respectively,
the Euclidean and operator norms of A, i.e., Ial=x/Yi.j(ai)2 and [[a[l=
sup,o ([axl/lx[). Further, we recall that M(u, a’) ]i aMi(u) is an m x m positive
definite matrix for each a’ _-> 0, a 0, u U, and Gj(u) ((Og (u)/Ou), cJ) is an
m x ([I1 + ]J[) matrix of rank II[ + ]JI for every u c -.

In what follows we shall denote by Pj the [J] m matrix of the orthogonal
projection of R" into the linear hull of c2,j J, and by Sj the (m-]J[) x m matrix of
the orthogonal projection of R into the orthogonal complement of the linear hull of
c 2, j J. We denote

i.e., Rj is a regular m x m matrix.
LEMMA 15. Let H be admissible, III O. Let a (0) be thefunction defined on ClA

in Remark 3. Then there exist positive numbers k, k2 such that the relation

(27) klSjB*q[ <= E a’() <-_ kzlS  * l
il

holds for each q C1A glj.

Proof By Lemmas 3 and 8, for each q ClA VIj there exist a u Uj and an
a (q), bJ (4’) --> 0 such that

(28) B*6= 2 a+Z b2c2.
i O jJ

Since [I[ 0, W0, and 0 Wj, and therefore at least one a> 0. Because of the
linear independence of (Og (u)/Ou), c for each u e Oj, the rank of the m x ([I] +[j[)
matrix (Og(u)/Ou, c) is [I[+[J[. Due to the regularity of Rj the rank of the matrix

pOg(u)

is ]I]+[J] and so the rank of the (m-]J])]I] matrix S2(Og’(u)/Ou)is [I] for every
u e U2. Let us multiply (28) by the matrix .R2 fi’om the left. Then (28) is equivalent to

(29) PjB*O E aP, Og(u)

(0) s*0= E a% og(u).
iel

Consider the function

() h(a’, u)= E a%
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defined for every a RI1, u Oij. Since for u e/] the rank of Sj(Og(u)/Ou) is
Ill, h(a I, u)=0 if and only if a =0. We divide both sides of (30) byt a- Then

(32)
ISjB*q Og’(u)

where
/

(33)

From (33) it follows that it a’i= 1. The right-hand side of (32) is the value of h in
a ’i= 1 Since h is continuous and the set of all a’ suchu Ou and a’ such that Y

that2 a’= 1 and the set Oj are compact, the function h attains its maximum and
minimum values on this set. Hence, there exist positive numbers h, h2 such that

(34) h E a"S 0g’(u)
<h

for each u and all numbers a’ such that a’= 1. Relation (27) follows from
(32)-(34); there, k 1/h and k= 1/h.

LMMA 16. For each H admissible, I 0, there exist constants k > 0, k > 0 such
that

(36) I(GS(u)M;(u, a’)G(u))-’lk 2 a

for each u e u and a O, a e O.
Proo Let ao(u, a) and a (u, a) be, respectively, the smallest and largest eigen-

values of the matrix M (u, a ). Then

(37) ao(u,a’)[lM,(u, at)[[=a(u,a’),
1 1

 38) a’) a’)ll a’)’
1 x*MT(u,a)x

(39) =mina’) Ixl
We denote by m(u) and m(u), respectively, the smallest and the largest eigen-

(u) are continuous functions of uvalues of M(u) for each i L Since m(u) and m
defined on Uu with positive values, there exist

mo mi m(u) and m mam(u).
Utj U

Let us denote mo=min mo and m max m. Then

x*M(u, a’)x= Z x*aMi(u)xmlxl2 2 a,
il il

a’)x molXl 2 a’
i1

from which it follows that

(40) hi(U, al) <= ml E ai,
iI

(41) ho(U, a’) --> mo E ai.
il
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From (38), (40), and (41) we obtain

(42)
1

m, Yi, a’= (u, a )11

Therefore it follows from (40) and (39) that

(43) x*G*u(u)M-l(u, a’)Gu(u)x >= i"
ml 2ii a

Since the rank of the matrix Gu(u) is IIl+lJI, there exists an m2>0 such that
IG,(u)xl>= m=[xl for each u Ou. Also

(44) Ixl IG*j(u)M-;(u,
ml 2ii a

from which we obtain

(45) IG*[j(u)M-’(u, a’)Gu(u)x[ >=
ml 2iI ai"

We take x=(G*jM-Gu)-y and substitute into (45). This yields

ml(GS(u)M-f’(u,
ml 2ii ai

for every y, i.e.,

(46)

sup
yO

I(G*j(u)M-/(u, a)Gu(u))-’y
lyl

m
for every u Uj.

Due to the equivalence of the Euclidean and operator norms, the assertion of the
lemma follows directly from (42) and (46).

LEMMA 17. For every IJ admissible, III
such that for every u ., a >_-. O, a # 0

(47) ID-’I-<- k,/, a’+ k2 + k ie,2 at

where

(SMt S.(Og’/Ou)*)(48) D=
G*j 0

is an (m+llI)x(m+lrl) matrix.

Proof. Let m3 be a positive number such that

(49) IGu(u)l>-_m3

for every u Ou. We denote h (atjM-1Gu)-. Using the formula for the inverse of



322 MARGARITA HALICK

a block matrix [5] and (49), (35), and (36) we obtain

M- + M GuHG*uM-HG*sM-;

(50) <= kl/ il aid- klmk2/ f-’il ai d- 2k2m3kl d- k2 iel ai

/
=k /2 ai+k+k2 2 ai.

/ iI iI

We denote by N an (m +II[ + [JI) x (m +II[ + [JI) matrix that arises with the addition
to D of some rows and columns by the formula

P.Mx 0 PjcJ tSjMx S(Og’ /Ou) 0

G5 o o

It is easy to see that

0 O*lj

where E is a (lII/ IJI) (1II / IJI) identity matrix. We denote

(52) k’3=( R’O EO)
-1

)0.

Then, using (51) and (50), we obtain

a +k’2+k2 a
il

Hence Lemma 17 is proved.
LEMMA 18. Let IJ be admissible such that 1I]- 0. Let Z be a linear operator

Z RZ Rn. Then there are positive constants hi, h2, and h3 such that

(53) ISjB,Zff+ hz+ h3ISjB*ZI [SjB*Z[

for every R such that Z Vj.

Proof In Lemma 9 we have obtained w(q,) as a solution of the system (14)-(16).
This system is equivalent to the system (29), (30), (15), (16) in which (29) is independent
of the other equations. That is why by solving (30), (15), (16), we obtain the same
solutions w(O) as when we solve (14)-(16). Applying the formula for a derivative of
a function given implicitly to w(O) given by (30), (15), and (16), and using Lemmas
15 and 17, we obtain

ow,(z) =( / ai+k:z+k3 a’)ISjB*ZI--< ID--’l Is.,e*/I < k,/ i_, i.,

kIS.,B*Zffl
d- k2 d- k3klS.,B*Zl) ISB*ZI.

This proves the lemma. 0
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(54)

For every 1,. , n 1, J admissible, IJI < m 1, (IJI- 0 as well) we define

V.n {0 V/SB*[, =0, , SjU*A*i-l,b =0, SB*A*O 0}

(for Vj see (6)).
LEMMA 19. The family of sets Vji, 1, , n 1, IJI < m 1, J admissible, is a

CASA (connected analytic submanifold which is a subanalytic set) stratification of Wz,
where by the CASA stratification we understand a stratification whose members are CASA
sets.

Proof From the definition of Vj; it is easy to see that every V.n is a CASA set.
Now we prove that Vji form a partition of Wz.

The sets Vj, IJI < m- 1, form a partition of Wz. Obviously Vji Wj and all the
sets Vj are pairwise disjoint. It suffices to prove that Vji, 1,. , n- 1 cover Vj.

Let there exist a Vj such that SjB*A*O=O for every i= 1,-.-, n-1. Then
from the normality condition it follows that there exists a k > 0 such that SjB*A*kO # 0
and SjB*A*JO =0 for j < k. According to the Cayley-Hamilton theorem there exist
constants a,. ., a,, such that

SjB*A*kO -SjB*(rxA*-l +... + cenA*k-n)O
alS.,B*A*k- 0 a,SjB*A*--"O O,

which contradicts our assumption. The sets Vj cover Vj. The stratification property
follows directly from the definition of Vji. The lemma is proved.

We denote by L.n the linear space given by the equations SjB*A*JO=O,j
1,..., i-1. Obviously Vj is an open subset of Lj. Let dim Lj be rj, let Yji be an
n rji matrix of rank rj such that the linear operator Yj:R Ln is a bijection.

LEMMA 20. For every 0 YJ WJi we have

(55) li IS,B* YJ,I
where e-A*’ is the flow of the adjoint equation.

Proof It suffices to prove that

ISjB*,Yj, 2 ISjB*A*’Yj, 2

(56) i_,m S.----ff,,l?
But (56) follows if we use L’H6pital’s rule 2i times and from the definition of Vj.

DEFINITION. Let K be a compact subset of an analytic submanifold M of R n.
Let fit fie a flow of an analytic vector field on R" such that t_,o)(K) M . Let
g be a function defined on t_,o)(K) R and let g be locally Lipschitz continuous
on fft_,o)(K). We shall say that g can be extended as a Lipschitz continuous function
on fft-r,o(K) along the flow from the left, if for every ’ (0, T) there exist an L>0
such that if s [z, T] and x, x K; then

(57) [g(,t-s(X1)) g( ,t--s (X2))[ LI _(x)- _(x)[
then every [0, s).

Remark 6. Analogously we can define the Lipschitz continuous extendability of
a function g defined on ffO.T(K) to fftO,T(K) along the flow ff from the right.

THEOREM 5. Let IJ be admissible, I11 0, {1,. , n 1}. Let R be an analytic
submanifold of Vj with the following property: for any compact subset K ofR there exists

a T> 0 such that o*[_T,o)(K VIj, t e-A*t. Thenfor every 0o K there exists a compact
neighbourhood 0 of Oo in R such that the function Wo(O) WU(O)/.-T,o)(O) can be
extended as a Lipschitz continuous function on o%_.T,ol( O along theflow from the left.
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_Proof Let L Lji, r rji, Y Yi be, respectively, the linear space, its dimension,
and the matrix of the linear operator, corresponding to Vji. Let q’o R and let O+o be

a.compact neighbourhood of q0 in R. For O0o there exists a compact neighbourhood

Oo of qo in L such that (+o fq R Oq,o. Because of the assumption of our theorem
there is a T> 0 such that ,.[zT,0)(Oqo) VIj. The neighbourhoods 06o and Oq, could
be chosen such that ff[-T.o)(O,o) = Bu where Bu is the neighbourhood of V in WA
(from Theorem 1) on which the analytic function wj(q) is defined.

Let ’o R such that q’0 Ysr0. Let O,o YOco and Oo YOco. Let r (0, T). We
prove the existence of La > 0 such that

(58)
Ow,j (,-t_sY)

_<_ La

for all e [0, s), s e r, T), and " e O5o.
According to Lemma 18 there exist positive constants ha, h2, h3 such that

ow, o,_.Y < ( ha )OC [SjB*,_YCl - h2 + h31SjB*o%_ Yffl ISjB* ,__. YI
for all [0, s), s 6 r, T), and " O0.

From the definition of Vji it is easy to see that

lim IS,B*,_YI 0 and lim SjB*,_YCl O.
t--> t-->

By Lemma 20 we have

!}m. SjB*6t_ YI -IS,B*a*i y]

Since ISjB*A*’I is bounded below (sr lies in a compact set) the existence of an
L with property (58) is proved. Therefore the neighbourhoods Oq, and 050 can be
chosen such that

(59)

for every s -, T), e [0, s), and ’a, ’ Oco.
Further, the operator _Y is linear and bounded below on the compact set Oco.

Therefore there exists an L2 > 0 such that for s e [-, T],

(60)

Then from (59) and (60) we obtain

w,(,-.(q,) w,j (o%_(q,2))1 LI -.(q) -(4’=)1,

where L=La/L2, for all t[0, s), s[r, T), and g’a, I/t2Otoo" The theorem is
proved.

Remark 7. Analogously we can formulate and prove the modification of this
theorem for the Lipschitz continuous extendability of the function wj(q,) defined on
’-(0,T](O) to ff[O.T(O) in the flow from the right.

8. The locally Lipschitz continuity of F(O, T). Now, in addition to the analytic
vector flow oft e-a*’ of the adjoint equation on R"-{0}, we shall consider the flow
4’, on S"-= {g, R"/]ff]= 1}, which is a radial projection of o%,. Let us denote by
x:R"-{O}S""a the projection X()= q[ql -a. Then b,(X(q)) =X(ff,(q)) for all t.
For every A R"-{0} such that A (.J {0} is a cone, we shall denote by Ax its radial
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projection on S"-1, that is, Ax= {qe A/Iq,[ 1}. The set C defined by (25) can be
written as

C={d/S"-’/3tR, b,(O) W}},

w= u v.
I.,’1<-1

By Lemma 2 every V is a subanalytic subset of Sn-, and according to Corollary
3 we have dim V" < n- 2. Hence W is a subanalytic set of dimension smaller than
n-2. According to Lemma 19 the family gx ={Vi/J admissible, i= 1,..., n-l} is
a CASA stratification of W with a finite number of members. Obviously the dimension
of every member of x is smaller than n -2. For any P 9x and natural, we define

(61) Cp,l={d/GSn-1/z:ltG[-l, 1] such that tt() P}.

Evidently every Cp, is a subanalytic set the dimension of which is smaller than n- 1
and

Hence

C U U Cp..
P 1=1

(62) H=F(Cx[0, oo))= U U U F(Cp,tX[0, i]).
i=1 pX 1=1

The dimension of the sets Cp, x[0, i] is smaller than n. To prove /x(H)=0 it
suffices to show (1) that for every P x, I, natural, there exists a locally finite partition
of Ce, x [0, k] = Cp, x [0, i], where k max { i, 1}, whose components are analytic mani-
folds and (2) that the function F(q,, T) is locally Lipschitz continuous on every member
of this partition.

THEOREM 6. Let Po x, natural. Then there exists a CASA stratification of
Cpo,! such that F( d/, T) is locally Lipschitz continuous on every S x [0, l], S 6 go.

Proof Let O Cpo, l. Due to the normality condition the trajectory b(q), [0, l]
meets the set Wz in at most a finite number of points. We define a function h from
CPo, to the set of all natural numbers N that associates to each q Cpo,l the number
of common points of the sets 4)[o,t](q) and W. From the definition of h it is easy to
see that h is a subanalytic and locally bounded function (for the definitions see [10]).
Then by [10] there exists a CASA stratification of Cpo, compatible with such
that h is analytic and therefore constant on every member of %.

We choose an S 1. Let k N be the value of h that is constant on S. For given

li,f
+k, IJi.,IJi.S, k consider finite sequences i ,..., &, where i (/J, P,/Ji-), j ..,+ +.,

are admissible index sets such that if H=J, then IJi-rn and IJi =J!,, then

[Ji m, P . We call such i admissible triples. For every sequence il," ", & of
admissible triples we define the subset Si,...i of S by

A(::ltl)[(0 =< t, < l) ^ (l)tl() Pi,)

/(:Iti-)[(-1/2=< t- < t,) ^ (Vt)((t- -< < t,)==(Cb,(6)e Vu;-))]
/(:It/)[(t, < t( <<- l) ^ (Vt)((tl < t<= t-()=(d,(4’)e
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A(lt)[(t{_ < tg _-< l) ^ ((h,k (,) 6 Pi.)
A(Bt)[(t_,+ <t<tk)^(Vt)((t-f<----t<tk)(dp,(b)6=-

/(lt[)[(tk -<--- t- <= l+1/2) ^ (Vt)((tk < <-- t)::=>(6,(6) Vji))]].
Roughly speaking, all the trajectories b,(), , Si,...ik, [0, l] meet the same subsets

Pi of W in the same order; they enter Pij from the same VIj- and go out of Pij to
the same

The sets S,...i,. are subanalytic subsets of S. Further, for (il," ", ik) running over
all the ordered k-tuples of all admissible triples they constitute a finite partition of S.
For every set Si,...k we define a function o,... "S,... R3k by the formula

o’,,...,k (t-(6), t(6), t-(),’’’, t(6), tk(t), t(6))
where t(ff) are the points from the definition of Si,...i such that bt,() Pi and

t()=inf {t/t_l(b) -<- < t(d/), t(d/)
t.-()=sup {t/t() <- t tfi(t), qbt() V?}

for all j 1,. ., k, where to (b) 1/2 and t+l() + 1/2.
The function tr,...,,, is clearly subanalytic and bounded on S.o.,,. Then, due to

[10], there exists a CASA stratification of S...i such that cr... is analytic on every
member of this stratification. Since the function tr can be extended as a subanalytic
and bounded function on the whole S-, the stratifications of the sets S,... are locally
finite in S"-1 and therefore their union is locally finite in S- as well. That is why
there exists a CASA stratification of Cpo, compatible with the partition and with

as well.
Let So . Then the following properties hold.
(a) There is a number K (So) N, a sequence of sets P, , Pk and analytic

functions t(ff),..., tk(d/), 0_--< tl()< "<tk(d/)<--_l such that ff,(b) P
and for any ti(b), 1,. , k we have ff(p) f) Wz .

(b) For any Pi, i= 1,..., k, there are IJ,, IJ- admissible such that if IJ-- J-,
then ]J/+l m and there exist analytic functions t-(b), ti() such that t-()
ti(d/)<t-() and () VI- for every t(tT,(),ti(b)), and fft() Vti
for every t(ti(), t-(d/)) and P S0, i= 1,... ,k.

From (a) and (b) it follows that
So}, i= 1,. ., k are analytic manifolds such that(c) The sets Ri---{ti(,)()/G

for any compact subset K of R there exist T-> 0, T-> 0 such that

t--:,o(t) v,:, o,(r,) v,.
We shall prove locally Lipschitz continuity of F(, T) on So X[0, 1]. Since the

function F(, T) is continuous and Lipschitz continuous in T, it suffices to prove that
for any o So there exists a neighbourhood O, of ’o such that F(O, T) is Lipschitz
continuous in , O, for any given T, T =</.

Let o So. Let O+o be a compact neighbourhood of o in So. We denote Oo
3%;O,/,o, i--- 1,..., k. Obviously O, are compact neighbourhoods of R, 1,. ., k.
Due to property (c) for any 0, there exist T-> 0, T-> 0 such that

t_.r;, o)O,o V.I- and ,T(o,.r?30,o Vj?.
The neighbourhood O,,, could be chosen suitably small such that there are

r- < min ti(6) and ff/-(O,o)C ’[-T-’,0](Oq.,0),i, O,

max t(6) < ’; and ff;(O,o) c ff(o,r?3(Oo)
q,O

for i--1,. ., k.
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Then by Theorem 5 there are L->0, L->0 such that for any s
[min, O,o ti(O)-r:,-, T[] or s[max,o,or-f-ti(O), T] and for each q, i/t2 Oo we
have

(63)

or

(64)

for [0, s).
Let q, q,2 0,o and let TL We denote to(q) to(o) 0, tk+l(0) tk+l() T.

Then

(65)
IF(,, T) F(q2, T)I

k (+,(Cq)
_AtBv f (+,(’P2)

-A’Bve (0, t) dt- e (02, t) dt

The theorem will be proved if we find Lj > 0 for every j 0, k, such that

(66) e [ ti+(t02)
-AtBv(tl, t) dt- e-AtBv(2, t) dt

l t.i’( @2)
For simplicity, we prove the existence of the constant Lo and the validity of (66)

for j 0. The relation (66) for other j’s can be proved analogously.
Since the function t(O) is analytic on O,o, there is a k > 0 such that

(67)

Obviously, there is a k2 > 0 such that

(68) le-A’Bl<=k2
for every [-l, 1] and there is a k such that

(69) Iv(O,t)]<=k3

for every , t. Also, there is a k4 such that

(70) I,l k4

for every [-l, 1].
We assume that 0< tl(i))</(02). Since oo,,T)(O,o) c (R"-{0})- Wz, according

to Lemma 14 there is a constant ks > 0 such that

(71) Iv(0,, t)-v(d/2, t)[ -< ks[z(4q)-

for each [0, ’-]. Using (63), (67)-(71), and fundamental properties of integrals, we
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can derive the following estimates"

o

le-A(q+"(4"))-e-a(q+"(4"))l[v(Oz, q+ t,(2))[ dq

Due to the analyticity of the e-At, for [-l, 1] there is a constant k6 >- 0 such that

le -a’’q’’) e-a"+g[ <= k6l t,(q,)-/l(lt2)l <-- k6k,lq,- t2I.
Because of q, q2 O+o, where O,o is compact, there is a k7 > 0 such that ]q] _<-k7 for
each q 0+o. Then

k4(k411 21-t- kt k61, It21).

This completes the proof.
COROLLARY 10. /(H) 0.
The proof follows directly from Theorem 6, (62), and the well-known fact that

the image of the locally Lipschitz continuous function from an analytic submanifold
of R of a dimension smaller than n to R is of the Lebesgue measure zero.
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EXACT CONTROLLABILITY OF THE EULER-BERNOULLI EQUATION
WITH CONTROLS IN THE DIRICHLET AND NEUMANN BOUNDARY

CONDITIONS: A NONCONSERVATIVE CASE*

I. LASIECKA AND R. TRIGGIANI"

Abstract. This paper considers the Euler-Bernoulli problem (1.1a-d) with boundary controls g, g2 in
the Dirichlet and Neumann boundary conditions, respectively. Several exact controllability results are shown,
including the following. Problem (1.1a-d) is exactly controllable in an arbitrarily short time T>0 in the
space (of maximal regularity) H-t(f) V’, V as in (1.4), (i) with boundary controls g L2(E), g2 0 under
some geometrical conditions on f; (ii) with boundary controls gl L2(Z) and g2 L2(0, T; H-(F)) without
geometrical conditions on f. A direct approach is given, based on an operator model for problem (1.1a-d)
and on multiplier techniques. An additional difficulty of the particular boundary conditions is due to the
fact that, in the natural norms for the solution arising in the application of multiplier techniques, the
corresponding homogeneous problem is not conservative. This difficulty is overcome by passing to an
equivalent norm for the solution, with respect to which the homogeneous problem becomes conservative.

Key words, exact controllability, Euler-Bernoulli equation, boundary control

AMS(MOS) subject classifications 35, 93

1. Introduction, statement of main results, and literature. Throughout this paper
l is an open, bounded domain in Rn, n 2, with sufficiently smooth boundary 0[2 F.
In fl, we consider the following nonhomogeneous problem for the Euler-Bernoulli
equation in the solution w(t, x):
(1.1a) wttd-A2w:O in(O, T]- Q,

(l.lb) w(O,o)= w, w,(O,o)=w inO,

(1.1c) wlz=--g in (0, T] F---E,

(lld) O-uw g2 in (0, T] x F E,

with control functions gl, g2 to be suitably selected below. Here, u is the unit outward
normal vector to F. In this paper we study the problem of exact controllability for the
dynamics of (1.1a-d). As a matter of fact, the case gl-0 and g2 L2(E) has already
been studied by Lions in [L3, 3], where he obtains exact controllability results in
the space L2(f) x H-2(f) for T greater than some suitable To> 0. Lions’ results were
then refined by Komornik [K1 ], who improved the estimate of To, and then by Zuazua
[Z1 ], who showed that T can be taken arbitrarily small (as expected) by using an idea,
first introduced in [BLR1], to prove a needed uniqueness result.

In the same Von Neumann Lecture [L3, Remark 3.5], Lions raises the question
as to whether problem (lola-d) with boundary controls

(1.2) g,LZ(Y_,), gz=-O

(i.e., with purely Dirichlet control) is exactly controllable and, if so, in what space. In
particular, Lions raises the question of characterizing his space F for problem (1.1a-d)
subject to (1.2).
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The main aim of the present paper is to provide affirmative answers to the above
(and related) questions. To give a proper foundation for our subsequent analysis on
exact controllability, we begin by stating regularity results for problem (1.1a-d) in the
cases of interest. To this end, we introduce the following spaces:

(1.3) X - H-’(f) x V’,

(1.4) V=- {f H3(l))" f],,="I,. =0}.
The space X in (1.3) can be likewise identified as

(1.5) X -=- [(a’/4)]’ x [(A3/4)]
(with equivalent norms), where A is the positive self-adjoint operator defined by
Af=A2f, (A)= H4(f)fIH() (see (2.2) below). In (1.5), the symbol’ denotes
duality of (A/4) and (A3/4), respectively, with respect to the L2(fl)-topology. The
norms are given by

(1.6)

where a, fl => O.
THEOREM 1.0 (Regularity). Consider problem (1.1a-d) subject to

{w,w’Iex, g,U(E), gL(O, T;H-I(r)).

Then the map

{w, wl, gl, g_} - {w(t), w,(t)} 6 C([0, r]; X)

is continuous jbr any 0 < T < oo, where the space X is defined by (1.3)-(1.5).
The proof of Theorem 1.0 follows by applying a transposition argument to recent

results of Lions [L2] combined with cosine-sine operator theory on the initial data.
Details are omitted. See also Remark 4.1 and (5.16) below.

Remark 1.1. For the purposes of the subsequent Theorem 1.2, we note that with,
say, w w g2 0, the corresponding map

gl{w(t),w,(t)}

is not continuous H(0, T; LZ(F))- C([0, T]; Y), where (with equivalent norms)"

(1.7) Y- H(D,) x H-’(f) @(a’/4) x [(a’/4)] ’.

Instead, gl {w(T), w,(T)} is continuous into Y, by virtue of the smoothing due to
the condition gl(T)= 0. See more specifically Remark 3.1.

With the regularity theorem at hand, we can now state our main exact controllability
results. They will be listed in the order in which they are proved, even though a given
result may be extended by a subsequent one (e.g., Theorem 1.1 is improved in Theorem
1.4, etc.).

THEOREM 1.1. Assume that there exists a point Xo R" such that

(1.8)2 (X-Xo)" u>-_const=y>0 onF.

It is observed in [L7] that our proof here can be generalized to include the case 1’ 0. This is done
by using the estimate Is ]V(A4)I2 d’<=CT 1{4, 4)1}1 :, Z= @(A3/4) x@(a1/4) from [L2], in the analysis
of the left-hand side of identity (2.24), carried out in step (vii) of the proof of Lemma 2.2, or in the proof
of Theorem 4.5. The authors now have a different proof of the above estimate on V(A4).
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Then there exists To > 0 (which can be explicitly estimatedfrom the proofofLemma 2.2)
such that if T> To, then, given any pair of initial data {w, wl}x (see (1.3)-(1.5)),
there exists a boundary control gl L2(O, T; L2(F)) such that the corresponding solution
ofproblem 1.1 a-d), 1.2) satisfies

w(r, .) w,( r, 0,
W

Wt
C([O, T]; X).

Remark 1.2. Actually, the proof of Theorem 1.1 extends with no extra effort to
domains 12 for which there exists a vector field h(x)=[hl(x),’’ ", hn(x)] defined by

(1.9) hi(x) a(x Xod)
j=l

for some Xo [Xo,1 ," ", Xo,. R",

where the coefficients {%} satisfy (1.12) below, such that

(1.10) h(x). v(x)->const =7>0 onF

as in (1.8).
Set

(1.11) H(x) =-
Ohl/OXl Ohl/Oxn

oh./ox, oh./ox.

all

anl

aln

ann

and require that the symmetric matrix

2a
(1.12) H+H*=

anl aln

aln + an1

2ann

be strictly positive definite:

(1.13) H + H* >= pI for some p > O,

so that

(1.14) H(x)v(x)" v(x) da >= p f. Iv(x)l,, d12 for all v(x) e [L2(1)] ".

Moreover, the definition (1.9) of h implies (in the notation of 6 below (see (6.4)))

(1.15) 4Gh ----max [V(div h)[ =0.

Subject to the standing assumption (1.10), the proof of Theorem 1.1 in 2 applies
equally well for linear vector fields h(x), as in (1.9), which satisfy the positivity
condition (1.13) (as well as (1.15)). See also the proof in 6 for the more general
situation of Theorem 1.5, or of Theorem 6.2; these results allow domains for which
there is a general vector field h(x)C2(() satisfying (1.10), (1.14) and another
condition to take care of Gh # O.

The next result considers a smoother control g and consequently a smoother
target space in part (i). In part (ii), it interpolates between Theorem 1.1 and Theorem
1.2(i).
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THEOREM 1.2. (i) Under condition (1.8) of Theorem 1.1, there exists To > 0 (which
can be explicitly estimated from the proof) such that if T> To, then given any pair of
initial data {w, w1} Y (see (1.7)), there exists a boundary control gl H(O, T; L2(F))
such that the corresponding solution to problem (1.1a-d) with such g and g2 =-0 satisfies
w(T,’)=w,(T,’)=O.

(ii) Moreover, for T sufficiently large, exact controllability of problem (1.1a-d) in
the sense described by the preceding statement is equivalent to exact controllability of
problem 1.1 a-d) in the sense described by Theorem 1.1, and the simultaneous characteriz-
ation of these two notions is given by (2.11) below. As a result, under assumption (1.8),
an interpolation result between Theorem 1.1 and Theorem 1.2 is available and is described
in detail in Corollary 3.3(ii) below.

The next result manages to dispense altogether with the geometrical condition (1.8)
imposed on the (smooth) domain f, at the price of inserting an additional control
function g in the Neumann boundary condition (1.1d).

Also, exact controllability is achieved in an arbitrarily short time,

THEOREM 1.3. For any T>0, given any pair of initial data {w, w}6 X (see
(1.3)-(1.5)) there exist boundary controls

g L(0, T; L(I’)) and g L(O, T; H-(F))

such that the corresponding solution ofproblem (1.1a-d) satisfies

w(T, w,(T, O,
w

C([0, T]; X).
Wt

A direct extension of Theorem 1.3 to the case where the second control g2 (with
the same regularity) acts only on a suitable portion of the boundary is provided in
Theorem 4.5, which likewise does not require geometrical conditions on f.

The proof of Theorem 1.3, suitably modified and complemented, will allow us to
obtain the following improved version of Theorem 1.1.

THEOREM 1.4. For the case gl L(,) and g=-O, Theorem 1.1 admits a stronger
conclusion in the sense that the time T of exact controllability stated there (universal, i.e.,
independent of the initial conditions) may be taken arbitrarily small.

Remark 1.3. Consider the following homogeneous problem"

(1.16a) b,, + Ab 0 in Q,

(1.16b) b],=o=4, b,l,=o=b inf,,

(1.16c) b[= 0 in;,

(1.16d) 0__ -0 inE.

The proof of Theorem 1.1 shows that exact controllability of (l.la-d)-(1.2) on the
space X is equivalent to the following inequality" There exists Cr such that

Iy. (0(Ate)) 1} (A3/4dE-(1.17)

see the (backward in time) problem (2.9a-d) in Lemma 2.1. Lemma 2.2 shows then
that this inequality holds true under (1.8) for T> To, where Cr c(T- To) (or, more
generally, for domains f that admit a linear field h(x) as in (1.9) that satisfies (1.10)
as well as (1.13). Moreover, Lemma 5.5 shows that To can be taken arbitrarily small.
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On the other hand, the opposite inequality:

iOfl_ (_0(A#,)(1.18)
k Old iI

(A3/)x(A’/4)

is always true for all 0 < T <, as it follows by transposition from Lions’ results [L2].
Hence for T> To, where To can be taken arbitrarily small, and for 2 subject to
condition (1.8) (or as in Remark 1.2), we can define a norm

on the space F which is, therefore, F (As/a) x (ATM) = V x H(). Such a norm
(1.12) is equivalent to the norm

(.20) I1{ , A3/40 1/4 2
9)(A3/4)x(A 1/4) L2(’]) + IIA

This answers a question raised by Lions [L3, Remark 3.5].
Remar 1.4. Inequality (1.17) (to be proved in Lemma 2.2 for To finite and in

Lemma 5.5 for To arbitrarily small for domains for which there exists a vector field
h(x), as in (1.9), that satisfies (1.13), in particular a radial vector field) establishes a
fortiori an apparently new uniqueness theorem under condition (1.10) (respectively,
(1.8)): Ir solves (1.16a) and moreover the three boundary conditions

a& 0,
8(@)

0, T>0 arbitrary,

then @0in Q.
By contrast, a standard uniqueness theorem (Holmgren-John) (see [H2, Thm.

5.33, p. 129]), to be crucially invoked in the proof of Theorem 1.3; see (4.39) in the
proof or Lemma 4.4, is instead: If solves (1.16a) and moreover the four boundary
conditions

4,1 =- o, o, o, o(zx4,) o
Ov Ov

for T> 0 arbitrary, then k -= 0 in Q.
The result in Theorem 1.1 admits the following generalization, whose proof will

be given in 6. It requires, in addition to the reasoning in the proof of Theorem 1.1,
a nontrivial extra argument, which is presented first (in a slightly different context) in
the proof of 4 to establish that with two control, functions gl and g2, the time T for
exact controllability can be taken arbitrarily small.

THEOREM 1.5. The conclusion of Theorem 1.1 on exact controllability on X
[@(A1/4)]’x[@(A3/4)] (see (1.5)) over any [0, T], T> T, defined by (1.24) below
holds true more generally for (smooth) domains possessing the following geometrical
properties" there exists a (general) vector field h(x) C() such that

(1.21) (i) h(x). v(x)const=y>O on I’;
(i) If we set

Ohl/OX Oh/Oxn
(1.22) H(x)

O,/Ox,
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then

(1.23)

fa H(x)v(x) v(x) dl2 >-_ p In lv(x),2e,, dl) for some p > O and all v(x) [L2(fZ)] ".

(A sufficient checkable condition for (1.23) to hold true is that the symmetric matrix

H(x)+ H*(x) be uniformly strictly positive definite on f.)
(ii) Moreover, f satisfies the following uniqueness property"

(1.24)

(h + z2c --= O n Q, dp - O 0__ =-0,
O A qb

=--0 for O < <= T,

implies qb =-- 0 in Q.

(As shown in Remark 1.4, such a uniqueness property is satisfied for any T, > 0 by
domains f for which there is a radial vectorfield x Xo satisfying (1.8), or more generally,
for which there is a linear vector field as in (1.9) satisfying (1.13) (i.e., (1.23)) as well
as (1.10)=(1.21).)

Remark 1.5 (on the smoothness ofF). The proofs given below require the existence
of a dense set of initial data for which the solutions of the corresponding homogeneous
problem (1.16a-d) possess the regularity required to carry out the actual computations
in the multiplier methods of Lemma 2.2, Proposition 4.2, etc.

The proofs of the preceding results will be given in the next sections according
to the following strategy. In 2 and 3 we provide the proofs of Theorems 1.1 and
1.2 in the case where g2 0 and for T sufficiently large, respectively, in the special but
important case in which the assumed vector field h(x) is radial, or as in Remark 1.2.
These sections form the core of proofs in the general case. The additional arguments
required to prove, say, Theorem 1.1 for a general vector field as in Theorem 1.5 are
presented in 6. When we pass from a radial to a general vector field, the main
nontrivial extra difficulty consists in the need to "absorb" lower-order interior terms
on Q by appropriate boundary terms on . This is accomplished in 6 by reasoning
in the same conceptual way (but with different details) as in the preceding 4 and 5
in proving Theorems 1.3 and 1.4 for T arbitrarily small. (Reasoning of the same
conceptual type, again with different technical details depending on the circumstances,
is also used for wave equations [L3], [LT3], and [T2], and crucially exploited in [L8]
and [L9].)

The exact controllability theorems (Theorems 1.1, 1.3, and 1.4) in the space of
regularity X (see (1.3)-(1.5)) have an important implication in the quadratic cost
problem over an infinite interval (regulator problem) corresponding to the dynamics
1.1 a-d)" Minimize

J(gl, g2, w)

(1.25) ]lw(t)ll.a,/4.l,+" ]]w,(t)ll(A3/4)],+ [Ig,(t)]] 2L2(I,) -b- g2( t) %-’(I’) dt

over all {g, g2} L2(0, 00; Lz(F)) L2(O, 00; H-(F))-= U. Indeed, Theorems 1.1 and
1.3 guarantee a fortiori that the corresponding finite-cost condition be fulfilled: For
each {w, wl} X there is some {1, g2} U such that for the corresponding solution
{v(t), ,(t)} we have J(,,,2, v) <, and indeed g2 may be taken to be zero.

On the other hand, problem. (1.1a-d) fits the abstract model considered in [FLT1 ],
which offers a rather comprehensive study of the regulator problem and corresponding
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algebraic Riccati equation (see Appendix 2 of [FLT1]). Thus we have the following
theorem.

THEOREM 1.6, The regulator theory of [FLT1] with cost function (1.25) applies to
problem (1.1a-d), (1.2) under assumption (1.8) of Theorem 1.1. It provides, among other
things, a boundaryfeedback g( t) B*P[w( t), w( t) (in the notation of [FLT1 ], we
have u(t) {gO(t), 0}, where [gO(t), {w(t), w,( t)}] is the unique optimal pair in problem
(1.25) and P is a Riccati operator). Suchfeedback inserted in (1.1c) produces exponential
decay in the uniform norm X of the corresponding feedback system. More specifically we
have from [FLT1] (see (2.1a-c) and (2.4) below)"

gO(t) -G* a-/2[p{w(t), wt(t)}]2

=-G* AA-3/2[p{w(t), w,(t)}]2

_-O-A A_3/2[p{w(t) wt(t)}]2,

where [y] means the second component y2 of the vector y [Yl, Y2]. Alternatively, the
regulator theory of [FLT1 applies with both g and g2, but with no geometrical conditions
Theorem 1.3).

Notation. Unless otherwise specified, the norms I1-, I1,"" and the inner
products (,)a, (,)r," are all L2 over the specified domain f, F, Q, E, etc.

Orientation. Our strategy in this paper consists, in short, of two main points (as
in IT2], [LT3], and [LT8])"

(i) An operator approach to identifying an equivalent condition for exact con-
trollability, in terms of the corresponding homogeneous partial differential problem
with solution b (such a condition is a bound from below of suitable traces of b on

in terms of the interior norm of the initial data on f).
(ii) A multiplier technique for proving the condition in (i). Here we use the

multipliers h. V(Ab) and b div h, where h(x) is a smooth vector field on 12. Instead,
in [L3, 3] for g=0 and gz L2(E), the multipliers h.Vb and b, h a radial field,
are employed (these are the same multipliers that were successful in the treatment of
regularity and exact controllability questions for wave equations [L1]-[L6], [LLT1],
[H1], [LT3], and [T2]). An additional difficulty of the particular boundary conditions
in this paper is due to the fact that the natural norms arising in the application of the
multiplier technique are

{fa IV(AqS)12 d} 1/2

and {Ya IV(’[2 df} ’/2

and in these norms the homogeneous problem in 4 is nonconservative. (This is a novel
feature over past literatUre on .these problems.) This difficulty is overcome by realizing
that the above norms are equivalent to the norms

[[a3/atilL2(l) and IIa/nqbt[l.2(m
with respect to which the homogeneous problem in b becomes conservative. Once
exact controllability is established, the simple argument of Appendix D provides the
minimal norm steering control. The corresponding uniform stabilization problem is
studied in [BT1].

2. Proof of Theorem 1.1. The radial vector field case.
Step O. In line with the authors’ approach to time-invariant problems with second-

order differential operators in the space variables [LT1]-[LT5] and [T1]-[T3] we
introduce an explicit input g solution [w, w,] map. To this end, we first define an
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operator G1 (Green map) by

(2.1a) A2y =0 in

(2.1b) Gg y : ylr= g,

(2.1c) Oy/Ovlr=O

which is continuous L2(F)-+ L-(f/) (in fact, L-(F) H/(O) [LM1, Vol. I, pp. 188-
189]). Next, we define the operator A: L-(O)D (A)-+ L2(II) by (IF1, p. 101])

Af= A2f,
(2.2)

(A)={feL2(f)" Z2feL2(f)fir =0f =0}=H4(f)fqHg().
The operator A is positive self-adjoint" (Af, f)rt IIAfll for by Green’s
second theorem. Thus, -A generates a strongly continuous (s.c.) cosine operator C(t)
on L(O), e R, with S(t)z o C(r)z dr, z e L2(O). Then, as in the authors’ references
above, the solution to problem (1.1a-d) with w= w = 0 at time T can be written in
operator form as

w(T, t=O; w=O, w =0)
A S(T-)GgI(t) dt

(2.3)
wt(T, t=0" w=0, w=0) =rg’= r

A Jo C(T- t)Ggl(t) at

The following lemma in the style of [T1]-[T3] and [LT2] will be needed.
LEMMA 2.0. Let G*I denote the continuous operator LE(f/)- L2(F), which is the

adjoint orgy" (Gig, v)n= (g, G* V)r, g L(F), v L(). Then

(2.4) G* Af O(.f) fe (A).
O r’

Proof. Forf (A) and g L2() we compute by Green’s second theorem applied
twice:

(by (2. lc))

(o(f) )+\ Ov
g (by2.1a) and (2.2))

F

Step 1. The (regularity) Theorem 1.0 gives us that ’1 T is continuous L2() --> X
[(A1/4)]’ x [(A3/4)] ’. By time reversibility of problem (1.1a-d), exact controllability
of problem (1.1a)-(1.1d) on the space X over [0, T] is equivalent to

(2.5)
ONTO

lr" L2() X =-[(A1/4)]’x[(A3/4)]
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which in turn is equivalent [TL1, p. 235] to the condition that the Hilbert space adjoint
wr has continuous inverse: X L3-() ("continuous observability" in the terminology
of [DR1]); i.e., there exists Cr > 0 such that

Z2 Lz(z)

for all z {z, z2} X, where for g L(Z)

(2.7) (, g, Z)x (g, z)(.

Step 2. An equivalent partial differential equation characterization of inequality
(2.6) is given by the following lemma.

LEMMA 2.1. (i) For z={z,z}X[(A/4)]’x[(A3/4)]’, we have

(2.8) ( z )(t)= 0

z
where O(t) (t; o, ) is the solution of the following backward problem:

(2.9a) , + A & 0 in Q,

(2.9b)

(2.9c)

(2.9d)

with

(2.10) &O=A-3/ez2, =-A-/2z in(A3/4) x(A’/4).

(ii) For any 0 < T <, (2.5) is equivalent to the following:
ere exists C > 0 such that

G (O()) 2

1}2 ,/4)(2.11)

for all {o, ,} 6 (A/4) x (A/4).
Proof (i) As in [LT2]-[LT3] and [T1]-[T3] we compute from (2.3), (2.5), and (1.6)

(2.12)

Z1
A S( r- t)Glg,,(t) dt

A C( T- t)G,g.(t) dt
o

Z1

(AI/4)]’[(A3/4)]’
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where in the last step we have used C(. even while S(. is odd. Thus from (2.7) and
(2.12) we deduce

(2.13) *. (t) G*A[C(t- T)A-3/2z2
22

But the solution of problem (2.9a-d), (2.10) is precisely

(2.14)

and by (2.4)

49( t) C( T)49 + S( t- T)qb

(2.15) O(zXch(t))=G*A[C(t- T)4)+S(t T)b 1] onE.

Comparing (2.13) with (2.15) (with initial data as in (2.10)) yields the desired conclusion
(2.8). Then part (i) immediately implies part (ii) via (2.8) used in (2.6), with initial data

z, -A’/249 [(A1/4)]
(2.16)

and

z2= a3/2rb [@(A3/4)]
(2.17)

and

so that A-1/4z -A1/4 L2()

b G (A1/4),

so that A-3/4z2 A3/4q0 L2(f)

0 (A3/4).

Hence,

(2.18)
II{z -A/Zd, z2 A3/2dR}Ii[(A,/4)],x[m(A3/4)],

is equivalent to 11{4, 4 1}11c{(A3/4).@(A1/4)"
The proof of Lemma 2.1 is complete. VI

Step 3. It remains to show if or when (2.11) holds true. The following lemma is
the key technical issue of the exact controllability problem for (1.1a-d).

LEMMA 2.2. Under the same assumptions as in Theorem 1.1, there is To>0 as in
Theorem 1.1 such that if T> To, then (2.11) holds true with C’r=c(T To):

IZ (0(A()) I)(A3/4)x(A1/4(2.19)
\ 0t, dE > c(T- To)ll{b, bl}112

where, by time reversal in (2.9a-d), we may take c to be the solution of the homogeneous
problem

(2.20a) &,, + zX4 0 in Q,

(2.20b) b(0,. 0 c5 (A3/4), b,(0,. )= b (A/4) in

(2.20c) b[ ---= 0 in E,

0+ -=0(2.20d)

Remark 2.1. As pointed out in Remark 1.3, (1.18), the inequality opposite to
(2.19), i.e.,

(2.21) \1 dZ_-.-<: CTII{4) 4) }]12(a3/4)(aTM)

always holds true (with I" sufficiently smooth as in Remark 1.4) for all 0 < T < oe, as
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a consequence of Lions’ results [L2] followed by a transposition argument.
Proof of Lemma 2.2.
Step (i). Let h(x)= X-Xo, the radial vector field assumed in the statement of

Theorem 1.1. With reference to Remark 1.4 we multiply (2.20a) by the multiplier
h. V(Ab) and integrate over or a dQ. We obtain (see Appendix A)

fO(Aqb) h.V(Adp)dy-lfy.
(2.22)

-[(,, h. v())]/
after using the boundary conditions (2.20c-d).

Step (ii). We estimate the second integral on the right of (2.22). We multiply
(2.20a) by and obtain (Appendix B)

(2.23) {V,[2-[V()} dQ= V.Vd -d
O o Ou

after using the boundary conditions (2.20c-d).
Step (iii). Thus, inserting (2.23) into (2.22) results in

(2.24)

where/30,7- (boundary terms at T and =0) is

(.5 o..= 4,. 4,,a -[(4,,, h. (+/-4]o.
o

Step (iv). We now use the standard fact that with A the positive self-adjoint
operator defined by (2.2), the operator

(2.26) , I
0’

which describes the dynamics of (2.20),

(,ff) @(A) x @(A’/2),

(2.27) d--7 4, b,’
is the generator of an s.c. unitary group on the space (A/2) L2(’). Accordingly,
A with domain (AU4) x (A3/4) generates likewise an s.c. unitary group on the space

(2.28)
so that from (2.27),

b,(t)l

(2.29)

Z (A3/4) (A’/4)

_= [[4,(t)ll 2
1/4)O1) (A3/4)+

-= A3/44 (’) + A’/44,(t)ll (from. (1.6))

tE R,
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the norm-preserving identity to be crucially exploited below. Identity (2.29) is also
obtained by multiplying problem (2.20a-d), rewritten abstractly as b, +A& =0, by
A1/2cb, and integrating over LZ(Q).

Step (v). Crucial to the utilization of (2.29) in analyzing (2.24) is the following
lemma.

LEMMA 2.3. (i) With reference to the positive self-adjoint operatorA in (2.2), we have

(2.30) (A3/4)= {f H3(l))" flr =Of =0},0v r’

(2.31) (al/4) {fe H’(12)" fir 0} H(f)

the identifications being set theoretically and topologically, with equivalent norms. In
particular, we have the following:

(ii) Forf (A3/4), the norms

(2.32) Ilfl[(Aa/4) [IA3/4fIIa and [V(Af)l2

are equivalent.
(iii) Similarly, jbrf (A/4), the norms

(2.33) Ilf][(A,/4) IlA’/4flla and IVf

are equivalent.
(iv) Parts (ii) and (iii) apply in particular to the solution ofproblem (2.20a-d)

or (2.27), for which we have that the norm

I1,(t) (e3/4)M(e1/4)
(2.34)

{lle/4l{ + IIe/
which is time-invariant by (2.29), and the norm

(2.35) IV()l=da+ Iv,l2da ={lllV()lll+lllv,llll/=

are equivalent.
Proof of Lemma 2.3. See Appendix C for the proof.
Remark 2.2. Multiplying problem (2.20a-d) by , and applying Green’s

theorems yields, as usual,

1 O {a ’VtI2+IV()’2 d}= II.o(), dF.

Thus, we cannot claim by (2.36) that the norm occurring naturally in the multiplier
method leading to identity (2.24) is time-invariant, as the boundary term at the right
of (2.36) not only cannot be claimed to vanish, but moreover presents a delicate issue
as to its well-posedness. (In fact, from the initial data in (2.20b) we deduce only that

6(t) c(t)6+ s(t)6’ e c([0, T]; (A/4)),

,() C(t)6-AS(t)6 C([0, T]; (A’/")),
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so that the expression in the brackets { } in (2.36) is continuous in time.) On the other
hand, the equivalent norm (2.34) is time-invariant. Thus, in analyzing the terms in
iclentity (2.24) we shall always refer to the time-invariant norm (2.34).

Step (vi). We now analyze the term/3o.- in (2.25) by referring to the norm (2.28)
of Z for {4’, 4,}, as mentioned in Remark 2.2. For the first term in (2.25) we have by
the Schwarz inequality

0

(using the norm-equivalence (2.33))

<C 4 1/4 1/

<C 4(/) 1/4 4(0 A=- {[[a3/ (T)II+ I[A 4’,(T)II-+ A3/ II/ /4( 112.}.

Thus

(2.37) V4" Vch, df <=c{lln3/4chll+lln’/nchll} VTR,
0

where in the last step we have used the time invariance (2.29). Similarly for the second
term in (2.25) we obtain by using the Poincar6 inequality"

I0 da, 0 e H(a), Co Poincar constant

on H() and on , (legitimate by ,la 0, in view of (2.20c)) and 2M maxc

(using the norm-equivalence (2.32) and (2.33))

Thus by the time invariance (2.29) we obtain

(2.38) [[(,,h. ())x]dI2MhCCp{IIA’/4’II+[}A/4}I} UTR,

where Cp is the Poincar6 constant. Thus from (2.25), (2.37), and (2.38), we conclude
that for all 0 < T <,
(2,39) 1o,! < cont,,,,, {llJ/ll+llA’/4’ll}=consth, I1{, ’}1 Z
with Z as in (2.28).

Remark 2.3. The present method of estimating flO, T leads to (2.39) with a finite
constant n front of I]{&, ’}. This fact is responsible for obtaining, in Theorem
1.1, exact controllability only for T greater than a finite time To> 0 (see (2.50)-(2.52)
below).
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In Lemma 4.3 of 4, we shall instead estimate/30,T in a different way and obtain
in (4.21) an arbitrarily small constant in front of II{b, b’}ll at the price, however,
of introducing two new terms in the interior Q. Via an argument that ultimately rests
on a uniqueness theorem, these two additional terms over Q will then be "absorbed"
for an arbitrary T > 0 into the desired boundary terms over 2 that occur when a second
control g2 is also active in (1.1d). This way, exact controllability on an arbitrarily short
time is achieved in Theorem 1.3 and in Proposition 5.1, both cases having g2 active in
(1.1d). However, this latter result can be improved by using it, in a kind of bootstrap
argument, in combination with Lemma 2.2 for T large, and with a regularity result.
This will be done in 5.2, which is based on a recent idea of [BLR1]. Here we finally
obtain T arbitrarily small, also with g L2() and g:2---0, as in Theorem 1.4.

Step (vii). Returning to the left-hand side (LHS) of identity (2.24), we compute
with 2Ch maxr [h[ and for any e > 0"

First term.

(2.40)

Seared term.

(2.41)

where in the last step we have used trace theory followed by Lemma 2.3, (2.30) for 4
(which satisfies (2.20c-d)).
(2.42)

Third term. Using assumption (1.8) on the radial vector field h(x) we have

(2.43) - d 2 Jz

Summing up (2.40), (2.41), and (2.43) we obtain

(2.44)
+ I1== > LHS of (2.24)L (O,T;f(A3/4))

Now, choosing e > 0 sufficiently small to make (C,e- /2)< 0, we drop the second
integral in (2.44) and finally obtain

(2.45) C,., k- /
dE+ nec

o
IIA3/411, dt LHS of(2.24).

Step (viii). We now work on the right-hand side (RHS) of identity (2.24), where
we use the equivalence of Lemma 2.3(iii) (and time-invariance (2.29)), along with the
bound (2.39). We obtain

RHS of (2.24) >= C. IIA3/4q 112 :2

(2.46)
c,. 11{4,,
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Step (ix). Combining (2.45) and (2.46), we obtain, using again the time-invariance
(2.29) and Z (A3/4) (A1/4) as in (2.28),

T

dE+nec IIA/4cbI[+IIA/44,II2 dt
o

(2.47) Cl’nhe 0 l
dE+ ,,cll{,t,, 4,’}11, >= LHS of (2.24)

RHS of (2.24) -> GTII{, }11- c. i1{, }11 .
From here we obtain

(2.48)
\ av dE>= T

CI,.
Ch?lI1{,,, 4,’}11 -&,,,,,, I1{,,,

and selecting e > 0 suitably small so that

(2.49) C’.h C2 nec> O,
Cl,hen

we finally arrive at

\ av dE > C’...h( T- To)II{O o, 1}112 ,/4)(A3/4)x(A

with

Ch,, G,,,
(2.51) To C,,he C’,,h C2 + nec

which is precisely (2.19). Lemma 2.2 is proved. F1
Lemmas 2.1 and 2.2 along with (2.5) and (2.6) prove Theorem 1.1. l-]

Remark 2.4. For future use (in the proof of Theorem 1.4 in 5), we note that the
argument above yields the following inequality, which is more precise than (2.48)"

(2.52)

3. Proof of Theorem 1.2. We parallel and complement the proof of Theorem 1.1.
Step 1. As mentioned in Remark 1.1, the operator lr in (2.3) is continuous,

H(0, T; L2(F)) H(l))x H-I(f) (see Remark 3.1), and the exact controllability
requirement is

ONTO
(3.1) ,r" H(O, T; L2(F)) > H() x H-’()=- (A’/4) x[)(A’/4)] ’.

But the H(0, T)-norm is equivalent to the gradient-norm. Then the condition---
equivalent to (3.1)--that the corresponding Hilbert space adjoint *T of r have
continuous inverse can now be expressed" There exists Cr> 0 such that

(3.2) Z Z2 L2()
>- cll{z,, z:}ll )(AI/4)X[(AI/4)]’,
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where now for glH(O, T; L2(F)) and z=[zl,z2] )(A1/4)[(A1/4)]’ we have

(lrg, Z)(A’/4x[(A’/4]’= (gl, lTz) H(O,T;L(I) gl, - ’CTz

(3.3)
d 2

since gl vanishes at 0 and T.
Step 2. An equivalent partial differential equation characterization of (3.2) is given

by the following lemma.
LEMMA 3.1. With reference to .S*T in (3.3) we have for z=[zl,z2]

(A1/4) x [(A1/4)]’:

(i)

(3.4)
(*TZ)(t) G*I [C(t- T)A-/2z.+ S(t- T)(-A’/2zl)]

+K,t+K2H(O, T; L-(r)),

(3.5a) KI K1T-- T
{[C(T)-I]A-/2z2+S(T)A1/zl}’

(3.5b) K2 K2T -G[C( T)A-1/2z2 + S( T)A’/2z,],

d O(Ab(t))
(3.6) _-- (*TZ)( t) --+KT,

OV

where dp( t) qb( t, ch, qb 1) is the solution ofthefollowing homogeneous problem, backward
in time

(3.7a) th,, + A& 0,

(3.7b) bl,=T &
(3.7C)

(3.7d) =0,

with

(3.8) b A-/ez, b A-1/2z

explicitly given by

(3.9) qb(t) C(t- T)&+ S(t- T)p 1.

(ii) For any T> O, (3.2) (which characterizes exact controllability ofproblem (1.1a-d)
with gl H(O, T; L2(F)) and g2=0 on the space (A1/4) [)(A1/4)] over the interval
[0, T]) is equivalent to saying: There exists C’ > 0 such that

(3.0) K d>= Cll{, tll (e3/4)x(A1/4),

G = {[C(r)_]A_.l+S(r)o}"(3.11) K1T-- T {[C(T)-I]&+AS(T)&}:’I" Ov
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ProofofLemma 3.1. (i) With g H(0, T; L2(F)) we compute from (2.3) and (1.6)
by proceeding as in the proof of Lemma 2.1"

(LglTgl, Z)970(AI/4)X[t)(AI/4)]’- S( T- t)Glg( t) dt, A3/2Zl
L2()

(3.12)
L2(K)

(g(t), G[S(T- t)Aa/z, + C( T- t)A/z])(r dt.
0

By comparing (3.3) with (3.12), we conclude that

_d
(3.13)

dt

since C(.) is even and S(.) is odd. Integrating in t, we find

d
(3.14) -(rz)(t)=-G*[S(t- T)a/Zz2-a-lc(t T)(-a3/2zl)]+ K1,

(3.15) (*,rZ)(t)= G*[A-S(t T)(-a3/2z)+a-c(t T)a/2z2]+ K,t+ K2.

By imposing that (rz)(t) vanishes at 0 and T, so that *rz e H(0, T; Lz(F)),
we readily identify the operators K and K2 as in (3.5a-b) and then (3.15) becomes
(3.4). For the purposes of (3.2), we now rewrite (3.14) as

d

d-- (SE*-rZ)( t) -G* A[ C( T)a-/Zz + S( T)a-/2z2] + K,-r

(3.16)
+ K T,

Ov

where in the last step we have used (2.4) and (3.9), (3.8), and part (i) is proved.
(ii) We first note that by (3.8)

A1/ZbOII{z, z a1/2&
(3 17) -I1{A3/44,, a/44,}ll

Moreover, by virtue of (3.8) and (2.4), then (3.5a) becomes (3.11). Then (3.2) becomes
(3.10) as desired, by use of (3.6), (3.11), and (3.17). The proof of Lemma 3.1 is
complete. [

Step 3. The next lemma provides a sufficient condition for the exact controllability
of problem (1.1a-d) considered in the present section for T arbitrary.

LEMMA 3.2. A sufficient condition for (3.10) to hold is that there exists a constant

C’r > 0 such that

(3.18) f(O(dP(t)))- (A1/4) + 2 T[I g,. T 22L

where the term Klr is given by (3.11) and satisfies

(3 19) 2 f IK,.,.I ,.,= 2Tllg,rll ,.2,v) -<_f( T) [[{&, b ’}112f (A3/4) (A 1/4)
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(3.20a)
t.qll -.,/i2

f(T) =4 "-----’J-max {II[C( T)- IA-’/4II IIA’/4S( T)II}

(3.20b) <_C_y T>0.=T’
Proof From (a+b)2=ae+b2+2abaZ+b2-ea2-1/eb2 we obtain (a+b)2-_>_-_

a2- b2 by selecting e 1/2. Thus,
0(Zb) + KT

(3.21)
! Iy. ((A(/))22\--7,/

Thus, recalling (3.17), we see from (3.21) that (3.18) implies (3.10) as desired. To show
(3.19) we rewrite Klr in (3.11) accordingly as

a* 1/4A /4(3.22) K,T=--[(C(T)-I)A 49 +a’/4S(T)A3/4dp]. D

Step 4. We now show that, under assumption (1.8), the analysis of 2 guarantees
that the sufficient condition (3.18) is fulfilled for T sufficiently large. Indeed, Lemma
2.2 yields (2.19), which we rewrite here for convenience

(3.23) \-- /
d,.->_-c(T- To)ll{4), 4)’}ll, Z@(A3/4)x,,(A’/4),

with e, 7; identified in (2.50), (2.51). Recalling (3.20a-b), we write for any ,3 > 0:

(3.24)
c C,> c

c(T- To)_>=7-(T- To) +---= 1+---- (T- ro)+f(T)

for T sufficiently large, in fact, T> Ta
To +,/T+ 4C. (1 + 6)/c6r= 2

as 6 ’ oo. Thus, recalling (3.19),

(3.25)

To + / To+ 4G/ c

c( T- to) 11{4,, 4, ’}11 T- To)+f(T) 11{4, o, 4,’}11,

C
)O, 2>(T--To) I1{

1+,8

Thus, (3.23) and (3.25) imply (3.18) as desired, for T> Ta. The proof of (i) of Theorem
1.2 is complete.

We show part (ii) of Theorem 1.2 in the next corollary.
COROLLARY 3.3. (i) For T sufficiently large, (3.10) (which characterizes exact con-

trollability of problem (1.1a-d) with gH(O, T; LZ(F)) and geO on the space
@(A/4) x[(A/4)] over [0, T]) and (2.11) (which characterizes exact controllability
ofproblem (1.1a-d) with g Lz(E) and ge=-O on the space [@(A/4)]’x[@(A3/4)] over
[0, T]) are equivalent conditions.

(ii) By interpolation [LM1, pp. 64-66], problem (lola-d) with controls

(3.26) gH-(O,T;Le(F)), g--O, 0N0==I, 0,
4/2n L2(3.27) g,**oo ,,,, T; (F)), g20, 0=-
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is exactly controllable for T sufficiently large on the space

(3.28) ’(A/4-/2) 7(A-/4-/2),
where we are using the convention that

(3.29) @(A-), >-0 means [@(At)] ’.

Proof (i) Step 4 above shows that (2.11) implies (3.18) for T sufficiently large,
and hence (3.10) by Lemma 3.2. The converse follows from

2 k/ dZ+2 IK[dZ -0u K dZ

by use of (3.19), (3.20a-b) with T sufficiently large.
(ii) We apply the interpolation Theorem [LM1, Thm. 5.1, p. 27] to the operator
( which, by part (i), is bounded between the space in (3.28) and the space in (3.26)
at the endpoint values 0 0 and 0 1. Hence is continuous

(3.30) [(a’/4)x(a-/4), (a-/")x(A-/4)] [H(0, T; L0 (v)), ()]o,
which means that .r is onto in the opposite direction. Then [LM1, pp. 64-66] gives
(3.26)-(3.27).

Remark 3.1. With reference to Remark 1.1, we show next that the space of exact
controllability H(O)x H-(O) with controls g H(0, T; Lz(F)) and g0 as in
Theorem 1.2 does not coincide with the space of regularity of the solutions of the
corresponding problem (1.1a-d). More precisely, we have that the map

-G,g(t)(3.31) g
w,(t)

for problem (1.1a-d) with gz0, w=w=0, is continuous H(0, T;L2(F))
C([0, T]; H(O) x H-(O)), while Gg(t) H(O, T; H/Z(O)) by elliptic theory and
Gg(T)=O so that {w(T), w,(T)} H(O) x H-(O).

In fact, if we return to (2.3) we have, after an integration by parts in t, using
standard propeies of cosine/sine operators:

W( l) C( )alg( r)];

w,(t)= A [S(t-r)G,g(t)];- S(t-,)G(r) dr i.e.,

(3.32) w()- Gig(t) C(t-z)G,(,) d,

Since L(), the (optimal) regularity theory of Theorem 1.0 together with (2.3)
gives that (see (1.7))

(3.34) w,(t) A S(t-r)a,(,) re c([0, r]; [(’/)]’ S-(a)),
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and hence (see (1.7))

(3.36) w(t)-Glgl(t)=-A-1A C(t-’)GI1(7") d -e C([0, rl;

as desired.

4. Proof of Theorem 1.3. We parallel and complement the proof of Theorem 1.1..
Step O. We introduce a second Green map G2 defined by

(4.1a) fAEy 0 in l,
/

(4.1b) G2g= y--ylr=O,
(4.1c) I, Oy/O,lr= g,

which is continuous L2(F)- L2(I)) (indeed, L2(F)- H3/2(1)) [LM1, Vol. I, pp. 188-
189]). Then we define the operator 2r by

(4.2) "2Tg2

A S( T- t)GEgE(t) dt,

A C(T- t)G:g(t) dt
o

(in the notation of (2.3)). The solution to problem (1.1a-d) with

(4.3) gl e L-(E), g2 e L2(0, T; H-I(F))
is likewise given by

(4.4)
w(T; =0; w=0, w =0)
w,(T, t=0; w=0, wl=0) 1rgl "1- "2Tg2"

The following lemma can be proved as the corresponding Lemma 2.0 by Green’s
second theorem, (4.1a-c), and (2.2). Therefore details are omitted.

LEMMA 4.0. Let G*2 be the continuous operator LE(f)- LE(F), which is the adjoint
of G2" (G2g, v)a= (g, G2*v)r, g L2(F), veL2(Q). Then

(4.5) G*2 Af -Aflr f6 (A).

Step 1. The (regularity) Theorem 1.0 gives a fortiori that the operator

(4.6) r [lr,

is continuous L2(E) x L(0, T; H-I(F)) X =-[)(A1/4)]’x[(A3/4)] ’, and thus exact
controllability of problem (1.1a-d), (4.3) on the space X over [0, T] is equivalent to
the following. There is Cr > 0 such that

(4.7) z L2(X)xL2(0, T; H-’(F)) Z2 L2(X) Z2 L2(O,T;H-I(F))

e Z2}II(A’/4)]’x[(A3/4)]
as it follows by using (4.6). In (4.7), denotes Hilbea space adjoint. Since
is identified by (2.8), (2.9a-d), we proceed to characterize . The counterpa of
Lemma 2.1 is Lemma 4.1.

LEMMA 4.1. (i) For z={z1,z2}GX[(A1/4)]’x[(A3/4)]’, we have

Z2
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where 4)(t, 4), 4)) solves problem (2.9a-d), (2.10) and where

(4.9) A is isomorphism H(F) H-(F) and self-adjoint on LZ(F)

(first-order tangential operator on F with smooth coefficients). Hence, if V denotes the
tangential gradient, we have

(4.10a) II* z’ -,,AA4(" (D 0, 1),,2
Z2 L(O,T;H-(I’))

L2(E)

(4.10b) [[V(A)[[() + [A (.
(ii) For any 0< T <, (4.7) is equivalent to saying" ere is C> 0 such that

0 /
+ lv(O)l + Isl

(4.1)

J Iw<l +JI1
Proof (i) By definition of and A we have

(, z) (, z)<o.-,<.
(4.12) (-g,-z)

(g, -z)cs.
On the other hand, starting from (4.2) we compute as usual"

(4.13) rg, z,
(g(t), G[C( T- t)A-/z + S( T- t)A/z])v dr,

Z2 X

and hence, using (4.12) and (4.13), since C(. is even and S(.) is odd we obtain

(4.14) A-rz GA[C(t- ra-/z s(-

with (t, o, ) solution of (2.9a-d), (2.10). Thus, (4.14) leads to (4.8), as desired,
by virtue of (4.5). Moreover, since by (4.9) we have

(4.15) lfl -,,.
then (4.15) applied to (4.8) yields (4.10a). To obtain (4.10b) we first note that by (4.9)
we have

(4.16) IIAOll(,-> IIll%’(,-
where 7 denotes Ehe EangenEial gradienE. More specifically, at each point of F, with

the unit outward normal and z,. ., z,_ on orthogonal systems of unit vectors on
the tangent plane, we may write:

(4.17a) V0=(V0. u)u+ Z (V0")r=u+V,0, V,,0= r,

(4.17b) [[[V0[[[ 00 z

+lllv,lll

Then using (4.16) with in (4.10a) yields (4.10b).
(ii) We use (4.7) along with (2.8) and (4.10b), and (4.17b) with =; finally

we use (2.18). This way (4.11) is obtained.
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Step 2. The key of the controllability problem in Theorem 1.3 is the following
proposition.

PROPOSITION 4.2. Inequality (4.11) holds true for any T>0 where, by time reversal
in (2.9a-d), (2.10), we may take ch to be the solution of the homogeneous problem
(2.20a)- (2.20d).

Remark ,4.1. The inequality opposite to (4.11), i.e.,

(4.18) IV(A)I2 d/ IAI d_-< CTII{, l}ll)(A3/4)t)(AI/4

is true for all 0 < T < (transposition on [L2]).
ProofofProposition 4.2. We return to the fundamental identity (2.24) with h(x)=

X--X0, for some xoER n.
Step (i). Setting, as in (2.40), 2Ch maxr-]hi, we have for the LHS of (2.24):

LHSf(2"24)-<-Ch
\ o +1(/)1 d

4 0
(4.19)

<= 3Ch + Iv(6)l2 d+- IA6 d4
(by (4.17b))

Step (ii). As to the RHS of (2.24), we invoke the norm-equivalence (2.32)-(2.33)
and write

(4.20)

T

RHS of (2.24)_-> c IIA’/a,II+IIA3/4II2 dt+o,
o

cTIl{, ’}11 + 0,T,
where in the last step we have used the norm-preserving identity (2.29), and where
Z--(A3/4)(A1/4) as in (2.28). Now, however, we estimate flow in a manner
different from Step (vi) in the proof of Theorem 1.1 (see (2.39)).

LEMMA 4.3. With reference to (2.25) we have for any e > O,

(4.21)

with Z as in (2.28), where C is the constant of norm equivalence in (2.32)-(2.33) and

Clh, =max ,2Mh C =max , 1 2Mh =max Ihl.

Proof of Lemma 4.3. We estimate each term of (2.25) separately. By the Schwarz
inequality and (2.32), (2.33), we obtain

Vq. V,da
o

(4.22)

lily 6( T)llllllv 6,( T)III + lily 6lily,lilY 6’111
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Similarly with 2Mh
[(,, h.

(4.23)

< 24 6, b<to.:., + ys[lllV(a@ r))lll, + IIIv(a6)lll,l.
8

Hence, using (2.25), (4.22), and (4.23), we obtain

Clh

+ c.[111 6,( )111 + IIl(a@ ))111+ !11 6’111 + II1 (a6)111]
(usint the norm equivalence (2.32), (2.33))

< (c,..l)[llllll<o,,+ 6,I1o,.]
(4.24)

+ CC,e[IIAI46,(T)II+ llA3/46 (T)II + liAl/46’ll + ilA3/4611]
from which the desired conclusion (4.21) follows by using the norm identity
(e.9).

Step (iii). Combining (4.20) with (4.21), we obtain

RHS of (2.24) (cT-eCCe)II(6,
(4.25) c, [111

Moreover, combining (4.25) with (4.19) we arrive at

[lllvlilto,. +
(4.26)

To complete the proof of Propositio 4.2, we need the following lemma based o
compactness arguments, of the type already used in Littman [L9], who invokes
Hormander [H2], in Lions [L3], who uses a remark of P. L. Lions, and
tke ootext of the wave euations. This lemma consists in "absorhint" tke lower-order
interior terms o tke left of (426) y the ouaar terms on tke left of (4.6).
Lza 4.4. Inequality (4.26) implies thtfor any T> 0 there exists C > 0 such that

(4.7) II16111<o,<. + 6, <o..,>
(na aeea, we cou#a reae 1(6)1 a with 16/1 a on he ,igh of
(4.27); see also Lemma 5.4 below).

Proof of Lemma 4.4. The proof is by contradiction. Let there exist a sequence
(@,(t)) of solutions to rolem (.10a-a) over [0, ]"
(4.28a) @ + A-b, =0 in Q,
(4.28b) 4>,(0, ".)-- tn E (A3/4), n(0," )= tln G (A1/4) in

(4.28c) 4b, I=0 inE,

0
0’

(4.28d)
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(d / dt ’), given explicitly by

n(t) C(t)bn + S(t)b’n E C([0, T]; (A3/4)),
dptn(t)=-as(t)dpn+C(t)dplnE C([0, T]; (a’/4))

(4.29a)

(4.29b)
such that

(4.30a)
(4.30b)

lily 4>.111o,,., l,

4>’,, <co,-;,., l,

(4.30c) JIV(AO.)I+IA@.Id+0 as

By the preceding steps (i)-(iii), each solution ,(t) satisfies (4.26), and thus we have

(4.31) [l{, ,}[[(a/)a’/)const uniformly in n.

Hence there is a subsequence, still subindexed by n, such that

(4.32a) some function o in (A3/4) weakly,

(4.32b) , some function in (A/4) weakly.

We then consider the solution to problem (2.20a-d) with initial data found in
(4.32a, b)"

(4.33a) (t)=C(t)+S(t)C([O, T]; 9(A3/4) V),

(4.33b) ’(t)=-as(t)+C(t)’ C([0, T]; (AI4)=H()).
Then (see details, e.g., in [LT3, 2] in a similar situation corresponding to the wave
equation), it follows that

(4.34a) ,(t) (t) in L(0, T; (a3/4)) weak star,

(4.34b) (t)’(t)inL(O, T; (a/4)) weakstar.

Then (4.34a, b) implies that ,(t) and (t) are uniformly bounded in
L(0, T; (A3/4)) and L(0, T; (A/4)), respectively. This fact, along with the com-
pactness of (A3/4) (a/4) H() (see (2.31)) and of (A/4) L(fl), implies
that there is a subsequence, still subindexed by n, such that

(4.35a) ,(t) (t) strongly in L(0, T; H()),
(4.35b) (t) ’(t) stronglyin L(0, T; L2()).

A fortiori for (3.30a, b) and (3.35a, b), we obtain

lily .lllco,;L + lily glllco,;:.,) 1,
(4.36)

1 11cco,;) ’11co,;.) 1.

Moreover, afortiori from (4.30c)

(4.37)

Thus 4 (t) satisfies

(4.38a)

(4.38b)

(4.38c)

OP
=0 and A4ls=o.

4"+ A:4 0,

1-.; o, o_

0(A)
=---0,

Ol,’ 5;

---0

from (4.33a),

/t4ls =- 0 from (4.37)



354 |. LASIECKA AND R. TRIGGIANI

on [0, T]. Then, with T > 0 arbitrarily small, Holmgren’s classical uniqueness theorem
of Remark 1.4 implies

(4.39) b-=0 in Q

and this contradicts (4.36). The proof of Lemma 4.4 is complete. [q

Step (iv). We use Lemma 4.4 in (4.26) and obtain for an arbitrary T> 0 and with
e chosen sufficiently small"

c)(A3/4)))(A I/4

and (4.40) proves (4.11) for T> 0 arbitrarily small. The proof of Proposition 4.2 is
now complete. [-1

Then Lemma 4.1, Proposition 4.2, and (4.7) prove Theorem 1.3. F1
We conclude this section by providing, with minor extra effort, an extension of

Theorem 1.3 to the case when g2 acts only on a suitable portion of F, still with no
geometrical conditions on f. To this end, given an arbitrary positive number y> 0
and an arbitrary fixed point x R n, we can always decompose F into two complemen-
tary parts"

(4.41)

(4.42)

(4.43)

r r+(x, v) t_J I’_(x, ,),

F+(x, v) {x e r" (x x) (x) >_- v > 0},

r-(x,
Henceforth we shall drop the explicit dependence on y and write more simply F+(x)
and F_(x). In the next corollary we take g2 to be active only on F_(x), assumed
nonempty.

THEOREM 4.5. The exact controllability result of Theorem 1.3 remains true for an
arbitrary T > 0, and still with no geometrical conditions on f, with respect to the boundary
conditions wl,. gl L2(Z) as in Theorem 1.3 and

Ow [0. on (0, T) x r+(x) E+(x),
(4.44)

0, z g2 L2(0, T; [H’(F_(x))] ’)

instead ofg2 L2(0, T: H-l([’)) as in Theorem 1.3, with F_(x) nonempty.

Proof The proof is a minor variation of the proof of Theorem 1.3. Instead of the
operator G2 in (4.1a-c) we now define the operator (2 by (2g y, where y solves
problem (4.1a, b) and

Oy
O,

oy
(4.45)

0,

instead of (4.1c). Accordingly, (4.5) of Lemma 4.0 now becomes

(4.46) d*Af=-Afl,-_(xo), f (A).

Hence, the counterpart of Lemma 4.1 is as follows. We obtain (4.8), this time restricted
only on E_(x), however, and hence

(4.47) IIe*zll

See footnote 2 on (1.8) (p. 331).
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instead of (4.10b). Thus, for any T>0, the new condition, a counterpart of (4.11),
characterizes exact controllability in the present case with control g2 as in (4.44)"

d+ (I v,,( )l + IAI d-(x)
0 ’ _(x)

(4.48)
> C 1/4){o, }ll.,4

where solves problem (2.ga-d), (2.10) as before. To prove (4.48), we need only to
refine slightly the proof of Theorem 1.3 at the level of analyzing the LHS of identity
(2.24). We decompose V(h) into its normal and tangential component as in (4.17a, b)
with A, so that we obtain

LHSof(2.24)= k 0,
h. udZ+-2 o, hedZ

(4.49)
+

Ov
h. V,.(A) dE- IV,.(a)12h v dE,

where h(x) (x x).
Next, setting 2M max lhl over F+(x) and recalling (4.42), we obtain

o( h. V() d+(x)- ,(x
I ()lh d+(x)

+(xo) 0P

(d+(x) + Iv,()l d+(x)
8 +(xo) 0 P +(xo)

d+(x)

after selecting 0< e < /2. Then, by (4.49) and (4.50), if we recall (2.41) we obtain

d+ (IV()l+I d_(x)OP _(x)
(4.) ,

+ nec, ]]A3/46]] dt LHS of (2.24),
d o

which is the counterpart of (2.45), or of (4.19). Combining (4.51) with (4.25) for the
right-hand side of (2.24), yields for any T> 0 and for any el > 0, e > 0

(4.52) + C,{f (O(h)) f0 P _(x)

[(-,,,)-2.]1{, ’} ,
counterpart of (4.26). Next, the counterpart of Lemma 4.4 is that inequality (4.52)
implies that for all T> 0 there exists CT such that

(4.53)
dZ / IX4,1 d_(x)

O’ / __(xo)
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instead of (4.27). Indeed, the contradiction argum.ent of Lemma 4.4 still works,
since the corresponding uniqueness propertyMthat 4 in (4.33a, b) satisfies (4.38a, b)
as well as

(4.54)
O(A)

0, Aql..__(xo) --- 0cgp

on [0, T], T arbitrary >0 (instead of (4.38C))Mstill implies that b---0 in Q, by the
Holmgren Uniqueness Theorem as in [H2, Thm. 5.33, p. 129] (four homogeneous
boundary conditions on a nonempty portion of the boundary are enough). Hence
(4.52) and (4.54)imply

c’.
\ 0 /

az + (Ivy(a4)12 + [44[) dZ_(x)
__(x)

(4.5)
el(c- ncr- ecc.]ll{6,

for any T> 0, and any e > 0, e > 0 (counterpart of (4.40)). Thus (4.48) is proved. The
proof of Theorem 4.5 is complete.

$. Theorem 1.4. Improvement of Theorem 1.1 to T arbitrarily small. The proof is
divided into two steps, which will be treated separately in the following two subsections.

5.1. A preliminary result: exact controllability on the space X
[N(A/4)l’ x[N(A/4)I’ with gLz(Z), gzHh(Z), k an arbitrary nonnegative integer in
arbitrarily short time and with geometrical conditions. A first preliminary result is the
following proposition.

PROPOSITION 5.1. Assume condition (1.8) on the domain . en for all T>0,
given {w, wl}x there exist control functions g Lz(z), gz H(Z), k a preassigned
fixed nonnegative integer, such that the corresponding solution ofproblem (1.1) satisfies

w(r)= w,(r) 0, {w(t), w,(t)} c([0, r]; x)

Proof of Proposition 5.1.
Step 1. We now return to the operator r defined by (4.6), (4.4), (2.3), and (4.2),

and require that

(5.0) r" L(E) x H(Z) onto X.

Equivalently, there exists Cr such that

+
Z2 L2(Z)xHk(Z) Z2 L2(Z) Z2 Hk(Z)

(.)
[(a l/4)]’x[(A/4) ’,

a counterpa of (4.7), where is identified by (2.8), (2.9a-d) and where is
defined by

#(g, z) (g, z).( (g,hz)
(.2)

(g, hz),(,
with

(5.3) Ak" isomorphism Hk(E) onto L2(E) and self-adjoint on Lz(E).

The counterpart of Lemma 4.1 is Lemma 5.2.
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LEMMA 5.2. (i) For z zl, z2] X A1/4) ]t x (A3/4)]’ we have with reference
to (5.3)

(5.4) (qrz)(t) -A2A6 t, 6, 6 ’),
where (t, o, ) solves problem (2.9)-(2.10). Moreover,

(5.5) 112zll.() liAr(t, 6,
(ii) For any 0 < T<, inequality (5.1), which is equivalent to exact controllability

in the present case, is in turn equivalent to saying: ere is C> 0 such that

(5.6)
k 0-/ d+lla611%-,() C11{6, 61}ll(a3/4)x(al/4)"

Proof. (i) Comparison between (5.2) and (4.13) now yields, by (4.5),

(5.7) AkTZ G* A[ C(t T)A-3/2z S(t T)A-1/2zl] -Ab(t, b, 6 ),
a counterpart of (4.14). Thus, by (5.3) and (5.7),

as desired.
(ii) Inequality (5.6) follows from (5.1) via (2.8), (2.9a-d), and (5.5).
Step 2. The key of the present controllability problem is the following proposition,

which is the counterpart of Proposition 4.2.
PROPOSITION 5.3. Under assumption (1.8), inequality (5.6) holds truefor any T> 0

where, by time reversal in (2.9a-d), (2.10), we may take dp to be the solution of the
homogeneous problem (2.20a-d).

ProofofProposition 5.3. We return to the fundamental identity (2.24) with h(x)=
X-Xo, for some Xo R n. As to the LHS of (2.24), we invoke Step (vii) in 2, thus
obtaining (2.45) under assumption (1.8). Hence the top of (2.47) holds true; we rewrite
it here for convenience:

(5.8) C,,h
\ Ov ]

dE+ TneC]l{6, qb }11 -> LHS of (2.24).

As to the RHS of identity (2.24), we invoke instead Lemma 4.3, and hence (4.25),
which we again rewrite here for convenience"

(5.9)
RHS of (2.24) >- (cT-2cc_) 11(6, 6 11 .

Thus, combining (5.8) with (5.9), we obtain

(5.10)

Clhn 2d+ [lily 6111to.;,+ 6, C([O,T];L2(I-))]

_>-[(c- neC) T- 2CC2,e]Ii{4,, 6’)11.
Then to complete the proof and obtain (5.6) we need the following lemma, which is
a counterpart of Lemma 4.4.

LEMMA 5.4. inequality (5.10) implies thatfor any T> 0 there exists Cr > 0 such that
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ProofofLemma 5.4. The proof is similar to that of Lemma 4.4 to which it reduces
for k 0. By contradiction, let there exist a sequence {bn(t)} of solutions to problem
(2.20a-d) (4.28) over [0, T], given by (4.29) such that

(5.12a) II1 a,
(5.12b) 1,

Then, since each ,(t) satisfies inequality (5.10), we obtain (4.31); hence (4.34a, b),
(4.35a, b), and (4.36). Moreover, with given by (4.33a, b) we again obtain (4.37)
(this time by (5.12c)), and thus (4.38). Hence (4.39) follows and contradicts (4.36).
Inequality (5.11) is thus proved.

5.2. Completion of the proof of Theorem 1.4. We return to inequality (5.10), which
is valid for all T > 0. From here we see that, to obtain (2.11) for any T> 0 (and hence
the desired exact controllability claimed by Theorem 1.4), we need the following
improvement of Lemma 5.4.

LEMMA 5.5. (i) Inequality (5.10) implies thatfor any T> 0 there is C > 0 such that

(513) "’VI[I’([O.T];L2(I,)+]ItI] fZ (0()) 2

c([o,r];(a)) N CT d.
0

(ii) us, under assumption (1.8) on , for any T>0 there exists Cr>0 such that
the following inequality holds true for the solution ofproblem (2.9a, b), (2.10)"

(514) (0()) (A3/4)x(A1/4)
O

(improvement from r sufficiently large to r arbitrarily small over (2.19) ofLemma 2.2).
Proof From the argument of Lemma 5.4, it is clear that (5.13) is indeed achieved,

provided the following uniqueness property holds true:

on[O, T],
(5.15)

T > 0 arbitrarily fixed implies & 0 in Q,
which is needed to obtain the required contradiction. To establish (5.15), we use a
recent argument of [Z1], adapted to the present situation, which rests on an idea from
[BLR1]. The proof of (5.15) will hinge on the following three results, which have been
already obtained.

Result 1. The same uniqueness property holds true as in (5.15), except that T is
now greater than some finite To> 0.

As we have seen, this result follows a foiori from Lemma 2.2, (2.19), under the
geometrical condition (1.8) for a, with To as in (2.51).

Result 2. Inequality (5.6) is valid for any T>0 under assumption (1.8), as
guaranteed by Proposition 5.3. (Note that (5.6) was obtained via Lemma 5.4, which
we now seek to improve to the form expressed by (5.13).)

Result 3. For any T> 0, we have

IIO(A) 1}2 1/4).(5.16)
L2(

CTII{’ [](Aa/4)x(A

Inequality (5.16) follows by transposition on recent results in [L2].
With these three results at hand, and following an idea in [BLR1], we are now

in a position to prove (5.15), and hence (5.13). We introduce the space

(5.17) t(0, T; (A3/4)) W’(0, T; (A/4)),
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which contains the solutions {b(t)} of the homogeneous problem (2.9) with data
{4, b} @(A3/4) x @(A1/4). Also, let

(5.18) 0__-space of all solutions in o of problem (2.9) that, moreover, satisfy the
additional boundary condition 0(Ab)/0ul. =- O.

The key point is to show that gt is finite-dimensional. (This is the idea discussed in
[BLR1].) To this end, with gt closed in by virtue of (5.16) (Result 3), we seek to
establish that

(5.19) B, f) gt is compact,

where B is the closed unit ball in centered at the origin.
Let b B. fq gt. Then we plainly have that 4, satisfies

(5.20a) ()t)tt-’AZ((lt)O in Q,

0qs______, 0(AqS’) 0 in(5.20b)

In addition, interior regularity and trace theory imply that A4[ H/z(z) and a fortiori

(5.21) A4, e H-l(0, T; L2(F)).
Next, we use Result 2, i.e., (5.6) of Proposition 5.3 as applied to 4, (which is also a
solution of problem (2.9a, b)). We obtain for T arbitrarily short as in (5.15)"

(A3/4)X@(A1/4)

(5.22) <-

CTII{O, IJ 1}IIf(A3/4)i(AI/4),
where in the last step we have used the last boundary condition in (5.20b) as well as
(5.2I). Thus {(b,), (b,)’} (A3/4) (A/4). From (5.22) we deduce (recalling (1.7))
that

(5.23a) 4,(t) C(t)(4,)+ S(t)(cb,) e C([0, T]; (A3/4) g),

(5.23b) b,,(t) -as(t)(cb,)+ C(t)(cb,) C([0, T]; (a/4) H(f)),

i.e.,

(5.24)

From the equation satisfied by b, we deduce via (5.23b)

(5.25) 4,, --A2 C([0, T]; (a1/4) H(-)).
Hence,

(5.26) 4 e C([0, 7]; HS(f)).
Then (5.26) and (5.23a) prove the following: If 4 e Ba(’l gt, then

{4(t), 4,(t)}6 C([0, r]; Hs(f/))x C([0, r]; v)c c([0, T]; V)x C([0, T]; H(f)),
where the containment has compact injection. Thus, 0 is finite-dimensional. Then, as
in [BLR1 ], the elements of gt are solutions of an equivalent finite-dimensional ordinary
differential equation with constant coefficients. Since such solutions vanish for T > To >
0 by Result 1, they also vanish for T>0 arbitrarily small. Thus property (5.15)
follows.



360 I. LASIECKA AND R. TRIGGIANI

6. Extension of the proof of 2 to general vector fields. In this section, we provide
the additional arguments--over those of 2--required to prove Theorem 1.5 in the
generality that involves a vector field satisfying conditions (1.21), (1.23) only, not just
a radial vector field as in Theorem 1.1 (or a linear vector field as in Remark 1.2).

6.1. Extension of Lemma 2.2. The key point that remains to be established in
Proposition 6.1.

PROPOSITION 6.1. The conclusions ofLemma 2.2 with T> T, defined by (1.24) hold
true for a domain gl satisfying the vector field conditions (1.21), (1.23) as well as the
uniqueness condition (1.24).

Proof. Step (i). We return to (A8) and (A10) in Appendix A, where by imposing
the boundary conditions (2.20c, d) we obtain the identity:

(6.1)
f HV(A6) V(A4,) dQ+ f HV6,. V6, dQ

{IV ,i=-IV(A )I=}div hdO

+ f b,V(div h). V4, dQ-[(b,, h. V(Ab))a]or,
Q

counterpart of identity (2.22).
Step (ii). We use identity (B4) in Appendix B. Inserting (B4) in (6.1) yields the

identity

(6.2)

where

1 f IV(A)Ih. dAb div h dE-

fo HV(Aqb)" V(Ach) dQ+ foHVb" VdP’dQ

+21 o
b V(div h). V(A4) dQ+- b,V(div h). Vd,dQ+flO.T.h,

(6.3) o,r,h Vb" V(b, div h) df -[(b,, h. V(Ab)),]oT,
o

counterpart of (2.24)-(2.25). Equation (6.2) shows the presence of two new terms over
(2.24). We shall now deal with them.

Step iii ). Let

(6.4) 4Gh max IV(div h)[.

Then, for any e > 0,

lf2oApV(divh)’V(Ad?)dO>--2Ghfo’A"V(Ap)’dO
(.
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Similarly,

f 4),V(div h). V,dQ>=-2Gh (_ 14),11V4),[ dQ
2.,

(6.6)

Therefore, if we return to (6.2), use (6.5)-(6.6), and recall assumption (1.23), we see
that the RHS of (6.2) satisfies

RHSof(6.2)(p-eGh) [ I(a6)l:+lV6,1 dO

Gh
e dQ

(6.7)

Oh
e 3Q

where we have used the norm-equivalence (2.32)-(2.33) of Lemma 2.3(ii), (iii) with
constant C of equivalence.

Next, the ve same proof as in Lemma 4.3, applied to (6.3) rather than to (2.25),
produces for any e’ > 0

(6.9) Z (A3/4) x (ml/a) as in (2.28)

(counterpa of (4.21)). Combining now (6.8) with (6.7) and using the time invariance
(2.29), we finally obtain via (6.9):

RHS of (6.2) [(p O.)C T- ’C:.]11(6, 6)1-G f la61: + 6 dQ

(6.0)

C([0,T]; L:(fl))],

counterpart of (2.46) or (4.25). Equation (6.10) shows the presence of new terms due
to Gh 0 over (2.46) or (4.25). How to deal with them represents the main additional
difficulty over the proof of 2.

Step (iv). For the LHS of (6.2) we recall (2.40)

(6.11’ <ChIv.(a(Adp)): Iv.0(Ab__.__) h. dEV(Ab)

and likewise

(6.12)

1 r a(Ab)
Ab div h dE

Dh"b Iz (O A]) ) 2

\ 01

la6l d

d,+ eDh.b I. IAbl2 d,
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with Dh,b maxr Idiv hi, b boundary. Using (6.11)-(6.12) on the LHS of (6.2), we
obtain

(6.13) (Ch+-eDhb) fr.(O(ACk))2 dE+ eDh b IA I dS->_ LHS of (6.2),

by selecting e > 0 small enough that

(6.14) eCh IV(A)I= dS- IV(A)I=h. ,dE <-_ eCh-- I-V(A,)I= d_-<0

in view of assumption (1.21).
We now combine (6.13) with (6.10) and obtain

Ch _Oh,b a( dE + eDh.b IAqbl2 dE + Gh IAckl- + ck dQ

counterpaa of (2.48).
Step (v). Since (t) (A3/4) (A1/4) (see Remark 2.2) and (t) satisfies the

boundary conditions (2.20c, d), Green’s second theorem yields

Thus, recalling the norm-equivalence (2.33), and using (6.16), we obtain

(6.17)

so that

(6.18) illlll(to,
Moreover,

C([0,T];L2(a))}
Q

Using (6.18)-(6.19) in (6.15) yields

(Ch ;Dh.b) f (O(Aff))20P dE+ eOh,b f IAI2 dE

(6.20) ++ ,
Thus we are in a situation similar (but not identical) to the one we encountered in
(4.26) in the proof of Proposition 4.2. We then need a lemma, the counterpa of
Lemma 4.4, that will allow us to "absorb" the interior terms on Q on the left of (6.20)
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by the boundary terms on E on the left of (6.20). This is indeed provided by the
following step.

Step (vi). We proceed to Lemma 6.2.
LEMMA 6.2. Inequality (6.20)for problem (2.20a-d) implies that, for any T>0,

there exists a constant C-> 0 such that

0(A6)
dE+ labl2 dE(6.21) \’ 0/Y ’.

Proof of Lemma 6.2. The proof is similar to that of Lemma 4.4. Thus only the
relevant differences from the latter proof will be noted here. Suppose that there exists
a sequence {b,,(t)} of solution to problem (2.20) over [0, T], as in (4.28a-d), (4.29a, b)
such that

as noo.

Then the same argument as in Lemma 4.4 from (4.31)-(4.34a, b) applies, and we have

(6.23)
,(t) (t) in L(0, T; (A3/4)) weak star,

’,(t) ’(t) in L(0, T; (A1/4)) weakstar,
and thus b,(t) and b’,(t) are uniformly bounded in L(0, T;(A3/4)) and
L(0, T; (A1/4)). We now use the compactness of the injections (A3/4) (A/2)
and (A1/4) "-’) L2(’) and recall (6.16) (while in the proof of Lemma 4.4 we used the
compactness of the injection (A3/4) (A1/4) H()). AS a consequence there is
a subsequence, still subindexed by n, such that

(6.24)
bn(t) (t) strongly in L(0, T; @(A1/2)),

b’,(t) ’(t) strongly in L(0, T; L2(f))
(counterpart of (4.35)). A fortiori, from (6.22), (6.24), and (6.16), we obtain for the
sequence {th,} of solutions of (2.20a-d)"
(6.25) 1 -= llano 1,

(6.26) 1 --II  ’11 1,

as well as (from (6.22c))

(6.27)

Thus, 4(t) satisfies

(6.28)
Ou

O,

=0 and

=0
from (4.33a) written for 4’,,,

A4I 0 from (6.27)

on [0, T]. Then, for any T>0 arbitrarily small, Holmgren’s classical uniqueness
theorem of Remark 1.4 implies

(6.29) b -= 0 in Q
and this contradicts (6.25)-(6.26). The proof of Lemma 6.2 is complete.
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As an immediate corollary of Lemma 6.2 and (6.20) we obtain Corollary 6.3.
COROLLARY 6.3. For any T> O, we have

(6.30) +IAI= d} [(pC,- eGhC,)T- ’C=311(, l}]l.

Step .(vii). We next "absorb" Is (Ab)2 dE by Is (0(Ab)/0u)2 dE by using assump-
tion (1.24).

LEMMA 6.4. Under the uniqueness property (1.24), inequality (6.30) implies thatfor
any T> Tu, Tu as in (1.24), there is a constant CT > 0 such that

(6.31) fv. lAt12d, CT I5,. (0(AI))) 2- d.

Proof. Suppose by contradiction that there is a sequence {bn (t)} of solutions to
problem (2.20a-d), as in (4.28a-d), (4.29a, b), such that

(6.32a) fv, IA"I2 d 1,

(6.32b) L (O(Ach"))
Then, by the preceding analysis, each solution b,(t) satisfies (6.30) and thus the
uniform bound as in (4.31) holds true. The same argument as in (4.31)-(4.34) applies,
so that from (4.34a) coupled with (A3/4) V, V as in (1.4), we deduce that

(6.33) {A1/2bn} is uniformly bounded in L(0, T; (A1/4)).

Hence, by (2.32) and (2.33), we also have that

(6.34) {Ath,} is uniformly bounded in L(0, T; (A1/4)).

By (2.32) and (4.29) we actually have IV(A.)IC([0, T];L2()) and Ab,
C([0, T]; L2(f)). Thus, Ab, C([0, T]; HI()). By standard trace theory we deduce

(6.35) uniformly bounded in C([0, T]; H1/2(F)),

and thus

(6.36) {Ab,[r} lies in a compact set of C([0, T]; L2(F)).

Hence, recalling (4.34a, b) we obtain

(6.37) A6,[- A[z in L2(0, T; L(r)) strongly.

Invoking (6.32a), we then conclude that

(6.38)
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On the other hand, (6.32b) implies

(6.39)

Thus b satisfies

(6.40)

03/7

from (4.33),

=0 from (6.33)

for 0 -<_ -<_ T, < T. The uniqueness property (1.24), which we have assumed, then implies
that 4 0 in Q, a contradiction to (6.38). The proof of Proposition 6.1 is complete. [3

Remark 6.1. A (much simpler) modification of the arguments above leads to the
sought-after exact controllability on X of problem (1.1a-d), (1.2) under different
assumptions, whereby the undesirable assumption (1.24) on uniqueness is eliminated
and replaced with another assumption on the vector field h, stating qualitatively that
the constant Gh in (6.4) is small with respect to the constant p in (1.23).

To state this new result, we first introduce some constants:

4Gh max I7(div h)l from (6.4)

Cp Poincar6 constant

(6.41)

and according to the norm-equivalences (2.32), (2.33),

(6.42) clla3/4fll _--< f IV( Xf)I = da <-_ cIIa3/afll

(6.43) kllA’/4fllf<- Ia 1 7fl dO<= KIIA’/4flI;

finally

(6.44) C max {llA-1/41l KCp}.
We can now state the following variation of Theorem 1.5, which extends Theorem 1.1
to the case where Gh 0 (see IT1] for a similar result for the wave equation with
Dirichlet boundary control).

THEOREM 6.2. The conclusion of Theorem 1.1 holds trueforproblem (1.1a-d)-(1.2),
with T sufficiently large as in (6.51) below, provided satisfies the following geometrical
conditions. There exists a vector field h(x)=[hi(x),’", hn(x)] C2(1) such that

(i) h. u>=constant T>0 on F (assumption (1.21));
(ii) , H(x)v(x) v(x) dO >= p Iv(x)l,, dO, for some p > 0 and all v [L(f)]"

(assumption (1.23));
(iii) With reference (6.41)-(6.44),

(6.45) p(c+ k)-2GhCm >0.
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Proof Only the modifications on the proof of Theorem 1.5 will be indicated. We
return to identity (6.2) and estimate as follows:

If chV(div h) V(Ach) dQ.>___2G f [Ab[[V(A4))[dQ
2 o

(6.46)

in place of (6.5). Similarly,

2 o

(6.47)

--2GIIAIIQII/V(A)IIIQ (by Schwarz’s inequality)

>-_-2GhCIIA/4IIoIIA/44II Q (by (6.16) and (6.42))

>-2Ghf[[a-1/4[] IIa3/4q Q

6,V(div h) VcktdQ>=-2Gn | 16,11v6,1 dQ-2hII6,IIQIIIvb, IIIQ
d

->- -2GCIIIV4,,III
-2GCpKIIA’/44,IIQ (by (6.41) since bt on )

in place of (6.6). Thus, using (6.46), (6.47) in the RHS of identity (6.2) and recalling
assumption (ii), we obtain

RHS of (6.2) p f [V(AqS)12+lVqStl 2 dQ-2GhC[IA--1/4[] 11A3/4[[

(6.48) 2GhCpK IIA/44,, II2Q
>= [p(c/ k)-2Ghfm]{[[A3/4]]

+ [[A1/4,ll}+o,,h (by (6.44)).

Thus, invoking the time invariance identity (2.29) and (2.39) as well, we obtain

RHS of (6.2) [p(c + k)- 2GhCm] T{]IA3/4611
(6.49)

const,, { [1A3/4[12fl + [[a/4 I1}.
Moreover, for the LHS of (6.2) we have, as before,

(6.50) C,,h
k Ou ]

dE+ eCh [[A3/4II dt LHS of (6.2)

(see (2.45), or else (6.1.3) combined with (2.42)).
Thus (6.50) and (6.49) combined yield (by proceeding as in obtaining (2.47) in

particular, by using the time invariance (2.29))

C,,
k Ou ]

dZ{[P(c+k)-ZGhC-eCh]T-cnst’"}ll{O’O

and the conclusion follows via Lemma 2.1(ii), (2.11) with

consth(6.) >
p(c+ k)-2GhCm

Appendix A. Proof of a general identity and of (2.22). For future reference to exact
controllability problems for (1.1a) with boundary conditions of a type possibly different
from (1.1c, d), we shall first derive a general identity for only solution of (2.20a)
with no use of boundary conditions (2.20c, d), in terms of an arbitrary smooth vector
field h(x) C(fi) (see (A8) below). Only subsequently, we shall specialize such an
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identity (A8) to h that satisfies also the boundary conditions (2.20c-d), and to h(x)
that is a radial vector field h(x)= x-Xo, thus obtaining (2.22).

hlentity for 4 that satisfies (2.20a) for generM vector fiel h(x). Let h(x) C2().
With reference to Remark 1.4, we multiply (2.20a) by h. 7() and integrate over Q.
We shall use the identity

obtained from div (fh) h. 7f+f div h,f scalar function, and the divergence theorem.
In addition, we shall use the identity

(A2)

I I f ,V Ol2 div h dQ,
Q
HV. VO dQ+

O

already proved in, say, IT2, (A3) of Appendix A] (with similar multiplier h.
where H H(x) is the transpose of the Jacobian matrix of h(x):

(A3) H(x) Oxl
Oh,,
Ox

Ohj

Oxn
Oh.
OXn

Term ch, h" V(A4). Integrating at first by parts in t:

b,h. V(Ach) dt d[= ch, h. V(a&) da 6,h" V(a4,) dQ
0 Q

(using (A1) with h replaced by &h, withf A&, and with div (h) V&- h + div h)

o
(A4)

+ f ath" V6, dO+ f A6,, div hdQ.
Q Q

If we use identity (A2) with O , for the third integral on the right of (A4),

o- [V,lZh.d+ h.V,d
2 z Ov

(AS)

f  lfQ .V,.2divhdQHVO,.V,dQ+
Q

+ [ A,&, div h dQ.
Q

Using Green’s first theorem on the last integral at the right of (A5) along with the identity

V,. V( div h) ,V(div h ). V + ]V, ]2 div h,
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we finally obtain from (A5)

I c,,h’V(Ad?)dQ=[(da,,h’V(Ac))a]-I.ch,Ach,h’vdZ- IV4,,12h vd;+ h. Vb, dE
0v

(A6)
+ b div h dE HV4," V4 dQ

_l f ,Vdpt,2 div hdO_ f qbtV(div h) VqbtdO.

Term AZh V(Ath). Using identity (A2), this time with O= Ab, we obtain

f A(A’)h’V(Ack)dQ=f.(ACk)h’V(ZXck)dE-lf_
(2 0/

[V(At)12h v dE

(A7)

f I f iV(Ac)la div h dO.HV(A4)" V(Ath) dQ+- oQ

Summing up (A6) and (A7), we finally obtain

0(A4)
h. V(Ab) dE+ h. VdAdE+ 4 div h dE

Ou Ov Ou

--1rE [Vt]2h v d’-l fr. ]V(A4’)[2h v dE- fr, chtAchth v dE

(A8)
HV(Ath)" V(Ath) dQ+ HVbt" VbtdQ-b {Iv,I-Iv(A)I2} aiv hdQ

Q

+ f th,V(div h). VdptdQ-[(qb,, h. V(Ab))n]ff,
Q

which is the sought-after identity for b satisfying (2.20a).
Specialization of left-hand side of (AS) to 41 satisfying also the boundary conditions

(2.20c, d). Recalling (2.20c, d) we have:

(A9a) htly.--0, Vb_t_F and IVthl=lOb/oul-=0 one by(2.20d),
(A9b) Oqbt/Ovlr.=O VttA_l-" and IV(tl---lOt/O/2[-0 inE.

Thus, using (2.20c, d) and (A9a, b) in the LHS of (A8) we find that this simplifies to

IO(A’) h. V(Ad) dE
l fn0) LHS o (AS) - IVa)lh a.

Specialization of the right-hand side of (AS) to radial vector fields h(x) x- Xo. In
this case, recalling (A3) we obtain

(All) H(x) -= identity matrix, div h=- n dim gl,
which used in the RHS of (A8) yield

RHS of(AS)= [ {/Vb,12+IV(Ab)I2} dO
Q

(A12)

J lVl=-IV(A)12 dQ-[(bt, h. V(Ab))]or.
Combining (A10) and (A12) proves (2.22), as desired.
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Appendix B. Proof of identity (2.23). Again, we shall first obtain an identity, (B3)
below, for b that solves only (2.20a) and for an arbitrary smooth vector field h C2((1).
Next we shall specialize this identity (B3) to the case where 4) satisfies, in addition,
the boundary conditions (2.20c)-(2.20d) and, moreover, the vector field is radial.

We multiply (2.20a) by Ab div h and integrate over Q by parts in and by Green’s
first theorem:

(B1)

Also,

Ior ln A(Ab)Ab div dflh dt

(B2) IO(AeP-----) A div hdE- f IV(A)[E div hdQ
ov

-[ AbV(div h). V(A) dQ.
Q

Summing up (B1) and (B2), we find the identity

{IV,I-IV()I} div h dQ
Q

, div h d- div h dN
0

(3

+ . V(, div h) dl- , div h dF
0

for 4 satisfying (2.20a).
Now if satisfies, in addition, the boundary conditions (2.20c, d), we have (for

future use in 5) the identity

{1,1 I(l} div h dQ

(B4) _[ 0.(0) 4 div h d+ [ V(div h). V() dQ
Ov JQ

,V(div h). V4, dQ+ V. V(, div h) da
o

Finally, if h(x) is a radial vector field, then (B4) specializes to (2.23).
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Appendix C. Proof of Lemma 2.3. We begin by recalling definition (2.2), the
definition of the positive self-adjoint operator A. It suffices to show parts (i) and (ii),
since part (iii) is a specialization of (ii) for b solution of problem (2.20a-d).

Part (i). This follows from known interpolation results of Grisvard [G1] (see also
Lions and Magenes [LM1]). If 0< 0< 1, with 40+1/2 a nonpositive integer, then

(C1) @(A)=[(A),L(l’)]_o={fH4(f) B.f=O, ifm<40-1/2}
where the B are the boundary operators defining A and m their order. In our case
we have B =]i- and Bz=o/ovlv of orders zero and one, respectively. Then (C1)
specializes at once to (2.30) and (2.3l) for 0 =-] and 0 1/4, respectively.

Part (ii). By (2.31), the @(A/a)-norm, defined by (1.6), is equivalent to the
H(f)-norm, which in turn is equivalent to the gradient norm by Poincar6 inequality.
This proves (2.33).

As for (2.32), we first note that - [7(zf)l2 dO=0, i.e.,

(C2) Af_=constin withflv=0f =0

readily implies f---0 in f. In fact, the boundary conditions give IVfl [Of/Ov] =0 on
F; hence f=f-= 0 on F. These, coupled with O(f)/Ox O(const)/Ox, i.e., Af 0 in
f, yield f,;-= 0 in f; hence f const in f and finally f--- 0 in f, as desired. Similarly,
if [V(Af)l Lz(12), withf=Of/Ov=O on F, i.e., f=f 0 on F, thenfe H3(a). In fact,

O(Af)/OXalongwith= fliAfx = v LZ(f) andL2f; 0 on F yield f H2(O) by elliptic theory. This
0 yields f () by Poincar6 inequality; thus fH(f), as

desired.

Appendix D. The minimal norm steering control. Once exact controllability is
established, the following elementary argument provides the minimal norm steering
control u. We shall first carry out the reasoning for an abstract equation, and then
specialize its conclusions as they apply to, say, problem (1.1a-d) with Fo=, on the
state space H(f) LZ(f) with control space L(Z).

Abstract treatment. Consider the abstract equation

(D1) f=gy+u, y(0) =yo,

being the generator of an s.c. semigroup of operators on the Hilbert space Y and
,.q U D(.) Y being a linear, generally unbounded operator from another Hilbert
space U to Y, with ’- continuous from U to Y (without loss of generality we
may assume that is boundedly invertible). The solution to (D1) with Yo =0 is

(D2) Tu e(T-t),5 --1 u( t) dt.

Let z be a target state in Y and consider the following minimization problem: Minimize

L2(O, T; U)

over all u L(O, T; U) such that -u z, under the (exact controllability) assumption
that there exists at least one such u. If we indicate by ((,)) the duality pairing between
Y’ and Y, the Lagrangian can be written as

L(u,p)=1/2(u,u)O.T;)--((p,ru--z)), p Y’.

Taking L, 0 yields

(D3) uO= pO; thus z rU=r-p,
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where w. is the conjugate operator from Y’ to t2(0, T; U) defined by ((v, ,TU))---
(?rV, U)L2(O,r;c), V Y’. From (D2) it readily follows that

(D4) pO=. eC*r-,)j-pO,

where J is the norm-preserving isomorphism Y onto Y’ given by Riesz’s theorem.
Note that

is the Hilbert space adjoint Y- L2(0, T; U) of r which we have used in the paper.
Moreover, from (D3), (D5) we obtain

(D6)
((pO, z))= ((po, ii . poll L2tO.r;u) II:-lpl122L (0,7"; U)

>= C.rllJ-pll2v=
where we have used the lower-bound inequality for *r which states that r is
L2(0, T; U) onto Y, i.e., the exact controllability assumption on (D1). Thus, the
operator r defines an isomorphism Y’ onto Y by the Lax-Milgram Theorem
applied to (D6), and from (D3) we have

(D7) pO= [plo, p] (r.)-lz e y,.

Hence, by (D3), (D4), and (D7) we find that the optimal minimal norm steering control
is given by

(D8) u= ,.’(T.-)-Iz-- * es*(T-t)j-l(.T.o)-lz

in terms of the target z and the dynamics s, , T-
Specialization to problem (l.la-d) with U U x U2, U1 L2(F), U2 {0}, Y

[(Al/4)]t X [(A3/4)] so that Y’ (A/4) x (A3/4). Here the norm preserving
isomorphism J from Yonto Y’is defined by J A-1/2x A-3/2 so thatifp [pl, p2] Y’
then j-lpO= [A1/2p, A3/2p] y. Using the operator model for problem (1.1a-d) (see
e.g., [FLT1, App. C, case 2]) we obtain that

(D9) uO= .pO N. e*(r-,)j-pO=

where b solves problem (2.9a-d) with

0A6(t)

(D10)
4)= A-3/z[j-lp]2 p z3(A3/4)’

d -a-I/2[j-p] -p.1 (al/4)

The case U {0}, U L(F) with Y= L(f) x H-2(2) can also be treated (see [FLT1,
App. C, Case 1]) and leads to

(Dll] u=* e’*(r-’J-p=
where solves problem (2.9a-d) with 6=--p H() and O=p L2(). The
minimal norm steering control (Dll) is the one used in [L3] (through a different
approach) in the case gl =0, g2 L2(Z) for problem (1.1a-d), while the case
g2 0 which was proposed for investigation in [L3] leads in fact to the minimal norm
steering control (Dg).

A more extended discussion of the conceptual content of this Appendix is given
in [LT3, App. B].
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EXACT BOUNDARY CONTROLLABILITY OF MAXWELL’S
EQUATIONS IN A GENERAL REGION*

JOHN E. LAGNESE

.Abstract. By the Hilbert uniqueness method, it is proved that the evolution of solutions of Maxwell’s
equations in a general region can be exactly controlled by means of currents flowing tangentially in the
boundary of the region.

Key words. Maxwell’s equations, exact controllability, boundary controllability
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1. Introduction and problem formulation. Let 12 be a bounded, open, connected
region in E3 with a smooth boundary F. We suppose that is occupied by an
electromagnetic medium of constant electric permittivity e and constant magnetic
permeability/x. We further assume that the electrical charge density p and the current
density J in 12 are zero. Let E(x, t) and H(x, t) denote the electric field and magnetic
field, respectively, at a point x 12 at time t-> 0. These satisfy Maxwell’s equations

OE OH
(1.1) e-curlH=O, /x+curlE=O, divE=divH=O in12, t>O.

ct Ot

It is assumed that the time evolution of the electric and magnetic fields is driven
by an externally applied density of current flowing tangentially in F. We then have
the boundary condition

(1.2) vH=-J onF, t>0,

where v is the unit normal vector to F pointing into the exterior of 12. Let E, H
denote the distribution of E and H, respectively, at time 0:

(1.3) E(0) E, H(0)-- H in 12.

In this paper we consider the following problem.
Exncx CoNxnOLLnBILIa’V PnOBLEM. Given the initial distribution {H, E}, a

time T>0, and a desired terminal state {H, E r} with {H, E}, {H r, E T} in appropri-
ate function spaces, find (if possible) a surface density of current J in a suitable
function space such that the solution of (1.1)-(1.3) satisfies

E(T)= E r, H(T)= I-t T in 12.

Remark 1.1. Because solutions of (1.1) propagate with finite velocity, the exact
controllability problem can have a solution only if T is sufficiently large. The determina-
tion of T is part of the problem.

The exact controllability problem for Maxwell’s equations with boundary control
has been studied previously by Russell [6] for a right circular cylindrical region f,
and by Kime [2] for a spherical region f. In the cylindrical region situation, it is
assumed that the fields E and H (and control J) do not depend on the axial coordinate.
The control problem can then be transformed into a problem of simultaneous exact
controllability of a pair of ordinary wave equations in a circular region (i.e., the exact
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controllability of two wave equations by means of a single control). The latter control
problem is then solved by the moment problem method. A moment problem approach
is also used in [2] to find a solution to the exact controllability problem in a spherical
region. In both [2] and [6], w2 boundary controls J are employed. It should be noted
that the control functions J considered in [6] are further constrained by a preassigned
direction in the tangent space to F, a very important requirement for applications. The
control functions are not so constrained in [2] nor will they be in this paper. (In fact,
for a general region, it is a challenge to even formulate such a constraint in a reasonable
way.)

The moment problem approach employed in [2] and [6] is not feasible for dealing
with the exact controllability problem in a general region. Rather, we shall attack the
problem by means of the Hilbert uniqueness method (HUM) introduced by Lions [4],
[5]. In this method we consider, in addition to the system (1.1), (1.2), the homogeneous
adjoint system

aq
(1.4) e-curlq=0, /x+curlq=0, divq=divq=0 inf,, t>0,

Ot ot

(1.5) vxq=0 onF, t>0.

Solvability of the exact controllability problem is shown to be equivalent to uniqueness
of solutions of (1.4), (1.5) when certain additional boundary data are prescribed. We
then construct Hilbert spaces associated with these uniqueness results (this can be
done in infinitely many ways) and prove exact controllability in the duals of these
spaces. In this way we obtain a variety of exact controllability results, depending on
the particular Hilbert spaces constructed. In all cases, the method is constructive: the
control J is defined in terms of the solution to (1.4), (1.5) with initial data

(1.6) q(0) o, q(0) qo in 12,

where q, qo are uniquely determined from the data of the original control problem.
The remainder of this paper is organized as follows. Section 2 defines the appropri-

ate function spaces and discusses the well-posedness of problem (1.4)-(1.6). Energy
estimates for solutions of (1.4), (1.5) are derived in 3 (Lemmas 3.1-3.4); these are
the basis for the application of HUM to our control problem. Three different exact
controllability results are presented i_n Theorems 4.1-4.3 of 4. They are distinguished
by what we assume regarding regularity of the datamthe geometry of F and the
regularity that the control J possesses. In particular, it is proved that the system
(1.1)-(1.3) is exactly controllable in the space J(12).(12) (see (2.1), (2.2) below)
using 2(1-’ (0, T)) controls, provided F is star-shaped with respect to some point
Xo f and T is O(x//z) (this is made precise in (3.15) below).

2. Function spaces and well-posedness of (1.4)-(1.6). The spaces L2(Iq), L2(F),
Hk(f), Hk(F) will denote the standard real L2 and Sobolev spaces over 12 or F as
notation implies. We shall use script notation to denote the corresponding spaces of
R3-valued functions:

2(12) (L2(12))3, 2(r (L2(F))3,
Y( (12) (Hk (l)))3, Ygk (F) (H(r))3,

with the product topology in each case. The inner product and norm, respectively, in
2(tl) are denoted by (.,.) and I1" II.



We also introduce the following spaces (the notation is adopted from Ladyzhen-
skaya and Solonikov [3])"

(2.1) J(f) closure in 2(f) of {XIX C((), div X 0},

(2.2) .(1)) closure in 2(f) of {XIX C(), div X 0},

where C denotes the class of infinitely differentiable N3-valued functions. For k->_ 1,
we set

jJ,(f) {XIX (a), v. X 0 on F},

with the topology in each case that induced by A(). We further introduce

Y(O) {XlX e Y(O), x curl X 0 on F},

J(a) {xlx J(a), . curl x 0 on F}

with topology in each space inherited from (). The spaces above are known to
have the following properties (see [3, 7])"

with each space dense and continuously embedded in the one that follows it. In addition,

If k 1, then the map curl is a continuous linear bijection of J)()
(2.4) (respectively, J(O2) onto J-(a) (respectively, J-’(a)), where

J(a) and J(a)

It follows from (2.3), (2.4) that Jl,(a) and J(a) may be renormed using

(2.5) I111: Ilcurl , IIll:(m Ilcurl 11,

and that the norms (2.5) are equivalent to the norms on these spaces.
Remark 2.1. If p Jl(a) and 6 e J(a), we have

(curl , ) (, curl 0);

hence

I(curl , )1 I111
Therefore the mapping curl " J(a)J(a), may be extended to a continuous
linear mapping,from J(O) into (J(a))’, where (J(O))’ denotes the dual of
with respect to J(a). Similarly, the mapping p curl " J(a) J(a) has an extension
to a continuous linear mapping from J(O) into (J,(O))’, the dual of J,(O) with respect
to J(a). From (2.4) we may see that each of these extensions is a homeomorphism.

We now consider the well-posedness of the problem (1.4)-(1.6). Proceeding
formally for the moment, let {, O} be a solution. Since div 0, there is an N3-valued
function W, determined up to a gradient V such that e curl From the equation

0 -curl O + e’ -curl O + curl W’,

there is a real function g such that

O=W’+Vg.
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It is classical that the function f may be chosen so that g 0 and that, with this choice
of f, W satisfies (see, e.g., Friedrichs [1])

(2.6) e/_t W"+ curl (curl W) 0, div W 0 in 12, > 0,

(2.7) v x curl W 0 on F, > 0,

(2.8) W(0) W, W’(0) ,o
where e curl o= W.

Conversely, if W is a solution to (2.6)-(2.8), then setting eo curl W, q W’, we
see that {q, q} is a solution to (1.4), (1.5) with initial data o (l/e)curl W, q,o= W1.

Now let us make the correspondence between (1,4)-(1.6) and (2.6)-(2.8) precise.
First, we take the following variational problem as the definition of the problem
(2.6)-(2.8)"

(2.9) etz(W", l)+(curl W, curl I)=0 YleJl(12), t>0,

(2.10) W(0) W e J’(12), W’(0) W’ e

This as justified by the fact that (2.6)-(2.8) and (2.9), (2.10) are equivalent for smooth
Jl(12)-valued functions W. Next, we note that the form a( W, if’)= (curl W, curl I)
is strictly coercive on J(12). Since J1(12) is dense in (12) with continuous injection,
it follows from standard variational theory that there is one and only one function W
satisfying

w c([0, ); ’()), w’ c([0, ); 3()), w" c([0, ); (’())’)
and (2.9), (2.10). In (2.9), (W", I’) is interpreted in the (J(12))’-J(12) duality.

Remark 2.2. In view of Remark 2.1, (2.9) is equivalent to

(2.11) e/zW"+curl (curl W)=0 in (J(12))’.
2.1. Weak solutions of (1.4)--(1.6). Suppose that { W, W} satisfies (2.10) and let

W be the solution to (2.9), (2.10). Define

(2.12) eo curl W, W’.

Then

(2.13)

(2.14)

c([0, ); J(a)), ’e c([0, ); (jl()),),

c([0, ); 3(a)), q,’e c([o, ); (J’())’),
o(O) o-" (l/e) curl WeJ(12), q(0) q,-"

curl o 0 in (J,(f))’.
From (2.12) it is clear that

(2.15) eo’-curl q, 0 in (J(f))’.

Conversely, suppose that {q, q} satisfies (2.13)-(2.15) and

(2.16) o(0) qo
From (2.4) there is a unique function We C([0, ); jl(f)) such that curl W= eo.
Since, from (2.14), curl q eo’= curl W’ in (J(12))’, it follows from Remark 2.1 that
q W’. Therefore W satisfies (2.11), and

w(o) w, w’(o)

where wOe J1.(12) is defined by curl W= ep.
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We have therefore proved Theorem 2.1.
THEOREM 2.1. Assume that {qo, qo} j(f)x j(f). There is one and only one pair

{q, d/} that satisfies (2.13)-(2.16).
Remark 2.3 (Conservation ofenergyfor weak solutions). From (2.9) it follows that

(2.17) etx]] W’(t)ll2+ Ilcurl W(t)ll= e/xl W][2+ [Icurl Wl[ 2.

In terms of q, , this conservation law is

(2.18) /x II0( t)ll z + e I1 ( t)ll 2 =/x Oll 2 + e  11 =.
2.2. Strong solutions of (1.4)-(1.6). Let us set U W’ and formally differentiate

(2.11) in t. Then U satisfies

(2.19) elzU"+ curl (curl U) 0 in (J(tq))’,

(2.20) U(0) W, U’(0) (1/e/x) curl (curl W).

The system (2.19), (2.20) has a unique solution if

W J(Ft), curl (curl W)
that is, if curl W J,()). It is standard theory that this solution is exactly W’; hence
we have

(2.21) W’ C([0, oe); J’(f)), W" C([0, ee); ?(a)), curl

It follows from (2.21) and the discussion leading to Theorem 2.1 that we have the
following theorem.

THEOREM 2.2. Assume that {o, qt}J,()xJ(l)). There is one and only one

pair { (p, g/} satisfying

{(4, 0} C([0, OO); Jl.(a X Jlu(’)) {q9’, t’} C([0, oo); J(") x j(’-))

and (1.4)-(1.6).
Remark 2.4 (Conservation of energy for strong solutions). From (2.17), applied to

U W’, we have the conservation law

(2.22) e IIcurl (t)[[2/ x Ilcurl 4(t)ll 2=- Ilcufl ,llZ/ z Ilcurl
Let us take Theorem 2.2 a step further by differentiating (2.19) in t. Setting V U’,

we obtain

e/x V" + curl (curl V) 0 in (J1 (f)),
V(0)= -(1/e/x) curl (curl W), V’(0) -(1/e/x) curl (curl W).

This problem is uniquely solvable, and the solution is exactly W", provided

(2.23) curl (curl W)J,(ft), -(1/e/x) curl (curl W) e J(f).
In terms of {qo, 4,o}, (2.23) is curl qo j.(f), curl o jl,(f), that is,

(2.24) qo J*(12), qo j.().

With (2.24), the solution of Theorem 2.2 satisfies

(2.25) q C([0, oe); J*(f)), q’ C([0, oe); J’,(f)), q" C([0, oe); J(f)),

(2.26) C([0, co); J*(f)), 0’ C([0, m); jl(O)), ,, C([0, eo);.(O)).
TORM 2.3. Assume that {qo, to}Gj,()j,,(). Then the unique solution

{q, p} of (1.4)-(1.6) satisfies (2.25)-(2.26).
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3. Energy estimates for solutions of the homogeneous problem. In this section we
will derive energy estimates for solutions of (1.4), (1.5), that will be the basis for the
application of HUM to the exact controllability problem.

We will assume that e 1 in (1.4), which amounts to the change t- t/e in the
time scale. (The reverse transformation will be done at the end.) Thus we consider the
system

(3.1a) ---curl g, 0,
Ot

0+(3. lb) 7 curl o 0, div o div 0 in Q f x (0, T)
ot

(3.2) vx,=0 onY=Fx(0, T),

where T> 0 and 7’ =/x/e. The initial values are assumed to satisfy

(3.3) ,(0) ,o j.(f), g,(0) o j(f).

The solution to (3.1)-(3.3) then satisfies

C([0, T]; J*(f)), ’ C([0, T]; J’(f)), " C([0, T]; J(O)),

6 c([0, T]; J*(n)), q,’ C([0, T]; J’(n)), " C([0, T]; (n)).
We introduce the vector field m in 3 defined by

m(x; Xo) x Xo,

where Xo is fixed. Let us form the inner product of (3.1a) and curl (m. Y’)tp and integrate
the result over f x (0, T). Thus,

(3.4) (q’- curl p, curl (m. V)0) dt=O.

We have

Io" (q’, curl (m. V)0) dt (curl p’, (rn. V)0) dt + . (((m. V)O) x q’) dr dt

(3.5) -7 (p", (m. V),) dt
o

=-,(p’, (m. V)b) + 3/ (p’, (m. V)p’) dt,
o

since v x ’= 0 on E. We set

X =-,(,’, (m. Xz)0)[o= (curl , (m. 7)@)1r.
Then (3.5) may be written:

Ior 3’IO ff,:z 3___7 IO ,l:z(q’, curl (m. V)p) dt= X +- div (ml dx dr-
2 I0 dx dt

(3.6)

foX +- m tp dFdt-
2

dx dt.

Next, we note that

curl (m. V)O 2 curl @+(m. V)curl q-curl ((O" V)m).
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But (. V) rn , so that

(curl ). (curl (m. V)O) Icurl 12+ (curl ). ((m. V) curl

Therefore

(3.7)

icur $12+1/2div (mlcur q,12)_lcurl q,[2

-1/2lcurl $12+1/2div (mlcurl ql=).

o
(curl q,, curl (m. V)$) dt=-- [curl $ dx dt+- m. vlcurl q,I dF dt.

Substituting (3.6), (3.7) into (3.4), we obtain

(3.8)

Xt- I,’l 2 dxdt+ [curl 12 dxdt+ m. v(rl -Icurl $1) dF dt=O.

Next, we form the inner product of (3.1b) with ’ and integrate over x (0, T).
We obtain

o I0’1 dx de + (curl , 0’) dt

e I@’l = dx dt + (, curl ’) dt + v. ( x ’) dF dt

e I’1= dx dt + (, dx dt + (v x ) dF dt

Therefore

(3.9)

where

7 fo l’12 dxdt=Iolcurl [ dxdt-X,

X2 (q, o’)lff (o, curl q,)lo.
Substitution of (3.9) into (3.8) yields

(Tl’12+lcurl’12)I. v(Tlq"12-Icurl ql=) dF dr,dx dt 2(X1 +X2)+ m.

which may be written

(elcurl 1+ 612) dx dt/zlcurl
(3.10)

2/x(X,.+ X2)+/z / m. v(,lq,’l=- Icurl 1-) dF dr.
.Ix
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(3.11)

If we replace T by T/e and rewrite (3.10) in the original.time scale, we obtain

(elcurl q12+ ql2) dx dt/x]curl

2e(x +x)+ fm. v(etq,’[- Icurl q,I) dr dt.

But since

(3.11 becomes

d f. 12 Icurl pl -)d- (elcurl o +/x dx O,

r(e curl oll / curl qtll 2)
(3.12)

2elx(X, + X2)+/x J m. u(e/zl4,’12- [curl kl2) dF dt.

3.1. A priori estimates. Let c, c be the smallest constants such that

IIx ’()-<-c, curl xll
Ilxll.2,-<_ c211curl xll vx

Then

Define

(3.13)

We have

Ixl c2(llcud (T)II [[curl (r)ll + Ilcurl o11 Ilcud qll)
<= (c2/x/--)(ellcurl 112/ Ilcufl

R(xo) sup Im(x; Xo)l.
x

Ix,
<_ c,/v/-)R (xo)( e llcurl

Therefore

(3.14) 2elX,+X=l2max[c,R(xo), c2](e Ilcurl ll=+llcurl 6112).
Let us define

(3.15) To 2 max [cR(xo), c2].
From (3.12)-(3.15) we have

(3.16) (T-To)(ellcurlll2+llcurl dF dr.

We now introduce a geometric assumption" F is star-shaped with respect to some
point Xo , i.e.,

(3.17) m.0 onF.
With (3.17), (3.16) simplifies to

(3.18) (T-To)(ellcurll}2+llcurlOllz)e2 fm l’ldrdt.
Formula (3.18) has been obtained under assumption (3.3) on the data , o. Assume
that T> To, and introduce the norm

(3.19) [[{o, o}11 I0’1 dr dt
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Let F1 be the completion of J*(l)x J*(l)) with respect to the norm (3.19). It follows
from standard trace theory that the imbedding J*(l)) x J*() - F1 is continuous. From
(3.18) we have

(3.20) F, Jl.r(’ X jlu()

algebraically and topologically.
LEMMA 3.1. Assume that F satisfies (3.17) and that T> G, where G is defined in

(3.15). en for all {o, o} F,

(3.21) (T- To)(e [[curl ll2+[[curl ll2) 2R(xo) I’1= dF dt.

Remark 3.1. Another characterization of G is

F1 {{o, o}lo G slz(), o jl(), IE G Hi(0, T; 2(r))}.
If the star-shaped condition (3.17) is not satisfied, we obtain from (3.16) the

estimate

(3.22) (T- To)(e Ilcurl 12+ llcurl 112) R(xo) f (l’[=+ el’l2) dF dr.

Assume that T > To and introduce the space F, the completion ofJ() x J() with
respect to the norm

I1{, }11 (1’12 + I’1=) dr dt

We then have from (3.22)

algebraically and topologically.
LZMMa 3.2. Assume that T> To, defined in (3.15). en for all {o, 6o} F,

(3.23)

(T- To)( }cur ll2+llcur 11=) max (, e)R(xo) z (1’12+ I’1) dF dt.

We shall now use (3.18), (3.22) to obtain additional energy estimates. Let us
assume that the initial values satisfy

0 0
From (1.4) we have

(3.24) ep(t)-ep-curl O(s) ds=O, 0(t)-0+curl (s) ds=O in Q.

We introduce the functions

io io(3.5 o()= (s) s+O, x(= (s s+x,
where O, o are chosen so that

(3.) Xo e J(a), O e

(3.27) curl O= ep, curl o= _o.
Let us assume for the moment that O, Xo can be so determined. From (3.24)-(3.27)
we have

(3.28) e’-curlO=0, O’+curl=0, divx=divO=0 in Q,
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(3.29) vx=0 onZ,
(3.30) X(0) X J*(f), (0) O J*(f).
We may therefore apply (3.18) (or (3.22)) to the solution of (3.28)-(3.30) and thereby
obtain the following energy estimates:

(3.31) (T- To)(llll=+lll12) m. ll dr dt

provided (3.17) holds; otherwise

(3.32) (T- To)([l[l=+llll=)R(xo) (112+ 112) dr dt.

Assume that T> To, and introduce the norm

provided (3.17) is satisfied, and the norm

I1{, }11=: (112+ I[=) dF dt

in the general case. Define

G completion of J(O)x J() with respect to

G= completion of J(O)x J(O) with respect to II" ll-
From (3.31), (3.32) we have

(3.33) G J(O) x

algebraically and topologically whenever (3.17) is satisfied, and

(3.34) G2 J(O) x

algebraically and topologically in the general case.
We have therefore proved (modulo (3.26), (3.27)) the following.
LMMa 3.3. Assume that F satisfies (3.17) and that T> To, where To is defined in

(3.15). en for all {o, @o} G,

L 3.4. Assume that T> To, as defined in (3.15). en for all {o, @o} G,

(T-To)(]]]]+l]@ll)R(xo) max (e, ) ([]+ll:) dF dr.

Remark 3.2. From the estimates above we obtain the following uniqueness results
for Maxwell’s equations:

(i) Let , @ be a solution to the Maxwell system (1.4), and assume that T> To,
defined in (3.15). Then

@==0 onE{,@}=0 inOx(0, T).

(ii) If T> To and (3.17) holds, then

@=vx=0 on{,@}=0 inOx(0, T).

Proofof (3.26), (3.27). Since the map - curl is a homeomorphism from J(O)
(respectively, J(O)) onto J(O) (respectively, J(O)), there are functions ffo j(O),
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q3 J(f) such that

We define

curl q3,
,9= e, + eVf,

where f, g are chosen according to

Vf -div q;o in f,

o curl o.

V2g div

Then (3.27) is satisfied and

X= -/xq+ hVg,

--v. , onF,
Ov

inl2, g=O onF.

v.O=0, vxx=vxVg=0 onF,

the latter equality being a consequence of the fact that u x V is a vector of tangential
first-order differential operators in F. Thus X, O satisfy (3.26).

4. Exact controllability. In this section we will use the energy estimates of 3 in
conjunction with HUM to prove exact controllability to rest of solutions of (1.1)-(1.3).
Several different results will be presented, depending on the geometry of F and the
regularity of the initial data. We note that proving controllability to rest at time T is
equivalent to proving controllability to an arbitrary state (in a suitable function space)
at time T since, for the homogeneous problem, the map {E, H} {E(T), H(T)} is
an isomorphism in the appropriate spaces.

4.1. Exact controllability in J(II)x(l’l) with .T2() boundary controls, under a
geometric assumption on F. In this section we suppose that F satisfies (3.17). Assume
that T> To. Let {o, 0} G1, and let {#, $} be the solution to (1.4)-(1.6). Then
hlx 2(X). Consider the following problem (where ?= l/e,/ 1//x)"

3E OH-curl H O, _--_z-, +/2 curl E O, div E div H 0 in Q,(4.1)
Ot

(4.2) E (T) H(T) 0 in 12,

(4.3) vxH=$1x onE.

We will see below that (4.1)-(4.3) has a unique solution (in a weak sense). Let us form
the expression

(4.4) 0= ---?curlH .O \’- /2 curlE .q9 dxdt.

Proceeding formally (everything will be justified in Remark 4.2 below), after an
integration by parts we obtain from (4.4)

-(E(O),O)+(H(O) H .0c)O--f- - dxdt

(4.5)
[ (?. curl H +/2. curl E) dx dt O.
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The second integral in (4.5) may be written as

fo (H" curl 0 + E. curl o) dx dr- I. [’" (" q)+ ’" (E q)] dF dt

Therefore (4.5) reduces to

(E(0), if)-(H(0), o)= f [12 dF dt,

which may be written as

(4.6) ({-H(0), E(0)), o, o)> i1= dr at.

Let us define a linear mapping A by

(4.7) A{O, o} {-H(0), E(0)}.

In terms of A, (4.6) becomes

and therefore A is an isomorphism from G onto G (G =dual of G with respect
to J(O)xj()). Consequently, if {-H,E}G[ and if we choose {o,o}=
A-I{-H, E}, then the unique solution of (4.1), (4.3) with initial data

E(0)=E, H(0)=H in

will (by construction) satisfy (4.2). Since G J()x (), we have Theorem 4.1.
THEOREM 4.1. Assume that F satisfies (3.17), that {-H, E} J(O)x(O), and

that T> To as defined in (3.15). en the control J=-1() drives the system
(1.1)-(1.3) to rest at time T.

Remark 4.1. For initial data {-H, E} J() x (), the control J -ffl minim-
izes the norm s ]J]: dF dt among all controls J :(Z) which drive the system (1.1)-
(1.3) to rest at time Z

Remark 4.2. We still need to make precise the sense in which (4.1)-(4.3) (and
(1.1)-(1.3)) are to be understood. This is done using the transposition method. In fact,
let us consider the forward problem (1.1)-(1.3) with J :() and initial data satisfying
{H, -E} ’, where =J(O)xJ(O) and Y[’ is the dual of [ with respect to
J(O) x(O). Let {o, ffo} y[ and {, } be the solution to (1.4)-(1.6). Consider the
expression

0= -e0t curlH .-k .
If we apply integration by parts in and Green’s formula in x we are led to

(4.9) (H(t), (t))-((t), 0(t))= (g, o)_ (o, o)_ J. dF ds.

We rewrite (4.9) as

(4.10) ({H(t),-(t)}, {(t), (t)})= ({g, _o}, {o, o})_ J. dF ds.
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Equation (4.10) is the definition of the solution of (1.1)-(1.3). In fact, we have

(4.11)

({Ho, _EO}, (o, q,o})_ . q, dr ds

II{H, -E} [[ac, l[{q9, 0} [[ac + IIJIIze2(z)[[ IIez()
=< II{H, -E}llx,[[{0, 0}llc, + el IIJIl2(:)[[curl tO 112(.)
-< [ll{O, -E} I1,, / el IlJ[l2<)] [l{q, ;} .

Since the map {qo, 0o} {q(t), 0(t)}: ?Tf- Yf is an isomorphism, it follows from (4.11)
that there is a unique pair {H,-E}L(O, T; Yf’) that satisfies (4.10). (In fact,
{H,-E} C([0, T]; Yf’).) This pair is, by definition, the solution to (1.1)-(1.3). (The
fact that T> To plays no role in the existence theory so far.)

Now suppose that T> To and that {H, -E} G’I (recall that G’I c Y{’). From
(4.10) with t= T we obtain

[<{H(T), E( T)}, {q(T), -q( T)})I =< [[I{H, -E}II{ + IIJ I])] I]{q, 0}]] ,.
From the definition of G1 it can be seen that {qo, qo} G if, and only if,
{q(T),-O(T)}.G1; further, the map {q,O}-{q(T),-O(T)}:GI-G1 is an
isometry. Thus, {H, -E} G implies that {H(T), E(T)} G.

For the problem (4.1)-(4.3), it follows from the preceding discussion that there
exists a unique solution {H,-E} C([0, T]; Y{"), and {H(0),+/-E(0)} G. In par-
ticular, (4.6) holds by definition of the solution.

4.2. Exact controllability in (Jl(II))’ x (J(l-l))’ with (H(0, T; 0’2(1-’)))’ boundary
controls, under a geometric assumption on F. We may extend the space of initial data
that can be exactly controlled to rest beyond the space G, but at the expense of
working with controls weaker than the 2(E) controls of Theorem 4.1.

Let {qo, o} j.(f) x J*(f), assume that T> To and consider the problem consist-
ing of the Maxwell system (4.1), the terminal data (4.2) and the boundary condition

(4.12) , x H -p"[. on .
Formally applying Green’s formula as in 4.1, we obtain (analogous to (4.6))

(4.13) ({-H(O), E(0)}, {qo, qo}) f b. q/’ dF dr.

In (4.12), (4.13) we define q,"ly. (H’(O, T; 2(r)))’ by the duality

(4.14) (b", X)= -f 0’" X’ dr dt VX H’(O, T; 2(r)).

Equation (4.14) has a meaning whenever {qo, 0o}G. Note that b"] is not the
distributional derivative d/dt(b’) H-I(o, T; 2(F)).

With the mapping A defined in (4.7) we obtain from (4.13), (4.14)

(4.15) (A{O, 0o}, {o, 0o})= fz ]4,,12 dr dt [[{qo,

Consequently, A is an isomorphism from Fa into F. Since F (J())’ (J(II))’
we have Theorem 4.2.
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THEOREM 4.2. Assume that F satisfies (3.17), that {-H, E} e (J(l)))’ x (J(fl)),
and that T> To as defined in (3.15). Then the control J =-q"ly.e (Hi(0, T; 2(F)))’
drives the system (1.1)-(1.3) to rest at time T.

Remark 4.3. For initial data {H, -E} and boundary data J satisfying

{H, -E} (J*(f))’ x (J*(f))’-" ’, J G (HI(0, T; =(r)))’,
the problem (I.I)-(.3) may once again be solved by transposition, using (4.10) as the
definition of the solution. We get {H, -E} C([0, T]; o,) with

II{H, -E}II (o. T; .,) -< II{H, -E}IIo.,+ c, llsll(H’(o. T;

If, in particular, {H, -E} F, then {H(T), E( T)} F.
4.3. Exact controllability without geometric restrictions on F. If the geometric

restriction (3.17) on F is lifted, we must work with the spaces F2 and G2 rather than
F and G when applying HUM. As usual, the object is to choose the boundary control
so that A is an isomorphism of F2 (respectively, G2) onto F (respectively, G). We
then obtain exact controllability in the space F (respectively, G). It is shown below
that exact controllability in the space F can be established in this manner. However,
we are unable to prove exact controllability in the space G.

One possible explanation for the lack of (provable) exact controllability in G is
the following. The topology of G2 is weaker than that of F2, and therefore the opposite
is true of their duals. Consequently, exact controllability in G means controllability
of states that are smoother than those in F, by means of controls more regular than
those used to control states in F. Because no restrictions of a geometric nature are
assumed regarding F, it is not implausible that there are smooth initial states that
cannot be steered to rest using such regular controls, i.e., exact controllability in G
may not be possible without geometric restrictions on F.

To establish exact controllability in F, we consider as usual for T> To the
Maxwell system (4.1) with terminal data (4.2) and boundary data

(4.16) vxH=-J on.
We consider also the homogeneous problem (1.4)-(1.6) with initial data {q0, 4,o}
J*() x J*(). The solution of (4.1), (4.2), and (4.16) is defined by transposition. In
particular, the pair {-H(0), E(0)} satisfies (by definition!’)

(4.17) <{-H(0), E(0)}, {qo, o}): fz q. Sd Fdt.

The object is to choose the control J such that

(4.18) -f q. JdF dt= ,.{qo, qo},,2 fx (l@,12+ Icurl i]t[2)dF dt.

With (4.17), (4.18), we have that A is an isomorphism of F2 onto F, which proves
exact controllability in that space.

Now (4.18) will be satisfied if

J= -4,"l+x,

where X satisfies

-I.X" dF dt= f.lcurl dll2 dF dt.
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To determine X, we first note that for sufficiently smooth functions : f 3 we have

’k 0i+ o’ki on F,

where rk is a tangential operator in F of order 1. Therefore

o r.

The operator 6 x is a formally self-adjoint operator on F: for all sufficiently
smooth functions , O defined on F,

(4.19) Ir.(x)dF=I,. (x).dF.
Since {o, 6o} J(a) x J(a), (curl 6)v and ’v are defined in the sense of traces

and therefore curl 6 e’ on Z. As a result,

IcurlO[z=e’’curl6=e’’ ux +e’.(x6)=e’.(x6) onE,

since u x 0 on . Consequently,

f ’curl O’ dF dt e f " ( x ) dF dt e f ( x ’) dF dt.

Therefore, if we choose the control J according to

J= "[

then (4.18) will hold.
Remark 4.4. It follows from (4.19) that x’ L2(0, T; -(F)).
THZORZM 4.3. Assume that {-H, E} (J,(fl))’x (J()) and that T> To as

defined in (3.15). en the control

(4.20)

drives the system (1.1)-(1.3) to rest at time
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ROBUST STABILITY AND PERFORMANCE VIA FIXED-ORDER
DYNAMIC COMPENSATION*

DENNIS S. BERNSTEIN’

Abstract. Two robust control-design problems are considered. The Robust Stabilization Problem in-
volves deterministically modeled, bounded but unknown, time-varying parameter variations, while the Robust
Performance Problem includes, in addition, a quadratic performance criterion averaged over stochastic
disturbances and maximized over the admissible parameter variations. For both problems the design goal
is a fixed-order (i.e., reduced- or full-order) dynamic (strictly proper) feedback compensator. A sufficient
condition for solving the Robust Stabilization Problem is given by means of a quadratic Lyapunov function
parameterized by the compensator gains. For the Robust Performance Problem the Lyapunov function
provides an upper bound for the closed-loop performance. This leads to consideration of the Auxiliary
Minimization Problem: Minimize the performance bound over the class of fixed-order controllers subject
to the Lyapunovofunction constraint. Necessary conditions for optimality in the auxiliary problem thus serve
as sufficient conditions for robust stability and performance in the original problem. Two particular bounds
are considered for constructing the quadratic Lyapunov function. The first corresponds to a right shift/multi-
plicative white noise model, while the second was suggested by recent work of Petersen and Hollot. The
main result is an extended version of the optimal projection equations for fixed-order dynamic compensation
whose solutions are guaranteed to provide both robust stability and robust performance.

Key words, rObust control, stability, performance, dynamic compensation, Lyapunov bounds

AMS(MOS) subject classification. 93

1. Introduction. Although considerable effort has been devoted to frequency-
domain robust-control design methods I-1 ]-[ 10], there remain open questions concern.
ing stability with respect to real-valued, structured plant parameter variations 11 ]-[ 13 ].
Specifically, it is shown in 11 ]-[ 13] that classical gain and phase margin specifications
can be satisfied, while sensitivity to structured plant parameter variations can be
arbitrarily large. From a time-domain point of view, the parametric robustness problem
has been widely studied using Lyapunov’s second method as the principal technique
[14]-[28].

In this paper we develop an approach to control design that provides sufficient
conditions for robust stability and performance over a prescribed range of time-varying
structured plant parameter variations by means of a feedback law in the form of a
fixed-order (i.e., reduced- or full-order) dynamic (strictly proper) compensator. The
approach is based upon the merging of two techniques, namely, the guaranteed cost
control approach to robust performance 14], 17] and the optimal projection approach
to quadratically optimal fixed-order dynamic compensation [29], [30]. One of our
goals is to obtain robust output-feedback compensators rather than full-state-feedback
controllers. Also, since we wish to account for real-time computational burden in
implementating the controller, we impose a constraint on the dimension (i.e., order)
of the dynamic compensator. This approach thus generalizes standard LQG theory,
which yields full-order output-feedback controllers for systems without parameter
uncertainty. We note that our approach is constructive in the sense that, upon satisfaction
of the sufficient conditions, the feedback gains required for implementing the robust
feedback controller are explicitly synthesized. Existential issues are also addressed

* Received by the editors June 16, 1986; accepted for publication (in revised form) May 10, 1988. This
research was supported in part by Air Force Office of Scientific Research contract F49620-86-C-0002.

t Harris Corporation, Melbourne, Florida 32901.
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herein, although to a lesser extent. For further background see [29], [30]. For extensions
to nonstrictly proper controllers see [31], and for extensions to H control see [32].

To explain the rationale behind the development we briefly describe the main
elements of the approach. The following discussion is intended to be descriptive;
precise conditions appear in the main body of the paper.

1.1. Robust Stability Problem. For a nominal linear time-invariant (A, B, C) sys-
tem we consider deterministically modeled bounded but otherwise unknown Lebesgue
measurable time-varying parameter variations of the form

p p p

(1.1) A+ i(t)Ai, B+ Y i(t)Bi, CA" i(t)Ci.
i=l i=1 i=l

The nominal matrices A, B, C and the perturbation matrices Ai, Bi, Ci denoting the
structure of the parametric uncertainty are assumed known, while the time-varying
uncertain parameters i(t) are assumed only to satisfy the bounds

(1.2) I’i(t)]<=6i, i= 1, ,p, t[0, ).

The form of (1.1) permits an arbitrary number of unceain parameters with arbitrary
linear structure. Although we do not require matching conditions as in [21], the linear
structure of (1.1) is more restrictive than the functional form A(q(t)) used in [21]. It
is this structure that we exploit to obtain sufficiency conditions. Note also that the
representation (1.1) is independent of state space basis, since replacing A by SAS-corresponds to replacing A by SAS-. As will be seen, our robustness bounds and
optimality conditions are also basis independent. Also, scaling techniques [6], [7] will
not play a role here. Finally, we note that because of the time-varying nature of the
uncertain perturbations (1.1) it is virtually impossible to determine the actual stability
region of a given design by means of empirical methods.

1.2. Quadratic Lyapunov function. As a sufficient condition for characterizing
solutions of the Robust Stability Problem we consider a closed-loop quadratic
Lyapunov function V(Y)= YY, where the matrix satisfies

(1.3) 0 + +O(, B, C,.)

and the function is a bound satisfying

p

(1.4) Z i([+i)<O(,Bc, Cc)
i=1

over the parameter range

(1.5) Ig, 6,, i: 1,...,p.

Note that the constant i in (1.4) and (1.5) pays the role of di(t), i.e., is "frozen"
in (1.4) and (1.5). In (1.3) and (1.4), and Ai denote the closed-loop dynamics and
closed-loop parameter-uncertainty matrices given by

BcC A J’ BcCi

Since is independent of Ac, depends only on B and C. As discussed later in
this section, (1.4) is automatically satisfied by construction of the function . Further-
more, the existence of a solution to (1.3) need not be verified directly, but rather is
a result of numerically solving the optimality conditions discussed below.
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1.3. Robust Performance Problem. In addition to the deterministic parameter
uncertainty model (1.1), (1.2), the Robust Performance Problem includes stochastic
plant disturbances and measurement noise with performance measured by means of
the quadratic functional

(1.7) .( t) x r t)Rx( t) + 2x r t)RlzU( t) + u r t)Rzu( t).

To obtain a steady-state design problem we (1) average .(t) over the disturbance and
measurement noise statistics; (2) pass to the steady-state limit; and (3) maximize over
the class of parameter uncertainties. Hence the performance of a given controller
(A, B, C,) is given by

(1.8) J(A, B, C)= sup lim sup :[J(t)].
,(.) t-

The use of "lim sup" is a technicality that accounts for cases in which the steady-state
limit may not exist. Note that although (1.8) is an averaging criterion over the
disturbances as in LQG theory, it is also a worst-case measure over the uncertain
parameters. Thus (1.8) is a hybrid criterion in the sense that is stochastic in the
disturbance space (i.e., external uncertainties) and deterministic in the parameter space
(i.e., internal uncertainties). By "internal uncertainties" we have in mind quantities
such as mass, damping, or stiffness; by "external uncertainties" we are referring to
phenomena such as turbulent flow for which only power spectrum statistics may be
available. No claim is made, however, with regard to the universal validity of such a
mathematical uncertainty model. In particular applications, uncertainty models that
are either wholly deterministic or wholly stochastic may be more appropriate. In
general, our setting appears to be consistent with the available literature (see 1 ]-[28]).

1.4. Performance bound. To obtain a tractable design problem, we use the matrix
to bound the performance of each controller solving the Robust Stability Problem.

Specifically, by assuming in addition to (1.4) that

p

(1.9) 20"i(tTi) + ) -jr" a ), Bc Cc
i=1

it follows that

(1.10) J(a,., Bc, C)_<-tr I7.
In (1.9) and (1.10) / and " denote closed-loop weighting and disturbance intensity
matrices. The idea of bounding the performance by means of a Lyapunov function is
the basis for guaranteed cost control [14], [17].

1.5. Construction of the Lyapunov function. So far the Lyapunov function has only
been abstractly characterized by means of (1.3) and (1.4). To obtain a useful design
theory O is now given a concrete form. Specifically, to satisfy (1.9) it is assumed that

p

(1.11) O(, Bc, Co)= Z Ai(, Bc, Cc)-t-- R,
i:1

where, for each i, the Ai are chosen such that

(1.12) oi(+)<=A(P, Bc, Cc), [o’i[i.

It is also interesting to note that in Hamilton-Jacobi-Bellman sufficiency theory the performance
functional is expressed in terms of a value function that also serves as a Lyapunov function for the closed-loop
system. These connections will be explored in a future paper.
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Note that (1.12) implies that (1.4) holds with f given by (1.11). Since/i depends on
Bc and Co, the bound Ai will be constructed to be gain-invariant, that is, so that (1.12)
holds for all Bc and Co. Thus no difficulty will arise from the fact that the controller
gains are yet to be determined by optimality considerations.

It should be noted that the bounding in (1.12) is defined in the sense of the cone
of nonnegative definite matrices. Since this is only a partial ordering and not a total
ordering, a least upper bound (i.e., a "sharpest" bound) does not exist in general and
the conservatism of the inequality in (1.12) cannot be quantified by a scalar measure.
Hence, Ai satisfying (1.12) is not necessarily unique and two particular choices of
are developed in this paper. Since we shall utilize first-order necessary conditions for
optimality, we confine our consideration to bounds that are ditterentiable. The first
choice of Ai satisfying (1.12) is given by the linear (in ) function

(1.13) Ai(, Bc, Cc)-- ti(oi h-

where a is an arbitrary positive number. As shown in [33], the bound (1.13) can be
viewed as arising from a stochastic optimal control problem with exponentially weighted
cost and state-, control- and measurement-dependent white noise. The stochastic
multiplicative white noise model serves only as an interpretation, however, and need
not be viewed as having physical significance. A similar bound is used in [28].

The second choice for A satisfying (1,12) is given by the quadratic (in ) function

(1.14) A(, Be,

where D, E denote an arbitrary factorization of A of the form

(1.15) Ai DiEi.

The bound (1.14) was used in [26] for full-state feedback with rank 1 uncertainties.
Note that using congruence transformations shows that both bounds (1.13) and (1.14)
are basis independent; that is, replacing ,i by ,-1 leads to replacing

1.6. Auxiliary Minimization Problem. The next step in our development for robust
performance is the following. Inasmuch as the performance of a robustly stabilizing
controller is bounded via (1.10) over the given range of parameter variations, it is
desirable to minimize the upper bound

(1.16) p(,A,B, C) a--tr

subject to the constraint (1.3). This is referred to as the Auxiliary Minimization Problem.
For a given choice (1.13) or (1.14) of A for each i, a solution of the Auxiliary
Minimization Problem provides a controller whose steady-state performance is guaran-
teed to remain below the bound (1.16) over the range of parameter variations, hence
guaranteeing robust performance. Since the Auxiliary Minimization Problem is a
smooth mathematical programming problem, a minimum always exists on compact
sets. To actually characterize extremals of the Auxiliary Minimization Problem we
proceed by deriving first-order necessary conditions. Because these necessary conditions
are derived for the Auxiliary Minimization Problem, they effectively serve as sufficient
conditions for robustness in the original, problem.

It should be noted that the guaranteed cost control approach developed in [14]
does not permit this line of development since A is given by

(1.17) A,(, Be, Cc)= I,T+
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where]. denotes the matrix obtained by replacing each eigenvalue by its absolute
value. Since this bound is not differentiable with respect to the controller gains,
first-order necessary conditions cannot be used.

1.7. The optimality conditions: full-order case. For the full-order case, i.e., when
the order of the controller is equal to the order of the plant, the first-order necessary
conditions can be derived in a form that is a direct generalization of the pair of
separated Riccati equations of LQG theory. Specifically, the necessary conditions
comprise a coupled system of four algebraic matrix equations including a pair of
modified Riccati equations and a pair of Lyapunov equations. For plant models
involving multiplicative white noise these equations have been studied in [34]-[36].
This form of the equations thus essentially corresponds to choosing bound (1.13).

1.8. The optimality conditions: reduced-order case. For design flexibility we also
consider controllers of arbitrary reduced dimension. For the linear-quadratic problem
without parameter uncertainty, the formulation of the necessary conditions given in
[29] provides a generalization of LQG theory. Specifically, the optimal gains are
characterized by a system of algebraic matrix equations consisting of a pair of modified
Riccati equations and a pair of modified Lyapunov equations coupled by an oblique
projection. When the order of the controller is equal to the order of the plant, the
projection becomes the identity and the standard LQG result is recovered.

The outcome of the development above is a set of algebraic matrix equations that
correspond to the necessary conditions for the Auxiliary Minimization Problem and
hence to sufficient conditions for robust stability and performance. These necessary
conditions characterize full- or reduced-order controllers with either choice of bounds
(1.13) and (1.14) for each uncertain parameter. For control-system design, these
equations can be used as follows. If a solution to the necessary conditions is obtained
computationally and if certain definiteness conditions hold, then the explicitly synthe-
sized controller (1) solves the Robust S.tability Problem and (2) is guaranteed to provide
robust performance bounded by tr V over the stipulated uncertainty range.

The applicability of these results is, of course, limited to plants that are nominally
stabilizable via controllers of the given order. Indeed, in this case it has been shown
[37] via topological degree theory that the optimality conditions for the case 8i =0,
i= 1,..., p, possess at least one stabilizing solution. For the parameter uncertainty
problem, i.e., (i > 0, it follows from continuity properties that a solution also exists
for sufficiently small 8i. The actual range of uncertainty that can be stabilized and the
tightness of the performance bound depend on the conservatism of our bounds. As
will be seen from a numerical example, our bounds are not generally sharp. This is
not unexpected, however, due to both the sense of the partial ordering employed in
(1.12) and the fact that our choice of gain-invariant bounds permits a one-step,
noniterative synthesis (rather than analysis) procedure. It should be noted that necessary
and sufficient conditions for robust analysis of a block-structured class of uncertainties
are obtainable using the/-function [6]. This block structure, however, does not appear
to include either the linear uncertainty model (1.1) or the matched uncertainty model
of [21 as special cases.

In the present paper we present results of an illustrative numerical study for a
well-known example used in [2] to demonstrate the lack of gain margin for LQG
controllers. This type of uncertainty is a special case of (1.1) obtained by taking
p m and defining Bi to be the matrix whose ith column is the same as the ith column
of B, and zero otherwise. To obtain full-order, robustified controllers exhibiting perfor-
mance/robustness tradeoffs, we use bound (1.13) for several values of 8i. To obtain
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these numerical results we used a straightforward iterative algorithm that requires only
an LQG-type software package. The homotopy algorithm of [37] with appropriate
extensions can also be used. Further descriptions of related algorithms and numerical
results can be found in [38]-[40].

The development herein is self-contained, with the exception that the detailed
derivation of the optimality conditions has been omitted. In specialized cases the
derivation has been given previously. For the case of bound (1.13) only, a derivation
using Kronecker products appears in [36]. Also, a derivation without parameter
uncertainties has been given in [29] using Lagrange multipliers. Overall, the derivation
involves considerable matrix manipulation. Since the detailed derivation does not
appear to warrant the required space, we give an outline of the proof to assist the
sufficiently motivated reader in reconstructing the details.

2. Notation and definitions. (Note that all matrices have real entries.)
[, r, [r, [E real numbers, r x s real matrices, ,
Ir, Ors, Or

tr
(R),(R)

Z >-_Z2
Z> Z2
asymptotically stable matrix
rl, m, l, p, nc, ni, mi

x, u, y, xc
A, A; B, B; C, C

Ac, Be, Cc

t

i("

O

Di, Ei, Hi, Ki

Di, Ei

R

expectation
Euclidean vector norm
r x r identity matrix, r x s zero matrix, Orr
transpose, inverse, inverse transpose
trace
Kronecker sum, Kronecker product [41]
r x r symmetric matrices
r x r symmetric nonnegative-definite matrices
r x r symmetric positive-definite matrices

Zl Z2 Nr, Zl Z2 ,r
Z1- Z2 e P, Z Z e g
matrix with eigenvalues in open left half-plane
positive integers, {1, , p}
n + n, n + mi, {1, p}
n, m, l, n-dimensional vectors
n x n matrices, n x m matrices, x n matrices,
i{1,... ,p}
nc x no, nc x l, m x nc matrices

BcC A,. J’ BcC
positive number, { 1,. , p}
[-a, ] x... x [-,,
real number, {1,. , p}
(,"’,%)
Lebesgue measurable function on [0, ), i
{,... ,p}
(a,(.),..., ,(.))
Lebesgue measurable functions on [0, ) with
values in
positive number, {1,. , p}
X i, i X , X mi, mix m matrices,
i{,
x i, i x matrices, {1,. , p}

see 6
state weighting matrix in "
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R2
R12

w,(.)
w(.)
vl
v

V

control weighting matrix in W"
n rn cross weighting matrix such that
R1-R12RR>=O

I R, ,_C ]C’Rr2 CfR2C
n-dimensional white noise
/-dimensional white noise
intensity of w(. in "intensity of wz(. in
n cross-intensity of w(. ), wz(.
[ v, ]
B.Vz B,V2B,J

3. Robust Stability and Robust Performance Problems. In this section we state the
Robust Stability Problem and Robust Performance Problem along with related notation
for later use.

3.1. Robust Stability Problem. For fixed nc <- n, determine (Ac, Be, Cc)
E.,,n, E.,. x Emc such that the closed-loop system consisting of the nth-order
controlled plant

(3.1) :(t)= A+ , ’i(t)A x(t)+ B-I-Z ’i(t)Bi u(t) a.a.t[0, oo),
i:1 i:1

measurements

(3.2) y(t) C -Jl-- Z i(t)Ci x(t),

and nth-order dynamic compensator

(3.3) c(t) Ax(t)+ Bcy(t),

(3.4) u(t)=Ccx,.(t)

are asymptotically stable for all (. ) L([0, c), A).

3.2. Robust Performance Problem. For fixed n<=n, determine (Ac, Bc, Cc)
n,.,. n,. mn, such that, for the closed-loop system consisting of the nth-order
controlled and disturbed plant

(3.5) (t)= A+2 i(t)Ai x(t)+ B+_, ai(t)Bi u(t)+w,(t) a.a.t[0, oo),
i:l i:1

noisy measurements

(3.6) y( t) C -}- E i( t)Ci X( I) -1- w2(t),
i=1

and nth-order dynamic compensator (3.3), (3.4), the performance criterion

J(A.,B.,C.)
(3.7)

sup limsup_[x’(t)Rlx(t)+2xT(t)Ru(t)+u’r(t)R2u(t)]
c(.) Loo([0,oo),A)

is minimized.

Asymptotic stability for a nonautonomous system is defined in the standard way (see, e.g., [42]).
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For each controller (A., Be., Co) and parameter variation (. L([0, oo), A) the
undisturbed closed-loop system (3.1)-(3.4) is given by

(3.8) (t) / + 2 (t) (t) a.a. e [0, ),
i=1

while the disturbed closed-loop system (3.3)-(3.6) is

(3.9) () + 2 (t) (t) + (t) a.a. e [0, ).
i=1

Also (see, e.g., [43, p. 194]), let ’[0,)Nee be the unique absolutely continuous
solution to

(3.10) (t) + 2 (t) () a.a. [0, ),
i=1

(3.11) (0) I,
and recall that -(.) satisfies

d _(t) --(t) + 2 (t) a.a. [0, ).(3.12) d
4. Sucient conditions for robust stability an performance. For robust stability

we characterize quadratic Lyapunov functions for the closed-loop system.
THEOREM 4.1. Let ’Px""x"" satisfy

P

(4.1)
(, B, G) Pax",x",.

G for some (A,B, G), xtxx",,, there exists satisfying

(4.2) 0 w++fl(, B,
then (A, B,., C) solves the Robust Stability Problem.

Proo Define the Lyapunov function

V() &, .
For almost all t [0, ) and (t) satisfying (3.8), it follows from (4.2) that

((t) ()(t) +(t)4(

i=1 i=1

( 2 ((2+-a(,, G. (.
i=1

Since (t) , almost all [0, ), it follows from (4.1) that there exists > 0 such
that (()) N -ll(t)l, almost all

Remark 4.1. If (A., B., C.) solves the Robust Stability Problem, then

(4.3) lim (t) 0, (. L([0, ), ).

Remark 4.2. As will be seen, the bound (4.1) will be guaranteed for all , Be, Ce
by suitable construction of the function f. In addition, the existence of a solution
to (4.2) need not be verified in practice. Rather, (4.2) is a result of numerically solving
the necessary conditions for the Auxiliary Minimization Problem given in Theorem 6.1.
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For the Robust Performance Problem the cost can be expressed in terms of the
closed-loop second-moment matrix.

PROPOSITION 4.1. For (A,., B,., C,.) R’’n’ x ,,,.! x m"c and d-(. L([0, o), A)
the second-moment matrix

(4.4) 0(t) & E[:(t)Y T(t)], E [0, c),

satisfies

(4.5) O( t) + 2 ’i( t)zi O( t) + Q( t) + (i( t)i
i=1 i=1

+ V a.a. t [0, c),

or, equivalently,

(4.6) t(t) ’(t)t(0)T(t) + (t)-l(S) -T(s)T(t) ds, e [0, cx).

Furthermore,

(4.7) J(Ac, Bc, C)= sup lim sup tr 0(t)/,
&(.) L([0,x),A) too

or, equivalently,

J(Ac, B,.,Cc) &

(4.8)

F
sup lim sup tr |#P(t)O(O)#pw(t)

c(. ) Lo([O,oo),A) k

+ #P(t)#P-’(s) Z#P--T(s)#P(t) ds

Proof The second-moment equation (4.5) is a direct consequence of the It6
differential rule (see [44, p. 142]), while (4.6) follows by direct verification. Finally,
(4.7) is immediate.

We now obtain an upper bound for J in terms of the matrix . The following
lemma is required.

LEMMA 4.1. Let D.,:P’XR",IXlRm""->,. ’ and (Ac, Bc, Cc)GRn,’n,’xRn,l X

Rmn’ be given. Then IP satisfies (4.2) if and only if satisfies

=,((+ (-(s

(4.9) [fl(, Bc, C,)-
i:,

’i( t)(zTi )’Jf- zZi)] ()-,(s)()(t) ds,

8(" 6 Loo([0, oo), A), E [0, cx3).

Proof Suppose satisfies (4.2). Then for c [0, ),

o=--( + 2 ( ’-’(+-( + (/i -1(
i=1 i=1

----d[’)-T(t)1-1(t)]"t-1-T(t)[’(’Bc’c)--
dt i=1

li(t)("T-- /i)] l-l(t)’

which yields

O= --#p-r(t)#p-’(t)+

+ #P-T(s) f(, B, Cc)- ’i(S)(Ti JI- Ai) -I(s) ds.
i=1
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Thus (4.9) is satisfied. Conversely, suppose satisfies (4.9). Differentiating with respect
to using Leibniz’s rule yields

0 Z+ i(t)i T(I)P(I)+T(t)(I) ,l+ i(t)i
i=1 i=1

+ + ,(t), (t)-(s)
i=1

p

+(, B,,, C.)- 2 d’i(t)(r + .)
i=1

nt- ’i(t) + + i(t) +a(,Bc, Cc)-2 i(t)(+i)
i=1 i=1

++n(, B., c.).

Hence (4.2) is satisfied.
Remark 4.3. Note the identity

;otr (t)-(s) -’r(s)r(t) ds =tr r(t)-r(s)-l(s)(t) ds
(4.0)

We are now in a position to bound the cost J by means of the matrix
THeOReM 4.2. Let ’PexN",xN"-Ne satisfy (4.1) and

p

2 ,(+,)+ka(, B, C), e,
i=1

(4.1)
(, B,

If for some (A, B,,, C) N", x N", x N",, there exists Pe satisfying (4.2), then

(4.12) J(Ac, B, Cc)

Proof From (4.8)-(4.10) and (4.3) it follows that

J(&,B,C)

sup limsuptr{(t)O(O)r(t)+9-r(t)(t)9
(. )e c([o,),)

()+-(s) a(,B,C)-R-

N sup lim sup tr [(t)O(0)r(t) +]
(- )e L([0,),)

=tr
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Remark 4.4. Note that since R _>-0, (4.11) implies

P

(4.13) Z cri(g+/i)<--(, Be, Cc), rA,
i=1

which is a weak form of (4.1). If R > 0 then (4.11) implies (4.1). This implication is
not surprising since (4.11) implies robust performance while (4.1) implies robust
stability.

5. Choice of bounds. To satisfy (4.11), 1(., .,. is chosen to be of the form

P

(5.1) 1(, Be, C)= Z A,(, Be,, C)+ R,
i=1

where, for each 1, , p, Ai" P " -’,c_ satisfies

O’i(T -" /i)(.2)
(,B, Cc)x"’x

Two distinct choices for the bound Ai are considered. As we pointed out in 1, the
first choice corresponds to a right shift/multiplicative white noise model [33], while
the second bound generalizes results found in [26].

PROPOSITION 5.1. For all Ol > 0 the function

(5.3) Ai(, B, Cc) i(oi5 -- TITJi)satisfies (5.2).
Proof Note that

0 < O’i(i/i) 1/21 (i/i) I/2i]T[O.i(Oi/i) 1/=l (i/i) I/2/i
O’2i O" / j5 -" /

which, since tr2<_-62, implies (5.2).
PROPOSITION 5.2. For all )i R ee’ and i Ne,e satisfying

(5.4)

the function

(5.5) Ai(/, B, Co)= i(--Ti--i’Jf"

satisfies (5.2).
Proof Note that

--I/2l T[ I/2i O’iTI/2/TO /2--i O’i

i---" iT---’i "qt- (O’/ i)i)’Tt O’i(l’Tt
which implies (5.2).

6. The auxiliary minimization problem and necessary conditions for optimality. To
optimize robust performance while retaining robust stability, we consider the following
problem for which the cost functional is given by the bound (4.12).

6.1. Auxiliary Minimization Problem. For 1,..., p, let Ai be given by either
(5.3) or (5.5). Determine (., A, B, C)Px""c X"clXmxnc, which minimizes

(6.1) (,A,Bc, Co) =a tr Q
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subject to

P

(6.2) 0=,r+,+ E Ai(, Be, Cc)+/,
i=1

P P

(6.3) E O’i zil T) -t- /i < 2 A , B C +, tr e A
i=1 i=1

Remark 6.1. Note that (6.3) enforces both (4.1) and (4.11) to guarantee robust
stability and performance.

To derive first-order necessary conditions for the Auxiliary Minimization Problem,
note that the constraint (6.3) defines an open set.

PROPOSITION 6.1. The set of (, B, .C) IP x IR"t x IR"", satisfying (6.3) is open.
Proof Since A(’, ",’) is continuous it can be shown that the function

f(,Bc, Cc)min Ami, Ai(, B, Cc)+R- 2 oi(f+)
o-cA i=1 i=1

is also continuous. Since (6.3) is equivalent to O<f(,B,C), the result is
immediate.

To obtain explicit feedback gain expressions we shall require two additional
technical assumptions. If bound (5.3) is chosen for a given e {1,..., p} we require

(6.4) Bi 0==> Ci 0,

i.e., Bi and C are not simultaneously nonzero. Of course, both B and C may be zero.
Assumption (6.4) implies that parameter uncertainties in B and C must be modeled
as uncorrelated. Correlation between uncertainties in A and B or A and C is, of
course, permitted. Furthermore, if bound (5.5) is chosen for a given e {1,..., p} we
require

(6.5) C

We stress that (6.4) and (6.6) can be removed, but at the expense of explicit gain
expressions.

When we use bound (5.3) the positive constant a will be considered fixed but
arbitrary. Furthermore, for bound (5.5), let D
N"," satisfy

(6.6) Ai DiEi, Bi HiKi,

and define De, Ei satisfying (5.4) by

On,.n, On,.,,i 0, KiCJ"
In addition to the open set defined by (6.3), the derivation of the necessary conditions
requires that (, A, Be, Ce) be further restricted so that

(6.8)
+2’ (6a-),(R) is asymptotically stable,

(6.9) (Ac, B, Ce) is controllable and observable.

In (6.8) the notation Y/ and Y/’ denotes summation over indices for which bounds
(5.3) and (5.5), respectively, have been chosen. Note that (6.8) and (6.9) play no role
in the Auxiliary Minimization Problem and thus need not be verified for robust stability
or robust performance.
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For arbitrary Q, P, (,/3 Enn define the following notation"

Raa R2+ (6ii

v. v+2’ ()c(Q+ O)c(,

-)A(Q+O)Cf,Q. Oc + v,+Z

DE" ,(D,Df+H,HY), E E" ,EyE,.

1= a+-z’ ,I. ae 3 -BRz, QaV2-C.
2

The following lemma will be needed.
LEMMA 6.1. If (, ]n and rank O n,, then there exist G, F En,.n and invert-

ible M n,,n, such that

(6.10) 0/3 GMI",

(6.11) FGT=In,..
Furthermore, G, M, and F are unique except for a change of basis in

Proof The result is an immediate consequence of [45, Thm. 6.2.5, p. 123].
Note that because of (6.11), the n x n matrix z -a- G’F is idempotent, i.e., z2=

Since z is not necessarily symmetric, it is an oblique projection. Also, define z+/- & In --Z.

THEOREM 6.1. Suppose (, A., B., C) solves the Auxiliary Minimization Problem
subject to (6.8) and (6.9). Then there exist P, Q, P, Q [n such that , A, B, C are
given by

(6 12) =[p+/3 _figT]
_

(6.13) ac F(A-QaV2-C- BRloPa + DP)G,
(6.14) Bc= FQV-2-,

(6.15) C,. -R2-2P.G,
and such that P, Q, P, Q satisfy

0= Tp+p+ R, +E’ (6ia[)[AfPAi+(Ai-OV2-2c,)Tfi(A,-Q.V2-1C,)]
(6.16)

+E +PDP-Pr.R- T T
2, P, + r+/- P R P.’r_L2a

--1 --1 T]1)[AiQAf+(Ai_Bg2p)O(Ai_Bg2ap)(6.17) +,
T TQV2-Q+ z_QV-2-Q

T --1 T T --1(6.18) 0 (Ao+DP)rfi+fi(,o+DP)+PDP+PaR2aP -7"_PaR P,’2a

(6.19) O=(,p+DP)(+O(Ap+Dp)T+QaV2-1QT-z+/-Q, V2-1QTr_T.,

(6.20) rank 0 rank/ rank 0/3 n.
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Conversely, if there exist P, Q, , tn satisfying (6.16)-(6.20), then given by (6.12)
satisfies (6.2) or, equivalently, (4.2) with (Ac, Bc, C) given by (6.13)-(6.15).

Outline ofproof. As discussed in 1, we limit the presentation of the proof to the
salient details. First note that with the choice of bounds Ai, (6.2) becomes

(6.21)

By introducing multipliers h t, h 0, and 7 t, a Lagrangian can be defined as

(6.72) m(, k<, <, C<.) Atr [h?+(RHS of (6.21))].

Setting aT/O? 0 and using (6.8) implies that h 1 without loss of generality, 7 0,
and satisfies

The remainder of the derivation is exactly parallel to the techniques utilized in [29]
and [36]. Briefly, the principal steps are as follows:

Step 1. Compute O/OA<, O/OB<, and O/OC.
Step 2. Use (6.9) to show that the lower right n< x n< blocks of and are

positive definite.
Step 3. Use o/oA< 0 to define a projection z and new variables P, Q, fi, O, G, F.
Step 4. Partition (6.21) and (6.23) into six equations (1)-(6) corresponding to the

n x n, n x n< and n< x n< blocks of and , respectively.
Step 5. Use (2) and (3) to solve for A; show that (5) and (6) also yield A<; note

that with A< now given, (3) and (6) are superfluous and can be eliminated.
Step 6. Manipulate (1), (2), (4), and (5) to yield (6.16)-(6.19).
Step 7. Show that Steps 4-6 are reversible so that (6.16)-(6.20) are equivalent to

(6.2) or, equivalently, (4.2).

By enforcing the strict inequalities >0 and (6.3), solutions of (6.16)-(6.20)
guarantee robust stability with a robust performance bound. The following result
follows from Theorem 4.1, Theorem 4.2, and the converse of Theorem 6.1.

THEOREM 6.2. Suppose there exist P, Q, fi,0 satisfying (6.16)-(6.20), and
suppose that (6.3) and > 0 are satisfied with (, A, B<, C<.) given by (6.12)-(6.15).
en the compensatorA<, B<, C<. given by (6.13)-(6.15) solves the Robust Stability Problem
and the closed-loop performance (3.7) satisfies the bound

(6.24) J(A<, B, C<) tr E

The following existence result concerns the solvability of (6.16)-(6.20). Let n
denote the dimension of the unstable subspace of the plant dynamics matrix A.

THEOREM 6.3. Assuming n< n, R > O, V > O, suppose the nominal plant, i.e.,
(3.1), (3.2) with 6 O, i= 1,..., p, is stabilizable and detectable an6 in addition, is
stabilizable by means of an nJh-order strictly proper dynamic compensator (3.3), (3.4).
en there exist 6l, , 6p > 0 such that if 6 [0, 6g), 1, , p, then (6.16)-(6.20)
have a solution P, Q, P, QM hr which (A<, Be, C<) given by (6.13)-(6.15) solve the
robust stability problem with robust performance bound (6.24).
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Proof From Theorem 3.1 of [37] it follows that there exists a solution to (6.16)-
(6.20) that stabilizes the nominal plant, By continuity there exists a neighborhood over
which robust stability with performance bound (6.24) holds. [3

Theorem 6.3 is an existence result that guarantees solvability of the sufficiency
conditions over a range of parameter uncertainties. The actual range of uncertainty
that can be bounded and the conservatism of the performance bound are problem
dependent. To this end we now consider a numerical example.

7. Illustrative numerical example. To demonstrate the theory above we present an
illustrative numerical example. The example chosen was originally used in [2] to
illustrate the lack of a guaranteed gain margin for LQG controllers. This example was
also considered in [35] for a preliminary robustness study and reconsidered in [46]
using -analysis. Define the following:

o],

Note that the system is open-loop unstable and becomes uncontrollable at o-1 =-1.
As can be seen using root locus, a strictly proper stabilizing controller must be of at
least second order. Hence we consider (6.16)-(6.20) with nc n and z. =0. Further-
more, we use bound (5.3) and thus set D E =0. Using algorithms described in
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TABLE

(1, ffl) A,. B,. Q,

(.1, 1)
-85.177 3.9657 79.9593

[-5.2182 -4.9657]

[-17.963 1.0 ] [18.963](.2,2)
-133.65 -4.4614 127.05

[-6.6011 -5.4614]

-47.813 1.0 48.813
(.4,4) f-13.766 -7.5463]

-1087.3 -6.5463 1_1073.5

[38]-[40], controllers were obtained by solving (6.16)-(6.20) for (61, al) (.1, 1), (.2, 2),
and (.4, 4). As stated previously, these numerical solutions also verify (4.2) with
given by (6.12). Figure 1 compares the guaranteed robust stability region to the "actual"
robust stability region. This robust stability region was evaluated assuming constant
1(" ), although the theory actually guarantees robustness with respect to time-varying
uncertainties. Thus, the gap between these regions may not be a reliable measure of
the conservatism of the results. Note, however, that the design approach appears to
provide more stability than is guaranteed a priori. This feature may be attributable to
the desire for a symmetric stability interval so close to an unstabilizable plant perturba-
tion, i.e., o-1 =-1. Nevertheless, the stability design objectives have been met in
accordance with Theorem 6.2. Interestingly, the form of the actual stability region
mimics the classical 6-dB-downward/infinite-dB-upward gain margin of full-state-
feedback LQR controllers [1]. Thus, this approach appears to provide an alternative
to gain-margin recovery techniques [9], which address this specialized form of plant
uncertainty. Finally, Fig. 2 compares guaranteed closed-loop performance to "actual"
closed-loop performance over the guaranteed closed-loop robust stability region. Again
the "actual" region was determined for constant ok1(’). Controller gains are given in
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Table 1. Finally, we note that higher-order robust controllers were obtained for this
example in [46] using the/x-function approach.
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ON THE STABILITY PROPERTIES OF SPLINE APPROXIMATIONS
FOR RETARDED SYSTEMS*

F. KAPPEL’ AND D. SALAMON$

Abstract. This paper studies the qualitative properties of the spline approximation scheme for retarded
functional differential equations introduced by Kappel and Salamon [SIAM J. Control Optim., 25 (1987),
pp. 1082-1117]. It is shown that the approximating systems are stable for large N if the underlying retarded
functional differential equation is stable. In this case the approximating equations are in some sense uniformly
(with respect to the approximation index) stable in the vector component of the state but not so in the
complete state.

Key words, retarded functional differential equations, approximation, splines, controllability
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1. Introduction. In 10] and 11] we have introduced a new spline approximation
scheme for retarded functional differential equations. The aim of this paper is to study
the qualitative properties of this approximation scheme with particular emphasis on
the stability problem.

The fundamental convergence properties of this approximation scheme have been
established in [11]. The central result is a convergence proof for both the original
semigroup S(t) and its adjoint S*(t) in the strong operator topology. Here lies the
main advantage over the spline approximation scheme, developed earlier in [2], for
which the adjoint semigroup is only approximated in the weak operator topology. In
addition, we have observed a quite significant improvement in the convergence
behaviour of our numerical computations, some of which are reported in [11].

The main result of this paper is that the approximating systems (En) are stable
(stabilizable, detectable) for sufficiently large N provided the original system (E) is
stable (stabilizable and detectable.) The proof consists of three parts. The first part is
a convenient characterization of the stability, stabilizability, and detectability of the
approximating systems in terms of a certain characteristic matrix A n (,). The second
part is a convergence proof for these matrices An(&). The third part establishes a
priori bounds for the unstable eigenvalues of the approximating systems.

We also discuss the role of the structural operator F in the spline approximation
scheme. Moreover, we prove that the approximating systems cannot be stable in a
uniform sense with respect to N and illustrate this result with computations of the
spectrum. In this respect the spline approximation differs from the averaging approxi-
mation scheme in [1] for which the uniform exponential stability property has been
established in 19]. But if we take the output of the system to be the vector component
of the state, then the approximating systems are in a sense uniformly output stable
with respect to N if the hereditary system is stable. For simplicity of presentation we
restrict ourselves to the single delay case. All results are true for equations with multiple
commensurate delays and without distributed delay. Some results are also true for the
general case. For details see [10].
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2. Linear retarded control systems.
2.1. Functional differential equations. We consider the linear retarded functional

differential equation (RFDE)

(2.1) :(t) Aox( t) + A,x( t- h) + Bou( t), y(t) CoX(t),

where x(t)n, u(t)t, y(t) G[m, Ao,Ann, Bol1, Co -I]mn, and h>0. It
is obvious that (2.1) admits a unique solution x(.) LZ(-h, T; I")f’l W’2(0, T; ")
for every input u(. ) L2(0, T; RI) and every initial condition of the form

(2.2) x(0)=th, x(’)=6(7"), -h _-<_ " < 0,

where ,=(b, l)M2=[2"xL2(-h,O;[") (see, for instance, [6], [9]). By X(t)
"", =>-h, we denote the fundamental matrix solution of (2.1), which corresponds
to the initial condition X(0)=/, X(-)=0, -h-<’<0, and the input u(t)--O. Its
Laplace transform is given by A(A)-, where A(A)= AI-Ao-A e-h, A C, is the
characteristic matrix of (2.1).

2.2. State space theory. We consider two state concepts for (2.1). In the classical
sense the state at time t_->0 is defined to be the pair z(t)=(x(t),x,)M, where
x,(-) x(t + ’) for -h <= " :< 0. This state defines a weak solution of the abstract Cauchy
problem

2(t) Az(t) + Bu(t), z(O) oh, y(t) Cz(t),

where B e (, M2) and C (M2, [m) are defined by Bu (Bou, 0) and Ch Coh
for u e [ and b e M. The unbounded operator A: dom A-* M is given by

M_ WI,2 toa4 (ao6’(o)+alch’(-h), ) domA={b Ib =b (0)}

and generates a strongly continuous semigroup S(t) of bounded linear operators on
M2. Therefore z(t) M is given by the variation-of-constants formula

(2.3) z(t)= S(t)e+ S(t-s)Bu(s) cls.

Now let ST(t) denote the semigroup corresponding to the RFDE :(t)=
Ax(t)+ Arx(t-h) so that its generator AT is defined as A with Ao, A replaced by
A, A(. Then there is an alternative (dual) state concept for the RFDE (2.1) that
relates the semigroups S(t) and S(t). It can be defined in terms of the structural
operator F (M) (for a normed linear space X we denote by (X) the space of
all bounded linear operators X X) given by

(2.4) [Fb]=b, [Fch]’(cr)=A,ch(-h-o’),-h<=tr<=O
for 4 M2 (we define 41(’) 0 for " [-h, 0]). It is a remarkable fact that for every
weak solution z(t) M of the Cauchy problem (Y_,) the function w(t) Fz(t) M
defines a weak solution of the abstract Cauchy problem

vg( t) A*rw( t) + Bu( t), w(O) f
_
M2, y( t) Cw( t),

with f= F,;b.
Equivalently, the structural operator F satisfies the following equations:

(2.5) FS(t) S*(t)F, FB= B, CF= C

for t>=0. In particular, for every solution x(t)[", t>=-h, of (2.1) the function
w( t) F(x( t), x,) . m is given by

io(2.6) w(t)= S*T(t)Fqb+ S*T(t-s)Bu(s) ds.
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For more detailed discussion of these two state concepts and their relation see [6],
[13], [16], and [18].

2.3. Stability, stabilizability, and controllability. System (2.1) is said to be stable
if every solution x(t) of the free system (u(t)-O) tends to zero as goes to infinity.
Equivalently, det A(A) 0 implies that Re A < 0 for A C (see, for instance, [9]). Note
that r(A)= o’(A*)= {A C]det A(A)=0}. Moreover, system (2.1) is said to be stabiliz-
able if

(2.7)

and detectable if

rank [A(A), Bo] n for Re h _-> 0

(2.8) rank[_ Co
=n for ReA_->0.

An abstract Cauchy problmn is said to be observable if a nonzero initial state produces
a nonzero output. Hence the Cauchy problem (E) is observable if and only if

y(t)=0 fort_>-_0 implies x( t) 0 for allt>=-h

for every solution of (2.1) and the Cauchy problem (E*) is observable if and only if

y(t)=0 fort_->-h implies x( t) 0 for allt----h

(see [17]). These two properties have been characterized as follows [13], [14], [17].
T.:OREM 2.1. System (52) is observable if and only if

[A(A)]=rankA,=n forallC;rank
Co

(E,) is observable if and only if

rank
A(1)

=rank n for all C.
Co Co

If (2.7) and (2.8) are satisfied, then there exist unique nonnegative, selfadjoint
operators H, P L(M2) satisfying range II c dom A*, range P c dom At, and the
algebraic Riccati operator equations

(2.9) A*H4:HA4-H*I4+C*C4:O,

(2.10) arPf+ PA,f PBB*Pf+ C*Cf=O
for 4) dom A and f dom A*r (see [4], [20]). It follows from (2.5) that the solution
operators II of (2.9) and P of (2.10) satisfy the identity

(2.1 II F* PF.

This was first observed in [5] for the Riccati differential equation. Finally, we point
out that H is injective if and only if (52) is observable, and that P is injective if and
only if (*r) is observable.

For a detailed discussion of the Riccati equation and its connection to optimal
control theory see [4], [7], and [20].

3. Spline approximation.
3.1. Notation and terminology. Consider the finite-dimensional linear subspace

XrV= M2 ’= Z efVzj, z.i
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where the scalar functions ejN( )e L2(-h, 0) are defined by

eoN(r)__ (r--t), t <-- "r < to,
elsewhere,

I- (’r-- tff+),

eft(,)= --h- (r- t,),

0 elsewhere,

tiN+ N
1--- r-- /j

---T--- 1,

N
eNu(r) -- (r-- t_,),

0 elsewhere,

for j 1,. ., N- and meshpoints tff -jh/N for j --0,. ., N. Note that the
function component of every e XN is a piecewise linear spline function on the
interval [-h, 0). The subspace XNc M2 can be identified with the Euclidean space
[2k(N), k(N)=n+(N+ 1)n, via the embedding N [2k(U)_> M2 defined by

(3.1) Uz: Zo, Y ez
j=O

for z col (Zo, Zl) [k(), where Zo [2" and zl col (Zo,. Z1N), Z!j n, j
0," ", N. On [2k(N) we will always consider the induced inner product

(3.2) <w, z>, wpz=(w, z,,
where

(h/N)q
(R) I,

-.o o

N= 0
0

o i
Here I denotes the n x n identity matrix. The corresponding vector and matrix norms
will be denoted by I1" IIN" The adjoint operator 7r --(N)*" M2- [2k() is then given by

=(p)-’z, zo=,
o

e -ZlJ
-h

(7") (/) (T) dr, j--0,’’’,N,

and satisfies the identities

(3.3) 7rU N= id, N N N
r =p
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where p N. M2XN denotes the orthogonal projection. Let the matrices HNE
[k(N)k(N), BN Ek(N)I, and Cs 6[mk(N) be defined by

Ao 0 0A1
I Bo

HN 0 BN 0

hN(R)i |

0 / o

c =(Co 0 0),- 0 0

h N (N+I)(N+I),

0

Finally, we define

AN (QN)-’HU A=(QN)-’HT
(A)*=(QN)-I(H), (AN)*=(QU)-’(HN),

where the matrix HNr (k(N)xk(N)) is obtained from HN by transposing the matrices
Ao,

Now we consider two control systems on the state space EkN):

(,) ,N(t)=az(t)+Bu(t), z(0)=rNb, y(t)=Cz(t),

(,N,) vgN(t)=(Ar),w(t)+BNu(t), wN(o)=rNf, yN(t)=CNwN(t).

In [11] we establish the following convergence theorem.
THEOREM 3.1. (i) For every ch M we have 4 limv-PU4.
(ii) B uB, C CUr
(iii) There exist constants M >-1, to >= 0 such that

eA’ll _-< Me% ea)*’ll _--< Me’

for every >= 0 and every N
(iv) _For all d, f M2,

S(t)4 lim

and the limits are uniform on every compact time interval [0, T].
In particular, this implies that for every 4 M and every input u(. 6 L2(0, T; [t)

we have z(t)= limu_ NzU(t) for 0_--< t--< T (uniformly), where z(t) is the unique
weak solution of (E) and zu (t) satisfies (ZN). In the same manner the solutions wN (t)
of (EN*) approximate the solution w(t) of (Z*).

In the remainder of this section we will study the structural properties of the
approximating systems (Zu) and (zrN*).

3.2. The structural operator. In 2 we have seen that the structural operator
F" M2-> M2 plays an important role for the state-space description of retarded systems.
In this section we introduce an analogous operator for the description of the
approximating systems () and (:ErN). The first step in this direction is Lemma 3.2.
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Suppose u(.) is an arbitrary control in V(o,v)[h] and its projection on the closed
subspace 0//is denoted by Up(.). For each $ in X one has

(Up("), (,.,CfTB)*(" ))L2(O,T;U)= (U(" ), (,.,CfTB)*(" )d/)L2(O,T;U)

(h, 4/)x (G, 4/)x

((5B)* )p, (5B)*(.)4)c:(o,v;u),
or

(up(.)--(6fTB)*(" )q, (6fTB)*("

Since q/ is dense in 0 and [Up(’)--(SfTB)*(’)q]e all, we have

Up(.)=(SfTB)*(.) for each u(.)e V(o,T)[h].

Therefore

11(Se-B)*(’)ll(o,;)--Ilu(’)ll,(o,;)_-<llu(’)11=(o,;) for each u(.)e V(o,T)[h].

By uniqueness of the minimum norm optimal control of the linear system (1.5), (3.15)
holds and u*(.)

Since u u*-e(e +()-lu* (see (3.10)), (3.14) is equivalent to

(3.16) lim e(e +()-lu* =0 in L2(0, T; U).
---)0

If we consider another family with parameter e > 0 of associated quadratic optimal
control problems,

2L (;

then J(v; q) takes its minimum at v v defined by

v (e +d)-x(SfTB)* (e +r)-Xu *.

If we can show

(3.17)

then

2lime IIv (")11 (o,;) 0,

lim llv(.)ll,.(o,;ts)--< lim max {e IIv(.)ll=(o,;)}
e--)O

2_-< lim max {e e IIv (’)11 (o,;)} 0,
e0

The last equation just is (3.16). The rest is to show (3.17) holds for p X. (Notice, if
q e K(o,a) then (3.17) holds. Here we may show (3.17) holds for any given eX.)

Suppose q is arbitrarily given in X and

q =q5 +’,
where b e K(o,T) and ql e K(o,m--the orthogonal complement of K(O,T). Since X
/(0,T) (0,T), one has

Denote

3 (e +)-l(6erB)*q5 and

for any q e X.

v (e + )-(9B)*o.
Then

V 9 + V
+/-
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3.3. Criteria for stability, stabilizability, and controllability. We shall need the
following facts on the real (N+ 1) (N+ 1)-matrix aN=(qN)-h N.

LEMMA 3.5. (a) Let I1" I1 be the operator norm corresponding, to the vector norm
IX[2N:TqNx on CN+. Then [leaNt[[Nl for N=l,2,. and t>=O.

(b) Let lx 6 r(a) and x=col (Xo, ,xn)6CN+, x O, such that either (txq N

hN)x=0 or (txqN-(hN)r)x=O. Then xo#O and xnO.
(c) Let tx6cr(a N) and x--col(I,0,.-.,0) or x--col(0,...,0,1). Then

x range (txq N h N and x range (/xq (h N r).
(d) Re/z < 0 for every tx r(a ).
Proof (a) For every xC+ the following equation holds:

Re (ffrh Nx) (Re x) rh N (Re x) + (Im x) rh N (Im x)
(3.7)

Ixo12- 1/2 Ix,l.
Hence a N is a dissipative operator on CN+ with respect to the inner product

(y,x)N =grqUx, x, yC+’.
Therefore exp (aNt), >= O, is a contraction semigroup on C+ supplied with the norm

[u (see, for instance, [15]).
(b) This follows from

__1+ 6 00

6-- -3 X

ixqN h U
0

0-----0 "-1/2 +
and the fact that/x +3 is not an eigenvalue of a N.

(c) x range (/xq h) would imply x _t_ ker (/xq N -(h)r), which is impossible
by (b).

(d) Assume that /z o-(a) and Re/x >_- 0. Then there exists an x C /, x 0,
such that (/xq- h)x 0. By (3.7) this implies

0_< (Re/x))qx Re ()rh x)
1 12.--lxol lx,

Hence xo x 0, and therefore x =0 by (b) in contradiction to x
For every/x C not in the spectrum of a N (in particular, for every z in the closed

right half-plane) we introduce the vector
N(3.8) aN(/x) col (ao(/x),

as the unique solution of

(3.9) (/xqN- hN)au(/x)= col (1, 0,..., 0).

The complex n x n-matrix

(3.10) AN (A AI- Ao-A, (A-hN)
plays a role for the approximating systems (S) and (EN*) analogous to that of the
characteristic matrix A(A) for the original systems () and (*). In particular, it
determines their input-output behaviour (see Proposition 3.7 below).
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Next we characterize the resolvent operator (AQU Hu )-! in terms ofthe matrices
AN (A), FN and E N (/) ck(N)n, TN (A) E C k( N)k(N). The latter are defined as follows"

(3.11) tu(A)--col 1, ao ,’’’,aN\]

(; o )(3.12) TN(A) ((Ah/N)qN_hN)_ @L

PROPOSITION 3.6. Let A C with Ah/N cr(a N) and x, z C k(N), where x is written
as x (Xo, xl) with Xo Rn, then

(a) (AQN- HN)x z if and only if

(3.13.1) x= EN(A)xo+ T(A)z,

(3.13.2) zXu (,)Xo E"(A)rFUz.

(b) (AQN-(H)r)x z if and only if

(3.14.1) x= FUEU(,)Xo+ TU(,)rz,

(3.14.2) Au (,)Xo E u (,) z.
Proof We put z= (Zo, zl), xl (Xo,"" ", XN), Z (Z0,""", ZN). It is easy to

see that (AQN-HN)x z if and only if

(3.15.1) (hi- Ao)xo- AlXIN ZO,

-h N) @])Xl Z +CO1 (Xo, O,""", 0).

Observing that (see (3.9))

we get from (3.15.2)"

hh N N
Xl= q -h (R)I z+E u(A)xo,

which proves (3.13.1) and

x, Xo + 2 - z,.
k=0

The last expression oge:fier witfi (J.15.l) establishes (3.13.2).
For (b) we observe that (AQU-(H)r)x= z is equivalent to

(3.16.1) hXo Aoxo Xlo Zo,
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Observing

--qS--(h)r

we get from (3.16.2):
x= F()Xo+ T()z,

which proves (3.14.1), and

Xlo=? a Zlk+Ala Xo,
=0

which together with (3.16.1 gives (3.14.2).
In particular, the previous proposition shows that

(AQN--HN)-’= EN(A)AN(A)-’EN(A)TFN + TN(A),
(AQN--(H)T)--- FNEN(A)AN(A)-EN(A) T-{- TN(A) T,

and hence

(3.17) (AI-AN)-’= EN(A)AN(A)-IEN(A)TQNFN + TN(A)QN,
(3.18) (AI-(ATN)*)-1= FNEN(A)AN(A)-EN(A)TQN + TN(A)TQN

provided A cr(a N) and det AN (A) 0.
PROPOSITION 3.7. (a) The left upper n n block xN(t) in the matrix eANt coincides

with that of the matrix e(AT)*. Its Laplace transform is given by A (h )- (see (3.10) for
the definition of AN h ).

(b) Let wN(t)=CO1 (WoN(t), ") and zN(t)=CO1 (ZoN(t), ") be the unique sol-
utions of (i, N) and (*), respectively, with initial state zero. Then

woN(t) z0N(t) xN(t-s)Bou(s) ds, t>-O.

(c) The transfer matrices of (EN) and (E N,) coincide and are given by

GN(A)=CoAN(A)-’Bo.
Proof Statement (a) is an immediate consequence of (3.17), (3.18), and the special

form of the matrices E N(A), TN(A), fN, QN. Statements (b) and (c) follow directly
from (a). [3

The following characterization of stabilizability and detectability for the
approximating systems (EN) and (E*) is precisely the analogue to (2.7) and (2.8).

THEOREM 3.8. (a) For h C with Re h _-> 0 the following properties are equivalent:
(i) A o-(AN);
(ii) A cr((aN)*);
(iii) det A (A) 0.

In particular, the matrix AN (or equivalently (A)*) is stable ifand only if det AN (A) # 0
for every A C with Re A ---0.

(b) The system (ZN) (or equivalently (E *)) is stabilizabte if and only if
rank AN (A), Bo] n

for every A C with Re h _-> 0.
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(c) The system (,N) (or equivalently (E*)) is detectable if and only if

rank(AN(’)) =nCo
jbr every h C with Re h 0.

Proof. It is well known from finite-dimensional linear system theory that (zN) is
detectable if and only if ker (hi A) G ker C N {0}, or equivalently,

ker (AQN-HN)Gker CN ={0}

for every h C with Re h 0. But h(h/N) g(a) for Re h 0 (Lemma 3.5(d)).
Therefore, according to Proposition 3.6(a), x=col(xo, x)ker(hQ-Hu) is
equivalent to (h)Xo=0 and x EN(h)Xo. This implies that detectability of (EN) is
equivalent to

ker (h) ker C {0}

for every h C with Re h 0. When we use Proposition 3.6(b), it follows analogously
that this condition is also equivalent to detectability of (E *).

Statement (b) follows from (c) by duality and statement (a) follows from (b) with
Bo =0.

THEOREM 3.9. (a) Let C be such that A(h/N) (aN). en (A) fand
only if detAN(A)=0. If A(h/N)(aN), then A(AN) if and only if deta,=0.
Moreover, ((a)*)= (AN).

(b) System () is controllable if and only (

rank [A(A), Bo] n forallAeC,(aN),
rank [A, bo] n.

(c) System () is observable if and only if

rank(A(A)) ()n for all h C a
Co

rank A n.

(d) System (E*) is controllable if and only if

rank (I), Bo] n for all C a

rank A n.

(e) System (*) is observable if and only if

rank (AN (’k)) ( N)n for all h c Ck a
Co

rank(A) =n.
Co

Proo We first prove (c), i.e., we must show that ker (II-A) ker C= {0} for
all IC For I((N/h)a ), or equivalently, for lh/N (a) we see as in the

(a/proof of Theorem 3.8(c) that this is equivalent to rank Co )= n.
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Now let hr((N/h)an). We assume rankA=n and take x=
col (Xo, Xo,’"" ,xn)ker(hl-An)fflkerC n. Then (3.15.2) implies (((hh/N)qn-
hn)(R)I)Xl =col (Xo, 0,. ., 0) and therefore Xo=0 by Lemma 3.5(c). This and (3.15.1)
imply Axn =0, i.e., Xn =0. Then we get from Lemma 3.5(b) x =0, and thus x=0.

Conversely assume that ker (hi An) f’/ker C n {0} and take : ker A. Accord-
ing to Lemma 3.5(b) there exists a vector x=col (Xo,"’" ,xn)C(n/l)n such that
[(h(h/N)qn-hn)(R)I]x=O and xn =. For x=col (0, x) equations (3.15) (with
Zo-0) imply (hQn-Hn)x=O. Obviously we have Cnx=O. By assumption this
implies x--0, and thus :=0. We conclude rank A- n. This finishes the proof of
statement (c).

It still holds that h o’((N/h)an). Assume that kerA1 flker Co={0} and let x
Ck(n) satisfy (AQ-(H)T)x=O, Cnx=O. Then (3.16.2) and Lemma 3.5(c) imply
Axo=0. This together with Coxo=0 shows Xo=0. Hence it follows by (3.16.1) that
Xo=0. Finally we get from Lemma 3.5(b) that x =0, and thus x =0, i.e., ker (AI-
(An)*) f’l ker cn {0}.

Conversely, suppose that ker(hl--(AT)*)f’lker Cn ={0} and let Xo
ker A ker Co. By Lemma 3.5(b) there exists a vector a col (ao, , an) Cn/

such that

h N N T)A q -(h a --0

We define x =col (xlo,""" ,xn)Cn(s+) by

and ao= 1.

xk =a(hI-Ao)xo
for k =0,..., N. Then it follows from (3.16) that x-col (Xo, x)
ker(hQN--(H-Nr))f’lker C N. By assumption this implies x=0, and hence Xo=0, i.e.,
ker A fqker Co {0}. Thus statement (e) is proved.

Statements (b) and (d) follow from (e) and (c) by duality. The proof of statement
(a) is the same as for (c) with C N --0, respectively Co=0. [3

4. Stability. It is our goal to prove that stability (respectively, stabilizability, or
detectability) of the original system (E) implies the corresponding property for the
approximating system (En) and (Y_,*) provided N is sufficiently large. The first step
in this direction was the characterization of these properties in Theorem 3.8 using the
matrices An(h). The second step will be a convergence result for the characteristic
matrices An (h). As a third step we need a priori bounds for the unstable eigenvalues
of the matrices An

4.1. Convergence of N(/), First we derive explicit formulas for the av(/z) (as
defined in (3.8) and (3.9)) and use those to prove convergence of An (h) to A(A). Let
the rational functions dV(/z), k 0,..., N, and the polynomials pk(tZ), qk(tZ), k-
-1," ", N, respectively, k- 1,. ., N, be defined recursively by

do(/x) 2/z +3,
9-/z____(4.1) d(p,) =4 + d-l()’

k= 1, , N- 1,

2

d(/x) 2/x +3 +

(4.2)
p_(/z) 1, po(/Z) 2/x + 3,

Pk (P, 4tXpk- (p, + (9 -/z2)pk_2(p, ),
q(/x) (2/x +3)pk._(l)+(9--lX2)pk_z(tX).
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The function w w(z) is defined by

(4.3) w(z) (9+ 3z)
taking the branch that is positive for/x iO, 0 R, 101 <. Furthermore, we set

(4.4) y0(/z) 2/x + w(/x), ’tl(/b 2/x w(/z), /x C.
Since w() is real for iO, [01-<-,,/, we obtain

(4.5) [yo(iO)l=lyl(iO)[=13-iOI, I01<-,,/, 0.

Therefore the function 6 6(0) is well defined by

ei(-y(iO)-702-9+4iOw(iO) IOl<=x/, 0[,

(4.6)
3/o(i0) 9 + 02

0_<- 3(0) =< 27r.

LEMMA 4.1. (a) For k=0,. ., N and tz o’(aN),
6(3 --/z )k 6(3 --/X kpN_k_ (/Z)

(4.7) a(/x)
d

_
(/x) d (/x qN(/x

(b) det (qN--hN)--(1/6N/)qN() and

2" 6N+’w det (/xq N h) (3 + w)2(yo) -(3- w)2(y,) N

for all C.
(c) For tz o(a) and tz +i,,/,

(3+ w)(o)-- (3 w)(,)-(4.8) a (z)=6(3-/x) (3+w)2(yo)-_(3_w)2(y)
k=O,. N. Moreover,

9(1-cos k6(O))+ w2(iO)(1 +cos k6(O))
(4.9)

(9+ w2(iO))2(1-cos S6(O))+a6w2(iO)(1 +cos S6(O))
for k=0,..., N, 10[ </, 0[.

Proof Suppose that the functions dk d(/x), k =0,..., N, are given by (4.1)
and define

-3-/x 3-/x
bk-- Ck-- k= l," N.

dk-1 dk-1
Then it is easy to see that

6(/xq

1

i
0

c 1

It is not difficult to calculate the inverse matrices. Since c N (/x) is the first column of
(/xqN--hN)- (see (3.9)) we conclude that

6CN-k+ eN 6(3 --/x
k

()
dN d-k d’

k=O,...,N.
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If the polynomials Pk(/Z) and qk(/z) are given by (4.2) and the rational functions
d(k) by (4.1), then we see by induction that

d(/z) =Pk(/Z)/Pk-I(/Z), k=0, , N- 1,

d(/z)
This implies

Pk(/Z) d(/z) d(/z), k=0, , N- 1,

qN(/Z) doN(/z) d(/z)=det[h(/zqN-hN)].

This finishes the proof of (a) and also establishes the first part of (b).
To prove (c) we choose/z C,/z +ix/. Then 3/0 3/1 and

2)3/i-4/z%-(9-/z =0, i=0,1.

Hence 3/0 and 3/1 are the characteristic roots of the difference equation in (4.2). This
implies that

3+w 3-w(o)+l (,)+(4.10) Pk(/Z)
z"w 2w

k -1, 0," ", N- 1. Using 3/o3/1 22-9, we get from (4.2) and (4.10) that

qN (/z) (2/z +3)p_l(/z)+(9-/z2)pN_2(/z)

(4.11)

3+w
[(2/z + 3)(3/o) u + (9-/Z)(%,) N-’

3+w

2w
[(2/Z + 3)(3/,) + (9 /Z 2) 3/1) -]

(3 + w) )___(3/o)N_(3-w
2w 2w

The second part of (b) and (4.8) are immediate consequences of (4.10), (4.11).
To prove (4.9) we use (4.8) and observe 3/1(i0) ei6()3/o(iO and (4.5).
The explicit formulas in the previous lemma allow us to prove that the matrices

A N (Z) actually converge to the characteristic matrix A(A) of the delay system.
THEOREM 4.2. A(A) limN_ AN (A), A C, the limit being uniform on bounded

subsets of C.
Proof Fix 8 (0, x/). Then w(/z) as defined in (4.3) is continuous and

3 on I/zl_-< 8. From w(/Z)-3=3/ZZ/(w(/Z)+3) we see that

(4.12) ]w(/z) 31-<-1/Z12 if I/Z] =< 6.

In the next step we prove that a (/Z/N) converges for arbitrary c > 0 uniformly to
e -" on I/z]-<-c as N-. To this end we use formula (4.8) for k- N and obtain, with
w w(/z/N), N >= c6 -1,

NN()-’ (3+)( / )U (3--W)2( -/w-2
/z

3-(4.13) ce
12

w+2 3-
12w

From (4.12) and limN_, W(/Z/N)= 3 uniformly on I/Zl -<- c we see that

(3 + w(/z/ N)) (3 w(/z/ N))
lim =1 and lim =0

12w(/Z/N) N-o lZw(/Z/N)
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uniformly on IIx[ <- c. Moreover, we also obtain from (4.12)"

w+2IX/N IX w-3+(IX/N)2 ___+0[1
3-IX/N

=1++ =1+
N 3-IX/N N -3-IX/N

=1
3N 3-IX/N =1--+O

as N- oe uniformly on IIXl----c. These relations together with (4.13) show

lirn e"

uniformly on IIx[ =< c. Finally, the theorem follows from (3.10).

4.2. Uniform bounds. We first establish bounds for the a (ix) in Re IX >_-0.

LEMMA 4.3. The estimate [ce (IX )I <= 2 is valid for all tx C with Re Ix => 0 and all
N-- 1,2,....

Proof Since, according to Lemmas 3.5(d) and 4.1(b), the polynomial qN(tZ) is
stable, aN(Ix) is a proper rational function without poles in Re Ix _.0 (cf. (4.7)). It
follows from the maximum principle for analytic functions that [a (IX)[ achieves its
maximum value in Re Ix _-> 0 on the imaginary axis. Therefore we only have to prove
[a (ito)[ -<_ 2 for all to and all N

First we consider Ix i with IIxl >_-.x/-. In this case we have

(4.14.1) ]d(ix)[ _-> 13- Ix[, k=0,...,N-l,

(4.14.2) Id N(IX)[ _>-- 3

for all N. The first estimate is obviously satisfied for k=0. Using
13- Ixl, we obtain from (4.1), assuming that the estimate is already established for k:

9+11Im d+(tz)l 4 Im Ix- [d,V(ix)] 2 Im

9+lzl2

>-- 411- Id U(z)[z
>-- 411- (9 + [ix lz)

->_ (9+ I1)’/, k=0,... v-2.

This proves (4.14.1). To prove (4.14.2) we note that Re dkU(/x) is always positive (and
decreasing with respect to k) because

Re d7+()=
i()l

Re d?(), k=0,. ., V-.
Therefore the last equation in (4.1) implies

9+[!
_

Re d( 3+
Id --ii)l

Re d ()_-> 3

which proves (4.14.2). Now it follows from (4.14) and (4.7) that

13-.______Lt 13- 1 3

It remains to consider Ix iO with 10[ < v, 0 [.
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Then we obtain from (4.9), with k N,

[ce(/z)12 36W2/((9+W2)21--COS N6 W2 l+cos N3)+36 <1
2 2

because 6w =< 9 + W2o [’-]

From Lemma 4.3 we obtain the following a priori bounds for the unstable
eigenvalues of the matrices AN and (A’)*.

PROPOS,TON 4.4. Let w IIa011+211All. For every N and every a C with
Re h >= 0 and det AN (h) 0 we have [hi _-< to.

Proof It follows from Lemma 4.3 that

Ao+ A,a N\--] II.aoll + 211A, w

for every h C with Re h >-0 and every N[. Therefore we obtain from (3.10) that
IlhI-a(a)ll._<- o, for every h C with Re ->_0 and every N. Hence det AN(X) 0
for every h C with Re h >=0 and Ihl> w. This proves the statement of the propo-
sition. [3

Now we are in a position to prove the desired result on stabilizability and
detectability for the approximating systems (EN).

4.3. Stability, stabilizability, and detectability.
THEOREM 4.5. The following statements are true"
(a) If system (E) is stable, then there exists an No such that system (EN) is stable

for every N >= No.
(b) If system (E) is stabilizable (respectively, detectable) then there exists an No

such that system (ZN) is stabilizable (respectively, detectable) for every N >= No.
Proof Suppose (E) is stable. Then det A(,)0 for every A C with Re A =>0.

Hence the uniform convergence result for AN (h) on bounded domains (Theorem 4.2)
shows that det N(A) 0 for C with Re , >-0 and [Al<-w provided N is sufficiently
large. If o > 0 is large enough then we obtain from Proposition 4.4 that det N(h) 0
for all A C with Re , => 0 provided N is sufficiently large. Now the stability of (ZN)
follows from Theorem 3.8(a). This proves (a). Statement (b) can be established
analogously. [3

Now we might ask whether the stability of system () implies stability of the
approximating systems (N) uniformly with respect to N, i.e., the existence of constants
M=>I, e>0suchthat

[leatllN<=Me-t, t>O=

for N sufficiently large. A result of this type would be needed to apply a result of
Gibson [8] concerning the approximation of the solution to the algebraic Riccati
equation. Moreover, the uniform stability has been stated as a conjecture in [3] for
the spline approximation scheme developed in [2]. Our result below shows that such
a conjecture is definitely wrong for the approximation scheme developed in this paper.
This also indicates that it is wrong for the spline approximation scheme in [2].

PROPOSITION 4.6. Suppose that there exist constants M >-1 and eN > 0 such that

Ilexp (Sat)[[ <-- Me-’, t>0,=

for all N. Then eN o(1/N/2). Here I1" denotes the operator norm corresponding to
the vector norm Ixl=(1/N)xqx on +.
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Proof. First note that

xrx<_xrqNx<_xrx, xN+’,
and therefore

xrx<=xr(q)--x<_6xrx, xN+.
This implies, for Xo col (1, 0,. ., 0) and x iR (cf. (3.9)),

N

k=O

=6N e-"t exp (NaNt/N)(qN)-lxo dt

=6NM2l(qN)-lxo]2 e-(’/ dt

6N3M2 6N2M2

EN

36N2M
N

Therefore

x[(qU)-’Xo

(4.15) eN <=6NM c /(]d, 12
k=0

for all/x i.
Now let tx=iO satisfy 101<,, 0. Since 6(i0)0 as [0[, we can choose

a sequence 0, 10NI, such that ]0NJ and 6u=6(iON)=2/N. We put
N

wN w(iON) and get, using (4.9) and =o cos (2k/N)= 1,

()1 ()2 9
cos + 1 + cos2 _(i0N) w =o =ok=0

(4.6)
9

N.

sin 6(0)
40w(iO)
9_t_02

From (4.6) we get

which shows that for positive constants c, c2,

C1 2---< wr < for all N.
N- --This and (4.16) imply
N

[c’(/xr)[2->const. N.
k=O

This last estimate and (4.15) show that

8N <- const.
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The result above shows that exponential stability uniform with respect to N is,
in general, impossible for our scheme. Numerical studies show that there is a sequence
AN, N= 1,2,. ., of eigenvalues Arcr((N/h)a u) such that Re N-0 and Im AN-
o. In fact, the numerical results indicate Re u O(1/N2). In the general case where
tr((N/h)a) is not part of tr(AU), numerical studies still show the existence of a
sequence N, N= 1, 2,’’’, such that Aur(Au) with Re u <0, Re u-*0 and
Im Au- oe. Figure 1 illustrates the location of the spectrum for the approximating
systems in case of the scalar equation 2(t)= x(t)+x(t-1). For comparison Fig. 2
illustrates the spectrum of Na N.

5. Uniform output stability. Despite the negative result of Proposition 4.6 and the
fact that some eigenvalues of the approximating systems approach the imaginary axis,
we are still able to prove a uniform L2-estimate for the En-components

zoN(t; dp)n, WoN(t;f)

of the unique solutions of (E) and (E*) (with u-=0). We call this property the
uniform output stability of the systems (E) and (E*).

THEOREM 5.1. Suppose system (E) is stable. Then the approximating systems
and (*) are uniformly output stable for N sufficiently large, i.e., there exists an No6N
and a constant c > 0 such that for N >= No

(5.1) lzo(t; ()l,, dt:cll(ll foraZt M,
(5.2) ]WoN(t;f)] dtc]lfll forallf M.

Proof. Choose No N such that det AN (h) 0 for all A C with Re h >_- 0 and all
N=>No (Theorem 4.5). Then it follows from (3.17), (3.18), and Lemma 3.2 that the
Fourier transforms of zoN(t; 4)) and w(t;f) (determined to be identically zero for
< 0) are given by

P. oN ito b)= AN ito E N ito "rQNrNFch,

oN(iw; d) u(ito)-’Eu (ito) rQN’Nf

for N>= No. Using Plancherel’s theorem, we see that to prove (5.1) and (5.2) it is
enough to show

f

_
IAN ito )-l E N ito rQUz[,, dt <= 2rrczTQUz

for all ZE[k(N) and all N>-No. The definition of EN(A) in (3.11), together with
Lemma 4.3, show that it suffices to prove a uniform estimate of the form

(5.3) IIA(io)-*ll 2
k=O

2

dto <= c

for all N >-No (with a possibly different constant c). Of course, it is only necessary
to consider to _>- 0.
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Using (3.10) and Lemma 4.3 we immediately get the estimate

1
IlA(io)-ll forlol>Co, N=l,2,’’.,

I,ol-Co

where Co IIA011 + 2IIA I]. By Theorem 4.2 and the stability assumption on (E) we obtain

Cl(5.4) IIA(i)-II< for all w[=l+w2

and N sufficiently large, where c is not dependent on N.
Defining

1 N

f(0)= 2 Ic’(i0)l,
k=0

we find that for all N= 1, 2,...

N+I
(5.5) fu(0)<=4-<8 for

N

and for any a (0, 1)

N+I 2 4
(5.6) fu(0)<----< for 0 < 0 < cr,/.

N 1-ce2=l-cr

The estimate (5.5) is a straightforward consequence of (4.7) and estimates (4.14). To
obtain (5.6) we can use the representation (4.9) and the estimates w(i0)=9-30>=
9(1-2), w(iO)<-9, and 9+w2(iO)>-6w(iO) for 0-< 0_-< a,.

It remains to investigate the behaviour offu (0) at intervals of the form
0 < a < 1. There we cannot expect to have a bound for fN (0) uniformly with respect
to N. Formula (4.9) shows that we should expect difficulties for those 0 near such
that N6(0) is close to an integer multiple of 27r. This reflects the fact that the eigenvalues
of a v are closest to the imaginary axis near +iNx/ (see Fig. 2), i.e., for 0 wh/N
close to +/- x/-. In Fig. 3 we show the plot for fN (toh N), N 10, 20, 30, 40, h 1,
which illustrates the difficulties.

We first determine those parts of (ax/, x/), where we still can find a uniform
bound forfN(0). Since a is not yet fixed we consider 0[0, ax/].

CLAIM 1. If O6[O,x/] is such that O<=6(O)<-Tr/3N, then

(5.7) fN(0)--<_ 8 forallN.

Proof From 1/2<-cos N6(0)-<cos k(O), k =0,..., N, and (4.9) we get

9(1-cos N6(O))+ w(iO)(1 +cos kg(O))
Ic_,(io)l-<_ 4

9(1-cos N6(O))+4w(iO)(1 +cos Nt3(O))

9(1 -cos N6(O))+2w2(iO)
<=49(1 -cos N6(O))+6w2(iO) <=4,

for k 0,. ., N, which implies the result.
CLAIM 2. If 0 [0, v/] is such that

0,...,IN/2], then
1(O)-2r(v/N)l>= 7r/3N for

fN (0) -<_ 64 for all N.
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Proof From cos N5(0)cos (7r/3) =1/2, w2(i0)<=9 and (4.9) we obtain

2.9+2.9
-<36, k=0,...,N. IS][ -’(i0)12-< 36 92(1 cos N(O))-

For v, N N and ce (0, 1) we define the intervals

IN= {O[a,], x/-] ,NS(O)-27rvl<}
We have INs if and only if ,=0,... vl, where vl< N is determined by the
conditions 2 7rvl 7r/3 < N6(ax/) and 27r( Vl + 1 )- 7r/3 _-> N6(ce,f). Inequalities (5.5)-
(5.8) imply that for any c (0, 1) there exists a constant c= c(c) independent of N
such that

(5.9) fN(O)-<_c(ce), 0 M:=[.0, oo) L_J I

for all N N. Let /17/= { to _-> 01o)h / N M}. Then by (5.4) and (5.9)

IIA(i)-’ll=f

Let= {to >-Ol(toh/N) IN}, v, N N. Then by (5.4) (note, that to > aox/(N/h) for
~No I,,,
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(5.11)

J= y IIAN (ito)-1112f N dw

c N
-1 +3oN2/h2 -ff zN(o) dO

-=1

for N sufficiently large. It remains to prove an estimate of the form

N f fN(o dO < c
u=l

for all N 1, 2,. ., where C is independent of N.
Now we fix a Cro by imposing the condition

(5.12) (ox/) :-.
Then there exists a constant c2 such that

1
(5.13) --3(0)<w(i0)<C23(0), 0 [OoV, "ff

2

Proof of (5.13). From (4.6) we see that sin 3(0)=40w(i0)/(9+ 02). Therefore

4Crox/ 4x/
(5.14)

12
w(iO)<=sin 3(0)<= - w(iO) 0[Oo,/-,,f].

The monotonicity of 3(0) and (5.11) imply O<=3(O)<=vr/2. Then (2/r)3(0)<=
sin 3(0)<=3(0), which together with (5.14) implies the result. [3

CLAIM 3. There exists a constant c3 independent of N and u such that

(5.15) [I y[ c-for N= 1, 2,... and u 1,..., u. Here "[I] denotes the length of the interval IN

Proof. From (5.13) we get

1
(5.16) -w(iO--- <--

c23(0)’
0 aox/-, x/].

The definition (4.6) of 3(0) together with (4.3) implies

36
3’(0)=-(9+02)w(i0).

Using (5.16), for 0 e I we obtain

36 1 3

9 + 02 c23 0 c23 0

1 N

c27r /.,

Therefore

I 1 N2"rr
6, O dO > I.’l3N c2 u

for N 1, 2,... and u 1,. ., ul, which proves the result.
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CLAIM 4. There exists a constant c4 independent of N and v such that

for O e I, N= l,2, and v= l, Vl.

Proof. Let OI. Then 6(O)>(2rv-r/3)/N and by (5.13) we obtain

w(iO)>--’m 2Try- >= ..
cz N 3C2 N

This together with (4.9), w2(i0)<=9, and cos N6(0)>1/2 for 0 I implies

18 108c2 N
=(l+cos N3(O))w2(iO) 257r2 v

Then the result follows immediately.
Using (5.11), (5.15), and (5.17) we get the following estimate for J"

c, c3c4
+3ozN/h h =l

ClC3C4 N N 1 ClC2C N(1 +In N)
h l + 3crN2/ h = v h + 3oz)N2/ h 2

for N sufficiently large. This together with (5.10) establishes (5.3). Thus the proof of
Theorem 5.1 is finished.

Remarks. (1) Uniform output stability in general does not imply a uniform (with
respect to N) exponential decay for the [-components of solutions of the approximat-
ing equations. If we are willing to accept the existence of eigenvalues I for the
approximating equations with Re Au-0 as N-.oo also in case det A 0 (as is
demonstrated numerically in Fig. 1 but not proved in this paper), it is sufficient to
show that in case det A 0 any eigenvector for the approximating system has a nonzero
C "-component. To prove this, assume yN =CO1 (yy, yN) with yV C", yC(N+l)" is
an eigenvector of Au corresponding to the eigenvalue AN. Assume yoN =0. Then
ANyN ANyS is equivalent to

N s(5.18) (0 0A)yN=O and -(a (R)I)y=hsyY.

The second equation implies yN=x(R)v, where aNx=(hh/N)x, x=(xo,’’ ",XN)
CN+\{0} and v C"\{0}. By Lemma 3.5(b) we have xN # 0. The first equation in (5.18)
implies A(XNV) XNAv 0, a contradiction to det A 0.

(2) It is interesting to state a consequence of uniform output stability for the
eigenvectors of the approximating equations. Assume (E) is stable so that (5.1) is true,
and let yN= (yoN, yN), Y C., Yl

N C(N+I) be an eigenvector of A corresponding
to an eigenvalue AN. Then zy(t;NyN) yoN e, t>= O, and therefore

o
IZo(t; Y)I"dt=

For N -> No, (5.1) implies

2clRe ANI

21Re ANI

1-2clRe
provided IRe AN] < 1/2c. Therefore if IRe ANI- 0 as N- then also yoN - 0 in C n.
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N N 16

FIG. 4

Figure 4 shows, for N:8, 16, I(yN)’(0)l, -1-<0=<0, and I(rNyN)01 for the
normalized eigenvector yN (i.e., 1) of AN corresponding to the eigenvalue
AN with the smallest real part (and at the same time largest imaginary part) in case
of the scalar equation :(t)=-2x(t)+x(t-1). The eigenvalues Av and ](yN)O],
N 4, 8, 16, are given by

A4=-2.9294+5.1788i, A8=-0.7218+ 12.7848i, A6=-0.1874+27.0462i,
[(4y4)[=0.3536, 1(8y8)1=0.0690, [(6y16)[=0.0167.

(3) Uniform output stability is sufficient to prove convergence of the approxi-
mating Riccati operators in the case of the infinite time horizon problem observed
numerically in [11]. This will be shown in a forthcoming paper [12].

Acknowledgment. We thank W. Prager for the computations concerning Figs. 1-4.
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MINIMIZING ESCAPE PROBABILITIES: A LARGE
DEVIATIONS APPROACH*

PAUL DUPUIS? AND HAROLD KUSHNER$

Abstract. This paper considers the problem of controlling a possibly degenerate diffusion process so
as to minimize the probability of escape over a given time interval. It is assumed that the control acts on

the process through the drift coefficient, and that the noise coefficient is small. Developing a large deviations
type of theory for the controlled diffusion produces several results. The limit of the normalized log of the
minimum exit probability is identified as the value I of an associated (deterministic) differential game.
Furthermore, we identify a deterministic (and e-independent) mapping g from the sample values ew(s),
0= s =< t, into the control space such that if we define the control used at time by u(t) g(ew(s), 0<= s t),
then the resulting control process is progressively measurable and 6-optimal (in the sense that the limit of
the normalized log of the exit probability is within 6 of I).

Key words, controlled diffusions, large deviations, differential games

AMS(MOS) subject classifications, primary 93E20, 60F10; secondary 92D25

1. Introduction. Consider the white-noise-driven control system living in Ed.

(1.1) dx"’= b(x"’, u) dt + eo’(x"’) dw,

where u takes values in a compact set K ". There are many problems where we
want to keep x"’( in a set G until some particular job is finished. For example, in
the problem of pointing a telescope on a satellite, the domain G and the duration are
determined by the object to be photographed and the time required. See Meerkov and
Runolfsson [6] for additional examples.

The associated control problem can be formulated in several different ways,
depending on the time interval of interest. We consider two criteria. Define ’"’inf t" x "’ t) OG}. One criterion is to minimize

(1.2a) P,,{-"’ -<- T}, x G=interior of G

for given T. The other criterion of interest here is the maximization of

(1.2b) Ex""’, x G.
Px and Ex denote the probability and expectation (respectively) given xU’(0)= x.

In general, it is very difficult to solve for the optimal control. However, in many
problems the parameter e is small. The theory of large deviations provides an alternative
that can give a nearly optimal control for small e, and a great deal more information
and insight into the control process, likely escape routes, error bounds, etc. Take u to
be a feedback function u(x, t) that is smooth in x, uniformly in .--<_ T. Let r be the
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dimension of w(. ). For v(. that is measurable, lives in r, and is such that olVl dt <
define the system

b b qb, u d, + cr c v, (o)=,

and define

S(x, u, T) inf Iv(t)[a dt" oh(t) OG for some =< T

The theory of large deviations tells us (under some other regularity conditions) that

S(x, u, T)=-lim e log P,{7’’’ <-_ T}.

Because ofthis result, we are tempted to tryto maximize (or nearly maximize) S(x, u, T),
and to use the corresponding (if any) maximizing (or "smooth" nearly maximizing)
control. This approach encounters serious unresolved technical difficulties. In par-
ticular, it is not at all clear that the supremum over smooth feedback controls will be
as large as that obtained over alternative classes of controls, such as those used below.
Note that since we wish to supremize (over u) an infimum over v, the basic problem
can be formulated as a differential game.

We mention here that calculating the limit of the normalized log of the minimum
exit probability is by itself not useful in establishing the optimal performance for all
small e of any given control scheme. It may happen that a control that is found to be
good for a small but fixed e > 0 actually behaves poorly in the limit e- 0. Obtaining
a "good" control that depends on e only through the actual driving noise process will
be an important part of the development below.

Known results in this area are few in number. Fleming and Souganidis [3] consider
the large deviations problem associated with the minimization of (1.2a) over the class
of feedback controls taking values in K. By use of PDE-viscosity solution techniques
they calculate the asymptotics of the infimum of the exit probabilities. Their approach
is restricted to the case where the diffusion is uniformly nondegenerate: cr(x)tr’(x) >= cI,
with c > 0. Furthermore, they identify the limit as the value of a certain associated
(deterministic) differential game. They do not deal with the uniformity issue raised
previously, nor with the problem of construction of g-optimal policies and their
uniformity properties. Wentzell and Freidlin [5] consider the optimization problem
associated with (1.2b) for a wide class of processes that includes (1.1) in the uniformly
nondegenerate case. However, to obtain a solution with the desired properties, they
restrict the class of available controls in a way that is probably not natural for these
types of problems. For example, they consider feedback controls that are continuous,
except possibly at one point. Simple examples in dimension greater than one show
that the "best" control may have discontinuities along manifolds of dimension one less.

The objective ofthis paper is to extend the conclusions of [3 ]. By use ofprobabilistic
arguments (as opposed to PDE), we recover the results presented there. The probabilis-
tic arguments allow us to extend these results to the important degenerate case, which
is in fact more natural in applications. We also address the uniformity issue raised
above. The results in this direction are not completely satisfactory in that the exhibited
control is not of the simple feedback form, but depends on the "full information" of
the past. However, they do suggest that feedback controls are available that do not
depend on e explicitly, and are nearly optimal for small e.

Our basic assumptions and definitions are as follows.
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Assumption A1.
(1) b(.,.) and o-(.) are Lipschitz with constant K and bounded with constant

B on an open set containing G, the closure of G.
(2) The control space K is compact and independent of time.
(3) G is an open set in d.
(4) Either (i) o-(.) is a square matrix and uniformly nondegenerate, or (ii) we

can partition b and o- in the form

b(x,u)=[ bl(x’u)]bz(x)
r(x) [ ’(x) ]0

where o-1(" is a square matrix and uniformly nondegenerate.
Throughout the paper we shall assume that we are given a probability space

(, o%, o(t), P) and a Wiener process w(.) on [0, 1] with respect to o(t). We then
take as our class of admissible controls the set of K-valued progressively measurable
processes. We denote the set of all such processes by F. For convenience we recall the
definition of a progressively measurable process (with respect to o%(t)).

DEFINITION. A stochastic process so(t) on the sample space f and time interval
[0, 1] is o%(t)-progressively measurable if the mapping [0, t]xf (s, oo)-, (s)(w) is
B(t) x if(t) measurable for every 0 <= <_- 1, where B(t) is the Borel or-algebra of [0, t].

Remark. The symbol u will be used to represent two different types of control
processes, depending on the context. At times it will be a deterministic process used
in the differential game, and at times it will denote a stochastic process used to control
the diffusion. Likewise v will be used to represent both stochastic and deterministic
processes, depending on the context. In all cases the intended use should be clear.

The organization of the remainder of the paper is as follows. In 2 we give a
precise definition of the associated differential game in terms of an adaptation of the
Elliott-Kalton [4] formulation, and discuss how the existence of value for this differen-
tial game relates to our problem. The only difference between our definition and the
usual Elliott-Kalton definition is the added requirement that the maps c and/3 defined
below must be measurable. The additional requirement of measurability is due to the
fact that several uses are made of stochastic processes defined by composing c (or/3)
with a given progressively measurable process. Measurability of c (or/3) ensures that
the resulting process is adapted. The addition of this condition does not change the
resulting "value" of the game. Section 3 contains the statement and proof of the main
theorem. The proofs of several technical lemmas make up a concluding Appendix.
For notational simplicity, we shall consider the problem on the interval [0, 1]. The
results carry over to an arbitrary interval in the obvious way.

Notation. We use C,[0, to denote the set of continuous functions taking values
in Nk (with k depending on the context) and starting at x, and take d(.,. as the sup
norm metric in this space.

2. The associated differential game. Define

M {u "[0, - K" u is measurable},

N= v’[0,1]Nr" Ivldt<o

We identify any two functions that agree almost everywhere and consider M and
N as metric spaces with the L metric. A mapping c" N M is called a strategy for
the maximizing player if c is measurable (with respect to the Borel o--algebras induced
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by the inherited metric), and if whenever 0_-< s <-1 and

v(t) (t) for a.e. 0 =< =< s,

then

a[ v]( t) a[ ]( t) fora.e. 0<=t<=s.

A strategyfor the minimizing player is defined in an analogous way, and such a strategy
will be denoted by the symbol/3. The set of all minimizing (respectively, maximizing)
strategies will be denoted by A (respectively, F).

Next define X(x) to be zero if x OG and + if x G. The definition of the
differential game (DG) is then given in terms of the following dynamical equation and
cost.

Dynamics.

(2.1) d b(b, u)+ cr(b)v, b(0) x.

Let zx inf { t: oh(t) OG} ^ 1.
Cost. For b (.) defined through (2.1), set

C(u, v)-- Iv(t)l dt+x(d(’rx) ).

We then define the lower value of the DG by

I-(x) inf sup C(u, 3[u]).
3cA M

The upper value is defined by

I+(x)=sup inf C(a[v], v).

Remarks. The terms "upper" and "lower" refer to which player has the "informa-
tion advantage." In a heuristic sense, for the game corresponding to the lower value
we allow the minimizing player ( here) to know the next move of the maximizing
player (u) before choosing his own move. Although this distinction is somewhat
obscured in the abstract Elliott-Kalton formulation, it is intuitively obvious in the
Fleming and Friedman formulations [1], which are equivalent to the Elliott-Kalton
formulation under some hypotheses. The reader is referred to 1] for further discussion.
The DG we consider differs from that of [3], but it seems to be more natural for this
type of problem. The remarks that follow illustrate this point.

The Elliott-Kalton definitions of upper and lower values in terms of strategies
have interesting interpretations in terms of the large deviations properties of the
controlled diffusion. First note that the -control in the DG plays the role of the small
noise e in the diffusion. Let small > 0 be given. Consider the upper value I+(x),
and let be a "nearly" optimizing strategy for the maximizing player. Let e N be
given. Then the "nearly" supremizing gives us a strategy that accomplishes one of
two things. Either X(4(rx)) =oo (b never escapes from G) or

Iv(l --> /(x

(4 escapes from G, but at a cost" of not less than I/(x) ). Large deviations theory
for the process e then suggests that, when e is small, the probability of e tracking"
one of the v Nnctions corresponding to escape from G (in the sense that x’ is near
to the corresponding associated with [v], v) is no greater than exp- (I+(x) 2)/e.



436 P. DUPUIS AND H. KUSHNER

This suggests that we can obtain a progressively measurable control Uo from the "nearly"
supremizing a so that when e is small,

P,(""’" <= 1} <= exp- (I+(x) 26)/e 2.
On the other hand, consider the lower value I-(x), and let/3 be "nearly" infimizing.

Then, no matter what progressively measurable control strategy u(t) is used,/3 describes
a path for the noise to follow whose "action" or "cost" is no greater than I-(x)+ 6,
and that leads to escape. The large deviations properties of eft now suggest that no
matter what control is used, the probability of escape should (roughly) be bounded
below by exp-(I-(x)-26)/e2.

Thus we have (roughly)

exp (I-(x) 26)/e =< P,, { z"o’ _<- 1 } =< exp (I+(x) 25)/e 2,
with the conclusion that I-(x)>-I+(x). From the definition of the game it is possible
to show I-(x)<= I+(x), which implies that the game has a value.

3. The main theorem. Before stating the main theorem, we introduce a "continuity"
assumption on the domain (3. Define G for small 6 as follows: if 5 _>-0, then

G={xd: inf{[x--yl: y G}<= 6};
if 6 < 0, then

G {x d inf{Ix-y[: y : G} >- -6}.
Next define I+(x, i5), I-(x, 15) as the upper and lower values of the DG defined in 2,
but with G replacing G there. Since I+(x, 6) (respectively, I-(x, 6)) is monotone
nondecreasing in 3, the set of discontinuities of I+(x, .) (respectively, I-(x,.)) is
countable. (Note that x is fixed here.)

Assumption A2. I+(x, ) and I-(x, 15) are continuous at 6 =0.
Remarks. It is simple to prove in the uniformly nondegenerate case that I+(x,

and I-(x,.) are in fact continuous functions. This follows from the fact that b(.,.)
is bounded on G x K, while v is allowed to "push" the state in any direction. In the
degenerate case it can happen that I+(x, .) (or I-(x,.)) is in fact discontinuous at
6 0, but even then Assumption A2 is not very restrictive, since it is satisfied for an
arbitrarily small perturbation of G. A consequence of the theorem stated below is that
at points at which both I+(x, and I-(x, are continuous, we have l+(x, 5) 1-(x, 6).
Monotonicity then implies that I+(x, and I-(x, have the same set of discontinuity
points. It should also be noted that in order to obtain the result analogous to the main
theorem in the simpler case of uncontrolled diffusion processes"

lime log P,,{’ <= 1}=-I(x),

the assumption obtained from Assumption A2 when the set K contains only one
element is also required.

THEOREm. Assume A1 and A2, and let I+(x) and I-(x) be the upper and lower
values of the DG described in 2. For any u F, let x"’( be the solution of
(3.1)
and define
(3.2)
Then

(3.3) (1)

dx"’ b(x"’, u) dt + eo’(x"’) dw, x"’(O) x,

""’ =inf{t: x"’(t)6OG}.

lime log inf p,,{.u, <= 1} >--I-(x)
uF
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(2) Given c > 0 there exists a measurablefunction g Co[0, 1 M with thefollow-
ing properties:
(i) If O<=s<= 1 and f(t)=f(t) for 0<= t<=s, then g[f](t)=g[f](t) for 0 <-

<= s, almost everywhere;
(ii) If we define u g[ ew], then u F and

(3.4) lim e 2 log Px{"u’ = 1} =-I+(x) + c,

(3) I+(x)=I-(x).

Remarks. Part (2) of the theorem gives the existence of a c-optimal (in the
asymptotic sense) control u that depends on xU’(s), O<-s<-_ t, at time t. Part (1) yields
an important uniformity property. For any given c > 0 and any (possibly e-dependent)
progressively measurable control u, there is Co> 0 such that for 0< e _-< Co,

Px{’"’ 1} -> P{’"’ 1} exp-c/e 2.

Proof of (1). For c>0 there exists 6>0 such that l-(x, 6)<-I-(x)+c. Consider
now the DG with domain G and let Ca(u, v) denote the cost associated with the
domain Ga. Then there exists a minimizing strategy/3 b such that

(3.5) sup C(u, 18[u])<I-(x)+2c.
ucM

If we redefine fl[u](t) to be zero when t=> ’x (given by (2.1)), then/3 is still a strategy
and obviously still satisfies (3.5).

Without loss of generality we may assume the following property of the chosen
strategy /3 :(d/dt)fl[u](t) exists for all u M (almost surely in t) and furthermore
there is C < such that

d
]3[u](t) Vl/3[u](t)l _< C

(almost surely in t) for all u M. This fact follows from Assumption A2 and Lemma
A1 of the Appendix.

Take any control process u F, and define the processes

We then have

v(t)-- fl[u](t),

F b(x",, u)+ (4))v, 6(0)=x.

]t(t)] v ]v(t)l--< C (a.s. in t)

for every w. It follows from the definition of a strategy that v(t) is (t) measurable.
Since the/3 under consideration has the property that/3[u](. is continuous for every
u M, v(.) and h(.) are o%( t) -progressively measurable processes [7, Thm. 1.5.1].

Now define y= x"’- b. Then y satisfies the stochastic equation

(3.6a) dy=o(x"’)edw-o’(q))vdt, y(0) 0.

Let P denote the measure induced on Co[0, 1] by the solution to (3.6a). By Girsanov’s
theorem there is a Brownian motion (.) (with respect to the same filtration (.)
as w(.)) such that

(3.6b) dy r(x"’)e dff, y(O) =0,
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and such that if Po is the measure induced on C0[0, 1] by (3.6b), then

dP
dPo

-exp -5 (cr(&)v, o’(x"’)e d#)-2e--Z [o’-’(xU’)o’(&)vl dt

(In the degenerate case replace o- by rl in the above.)
Define f2= {w: supo,=l ]y(t)l--< 32}. We will use the equality

fa dPP,() dPo.
First note that for any 62 > 0, Po()" 1, as e - 0. Using the nondegeneracy and the
Lipschitz continuity of (. (or of (. in the degenerate case), for given 6’> 0 there
is "> 0 such that ]x-y] " implies [-’(x)(y)- I[ ’. This, together with (3.5),
yields

(3.7) I-’(x"’)()v[2 dt I-(x)+3c

on f;2, if 32 is small enough.
Finally, we consider the term

Since (d/dt)r(ch(t))v(t) is bounded, an integration by parts yields the bound 62C2
for some fixed finite constant C_, on the set

Assembling these estimates, we have (for small enough 32)

(3.8) P(f ;2) => exp-(I-(x)+ 5c)/e

when e is small. We now pick 2 small enough so that the event supo, lye(t)[
implies x"’(t) exits G before 1. The Lipschitz condition on b(.,. implies that on

6 b(O , u)+y+(4)v, b(0) =x,

where supo, [y(t)] K6. We compare to the solution of

=b(O, u)+(O)v, O(0) x.

By Gronwall’s lemma, and the various Lipschitz and boundedness conditions, we can
pick 32<=6/2 so that d(ch , )<=6/2 on f. By the definition of/3, 6(.) must exit G
before time 1. Hence on f2 it must happen that xU’( exits G before 1. This,
combined with (3.8), finishes the proof.

Proof of (2). Now consider the upper value of the differential game:

I+(x)=sup inf C(a[v], v).
al" N

Fix e > 0, and pick 6 > 0 so that I+(x, -3) >-_ I+(x) e. Let c be a "nearly" maximizing
strategy for the differential game with domain G-s, in the sense that

(3.9) inf C-(cr[v], v) >- I+(x,-6)-c.
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We next describe how we use a to control the diffusion process. Let the Wiener
process w(. be given, and define (for A> 0)

0 for c [0, A),
(3.10) va(t)=

[w(nA)--w(nA--A)]/A for tc[nA, nA+A), n>=l.

We then define our control process by

(3.11) u(t) a[ eva](t).
From Assumption A2 and Lemma A2 of the Appendix it follows that we may assume
without loss of generality that the strategy a has been chosen so that a[v](.) is a
piecewise constant function for every v N. As was the case previously, the definition
of a strategy implies u(t) is (t) measurable. Hence u(t) is an (t)-progressively
measurable process [7, Thm. 1.5.1].

The controlled diffusion is therefore

(3.12) dxu’ b(xu’, u) dt + eo’(xu’) dw, xU’(O) x.

To prove the desired result it is convenient to compare x"’( with the solution to

2’a= b(x’A, u)+ ecr(x’a)va, x’a(O) x.

Assume that for any given p > 0 and M < oo we can show the existence of eo > 0 and
Ao>0sothatforA_--<Ao, e<--eo
(3.13) P{d(x’, x’a) >-_ p} <-_ exp-M e 2.

Then by taking M I/(x) + and p 6, it is obvious that the upper bound is proved
if we can show

(3.14) lime21ogPx{x’A(t)OG- for some t<l}<--I+(x,-)+2c.

However, this follows from our choice of a. Since (3.9) holds, there are only two
possibilities for each v N. Either

lfo(3.15) Iv(t)l dt >= I+(x, -) c,

or the solution of (2.1) does not escape G- by time 1. Hence x’a( escapes only
on the set of paths for which

eA l/A-1 l/a-1

(3.16) va(iA)2=e . [w(iA)-w(iA-A)]2/2A>=I+(x,-B)-c.
2 0

Standard estimates from the theory of large deviations [2] imply that there exist Ao > 0,
eo>0 such that for A_--<Ao, e--< eo the probability of the event given in (3.16) is less
than exp- (I+(x, -3)+ 2c)/e 2. We are therefore finished, except for the proof of (3.13).
The details of this estimate are given in Lemma A3 of the Appendix.

Proof of (3). It follows from (1) and (2) that I-(x)>-I+(x). We give the easy
proof of I-(x) <-_ I+(x) in Lemma A4 of the Appendix, which completes the proof. [3

Appentlix. In this Appendix we prove several technical lemmas that are needed
to prove the main theorem of 3. Before presenting the lemmas we introduce some
new notation. For -1 -<_ s -_< 1, we define A(s) as the set of all measurable mappings/3
from M N such that

u(r)=fi(r) fora.e. 0=<r_-<t
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implies

[u](r)=[](r) fora.e.O<=r<-min(t+s, 1).

Hence/3 has a "reaction time" of s, which means it anticipates if s < O. The set F(s)
of mappings from N-> M is defined in the obvious analogous way.

LEMMA A1. Let I < c, 6 > O, and fl A be given such that

(A.1) sup C(u,/3[u]) I.
uM

Then there exists ’ A and C <o such that for all u M,

d
,[ ,[(A.2) -/3 u](t)vl/3 u](t)l<=C (a.s.),

(A.3) C-(u,’[u])<-I.
(As before, C- is the cost associated with the domain G-.) Furthermore, there exists
s < 0 such that given A(s) satisfying (A.1) there exists " A such that (A.3) holds
for all u M (with " replacing ’ there.)

)2Proof The cost associated with/3 is simply 5 I1o (/3[ u](t) dt <- I, since exit before
time 1 must occur. Define

S(u, C) {t: [/[u](t)l _-> C},

0, 6 S(u, C),
fl[u](t):

/3[u](t), tS(u,C).

Then/3 is obviously a strategy, and

llo’ llo’(fl[u](t))2 dt<=- (fl[u](t)) dt.

To show C-(u, fl[u])-_< C(u, fl[u]), it is sufficient to prove that if 4 and are
defined by

6= b(6, u)+(4)[u]

b(4, u)+cr(ck)fl,[u]+o(&)[U]Is(,,c,(t),
6 b(q, 0) + o’(0)/3,[ u], b(0) (0) x,

then d(4, q)-<-6. First note that

Io’ Cr(ck(s))[u](s)Is(,,c,)(s) <-_2BI/ C,ds

for 0 <- < 1. Hence,

[4(t)-q(t)l<= Klck(s)-q,(s)l ds+ KI4,(s)-q(s)ll,[u](s)[ ds+2BI/C,.

Using the inequality ab<--(a2+b2)/2 in the second integral, and the Gronwall
inequality, we obtain

d(ch, q)-<-2BI[1 +/(2+ I)

By choosing C large, we have

c-(u, t’[u]) -<-- C(u, t[u])

for all u M.
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Next we obtain/3’ by smoothing ill. For A> O, define.

fl,[u](s) dsfl’[u](t) =S ,-a

(we define/3[u](s) =0 for s<0). Obviously/3’ satisfies (A.2). We also have

(’[u](t))2 dt (,[u](t))2 at.

Formula (A.3) now follows if we can show that small > 0 implies that the solutions
of

b(6, u) + (6)’[u], 6(0) x,, (6, u) + (6),[u], 6(0) x

satisfy d(,) 3. This follows from another application of Gronwall’s lemma and
an integration by parts.

Finally we consider the last statement of the lemma.
Let s < 0 be given. By the same argument as above we may assume the existence

of/3’ A(s) satisfying (A.2) and (A.3). Define

{o,/3"[u](t)
/3’[u](t+s),

6 b(6, u) + o-(6)/3"[u],

6 b(q u) + cr(q)/3’[u],

0<= t<=-s,
-s<t--<l,

(0) =x,

q,(O)= x.

Then /3" A. Arguments such as those used above, combined with the boundedness
of/3’,/3" imply that when s<0 is sufficiently large d(b, q)-<_& Hence we have/3" A
such that

c-(u, "[u]) =< C(u, t[u]),

and the lemma is proved. [3

LEMMA A2. Let I, 6 > O, and a F be given such that

(A.4) inf C(a[v], v) => I.
vN

Then there exists a’ F such that for all v N

(A.5) a’[ v](. is a piecewise constant function,

(A.6) C(a’[v], v) >= I.

Furthermore, there is an s < 0 such that given a F(s) satisfying (A.4) there exists a" F
such that (A.6) holds for all v N (where " replaces a’ there).

Proof N may be written as the disjoint union N N U NU N3 with

N {V N: X((r)) 0},

N= v N: (())= and
2

v dtI

N= v N: X((r))= and
2

v dr< I
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(here b(b, ce[ v]) + tr(4)v, 4(0) x, and ’x inf t: 49(t) OG} ^ 1). It is clear that
we may define c’ in any way we like on NI and N2, as long as it is a strategy. For
e > 0 let {ui, 1, , J} be an e-net of the control space K, and let {Ki, 1, , J}
be a Borel measurable partition of K such that the Hausdorff distance between {ui}
and Ki is less than e for 1, , J. For 3’ > 0, and 0 <_- _-< 1/3’, define

Then for all v N, l,

/T+T

’( i, 1, v)= Itvl(,_ K, dt.

J

’r’(i,l, v)= %

We define a’[ v] by a’[ v](t) Ul, for 0_-< -< 3’, and

ce’[v](t)=u for t 13’+ r(j,l-l,v),13’+ ’(j,l-l,v)

/=1,’’ ",1/%
Owing to the definition of a’, we have

iosup [b(ch(r),c[v](r))-b(4)(r),a’[v](r))]dr <-eK+3"B
0tl

for every v N and measurable function 4(" taking values in G. Define

$ b(6, -[ v]) + (6)v, 6(0) x,

b(6, ’[v]) + (6)v, 6(0) x.

In order to prove (A.6) it is sucient to prove d(, 0) N when e and y are suciently
small, and when v N3. Using the estimate

16(t)- 6(t)l [b(6..Iv])-b(6..’[v])] as

+ [b(6, ’[v])-b(6, .’[v])+(6)v-(O)v] ds

;o’ ;o+ +3 I6 6l ds/ + g 16 61v ds/,

and Gronwall’s lemma, we obtain

(A.7) d(, O)N(eK+yB)[l+K(2+I)exp K(2+ I)].

Hence we obtain (A.6) for small e, y.
If we are given F(s), and define

u for 0N N-s,
t)

a[v](t+s) for -s< tN1,

then " F, and by the same argument as above we can obtain (A.6) when s < 0 is
suciently large. The only difference is that in (A.7) we replace eK + TB by -sB.

LEMMA A3. Given p > 0 and M <, there exist Ao> 0 and eo> 0 such that (3.13)
holds for e eo, A
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Proof We begin by defining a stopping time (all stopping times are with respect
to w(.)) for pl>0:

-1 inf {t’lx’A(t) x’A([ t/A]A)] __>-- p,} ^ 1.

A simple calculation shows there exist eo, > 0 and o, > 0 (depending on p) such
that e _-< eo, and A <_ Ao, imply

(A.8) Px{’ < 1} =<exp (-(M + 2)/e2).
Next we rewrite the equation for x:’ as

(A.9) dx’A= b(x’, u) dt + er(x’x) dw+ dy’A, x’A(o) X,

where

iA+A

iA

e[o(x:’A(s))-o(x’A(iA))]vX(s) ds

iA+A

<= eK (b(x’(s))+ O’(X’X(S))VA(S)) ds
iA

<__ eBA2jvA( iA)]/2 + eZIBA2Jv6( iA)12/2.

IvA(t)[dt

We therefore have decomposition

y,x( t) I,( t) + 12(t) + 13(t) + 14(t),

where (for k tA] 1)

,(t) [(x’(s))-(x’(iA))] dw(s),
iA--

iA+A

2(t) [(x’(s))-(x:’(iA))]v(s) s,

kA+A kA

For pz > 0, define the stopping times

,i inf {t: L(t) p2/4} A 1.

The same estimates as those used to show (A.8) give the existence of 0 < eo,2 eo,,
and 0 < Ao, Ao, such that for e eo, and A Ao,,

P{,i < 1} exp-(+ 1)/
for i=3, 4.

Next consider ,. Using

P{,, < } P{,, < 1, 1}+ P{, < },
(A.8), and a standard estimate on stochastic integrals [8, Lemma 4.7], by picking

and A << and 0<A,<Ao such that esmall we obtain 0< eo,= eo, Ao, imply

P{,<l}exp-(M+ 1)/e 2.
Finally we consider z,. Using the Lipschitz property of (.), we have the

following bound on a typical summand in Iz(t):
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We therefore have

(A.11) Px{z,<l} <=P egB E [0,l --> +P E2A2gB 2 IOi

where {0i} is a sequence of independent and identically distributed N(0, I/A) random
variables. For the sake of notational simplicity, we estimate these terms in the case
where {0i} is a scalar-valued sequence.

Using E expcO2=(1-2c/A) (for 2c/A<l), we obtain (for any :>0 such that
2e2A..B < 1)

P e:A:gB E IO,[:e exp- (1-2e2AgB)1/a

P+-- log (1 2e=exp
4

Now take (M + 2)4/0e, and use the fact that the log term -8(M +2)B/O as
0 to get the estimate of the type (A.8) for the second term of (A.1 I).
For the first term of (A.11), we will use the fact that E exp clOl2E exp cO=

2 exp c/2. For > 0 we have

P N 2 10le Nexp-P’exp eB/2"expxlog2.4

Minimizing with respect to > 0, we obtain the bound

exp [-0/32eB+ (log 2)/],

which again gives the desired bound of type (A.8) for small , e.
< and0<" <Hence there are 0< eo. eo, o, o, such that for e < eo, and <

0,2

P{,< 1} N exp- (M + 1)/e.
Now set A4 .(r.. On the set where 1, supo, I t)l < O- We have shown

that for e suciently small, Px{r<l}Nexp-(M+l)/e. These facts, together with
a standard estimate in large deviations theory [2, Proof of Lemma 6.2], yield the
lemma. S

LEMMA A4. Assume A1 and A2. en I-(x)NI+(x).
Proo Let c>0 be given. By A2 there is >0 such that I-(x)NI-(x,-)+c,

I+(x) I+(x, ) c. Next choose s < 0 such that the second statements of Lemmas A1
and A2 hold, with I-(x)+ 1 (respectively, I+(x) 1) replacing I in Lemma A1 (respec-
tively, A2). Suppose (s) is a c-optimal solution to the problem

(A.12) inf sup C(u, [u]).

Let I-(s) denote the value of the expression given in (A.12). Then by Lemma A1 we
may find " such that

sup c--(u, "[u]l f-(s.

Hence we may conclude I-(x,-) I-(s). In an analogous manner we may prove
I+(x, ) [+(s), where

[+(s)= sup inf C(a[v], v).
aF(s) vN
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It follows that I-(x) I/(x) <= _-(s) [+(s) + 2c. Since c > 0is arbitrary, we are finished
if we can show there is So < 0 such that [-(s) _-< [/(s) for all So < s < 0. However, as is
proved in [4, p. 17], when -2-N < s, [-(s) is a lower bound for the value v defined
in the sense of Friedman having stepsize 2-N and allowing the minimizing player to
move first (for the full definition of values in the sense of Friedman, see [4, 3]). An

+ < [+(s) Since (asanalogous statement holds for the corresponding upper values; v--
+is easily proved) v-<_ vrv for every N [4, p. 11], we are finished.
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OPTIMAL CONTROL OF SEMILINEAR MULTISTATE SYSTEMS WITH
STATE CONSTRAINTS*
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Abstract. This paper deals with state-constrained optimal control problems governed by a semilinear
multistate equation. The authors prove the existence of solutions and derive optimality conditions.
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equations, multistate systems
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1. Introduction. This paper is concerned with state-constrained optimal control
problems governed by a semilinear elliptic operator. As we make no monotonicity
assumption, the state equation may be unsolvable or may have several solutions. These
kinds of ill-posed systems may arise in connection with bifurcation theory; some models
arising in enzymatic reactions, plasma physics, and chemistry have this property (see
some examples in Crandall and Rabinowitz [11] and Lions [15]). However, this paper
studies only a model problem. Our aim is to obtain existence results and to derive the
optimality system.

There exists a vast literature on the control of well-posed state-constrained systems.
The subdifferential calculus of convex analysis is a useful tool for dealing with linear
state equations (see Mackenroth [16], [17], Bonnans and Casas [7], and Casas [8],
[9]). In the nonlinear case, Bonnans and Casas [4]-[6] derived the optimality system
using the results of Clarke [10].

The control of nonmonotone elliptic systems, but without state constraints, has
been studied by Lions [15] (see also Komornik 14]). The optimality system is derived
there by penalizing the state equation and passing to the limit in the optimality
conditions of the penalized problem.

The novelty of this paper lies in the simultaneous presence of state constraints
and of an ill-posed system. Our method consists of approximating the problem by
removing the nonlinearity from the state equation and penalizing a part of the state
constraints. We formulate the problem and obtain an existence result in 2, derive the
optimality system in 3, and study several examples in 4.

2. Formulation of the control problem. Let gl be an open bounded subset of "(n =< 3) with C boundary F. Let us consider the following system"

Ay + ch(y)= u
(2.1)

y=0 onF,

where

Ay Ox (aj(x)Oxiy) -Jr- ao(x)y,
i,j:
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ao

aij is Lipschitz on tl (1 <= i, j -<_ n),
(2.2)

i,j=l

(2.3) O’R-R is

Let K be a nonempty, convex, closed subset of L2(t)), cr be greater than or equal to
2, N be nonnegative, and Ya in L(I)) be given, and let J" L(I))x L:()a be the
functional

(2.4) J(y, u)= ly(x)- ya(x)l dx +-- u (x) dx.
o" 2

Let Z be a separable Banach space, B be a closed convex subset of Z with nonempty
interior, and a be given in " (m=>0; we identify o and {0}). Define Y=
Hz(II) (3 H(fl), where H(fl) and H;(fl) are the usual Sobolev spaces (see Adams
[1], Neas [18]). Let Co(tl) be the space of real continuous functions on fl vanishing
on F, endowed with the supremum norm I1. It is known that Y is compactly
embedded in Co(tl) for n =< 3. The dual of Co(ll) is the space M(fl) of real and regular
Borel measures on fl, endowed with the norm

where I1 is the total variation measure of/ (Rudin [19]). Finally, let T: Co(tl)-m
and L: Co(O)-> Z be linear continuous mappings. In order to derive the optimality
conditions, we will suppose that

(2.5) T(Y)=Nm and L(Y)=Z.

We consider the following control problem:

minimize J(y, u)
(p)

subject to (2.1), uK, yY, Ty=a, Ly6B.

Remark 1. The assumptions on fl and A imply (Ne6as [18]) that for each f in
L(I)) there exists a unique solution y Y of the Dirichlet problem

Ay=f infl, y=0 onF,

and moreover, there exists C1 independent of f such that

(2.6) Ilyll,(a)-<_ C, IlfllL(a).

In fact all our results still hold if we assume that fl is bounded, Y is compactly
embedded in Co(fl), and (2.6) holds. This is the case, for instance, if A is symmetric
and satisfies (2.2) and fl is bounded and convex (Grisvard [13]).

Remark 2. The existence of several states associated to the same control has been
obtained, e.g., with cubic nonlinearities [11]. The inclusion of Y in C0(l-l) for
n=<3 (Adams [1]) implies that A+ 4 maps Y into L(tl); hence all elements of Y are
associated to a control. For parabolic systems the situation is essentially different
(Bonnans [3]).
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Let us now give some examples of control problem that fall into the previous
formulation.

minimize J(y, u)
(Pl)

subjectto (2.1), u K, y 6 Y, y(xi) ai, l <- <-_ m.

Here {xi} are given in ) and we may take B Z Co(f), L is the identity in Co(O),
and Ty {y(xi)}.

minimize J(y, u)
(P)

subject to (2.1), uK, yY, |]y(x)ldx<=6 with 6 > 0.

Here m 0, T 0, Z LI(f), B is the closed ball with center zero and radius 8, and
L is the canonical injection from Co(O) into L1(1).

minimize J(y, u)

subject to (2.1), uK, yY, ]..y(x) dx=a,(P3

[y(x)l<-6 Vxl, with(>0.

Here m 1 and Ty =Ia y(x)dx, Z= Co(l)), B is the closed ball with radius ( and
center zero, and L is the identity. These three examples obviously satisfy (2.5).

We now give a result concerning the existence of a solution to problem (P). For
this we need a relation between cr and the nonmonotone part of 4’.

THEOREM 1. Suppose (2.2) and (2.3) hold, and suppose the following:
(i) There exists (y, u) satisfying the constraints of (P) (i.e., (P) is feasible).
(ii) Either N > 0 or K is bounded in
(iii) We may write th(t) thl(t) + 492( t), with 49i continuous, 1, 2, 41(t) nonde-

creasing, and such that for some C > 0

14,(t)l C(1 + Itl/Z).

Then problem (P) has (at least) one solution.

Proof As (P) is feasible, there exists a minimizing sequence {(y,, u,)} in Y x K.
Because of (ii), {u,} is bounded in Lz(f). We are going to prove that {Ay,} is bounded
in L2(f), and for this we may assume that 4 is ditterentiable. Otherwise, we would
approximate 4 by a standard convolution technique and then pass to the limit. We
also may assume without loss of generality that 41(0)-0.

The form of J implies that {y,} is bounded in L(I); hence with (iii), 42(Y,) is
bounded in L2(O), as is f =-42(y,)+u, Ay, + c(y,). As d(Y.) is in Co(O), Ay,
belongs to L(). Computing the scalar product offn with Ay, in L2(’), and integrating
the nonlinear term by parts, we obtain

+ Ja ao(x)d)(y,(x))y,(x) dx <=

The second and third term of the left-hand side are nonnegative because of (2.2), the
monotonicity of b, and the equality (0) =0. Hence Ilmy.II is bounded in L(f);
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with (2.6), this implies that {y,} is bounded in Y. As Y is compactly embedded in
Co(f) for n-<3, selecting a subsequence if necessary, we may assume that

y, 37 weakly in Y, strongly in Co(12),
Ay, -. Ay weakly in LZ(f),
u, - weakly in

This implies T37 a, L37 B, and b(y,) b(37) in Co(f); hence Ay, weakly converges
in L2(-) toward tT-h(37); hence (37, if) satisfies (2.1). As K is closed and convex,
hence weakly closed, is in K. Finally, the convexity and continuity of J implies its
weak lower semicontinuity; the result follows.

3. The optimality system. For any set C, denote its indicatrix by Ic, defined by

{0+ ifxC,
Ic (x) c otherwise.

We denote the subditterential of a convex function f by Of (see Barbu and Precupanu
[2], Ekeland and Temam [12]). The spaces W’S(f) and Wl’S()) are the usual Sobolev
spaces (Adams [1]). We denote by T* the adjoint operator of T and by R(T*) its
range. The aim of this section is to prove the following result.

THEOREM 2. Let (, ) be a solution of (P). We assume that (2.2)-(2.5) hold and
that

(3.1) O(IBo L)(37) f’l R(T*) {0}.
Then there exists in W’(12) for all s < n/ n 1), in R", 12 in Z’, and 0 such that

(3.2) + I1 11 > 0,

(3.3) A*ff+ 6’(fi)ff a[fi-- ydl-2(fi-- yd)+ T* + L*,
(3.4) (,z-L)O VzB,

(3.5) , (p+aNa)(v-a) dxO VvK.

Remark 3. Since B has a nonempty interior, we deduce from (2.5) that R(L). This implies (see Barbu and Precupanu [2], Ekeland and Teman [12]) that 0(In L).
(fi)= L*OIs(Ly).

Remark 4. We will verify that hypothesis (3.1) holds in our three examples.
However, if (3.1) does not hold, then by Remark 3 there exists (,
such that IIll + lift > 0 and T*X + L* 0. In other words, if all hypotheses ofTheorem
2 are satisfied except perhaps (3.1), there exist , , fi, ff as in Theorem 1, not all null,
satisfying (3.3)-(3.5).

In order to prove Theorem 2, we need to establish some preliminary results.
LEMMA 1. Let Wbe a Banach space and D be a convex subset ofW (not necessarily

closed) with nonempty interior. Let { w,, ,)} be a sequence in W x W’ such that w, D,
w, w and n, OID(W,). If lim inf n,]l > 0, then zero is not a weak-star limit point
of{n.}.

Proof Assume that the conclusion does not hold. Let Wo be given in . There
exists r > 0 such that I[wll r implies that Wo+ w is in D; hence

(,, Wo+W-W,)O,
and this implies

 lln.II sup (n., w.-wo).
Ilwll
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The strong convergence of wn allows us to pass to the limit and we get

r lim inf r/, ]}-< 0,

which gives a contradiction. [3

LEMMA 2. Let W be a Banaeh space, and f (respectively, g) be a Gdteaux-
differentiable (respectively, convex) mapping from W into (respectively, ]-m, +m]).
Let be a solution of the following problem:

min f(x) + g(x), x e W.

Then

or, equivalently,

(vf(x),x-x)+g(x)-g(,)>-_o Vxe w,

vf(x)+g(x)o.

Proof A straightforward application of the definition of the subdifferential [12]
allows us to verify the equivalence of the two statements of the conclusion. Now
consider x’= if+ t(x-X) for in ]0, 1[. We have, using the convexity of g: f(x’)+
g(x) <=f(x’) + (1 t)g() + tg(x); hence, as X is a solution of the problem above,

O<=f(xt) + g(x’)-(f(2) + g(2)) <f(xt) f(2) + t(g(x) g(2) ).

Dividing by and passing to the limit, we obtain the result.
We now consider the following approximate problem. Let the state equation be

Ay u + w in
(3.6)

y=0 onF.
The control is now (u, w) in Le(f) L(f). We define

1 f, (w+ oh(y))2J(y, u, w)= J(y, u)+e dx

+--IlTy-al[+ (u 0)2

2e - dx + - (w + b (37)) 2 dx.

The approximate problem is

minimize J (y, u, w)
(p)

subject to (3.6), uK, wL2(), yY, LyB.
To 3. Let (, t) be a solution o (P). We assume that (2.2)-(2.5) hold. Then

we have the following:
(i) Problem (P) has at least one solution.
(ii) To each solution (y, u, w) o (P) is associated p in W’() or all

s < n/(n 1), /x 6 Z’, and h in m such that

1
A*p [y yd[-(y ya)+ T*, +L* +- 4’(y)(w + 4(Y)),

E

p=0 on F,
(tx,z-Ly)<-O lzB,

(p+Nu+u-)(v-u)dx>=O

VvK,

1
p +-[w + 6(y,)] + w + 6(P)=0.
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Proof (i) The triple 07, ,-b(7)) is feasible for (P). Any minimizing sequence
is bounded in L(12) L2(12) L2(), and hence by (3.6) in Y L2(-) L2(). Taking
a subsequence if necessary and using the compactness of Y in Co(f) (n _-<3) to pass
to the limit in the nonlinear terms, we get the result as in the proof of Theorem 1.

(ii) Denote by Y,,w the solution of (3.6) and by O(u, w) the mapping (u, w)
J(yu, u, w). It is easy to verify that 0 is C and that

O’(u,u w)=q+Nu+u-,

1
O’w(U, w)=q+-(w+dp(yu.w))+w+(.9),

where q is the solution of (A* being the formal transpose of A)"

1
T*A*q=ly..w-yl-2(yu.w-ya)+-da’(y..w)(W+ch(y..w))+ (Ty..w-a) inO,

F_, E

q--0 onF.

Let (y, u, w) be a solution of (P) and q the associated adjoint-state. Let us define. (a) (a)- z,
(u, w)---> Ly..w,
/ K x L2(),
g(u, w)= Iu(L(u,w))+ I:(u, w).

Problem (P.) is equivalent to

min O(u, w)+ g(u, w), (u, w) LZ(f) LZ(f).
Now applying Lemma 2, we get

VO(u, w)+Og(u, w) 90.

The mapping w- y,,w(with fi fixed) is an isomorphism from L2(-) onto Y. Hence by
(2.1) there exists (u, w) in K with (u, w) in/. This allows us [12] to apply the rules
of subdifferential calculus to the mapping g and we get the equality

Og(u, w)= *OIu(Ly)+OI(u, w).

Hence there exists/x in OIu(Ly) such that

VO(u, w)-*+OI(u, w)O,

or equivalently,

(O’(u, w), u-u)+(O’w(U, w), w-w)+(tz, Ly.,w-Ly)>-O V(u, w)K x L2(12).
Let r be the solution of

We get

(O’(u, w)+r, u-u)>-O

Ow(U,W)+r=O.
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We obtain the result with p=qc+r and Ac=(1/e)(Ty-a). As A’pc is in M(), p
is in W’S() for all s < n/(n-1) (see [9], [21]).

LEMMA 3. Let {(Yc, uc, w)} be a sequence of solutions of (Pc). Then

Proof. From the inequality J(yc, uc, w)<--L(g tT, -q(y)) J(p, 7) and the form
of J, we deduce that {(y, u, we) is bounded in L(12)x L2(f/)x L2(2); hence {y} is
bounded in Y by (3.6) and (2.6). This implies that for e D, D being a subset of
]0, oo[ having zero as limit point, we have for some (y, u, w) in Y x L2() x L2(f/) when
e --> 0:

y y in Y weak, Co(O) strong,

uc u in L2(f) weak,

wc - w in L2(f) weak,

with (y, u, w) satisfying (3.6). As K and B are closed and convex in L2(fl) and Z we
have u K and Ly B. The form ofJ implies that Ilw + (y)II (,)- 0 and Tyc all-
0; hence w+ b(y)=0. With (3.6) this implies that (y, u) satisfies (2.1). As J is lower
semicontinuous, we have that

As (y, u) is feasible for (P), this implies that u t and w+ b(37) =0; hence b(y)= b(fi).
With (2.1) this implies that y 37. But the inequality above also implies ]luc t [1L2() 0
and IIw / 0; when we use (2.6), the result follows.

We now are in position to prove Theorem 2, by passing to the limit in the optimality
system of (Pc).

Proof of Theorem 2. Let (Yc, uc, we) denote a solution of (Pc) and (Pc,/xc, h,) be
given by Theorem 3. If {(Pc,/xc, he)} is bounded we obtain the result with c 1 by
passing to the limit in the optimality system of (Pc) with the help of Lemma 3. Now
suppose that ac 1/(llp Ill, lie,/ IIAII) converges toward zero. Multiplying by
ac the optimality system given by Theorem 3 and defining

we obtain, eliminating (1/e)(w + qb(y)) from the last equality of Theorem 3,

/c 0 on F,
(3.7)

acb’(y)(w + b (37))

Vz B,

As IIP / II z li ./ IlX ll is bounded, we may pass to the limit in the systems above
by using Lemma 3; then we obtain (3.3)-(3.5), with ff 0 here. It remains to prove
that/ ys0. If =0, then TX + L*/2 =0 by (3.3). However, (3.1) and the injectivity of
T* and L* (by (2.5)) then imply that /2=0 and X=0. Since {Xc} is in E" and
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because of Lemma 1, we infer that lim inf IIZ I1,- 0 and }IX II- 0; hence 1.
From (3.7) and Lemma 3 we deduce that A*p is bounded in M(f); hence {p) is
bounded in W’s(O) for all s < n/(n- 1). The compact injection from W’s(O) into
L2(O) (for n=<3 and s close to n/(n-1))implies that which
gives a contradiction. [3

4. Allflications. In this section we consider the three examples stated in 2, and
we derive the optimality system for each of them.

Example 1.
THEOREM 4. Let (fi, if) Y x K be a solution of (P1). Then there exist a real number

>- 0 and elements R and W’(f) for all s < n/ n 1 satisfying

(4.1) c + 11 z,. > 0,

A+ qb( ff in fl,
(4.2)

37=0 on F,

(4.3) i=1

p=0 on F,

(4.4) fa(p+aNa)(v-a) dx>-O VvzK.

Proofi Hypothesis (3.1) is trivially satisfied as B Co(O). Hence we may apply
Theorem 2, which gives the result. [3

In some cases it is possible to prove that the previous theorem is true with c 1.
We are going to study two situations where this is so.

THEOREM 5. Let aij C2((), 1 <= <=j <-_ n. Then the results ofTheorem 2 are obtained
with 1 if O is connected and one of the two following hypotheses holds"

(i) There exists an open subset Oo of O such that K K + L’Yo)(L’o) is the
extension by zero from L:(Oo) to L:(O)).

(ii) K={vL:(O) v(x)>-O a.e. xO}, and u=0 is not optimal for (P1).
Proofi (i) If ci =0, it follows from (4.3) that

A*p + b’()7)p i6tx,] in O,
(4.5) i=1

p=0 onF.

Now from (4.4) and the property of K, we get that/ 0 in O0. Taking O\{x} ’= 1,

we have

A*p + 4’(37)p 0 in,
(4.6)

/=0 in o\{Xi}7=l.

Then we can use the Prolongation Unicity Theorem (Saut and Scheurer [20]) and we
deduce that/5 0 in O, hence in O, which contradicts (4.1).

(ii) If c 0, we deduce from (4.4) that/5->_ 0 in O. If/5 is null on an open subset
fo of O, we can do as in (i) and obtain a contradiction. Otherwise, for each open
subset Oo with o included in O we have

(4.7) max p(x) > 0.
x
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We remark that/5 satisfies

A*/5 + max (0, 4’(y))/5 ->_ 0 in 121,

p=0 onF.

Applying the Harnack inequality to A* +max (0, b’(y)) (Stampacchia [21]) as in [5],
we deduce that/5(x) > 0 everywhere in 121, which with (4.4) implies that i- 0 almost
everywhere.

Example 2.
THeOReM 6. If (y, ft) Y x K is solution of (P2), then there exists a real number

ff >= 0 and elements L(12) and W’(i2) such that for all s < n/(n 1)"

(4.8) / Ilpll > o,

(4.9)
A)7 + 4)(37)= fi in

y=0 on F,

(4.10)
a*/5+ 4’(Y)(P) clY-yal-2(y-ya) +/2 in 12,

p=0 on F,

(4.11) In g(z-y) dx<=O lz B,

(4.12) fn(+Nf)(v-) dx>-O VvK.

Proof Here again, (3.1) is satisfied because T 0. Hence we may apply Theorem
2 and remark that Z’= L(12) and L* is the canonical injection into M(12). Moreover,
the regularity of/ follows from (2.6), (4.10), and the fact that c1)7-ya [-(37-ya)+/2-
b’(y)/ belongs to L(12).

Example 3.
THeOReM 7. If (y, ) YK is solution of (P3), then there exist a real number

>-0 and elements W’(12) for all s<n/(n-1), X, and 12 M() such that

(4.13) ci / II ll (n) > 0,

(4.14)
A37+ b(37)= a in 12,

37=0 on F,

a*p + 4’(y)p= ly-yal-=(2- ya) + X + ;
(4.15)

p=0 on F,

(4.16) j (z-y) d/2 <_-0 ’z B,

(4.17) I (10+dNtT)(v-tT) dx>-O VvK.

Proof We have to verify that (3.1) is satisfied. Remember that in this case L is
the identity in Co(12) and T Co(12)’. Take/x OIn(y) and )t R such that

(/z, z) T’h, z) h Ia z dx Vz Co(12);

this implies that/z Am, where m is the Lebesgue measure. If h # 0, this implies that
y(x) +/-6 almost everywhere, which contradicts the boundary condition.
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ASPECTS OF POSITIVITY IN CONTROL THEORY*

TILMAN SCHANBACHER’"

Abstract. This paper studies finite- and infinite-dimensional linear control systems of the form df/dt
Af+ Bu, where A is the infinitesimal generator of a Co-semigroup that preserves a cone C, and where Bu
takes values in C. Since the reachable states are all in C, the system is not controllable in the usual sense.

Of concern is "positive controllability," which means that the entire cone C can be (approximately) reached.
It turns out that positive controllability is rather difficult to achieve but that for stable systems an important
subclass of states can be reached. Different examples are provided.

Key words, controllability, positive controllability, positive systems, positive controls, stationary pairs

AMS(MOS) subject classifications, primary 93B05; secondary 93C05

1. Introduction. In this paper we are concerned with a linear distributed parameter
control system of the form

d
f( t) Af( t) + Bu( t), f(O) f,.

dt

General questions such as controllability and stabilizability of this system have been
intensively investigated in recent years by means of functional analysis, especially by
the theory of strongly continuous semigroups (see, e.g., Balakrishnan ], Curtain and
Pritchard [4], [5]). Saperstone and Yorke [10], Brammer [3], Son [16], Korobov and
Son [7], and Schanbacher 12] consider controllability with the additional requirement
that the controls are restricted to a certain subset of the original space, thereby making
particular use of the theorems of Krein and Rutman [8] on positive.operators.

Until now, scarce attention has been paid to the important case where the control
of a system is realizable in only one direction. In the papers on controllability with
restrictions on the controls mentioned above, this problem has been taken into account,
whereas the aim has still been to (approximately) reach the entire linear state space
or at least a neighborhood of the initial state. However, this is possible only if the
system is oscillating in some sense; in particular, it is impossible for the large class of
systems described by positive semigroups. Our concern is to ask which positive states
can be reached for positivity-preserving systems if the controls are taken to be positive.
In analogy to the usual definition of controllability we call the system positive control-
lable if all positive states can be reached.

In 2 we present the definitions and notation needed later, mainly for readers
who are not familiar with the abstract theory of Banach lattices and positive operators.

Section 3 is a heuristic introduction to the problems examined in this paper. We
study two examples illustrating the questions to be considered in 4 and 5.

In 4 we discuss the concept of positive controllability for positive systems, both
on finite-dimensional and infinite-dimensional spaces. We obtain a neat characteriz-
ation of positive controllability for finite-dimensional spaces, and show that positive
controllability on infinite-dimensional spaces is rather difficult to achieve, contrary to
the usual notion of controllability.
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This paper is part of the author’s Ph.D. dissertation of the same title.

Mathematisches Institut der Universitfit Tiibingen, Morgenstelle 10, 7400 Tiibingen, Federal Republic
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In 5 we consider a subclass of positive states that can be reached more easily
than arbitrary positive states. Existence of such states is mainly connected with
asymptotic stability of the system.

We conclude 4 and 5 with practical examples.

2. Preliminaries. In this section we introduce some basic notation and definitions
from functional analysis following Schaefer [11] and Nagel [9].

2.1. Sets anti spaces. Throughout this paper we use E and U to denote Banach
spaces over the same real or complex field, endowed with a norm

By L(E), L( U, E) we denote the space of linear continuous (or bounded) operators
from E into E, respectively, from U into E, endowed with the canonical operator norm.

By U’([0, t]; U) (1 -<_ p -< oe) we denote the space of all p-integrable functions on
[0, t] with values in U, and by L[’oc(+; U):= {f’[+- U’fo.,L([O, t]; U) for all
> 0} the space of all locally p-integrable functions on + with values in U.

Let 2 be a subset of E or U. We use the following notation:

cl f the closure of D,
co D the smallest convex set containing
cone f the smallest cone containing f and 0,
cocone the smallest convex cone containing D and 0.

Following [11] we define a (real) Banach lattice E as a Banach space over
endowed with an order written as _-< such that (E, =<) is a lattice and the ordering is
compatible with the Banach space structure of E. We will elaborate on this.

The axioms of compatibility between the linear structure of E and the order are
as follows:

f<_-gimpliesf+h_-<g+h for allfg, h in E,
f-> 0 implies ,f_-> 0 for all f in E and , -> 0.

Any real vector space with an ordering satisfying these two axioms is called an
ordered vector space. The axioms imply that the set E+ := {fe E: f>= 0} is a convex set
and a cone with vertex zero, the positive cone of E. It follows that f_-< g if and only if
g-fe E+. The elements f e E+ are called positive, and we write f> 0 if f is positive
and different from zero.

An ordered vector space E is called a vector lattice if any two elements f, g in E
have a supremum and an infimum denoted by sup (f, g), respectively, inf (f, g). For
an element f of a vector lattice we write

Ifl sup (f, -f) and call it the absolute value of f.
We call two elements f g of a vector lattice orthogonal, if inf (If I, Ig]) 0.
The axiom of compatibility between norm and order required for a Banach lattice

is shown below:

(2.1) If] =<]gl implies ][fl[ --<
A norm on a vector lattice satisfying this axiom is called a lattice norm. Finally,

a (real) Banach lattice is a Banach space E over endowed with an ordering <_- such
that (E, <_-) is a vector lattice and the norm on E is a lattice norm.

In particular, in Banach lattices the following formulas are valid:

If+ g[ _--< 1/[ + [g] and If[ [If I[.
A linear subspace I of E is called an ideal iff I, [g[ _-< If[ implies g I.
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Two ideals 1, J of a vector lattice E are called orthogonal if any two elements

f I, g J are orthogonal. It is immediate that two ideals are orthogonal if and only
if they have trivial intersection {0}. An ideal I is called proper if I is different from E
and from {0}.

Typical ideals are all sets of the form

Jf, :-- {f 6 E (f’, If]) O} for some 0 =<f’ E’.

A linear form f’ E’ is called

Positive (f’-> O) if (f’,f)>=O for all f=>O;

Strictly positive (f’ >> O) if (if, f) > 0 for all f> O.

A complex Banach lattice E is the complexification of a real Banach lattice E in
the sense that

E E@ iE,

i.e., E E iE with scalar multiplication (a+ ifl)(f, g)=(af-g, f+ag). E is
called the real part of E. The absolute value of an element h =f+ ig E is defined by

]hi sup {cos 0.f+sin 0. g: 0_-< 0_-<2r} E,

and the norm still satisfies (2.1).
Since the absolute value exists for all f E the definition of an ideal can be

extended unchanged to the complex situation. An element f E is called positive if

f If[, which means that f is a positive element of E.
In the following, a Banach lattice denotes either a real or a complex Banach lattice.
Relevant examples of Banach lattices are given by the following spaces:

with the coordinatewise ordering; the function spaces Co(Y) (Y locally compact) and
LP() ( a measure space, 1 =<p __<o) with the ordering f-< g for f, g Co(Y), respec-
tively, LP(O), iff(x)<=g(x) for all x Y, respectively, for almost all

2.2. Operators and semigroups. Let E and U be Banach spaces, T L(E) and
S L( U, E). We denote the kernel of S by ker S, the spectrum of T by r(T), the point
spectrum by per(T), and the resolvent set by p(T). For all A p(T) we define the
resolvent R(A, T):=(A Id-T)-, where Id denotes the identity on E. S is called
positive (S_>- 0) if E and U are Banach lattices and if Su >= 0 for 0-_< u U.

Now we consider a strongly continuous semigroup 3-=(T(t)),o of linear con-
tinuous operators on a Banach space E, i.e.,

T(t+s)= T(t). T(s) for t,s>=O,

T(0) Id,

lim T(t)f f for all f E.
t0

In the following we simply call 3- a semigroup on E.
Let (A, D(A)) be its generator, i.e.,

D(A) := {f E" im
T(t)f-fAf:= lim --.

t-o

T( t)f fexists}
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Then (A, D(A)) is a closed operator on E that determines - uniquely. In general, A
is unbounded. We call w(A):= w(-):= inf{w R: There exists Mw such that T(t)ll
Mw e wt for all => 0} the growth bound of A (or of -). Then -oo__< co(A)< +oo by [9,
A-I, 1.2].

If AL(E) then T(t)=exp(tA):==o((tA)/n!) by [9, A-I, 2.1].
The semigroup - is called bounded if there exists M > 0 such that T(t)]] M

for every >0 (this implies co(A)-<0).
A special class of bounded semigroups are the following: - is called weakly stable

if (f’, T(t)f) 0 as t oe for every f E and f’ E’; strongly stable if T(t)fll-. 0 as
t-ee for every f E; and uniformly exponentially stable if co(A)<0. On finite-
dimensional spaces these three notions of stability coincide (and we simply call the
semigroup stable), whereas in the case of infinite-dimensional spaces these notions
are strictly different ([9, A-IV, 1]). Obviously uniform exponential stability implies
strong stability, and strong stability implies weak stability. Finally we call the semigroup
-positive (-_-> 0) if E is a Banach lattice and if T(t) is a positive operator for every
t_>0.

3. Examples and questions. As a heuristic motivation for this paper we present
two practical examples of linear control systems providing both the finite- and the
infinite-dimensional case. In both cases we will notice that the solution of the system
remains in the positive cone of a Banach lattice and we can pose two questions that
will be discussed in the 4 and 5, respectively. We will return to these two examples
in each of these sections.

3.1. Electrically heated oven. We consider a simple model of an electrically heated
oven (see [2, Ex. 1.2]) consisting of a jacket, an inner part, and a coil that directly
heats the jacket and indirectly heats the interior part by means of radiation of the
jacket. Let ’o denote the outside temperature, ’l(t) the temperature of the jacket at
time t, and ’2(t) the temperature of the interior part at time t.

If we set

then the system is described by

’r,(t) )7"0f(t)=
’2(t)-7o

(3.1) d--tf(t) Y
f(t) +

0
u(t), f(O) =fo,

where u(t) measures the heat input at time and is always nonnegative (since it is
proportional to the square of the voltage in the coil), a,/3, 7, 6 are nonnegative
constants and fo is assumed to be nonnegative (f) 2+). This means that the differences
(t)- % and -(t)- ’o at time =0 are nonnegative. Then it seems plausible that f(t)
is nonnegative for all times. Indeed, if we denote by A the matrix (-, _) and by B
the matrix () then by [5, 2.23] for every u Loc(N+) a mild solution of (3.1) is given
by

(3.2) f(t)= T(t)fo+ T(t-s)Bu(s) ds,

where -=(T(t)),o is the strongly continuous semigroup generated by A and is
positive by [9, B-II, Ex. 1.4.b]. From (3.2) we see that f(t)e 2+ for all > 0.

The first question is now whether each fl [+ can be approximately reached from
the origin (f)= 0) by means of a suitable nonnegative control u.
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It seems possible that by means of a high input we can reach, at least for a short
period of time, an arbitrarily high jacket temperature while simultaneously the interior
temperature is low. However, the opposite situation, given by a low jacket and arbitrarily
high interior temperature, seems to be impossible. Therefore we expect a negative
answer to this question.

For our second question we consider a special class of states fl, namely those
belonging to a positive stationary pair (fl, u). This means that f is a constant positive
solution of (3.1) for constant nonnegative input u and initial state fo =f, i.e., Af +
Bu =0, 0#f ., ul e+. If we can reach these states f, then we can keep them
constant by further input u. If the system is stable and if we can reach them only
approximately, then it should also be possible to keep them approximately constant
by further input u.

Therefore our second question follows: Can we (approximately) reach each state

f belonging to a positive stationary pair starting from any fo [2+.9 The question makes
sense only if there exists a positive stationary pair, and moreover if stability of the
system is desirable as just mentioned.

In the concrete example and if 3’ + 6 # 0 we can show by a simple calculation the
following two equivalences:

A positive stationary pair exists if and only if A has only eigenvalues with
nonpositive real part.

A positive stationary pair (fl, u) with u # 0 exists if and only if A has only
eigenvalues with negative real part (i.e., A is stable).

In practice (see [2, Ex. 1.2]) A is stable and the parameters ce,/3, y, are (strictly)
positive.

3.2. Heat equation on a finite rod with noninsulated ends. We consider the heat
equation on a rod of length with noninsulated ends given by

0

tx(
t, x) xX( t, x), 0:<xl, t-->0,

x(t,O):x(t, 1)=O,

x(O,x)=xo(X),

where Xo is a given nonnegative.function on [0, 1].
Again we wish to control the system by a nonnegative one-dimensional input, i.e.,

by a function ,(x) u(t), where q(x) ->_ 0 for 0-<_ x -<_ 1, u(t) ->_ 0 for ->_ 0. As in the
first example, we can interpret this control as an electrical heating input that for all
time is proportional to a given heat distribution p. Then we obtain

0 0

__O--X t, x) ox2X t, x)+ 4’(x) u( t) 0 < x < :> O,

(3.3)
X(t,O)=x(t, 1)=O,

x(O,x)=xo(X),

and again it seems plausible that X remains nonnegative for all times.
We state this problem as an abstract control problem on the space E := L2[0, 1].

Assume O E and let U [, B L( U, E), Bc := c. 4’, fo := Xo and let A de/dx be
the operator on E with domain D(A)={fE:f"E,f(O)=f(1)=O}. It is known
[5, Eq. 3.9], [9, C-II, Ex. 1.5.b] that (A,D(A)) generates a positive semigroup
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-= (T(t)),.>__o on E given by

T( t)f Y e-n"=-’(f
n=l

where feE, G(x)=x/.sin(nrrx) for 0=<x-<l, (f G) := of(X)G(x) dx. Then (3.3)
can be written as (set f(t):= &’(t,. ) E):

d
d-Ttf(t) Af(t)+ Bu(t),

f(t)D(A),

f(O) =fo
and for u Loc(+) a mild solution is again given by (3.2).

We observe that the semigroup - is uniformly exponentially stable:

=1

-2"2rr2’(f e")2)
1/2

) 1/2
-7r2te -rr2’ (f, en)2 e Ilf[[

=1

and we claim that a positive stationary pair exists.
Proof Let

Io Io ;o’Iof(x) := g,(z) dz dy + x q(z) az dy,

where q, is chosen as above; then forfe D(A) we obtain Af(x)=-4,(x). Assume that

f is not contained in the positive cone of E. Since f(0)-f(1)= 0 implies that f has a
negative minimum in some x0 e (0, 1) we obtain

;o0 =f’(xo)= 4’(z) dz + tl,(z) dz dy,
,dO

and since th -> 0

Iof’(x) q,(z) dz+ d/(z) dzdy>-f’(xo)=O

f(xo) =f(0) + f’(x) dx O+ f’(x) dx >= O,
dO dO

for O <- x <= xo,

which is a contradiction. Hence f=> 0, Af+ B1 0, which means that (f, 1) is a positive
stationary pair,

Therefore it might be interesting to consider the same two questions as in the first
example.

4. Positive controllability. The notion of controllability usually is defined in the
sense that we want to reach a dense subset of the entire state space or at least of a
neighborhood of zero. However, in many instances for systems with restrictions on the
controls, it is a priori known that all reachable states are contained in a closed cone
C of the state space (as in the examples of the previous section). In this case
controllability in the former sense is impossible but it is interesting to know conditions
under which the reachable states are dense in C (which was precisely our first question
in 3). In the present section we characterize systems for which the reachable states
are contained in the positive cone of a Banach lattice, and then try to find conditions
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for a particular class under which a dense subset of the positive cone can be reached.
This is defined as positive controllability; we will see that this implies the usual
controllability. We will be able to give feasible criteria for positive controllability for
finite-dimensional state spaces and strong necessary conditions for infinite-dimensional
state spaces and finite-dimensional input spaces. We conclude this section with some
applications.

Let E and U be Banach spaces, let (A, D(A)) be the generator of a strongly
continuous semigroup 3-= (T(t)),o on E, and B e L( U, E). We consider the following
linear control system:

d
(4.1) td--7f(t Af(t)+ Bu(t), f(0) =/0,

where f(t)e E, foe E, u(t)e U.
By [5, 2.23] for every u e Loc(R+) a mild solution of (4.1) is given by

(4.2) f(t)= T(t)fo+ T(t-s)Bu(s) ds.

We recall the following definition.
DEFINITION 4.1. Let 1 _--< p _<--o and consider (4.1). We call E the state space and

U the input space. Define for > 0 the set of reachable states from the origin (fo 0)
in time as

R,:= r(t’-s)Bu(s)ds’ueLP([O,t’]; U),O<=t’<=t

and define the set of reachable states from the origin in arbitrary time as R U,>o R,.
The pair (A, B) is called

Exactly controllable in time if R, E;
Exactly controllable if R E;
Approximately controllable in time if R, is dense in E;
Approximately controllable if R is dense in E.
The following proposition for finite-dimensional state spaces is known as the

"rank condition."
PROPOSITION 4.2 [4, 1.4]. If dim E n <, dim U m <, then all controllabil-

ity notions in (4.1) are equivalent to the fact that the n nm-matrix

(B, AB, A2B, A-B) has rank n.
Now we assume that E is a Banach lattice, that u in (4.1) takes values in a subset

of U and that fo is an element of the positive cone E+ of E. First we want to know
conditions under which the solution f(t) of (4.1) remains in E+ for all such u and fo.
We state the following proposition.

PROPOSITION 4.3. Let E be a Banach lattice, let U be a Banach space, let (A, D(A))
be the generator of a strongly continuous semigroup 3-= (T(t))>=o on E, B e L( U, E),
and 0 e

_
U. The following assertions are equivalent:

(i) The mild solutions of (4.1) remain in E+ for every foe E+ and every u

Loc(+, U) with u( t) e 1) for >- O.
(ii) 3- is a positive semigroup and B E+.
Proof The implication (ii)-* (i) follows immediately from the variation of con-

stants formula (4.2).
(i) (ii): Since 0e we can take u(. identical zero, then f(t)- T(t)fo E+ for

all foe E+, i.e., 3- is positive. On the other hand, taking fo 0, u(s)= u for some
ue and all O<-s<-_t, we obtain by (4.2)f(t)=l/to T(s)Buds, which tends to Bu
as 0. The closedness of E+ implies Bu
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After this characterization we restrict our considerations to the case where U is
also a Banach lattice, f the positive cone U+, and therefore B is a positive operator
by the preceding proposition. Then we define positive controllability as follows.

DEFiNiTiON 4.4. Let E and U be Banach lattices, let (A, D(A)) be the generator
of a positive semigroup = (T(t)),0 on E, and take B e L( U, E) positive. For > 0
and 1-<_p-_<oc the set of reachable states from the origin in time by means of
nonnegative controls u is defined as

R,+:= T(t’-s)Bu(s)ds.uLP([O,t’]; U),u(s)U/,O<-s<=t’<-t

and the set of reachable states from the origin in arbitrary time by means of nonnegative
controls u as R + := U>oR. The pair (A, B) is called"

Exactly positive controllable in time if R +;
Exactly positive controllable if R+=
Approximately positive controllable in time if cl (R[)= E+;
Approximately positive controllable if cl (R +)= E+.
Of course, each notion implies the corresponding controllability notion in

Definition 4.1 since R, RI-R-. The notion of approximate positive controllability
(in time t) is independent of p and we can even restrict the controls to C-functions.

We give some simple examples.
Example 4.5. (a) Let E U be a Banach lattice, A =0, B Id. Then obviously

(A, B) is exactly positive controllable in any time > 0.
(b) Let E U= LP(N+), 1Np<, and the translation semigroup on E given

by (T(t)f)(x) =f(x + t) for all x, 0. Let (A, D(A)) be its generator and B Id. Then
(A, B) is exactly positive controllable in any time > 0.

Proo A strongly continuous semigroup (S(t)),eo on is given by

S( t)f(x) {(x t) forxt,
for x < t,

and T(t)S(t)=Id for all t0. For fE+ we set u(s):=(1/t)S(t-s)f and obtain

f=’o (1/ t)fds I’o T( s)u(s) ds 6 R[.
Example 4.6. Let E Rz, U R, A ( ), B (). (A, B) is exactly controllable

in any time >0 by Proposition 4.2. However, (A, B) is not approximately positive
controllable. Since

exp(tA)=
0 e’

2,we see that R+ {() N +. a N b}.
We state the following proposition, which gives a useful representation of the sets

cl (R) and cl (R+). For a subset M of a Banach space let coM, coconeM be defined
as in 2.

PROPOSITION 4.7. Let the assumptions be as in Definition 4.4.
(a) cl(R)=cl(co{T(s)Bu’Ost,u U+}),

cl (R+)=cl (co{r(s)Bu:ONs, u U+}).
(b) Let U=N and let e(1),..., e(m) be the canonical unit vectors of Rm. en

cl (R;)=cl (cocone {T(s)Be(i)" ON sN t, 1N iN m}),
cl (R+) =cl (cocone {T(s)Be(i): O s, 1 N m}).

Proo (a) By definition of the integral we see that the sets on the left-hand side
are contained in the sets on the right. On the other hand, R+ R+,, are convex since U+
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is convex; it remains to show that T(s) Bu cl (R,+) for all 0 _-< s _-< t, > 0, u U+. For
this let u U+ and

nu for O<-_s.<= l/n,
Un(S)=

0 for 1/n<--s_--<t.

Then un(’) L([0, t]; U) and

T(t-s)Bun(S) ds- T(t)Bu <=n. IlT(t-s)Bu- T(t)Bul[ ds-O as n-->z.

(b) Since B =cocone {Be(l),..., Be(m)} we see that (a) implies (b).
We apply Proposition 4.7 to the following example
Example 4.8. Let E U 1", 1 _-< p < o, and let the operators A, B be given by

-0
0

0

A= 0

0

0

0 0 0 0 ...
0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

-0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

Obviously A L(E), B L( U, E) and A generates the positive semigroup -= (T(t)),o
given by

T(t)

1 0 0 0 0 ...
0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

Let e(1), e(2),.., denote the canonical unit vectors of E and U. Then for iN,
T(O) Be(i) e(2i) and lim,_ T(t) Be( i)/II T(t) Be(i) II) e(2i- ). Hence cl (R+) E+
by Proposition 4.7(a), i.e., (A, B) is approximately positive controllable. However, for
all > 0the ratio ofthe 2ith coordinate Ofo T(t s)Bu(s) ds to the (2i- 1)th coordinate
is greater than 1/t; hence e(2i- 1) cannot be contained in cl (R,+) or R+, i.e., (A, B)
is neither approximately positive controllable in any finite time > 0 nor exactly positive
controllable. [3

4.1. The finite-dimensional case. The following theorem gives a characterization
for approximate positive controllability on finite-dimensional state spaces.

THEOREM 4.9. Let the assumptions be as in Definition 4.4, E E", U [", and

e 1 ],. e[ n ], e(1), e( m the canonical unit vectors of E, respectively, U.
(a) (A, B) is approximately positive controllable in time t> 0 if and only if

(4.3) For all < <: n there exists <:j <- m and/>0 such that e[ i] /zBe(j).

(b) (A, B) is approximately positive controllable if and only if
(4.4) For all <= <-_ n there exist <=j <- m and I > 0 such that e[ i] tBe(j) or

eli] lim, (T(t)Be(j)/lIT(t)Be(j)l}).
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Proof We first remark that by [13] lim,_(T(t)f/llT(t)f[I) exists for every
0<f".

The sufficiency of (a) and (b) then is obvious by Proposition 4.7(b).
To show necessity we may assume, as in the proof of Lemma A2 in the Appendix,

that Be(j) # 0 for all _-<j =< m.
(a) If (A, B) is approximately positive controllable in some time > 0, then by

Lemma A2(a)

(4.5) {T(s)Be(j)’O<-s<-_t,l<-j<-m}CIJf# for allJy{0}.

Since A + IIAII Id->_ 0 [9, C-II, Thm. 1.11], we obtain for every s > 0 and 1 _-<j m

(4.6)

e1111. T(s)Be(j)= Be(j)+ E -..(s(A+ ]JAil Id))Be(j)

>-Be(j).

Now (4.5) and (4.6) yield {Be(j): l<=j<=m}(3-,# for all J.,# {0}. This implies the
assertion (4.3).

(b) If (A, B) is approximately controllable, then by Lemma A2(b)

[ { T(t)Be(j) "l<=j<-ml]NJ.t.,#{T(s)Be(j)" O<- s, l <-j<=m}U i,rn[iT(t)Be(j)l
for all Jr’ {0}. Again by (4.6) we obtain

[ { T(t)Be(j)
{Be(j)" 1 <-j <-- m} LJ }i,na T(t)Be(j)[[

l<=j<-_ m}]f3Jf,#
for J,# {0} and this implies the assertion (4.4).

COROLLARY 4.10. Let the assumptions be as in the preceding theorem.
(a) (A, B) is approximatelypositive controllable in time > 0 ifand only ifBU+ E+.

In particular, approximate positive controllability in time > 0 implies m >= n.

(b) If (A, B) is approximately positive controllable then 2m>-_ n, and for every
1 <-i <- n the following holds: e[i] is an eigenvector of A or e[i]--Be(j) for some

l<-_j<-_m, /z>0.
(c) If (A, B) is exactly positive controllable then (A, B) is approximately positive

controllable in every time > O.
Proof (a) If Bu e[ i] for u > 0 then txBe(j) e[ i] for some/z > 0, =<j _-< m since

B is positive. The assertion follows from Theorem 4.9(a).
(b) By [13] lim,_. (T(t)f/llT(t)fll) is for every 0</" an eigenvector of A;

therefore the assertion follows from Theorem 4.9(b).
(c) We show that (4.3) holds. Since (A, B) is exactly positive controllable there

exists for all J., # {0} and 0 <fe ., a time t> 0 such thatf R,+; by Lemma A2(a), we
obtain that {T(s)Be(j): O<-s <- t, <=j<- m}(3.,# . As in the proof of Theorem 4.9(a)
this yields (4.3).

We point out that Theorem 4.9 and Corollary 4.10 show that the different positive
controllability notions do not coincide on finite-dimensional state spaces, contrary to
the usual controllability notions (Proposition 4.2).

As an example for these results we mention again Example 4.6. By Theorem 4.9(b)
it is immediate that (A, B) in (4.6) is not approximately positive controllable. More
examples will be discussed below.

4.2. The infinite-dimensional case. The results of Corollary 4.10 for finite-
dimensional state spaces may lead to the conjecture that positive controllability is
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impossible if the state space is infinite-dimensional and the input space is finite-
dimensional. In fact, we will show that approximate positive controllability in finite
time > 0 is never possible for a large class of systems on nearly all state spaces of
practical interest. Moreover, on the same state spaces, approximate positive controlla-
bility is impossible for systems for which (as in the finite-dimensional case)
lim,_oo (T(t)Bf/llT(t)Bfll) exists for all f>0. However, as pointed out in [13], the
limit may not exist, in which case there exists an example where the system is
approximately positive controllable.

Finally we should mention that by [5, 3.2] and by the remark in Definition 4.4
(that positive controllability implies the usual controllability) exact positive controlla-
bility is never possible in the case where the state space is infinite-dimensional and
the input space finite-dimensional.

We state the following theorem.
THEOREM 4.1 1. Let E be an infinite-dimensional Banach lattice with a strictlypositive

linearform f’ E’. Let (A, D(A)) be the generator ofa positive semigroup 3-= T( t)),o
on E and take B L([m, E) positive, rn . Denote by e(1),..., e(rn) the canonical
unit vectors of ’ and assume Be(j) # 0 for <=j <= m.

(a) (A, B) is not approximately positive controllable in time > 0 if T(s)Be(j) # 0

for every O <= s <= and l <-j <= m.
(b) (A, B) is not approximately positive controllable if T(s)Be(j) # O for every 0 <- s

and <-_j <= rn and if lim,_ T(t)Be(j)/ll T(t)Be(j)ll) exists for every <-j <= m.
We will prove the theorem after Remark 4.12.
Remark 4.12. The assumption that there exists a strictly positive linear form is

fulfilled for all state spaces of practical interest, e.g., Co(X), X a locally compact
subset of [2 n, L(f, A), a measurable subset of n, A the Lebesgue measure.

The assumption Be(j) # 0 in the theorem is made only for convenience. If Be(j) 0
for some j we modify the conditions stated in the theorem:

(a) O{T(s)Be(j): O<=s<=t, <=j<=m, Be(j)O},
(b) O:{T(s)Be(j): O<=s, <-_j<=m, Be(j)O} and lim,_(T(t)Be(j)/

T(t)Be(j)ll) exists for all 1 =<j <- rn for which Be(j) # O.
For the proof of this fact we restrict B to the sublattice of []m generated by those

e(j) for which Be(j)# O, and then apply Theorem 4.11.
The condition in Theorem 4.11 (a), as well as the first condition in Theorem 4.11 (b),

is obviously fulfilled by every positive semigroup that can be extended to a (not
necessarily positive) strongly continuous group and also by every analytic positive
semigroup. Let 3-= T(t)),o be an analytic positive semigroup and T(t)f= 0 for some
t>0, feE; then T(s)f=O for s>-t, and hence (f’,T(s)f)=O for every s>-t and
f’e E’. Since 3- is analytic this implies that (f’, T(s)f)=O for all s >0 and f’ E’;
hence (f’, f) 0 and f 0.

Proof of Theorem 4.11. (a) As mentioned in the proof of Lemma A2(a), the set
C := {T(s)Be(j): O<=s<= t, <=j<-_ m} is compact and does not contain zero by assump-
tion. On the other hand, by Lemma A4 there exist infinitely many pairwise orthogonal
ideals Jj.,# {0}, 0<f’ E’, and by Lemma A.3, C can only intersect finitely many of
them. By Lemma A2(a) this implies that cl (R,+) has nontrivial intersection with only
finitely many of these ideals; hence cl (R,+)# E+, i.e., (A, B) is not approximately
positive controllable in time t.

(b) Again, as mentioned in the proof of Lemma A2(b), the assumption implies that

{ } { T(t)Be(j) "l<=j<--m}T(s)Be(j)
O<=s, <=J <=m U lim

T(t)Be(j)lIIT(s)Be(j)ll
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is compact and does not contain zero. Lemmas A4, A3, and A2(b) yield as in (a) that
cl (R+) E+, i.e., (A, B) is not approximately positive controllable. [-1

We do not know whether we can drop the condition in Theorem 4.11(a) as well
as the condition that there exists a strictly positive linear form. In other words, we do
not know of any example where E is infinite-dimensional, U =N’, and where (A, B)
is positive controllable in some finite time > 0. But the following example shows that
(A, B) may be approximately positive controllable if the limit in the assumption of
Theorem 4.11(b) does not exist. The basic idea of the example is due to Zabczyk [17].

Example 4.13. Let E= LP([+), l=<p<c% U=, 3-= (T(t)),o being the (posi-
tive) translation semigroup on E given by

(T(t)f)(x) =f(x + t) for x, >_-- 0

with generator (A, D(A)), and let B L(, E) be a positive operator given by

Bu=u.b for some bE+.
We claim that (A, B) is approximately positive controllable for a suitable b e E+, which
we will construct as follows.

First we know that there exists a countable subset S of normalized positive
functions with compact support such that cl (cocone S)--E+: Take, for example, all
characteristic functions on intervals [q, q+ r], q, re Q+\{0} divided by their U’-norm.
In S there exists a sequence fl, f2, in which each element of S occurs infinitely often.

By assumption the support spt (f/) is contained in [0, ti] for some ti > 0. Define

and let

s(1):=0, s(n+l):- t for n->l
i=1

denote the function t-+{) (t-s) for t>=s,
for < s.

Since spt ;(’(i))) fq spt (f(J))) c [s( i), s( 1)] 71 [s(j), s(j+ 1)] has measure zero for
i#j, we can define

b := 2 2-i2" f}s(i))
i=1

and obtain IIb -< (2, 2-’*) 17 <= 1; hence b e E+.
Because of Proposition 4.7(a) (A, B) is approximately positive controllable for

this b if S c__ cl { T(s)bu" 0 <= s, u >-_ 0}. For this we now show that for each f e S and
n e N there exists s, u > 0 such that

(4.7) 11T(s)bu f < 2-n.
Since f occurs infinitely often in the sequence (f), we can find k > n such that f=fk.
Let s s(k), u 2 k2. Then by definition of - we obtain

T(s)f(i= r(s(i)+t+" "+tl,_)f(())=O for i<k,

r(s)f’ =f,

T(s)f((i))= T(s(k))f("(k)+(i)-(’))=f(’(i)-’(k)) for i> k.

Hence

T(s)bu f ’, 212-i f{sli)-s(k)).
i--k+l
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Since

spt (fli)-’))) f-] spt

[s(i)-s(k), s(i+ 1)-s(k)] I [s(j)-s(k), s(j+ 1)-s(k)]

where

d
(4.9)

dt
nf(t) Aof(t)+ Id [O(f(t)), , (f(t))],

-2 1 0 0 0

1 -2 0 0

0 1 -2 1 0

0 0 1 -2 0

0 0 2

0 0 1 -2

has measure zero for S j, we obtain

T(s)bu f --<
i---k+l i--k+l i=1

_-< <2-.
i--1

Thus (4.7) is proved.

4.3. Applications. We apply the main Theorems 4.9 and 4.11 to some concrete
examples.

Example 4.14. The electrically heated oven of 3 is neither approximately positive
controllable in any time > 0 nor exactly positive controllable because of Corollary
4.10(a), (c). It is approximately positive controllable by Theorem 4.9(b) if and only if

By [13] a necessary condition for (4.8) is that (.o,) is an eigenvector to A, i.e., /3 =0.
We verify that

T(t)=( e-’ 0 )yt e

T(t)
y(e -e- ).(6-a) e

Hence (4.8) holds if and only if

y#0,

In the physical situation we have a,/3, y, 6 > 0 and therefore the oven is not approxi-
mately positive controllable. But by Proposition 4.2, (A, B) is (exactly) controllable if
and only if the matrix ( y) is nonsingular, i.e., y # 0.

Example 4.15. In [6] the following system is discussed as an approximation for
a distributed network:
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f(t) (fl(t),’’" ,fn(t)) N" =: E, and 0 is a real function on N. If 0 is linear, then
(4.9) reads as follows:

d
(4.10) td-Yf(t)= Aof(t)+ tx Idf(t)

for some/x N.
Define A := Ao+ x Id. Then by[9, B-II, Ex. 1.4.b], A generates a positive semigroup

and we can consider the linear control system (4.1) for some positive B L(N m, Nn),
m e N. Since none of the canonical unit vectors e[i] of Rn is an eigenvector of A, we
infer from [13] that the second condition in Theorem 4.9(b) can never be fulfilled.
Hence (A, B) is approximately pgsitive controllable if and only if it is approximately
positive controllable for any time > 0, i.e., if and only if BU+ E+ (by Corollary
4.10(a)). However, from Proposition 4.2 it is immediate that (A, B) is (exactly) control-
lable if BU contains, e.g., e[1] or e[n], in particular, B may even have rank 1.

Example 4.16. We consider the heat equation on a finite rod with Dirichlet
boundary conditions as in 3. As shown in [14], lim,,(T(t)f/llT(t)fll) exists for
every f> 0; in particular, T(t)f# 0 for all t->_ 0, f> 0. Since there exists a strictly
positive linear form on L2[0, 1], by Theorem 4.11 we obtain that the control system is
not approximately positive controllable.

In the same way we can show, using the results of 13] and 14], that the system
is also not approximately positive controllable if we replace the Dirichlet by Neumann
boundary conditions.

Example 4.17. Consider the Laplacian on Rn. This means we consider the control
problem (4.1) for E=Co(n) or E=Lp(n), l_-<p<oc, U=[Rm, O< B L( U, E),
D(A) {f E: Af E}, Af Af By [9, C-II, Ex. 1.5.c and d and Remark] (A, D(A))
generates a positive contraction semigroup -= (T(t)),>=o on E given by

T(t)f(x) (4rt) -n/z f,, exp (-[x-yl:/4t)of(y) dy,

where Ix- Yl denotes the Euclidean norm of x-y in [.
This shows that T(t)f(x)> 0 for all xR whenever f> 0 and the assumptions

ofTheorem 4.11 (a) are fulfilled. Hence (A, B) is not approximately positive controllable
in any time > 0. On the other hand, (A, B) may be approximately controllable in
every time > 0 even for U=E (see [5, 3.17]).

5. Positive stationary pairs. In 4 we have obtained somewhat negative answers
to the first question posed in 3. However, it is often not so important to reach the
entire positive cone of the state space. It suffices to design a nonnegative control by
which particular positive states can be approximated and held constant for all times.
This was just the problem formulated in the second question of 3 for positive states
belonging to positive stationary pairs. Moreover, we have observed in 3 a relationship
between existence of a positive stationary pair and stability of the system. In this
section we will discuss these problems systematically.

Let E and U be Banach lattices, let -= (T(t)),o be a positive semigroup on E
with generator (A, D(A)), and take B e L(U, E) positive. As in the previous section
we consider the control problem (4.1), where u Loc(N+, U) takes values in U+ and
fo E+.

We call a pair (f, u)e(E+\{O})x U+ positive stationary if Af + Bu=O. In this
case f(.)-=f is a nonzero constant solution of (4.1) for u(.)= u, fo=f. We are
interested in whether each f e E+ belonging to a positive stationary pair can be
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(approximately) reached and held constant by a nonnegative control u(. ). Moreover,
we study the connection between existence of positive stationary pairs and stability of
the semigroup 3- as defined in 2.

Our main results will be formulated in Theorem 5.1 and 5.6, and applications will
be given at the end of the section.

We state the following theorem.
THEOREM 5.1. Let E and U be Banach lattices, let 3-= (T(t)),>=o be a uniformly

exponentially stable positive semigroup on E with generator (A, D(A)), and take B
L( U, E) positive. Then we have the following:

(a) To each ul U+\ker B there exists exactly one fl E+ such that (f, u) is a

positive stationary pair.
(b) If (f, u) is a positive stationary pair, fo E+ and u(. )=-- u, then the solution

of (4.1) tends to f as t-> .
Proof (a) If 3- is uniformly exponentially stable, then Op(A) and -A- is

positive by [9, C-III, Thm. 1.1]. For all u U+\ker B we therefore obtain that
(-A-Bu, u) is a positive stationary pair. On the other hand, 0 p(A) implies that
for each u U+, there exists at most one f such that (f, u) is a positive stationary
pair.

(b) For a positive stationary pair (f, ul) and u(.)= u, we obtain for the mild
solution of (4.1) thatf(t) T(t)fo-to T(t-s)Af ds. This is equal to T()(fo-f,)+f,,
and therefore tends to f as t- since 3- is stable.

From the proof above we obtain the following corollary.
COROLLARY 5.2. Let E and U be Banaeh lattices, let 3-= (T(t)),>=o be a weakly

stable positive semigroup on E with generator (A, D(A)), and take B L( U, E) positive.
Then we have the following:

(a) For each u U+\ker B there exists at most one f E+ such that (f, u) is a
positive stationary pair; such f E+ exists if 0 p(A).

(b) If (fl, u) is a positive stationary pair fo E+ and u(. u, then the solution

of (4.1) tends to f in the weak topology of E as t-, o; the convergence holds in the
norm-topology if 3- is strongly stable.

Proof (a) The uniqueness of f follows from the fact that A is injective if 3- is
weakly stable. Moreover, weak stability implies that the growth bound o(A) of A is
not positive and therefore, by [9, C-III, Thm. 1.1], the resolvent R(A, A) of A in , is
a positive operator for all >0. Thus if 0 p(A) we have -A- lim_o R(A,A)>=O,
and as in the proof of Theorem 5.1(a) we obtain the existence of a positive stationary
pair.

(b) This follows immediately from the proof of Theorem 5.1(b).
For another immediate consequence of Theorem 5.1 we recall the definition of

R+ from Definition 4.4.
COROLLARY 5.3. Let E and U be Banach lattices, let 3-= (T(t)),o be a positive

semigroup on E with generator (A, D(A)), and take Be L(U, E) positive. Then
{R(A, A)Bu: u U/, A > co(A)}_ cl (R+).

Proof Obviously R+ does not change if we multiply T(t) by e-’ for A > oo(A).
Then (e-’T(t)),>_o is an exponentially stable semigroup with generator A := A-A,
and -(A)-1= R(, A). The assertion then follows from the proofofTheorem 5.1.

The following example shows that there may not exist a positive stationary pair
if the semigroup 3- is strongly stable only.

Example 5.4. We consider the Laplacian on E Co([) or LP(), 1 _-< p < c as in
Example 4.17 with B L(m, E) positive. The semigroup 3- generated by (A, D(A))
is strongly stable [9, A-IV, Ex. 1.2]. We claim that there does not exist a positive
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stationary pair. Suppose that Af+ Bu=O for some O<-f D(A), u>-O. We show f= 0.
The equation Af+ Bu 0 implies that the second derivative f" of f takes only

nonpositive values. Now for some constants c, c2 the function f is given by

(5.1) f(x) c: + cx + if(z) dz dy, x

Let g be the function that maps y on Iof"(z) dz. Then g(0)= 0 and g is antitone. Since
g(y)<-O for y>=0 and since f>=0, we obtain by (5.1) (if we choose x to be large)
that c,>_-0. On the other hand, g(y)>=O for y_-<0 implies that oof"(z) dzdy
_o g(y) dy <- 0 for x -<_ 0. Equation (5.1) and f>_- 0 imply cl -<- 0; hence c 0.

Since g is antitone, c := limy__ g(y) and/3 := limr_+ g(y) exist in the extended
real field and c->0, fi-<_0. Assume c>0; then oIof"(z)dzdy=-I g(y)dye-co as
x -co, which contradicts the facts that f=>0 and c =0. In the same way the case

/3 <0 is impossible. Thus c =/3 =0, i.e., g=0; hence f(x)= c2 for all x. Sincef Co(R)
or f LP([), this is only possible if f= 0.

Thus we have shown that strong stability is not sufficient to ensure the existence
of a positive stationary pair. On the other hand, the following example shows that not
even boundedness of the semigroup is necessary for the existence of such a pair.

Example 5.5 Let E 2, U A (-1 o
o 1), B=(). Then ((), 1) is a positive

stationary pair, but (e’a),o is an unbounded semigroup since po(A).
The following theorem states the conditions under which the existence of a positive

stationary pair implies boundedness or even stability of the semigroup -.
THEOREM 5.6. Let E and U be Banach lattices, and let -= (T(t)),>=o be a positive

semigroup on E with generator (A, D(A)). Take B L( U, E) positive and let (f, u)
be a positive stationary pair.

a - is bounded iff int E+.
(b) - is stable if E is finite-dimensional, fl int E+, and Bu int E+.
Proof (a) If f is an interior point of E+, then to each f E+ there exists A.t-> 0

such that f<_- A... f. Since fl T(t)f -o T(s)Afl ds o T(s)Bul ds >-_ 0 we obtain
0<-- T(t)f<-AtT(t)f <-Atf and r(/)fll-<   .llf ll for 0. By the uniform bounded-
hess principle T is bounded.

(b) Since IIT(tfll <=..lIT(t)f, for everyf /, it suffices to show that T(t)f -0
as t-oe. Now T(t)f=f-o T(s)Bu ds; hence

t+r

T(r+ t)L T(r)f- r(s)Bu, ds<= T(r)fl for r>=0.

Thus (T(t)f),>=o is decreasing and therefore converges to some g E+ as t- oe since
E is finite-dimensional [11, II, Thm. 5.11]. Then g is a fixed vector of every T(t) and
O<-g<-_ T(t)fl for all t->_0. Moreover Bu int E+ implies 1/t o T(s)BUl ds int E+ for
small > 0. Since

(f,_g)> I0
we obtain 1/t(f g) e int E+. Thus, f g e int E+; hence there exists/x > 0 such that

f =</x (f g), and therefore

O<- T(t)f,<-xT(t)(f,-g)=x(T(t)fl-g)-+O as

This implies T(t)fl 0 as t- oc.
We remark that Theorem 5.6 can be applied only to spaces E that are isomorphic

to C(X), X compact, since for all other spaces int E/= [11, II, 7].
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As we have seen in Example 5.5, - may not be bounded if (fl, ul) is a positive
stationary pair with fl int E+. Moreover, - may not be strongly stable if fl e int E+
and BUl : int E+, as the following example shows.

Example 5.7. Let E=[2, U=R, A=( -lo o), B=()’, then ((1),1) is a positive
stationary pair but (exp (tA)),>=o is not stable since 0e pit(A).

We apply our results to the examples of 3.
Example 5.8. We consider the electrically heated oven from 3. As mentioned

there, A is stable if and only if there exists a positive stationary pair (fl, Ul) with Ul > 0.
Since c,/3, y, 6 >= 0 it is immediate that A is stable if and only if det A > 0. Then

all positive stationary pairs are scalar multiples of ((det A)-l(), 1).
Moreover, in 3 we have seen that for y + 6 # 0 a positive stationary pair (xl, 0)

exists if and only if A is not stable but has eigenvalues with nonpositive real parts,
) 0).i.e., det A 0. Then all positive stationary pairs are scalar multiples of ((

In the physical situation we have det A > 0 (cf. 4.14) and Theorem 5.1 is applicable.
Example 5.9. We consider the heat equation of 3. As shown there the semigroup

is uniformly exponentially stable and a positive stationary pair exists (cf. Theorem
5.1(a)). All fl belonging to a positive stationary pair (fl, ul) can be approximately
reached by the control u(. )--- ul according to Theorem 5.1(b).

Appendix A. The following four lemmas on order ideals are needed in 4. We
recall the definition of the ideals Jr, from 2.

LEMMA A1. Let C be a compact subset of the positive cone E+ of a Banach lattice
E, and let 0 <f’ e E’ be a positive linear form. If there exists 0 <f e cl (cocone C) Jr,
then C f"l Jr, # .

Proof The assertion is trivial if 0 e C. Therefore let 0 C and

n(m)

f= lim Ogi, fi, for some Ogi,m>O, f,m e C, n(m)e.
i=

We set

and obtain

i, :’-- Oi, [Ifii, > 0, g,,m :--Lm IIAmll-’

n(m)

0 (f’,f)= lim Y o,,,(f’,f,m)
i=

n(m)

lim E fi,,m(f’,
i=l

Moreover,

E /,,= E ze,,llg,,ll >- E ,," gi,
i=1 i--I i=1

Thus we can assume that

n(m) n(m)

fii,(f’, gi,)< ]]fl__ and /3,. => for every
_-1 2m = 2

Hence for every m there exists i(m) such that (f’, gi/,.),m)< 1/m. Since C is compact
we can find a subsequence of (f(,),,,),, that converges to some foe C. Hence a
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subsequence (hm)m of (gi(,,,m)m converges to g:=fo.llfoll -, and (f’,g)=
limm-oo (f’, hm) 0. Thus we obtain (f’, fo) O, fo Jf,.

LEMMA A2. Let the assumptions be as in, Definition 4.4, let U ", e(1), ., e(m
be the canonical unit vectors of N’, and 0 <f E’. Then thefollowing assertions are valid.

(a) If 0<f el (R+ Jf, then

{ T(s)Be(i): 0 <- s <= t, <- <= m, Be(i) # 0} ("1Jf, .
(b) Assume that O_{T(s)Be(i): O<=s, l <-i<-m, Be(i)O} and that

lim,_oo T( t)Be( i)/ll T(t)Be(i)]]) existsfor every 1 <= <- mfor which Be(i) # O. If 0 <f
el R+) Jr, then

{T(s)Be(i)" 0<= s, <=iN m, Be(i) 0}

! T(t)Be(i)
lim "l<-i<-m, Be(i)O f"lJf,.t,-lIT(t)Be(i)ll

Proof We can assume that Be(i) 0 for all 1 _-< i-< m; otherwise we restrict B to
the sublattice of N spanned by those vectors e(i) for which Be(i)# O. This will not
affect the set R,+ and the assumptions of the lemma remain valid.

(a) { T(s)Be(i): 0-< s <= t} is compact for _-< iN m since - is strongly continuous.
Set C:= {T(s)Be(i): O<-_s<= t, <= i<=m} and apply Proposition 4.7(b) and Lemma A1
to obtain the assertion.

(b) By Proposition 4.7(b) we know that the set

[{ T(s)Be(i) } { T(t)Be(i)
cocone O<=s,l<=i<=m U lillT(t)Be(i)]] l<=i<=m

is dense in R+. Now continuity of t-,(T(t)Be(i)/llT(t)Be(i)ll) and the existence of
lim,_, (T(t)Be(i)/llT(t)Be(i)ll)imply compactness of the set

{ } { T(t)Be(i)}T(s)Be(i)
"O<-s, 1 <--i<-m kJ lim l<-_i<=m

IlT(s)Be(i)ll ,- [[T(t)Be(i)[I

By Lemma A1 we know that this set has nonvoid intersection with Jr,. The
assertion follows immediately since r(t)Be(i)/llT(t)Be(i)llJ., if and only if
r( t)Be( i) z J.,.

LEMMA A3. Let E be a Banach lattice, let C be a compact subset of E+, 0 C, and
let (I)ij be a class ofproper ideals of E that are pairwise orthogonal. Then C I
for almost all J (i.e., for all except finitely many).

Proof Assume that C has nontrivial intersection with infinitely many ideals
Since 0 C there exists a sequence of pairwise orthogonal elements fn with

infna (l[f, ll) > c > o. But this implies by [11, II, Prop. 1.4] that ]If,-frail > c for all
n # m in contradiction to the compactness of C.

LEMMA A4. Let F be an infinite-dimensional Banach lattice. Then the following
assertions are equivalent:

(i) There exists an infinite number of pairwise orthogonal ideals of the form
J.t., {fe E: (f’, If I) 0}, J.,, {0}, 0<f’ E’.

(ii) There exist two orthogonal ideals of the form Jr,, Jf, {0}, 0<f’ E’.
(iii) There exists a strictly positive linear form f’ on E.
The proof of the lemma is due to Rfibiger [18] and can be found in [15].
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NEW RESULTS IN THE REDUCTION OF LINEAR
TIME-VARYING DYNAMICAL SYSTEMS*

J. ZHUq$ AND C. D. JOHNSON’

Abstract. This paper considers finite-dimensional, linear time-varying dynamical systems (LDS) of the
form = A(t)x, X(to) xo. Such systems are said to be semiproper (self-commuting) if for all t, ’, A(t)A(’)
A(-)A(t). Using some recent results for obtaining explicit solutions for semiproper systems (see [26]-[29],
[34], [35]), the family of Lyapunov reducible systems is expanded to include those systems that can be
reduced to semiproper ones via what will be called D-similarity transformations. Within this new framework
is defined the notion of primary D-similarity transformations, and every LDS that is "well defined" in a
certain sense is proved reducible by a finite sequence of primary D-similarity transformations. The paper
also presents an explicit technique for constructing such transformations for LDS with virtually triangular
A(t) (i.e., A(t) LT(t)L- for some nonsingular constant matrix L and triangular matrix T(t)). There are
difficulties in obtaining, explicitly, primary D-similarity transformations for the reduction of general LDS.
However, this paper shows that, instead of studying such general cases, it suffices to investigate only the
reduction of LDS with normal A(t). To achieve these results, A{X} Ax- is treated as an operator on
a vector space over a differential field, and thereby some familiar results in the theory of matrices are

generalized over a number field. In particular, the authors introduce the notions of partial spaces, partially
linear operators, linear differential equation (LDE) operators A, and D-similarity transformations, all of
which are believed to be new.

Key words, linear dynamical system, time-varying system, Lyapunov reduction, semiproper reduction,
differential algebra, matrices over a differential field

AMS(MOS) subject classifications, primary 34A05" secondary 93B17, 93B28, 93B40, 34A30, 93C05,
15A33, 15A57

1. Introduction and overview of the main results. This paper concerns the class of
finite-dimensional, homogeneous linear differential equations, with variable coefficient
matrix, having the form

(1.1) : A(t)x, X(to) Xo.

This type of differential equation is the mathematical model for finite-dimensional
linear time-varying dynamical systems when the entries %(t) in A(t) are real functions
of a real variable in time. We shall denote a fundamental solution matrix of (1.1)
by XA(t), and denote the state-transition matrix of (1.1) by +A(t, to), which is given by

(1.2) +A( l, 10) KA( t)X’(to).

Because of well-known difficulties in obtaining analytical solutions and stability
information for systems (1.1), it is desirable to transform (1.1), by some invertible
transformation, to a simpler form that can be solved analytically or studied qualitatively
by existing techniques. At the end of the last century, Lyapunov introduced the
important notion of a reducible system [14] which can be stated as follows.
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DEFINITION 1.1 (Lyapunov). A linear system (1.1) is said to be reducible, in the
sense of Lyapunov, if there exist real numbers M, N, and a nonsingular matrix
L(t) [/ij(t)] satisfying:

(i) ]lij(t)l<=M<oo and ]dltj(t)/dtl<-_M<oo for all i,j and for all t> to,
(ii) ]det L(t)l > N > 0, for all t> to

such that the matrix

(1.3) B L-l(t)A(t)L(t) L-l(t)L(t)
is constant.

The transformation (1.3) with L(t) satisfying (i) and (ii) is known as a Lyapunov
transformation. It is well known that all periodic systems (1.1) are reducible in the
sense of Lyapunov and, moreover, that the stability of such systems can be studied
qualitatively via Floquet theory [5]. However, general criteria for the reducibility of
nonperiodic systems (1.1) are not known. Moreover, even if a system (1.1) is known
to be reducible, it is not clear how to find a Lyapunov transformation to accomplish
that reduction.

In this paper, we introduce a new and somewhat broader point of view for
investigating reducibility and generating reduction transformations for systems (1.1).
It is recalled that a matrix function A(t) is.said to be semiproper (self-commutative)
on an interval I c__[ if A(t)A(-)= A(-)A(t), for all t, - L A linear system (1.1) is said
to be semiproper if A(t) is semiproper. Note that, in particular, all time-varying systems
(1.1) with diagonal or Jordan coefficient matrices, and all systems (1.1) with constant
coefficient matrices, are semiproper. Recently, we have developed some new results
for deriving finite-form analytical solutions tbA(t, to) and stability criteria [26], [27],
[34], [35] for the class of semiproper systems (1.1). Therefore it is natural to extend
the family of Lyapunov reducible systems to include those systems that can be reduced
to semiproper ones via Lyapunov transformations. In this regard, it should be noted
that the classical boundedness requirements (i) and (ii) for Lyapunov transformations
were traditionally imposed to preserve stability properties of the original system.
However, those classical requirements are often overly restrictive and may rule out
many candidate equivalence transformations that would enable derivation of explicit
solutions and/or stability information for (1.1). Therefore it is desirable to relax
requirements (i) and (ii) in Definition 1.1, to the extent possible.

Motivated by the foregoing argument, we introduce the following (new) definition
of a "semiproper reducible" system.

DEFINITION 1.2. A linear system (1.1) is said to be semiproper reducible if there
exists a matrix L(t) satisfying

(1.4)
such that the matrix

(1.5)

det L(t) constant # 0

B(t) L-(t)A(t)L(t) L-’(t)L(t)
is semiproper.

Remarks. (1) In this paper it will be shown in Theorem 5.2 that every Lyapunov
reducible system (1.1) is semiproper reducible.

(2) Note that (1.4) assures the existence of L-(t) as well as the same divergence
rates for L(t) and L-(t). The intrinsic significance of imposing condition (1.4) will
be further explored in the sequel, and in separate papers [30], [31].

Hereafter, we refer to the transformation defined by (1.4) and (1.5) as a D-similarity
transformation. A linear system (1.1) will be called well defined if A(t) is locally
Lebesgue integrable.
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In this paper, we employ Definition 1.2 to prove the following important theorem
regarding semiproper reducibility.

THEOREM 1.1. For every well-defined linear system (1.1) there exists a diagonal
matrix D(t), and a matrix L(t) having nonzero constant determinant, such that

(1.6) D(t) L-l( t)A( t)L(t) L-l(t)1’(t).

To find explicitly the D-similarity transformation matrix L(t) in (1.6), we will
introduce in 4 the notions of left and right D-elementary operations and D-elementary
matrices as a natural generalization of the elementary operations and elementary
matrices in the theory of matrices over a number field. By this means we will prove
the following important theorem characterizing D-similarity transformations.

THEOREM 1.2. Every matrix L(t) having nonzero constant determinant can be written
as a product of a finite number of D-elementary matrices.

Theorem 1.2 suggests that every D-elementary matrix constitutes a D-similarity
transformation. Such a D-similarity transformation will be called primary. Using this
terminology and the results of Theorems 1.1 and 1.2, we will establish the following
fundamental result for semiproper reducible systems.

THEOREM 1.3. Every well-defined linear system (1.1) is reducible to a (diagonal)
semiproper system by a finite sequence ofprimary D-similarity transformations.

Although Theorem 1.3 is an exciting theoretical result, its practical application is
hampered because procedures for finding the primary D-similarity transformations
involve, in general, solving systems of Riccati-type nonlinear differential equations
that are usually as difficult to solve as the original ones. However, it is not necessary
to study such general cases because we shall prove, as another of the main results in
this paper, that every well-defined linear system (1.1) can be "decomposed" into two
subsystems of form (1.1) with normal coefficient matrices. Moreover, the solution of
the original system can be expressed in terms of the solutions of those two normal
subsystems. It suffices, therefore, to investigate only semiproper reductions for normal
systems.

Despite the difficulties mentioned above, for those systems (1.1) with virtually
triangular A(t) (i.e., A(t)= LT(t)L- for some nonsingular constant matrix L and
triangular matrix T(t)), the primary D-similarity transformations can always be found
explicitly. The procedures for doing so, along with some illustrative examples, are

developed in this paper.
To achieve our results with mathematical rigor, we shall first take the matrix

functions A(t) as operators on a vector space over a differential field, and generalize
some of the familiar results in the theory of matrices over a number field (note that a
number field can be viewed as a special case of differential fields with the usual
derivative operation). Those results are then relaxed so they can be applied to well-
defined matrices A(t). As a byproduct of this approach, we obtain some additional
results, which are interesting and important in their own right.

2. Vector spaces over a differential field. In this section, we establish the mathemati-
cal foundation for our main results. It is assumed that the reader is familiar with the
algebraic notions such as fields, vector spaces over a number field, linear operators on
a vector space, etc. Using those concepts, we adopt the notion of a differential field
[I 1] defined as follows.

DEFINITION 2.1 [11]. A field fl: with addition and multiplication {+,. is called
an ,rdinary differential field if fl: adopts a derivation operator i, and : is closed under
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the derivative operation defined by
(a) 8{x + y} 8{x} + 8{y},
(b) 8{x. y}=8{x}, y+x. 8{y}

for all x, y e :. An element C e : is said to be constant if 8{C} 0. All constants in :
form a field called the constant subfield f of [.

Without causing confusion, in the sequel we will simply call : a differential field,
or D-field. Note that, with the ordinary derivative operation, the number fields N, C
are (trivial) D-fields. Nontrivial examples of D-field are the field of rational functions
and the field of meromorphic functions in a complex domain.

Because of the lack of a multiplicative inverse for the zero element in the.constant
subfield :., a D-field : cannot contain functions vanishing on a subinterval of positive
measure. Hampered by this constraint, many functions having important applications,
such as piecewise constant functions (C functions), cannot be studied using the
powerful notion of the D-field. For this reason we now introduce the notion of an
augmented differential field defined as follows.

DEFINITION 2.2. The union of a field : with a multiplicative inverse of its zero
element, denoted by 0-1, is called an augmented field. The union of a differential field
f with a multiplicative inverse 0-1 for its zero element is called an augmented differential
field. The zero element 0 and the element 0-1 are then called the singular elements in
that augmented (differential) field.

Remarks. (1) By convention, multiplicity and powers of the zero element 0 in a
number field is insignificant. But this is not the case in an augmented (differential)
field when 0-1 comes into play. For instance, (0+0)0-1 1, whereas 0 0-1 +0 0-1 2.
To avoid indefinite computation results, the following rules should be observed when
the operands include the singular numbers 0 and 0-1"

(i) Keep track of multiplicity and powers of the singular numbers 0 and 0- at
each intermediate stage, e.g., 0+0= 2 0, 0 0---02, 0-1 --0-1 2 0-1, 0-1 0-1 =0-2.

(ii) Combine 0 and 0-1 at each intermediate stage according to the rules" 0+0-0-1, 0.0-1= 1, until only one type of singular number, 0 or 0-, is left.
(iii) At the last stage, combine the singular number, 0 or 0-1, that remains from

the preceeding computations with a regular number C by the rules"

0+C=C, 0. C=0, 0c=0, C=1,
or

0-1+C=0-1 0-l’C=0-, 0-c=0-1 C-’=0-1

or interpret the final result according to specific application purposes.
(2) Let : be an augmented differential field of functions f: I - :. and let f, g e:

such that g(t)= 1/f(t), tel. If toe I is a continuity and an isolated zero off, then
g(to) =0-1. But as t- to, g(to)- +oe 0-1, i.e., g(to) is discontinuous at to, and con-
sequently nondifferentiable there. Now let J c__ I be an open subinterval of positive
measure. If f(t) 0, e J, then g(t) 0- and g’(t) 0, e J. In particular, for every
toe J, g(t)- 0-1 as t- to, i.e., g(t) is continuous on J. A fundamental solution to the
equation g(t)x, e J, is then symbolically denoted by x =-exp (0-1 t).

(3) In what follows we shall denote by N(C the augmented field
U {0-’} (C U {0-’}).

In order to apply the notions of D-field and augmented D-field to the analysis
of time-varying linear systems (1.1), it is highly desirable that if the elements a,..j(t) of
the coefficient matrix A(t) are in an (augmented) D-field :, then the elements xo(t)
of any fundamental solution matrix XA(t) for (1.1) are also in that (augmented) field
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:. This motivates the following definition which parallels the conventional notion of
algebraic closedness in the theory of number fields.

DEFiNiTiON 2.3. An (augmented) D-field IF is said to be differentially dosed if for
any finite number of elements ai IF, 1, 2,. ., n, the nth-order linear differential
equation

d" d "-1 d

dtn Y+ Cn(t) dtn..._, y+. .+ c2(t)- y+ c(t)y=O
has a fundamental set of n solutions Yi IF.

We now define a differentially closed augmented D-field that will be used in the
sequel.

DEFiNiTiON 2.4. Let Ca.e.(I, [Fc) be the set of almost everywhere (a.e.) C functions

f: I - [Fc, I c_c_ [, and : [o (or : C). Then an augmented differential field : with
the constant subfield : =o (: =Co) is defined by the set C.e.(/, [Fc), together with
the operations {+,., d/dt}.

Remark. The differential closedness of the augmented D-field IF defined above
can be verified by the well-known reduction of order technique for linear differential
equations and by mathematical induction.

Next we construct a vector space over an (augmented) D-field.
DEFINITION 2.5. Let %/(IF) be an n-dimensional vector space over a field :. Let

13 ={b, b, , b}, bkV, be a basis for V and x =[x,x,... ,x,], x, be the
coordinate vector relative to [ for each x %/. Then %/ is called a differential vector

space, or simply a D-space, if IF adopts a derivation operator 8 so that it becomes a
differential field. The derivative operation induced on %/is given by:

(a) g{x} [a{x}, g{x2}, , 6{x,}],
(b) a{x + y} i{x} + {y},
(c) {ax} {a}x+ ai{x}

for all x, y %/and for all a :. A subset W of %/is called a D-subspace if W is itself
a D-space over :.

An interesting and important structure in a D-space is provided by the following
definition.

DEFINITION 2.6. Let %/(IF) be an n-dimensional D-space over : with a basis

13 {bk}. The set of all constant linear combinations of the basis vectors bk [3 forms
an n-dimensional vector space over the constant subfield [F,, called a partial space of
%/ relative to and denoted by %/t(:.). In particular, if all the coordinate vectors for
b/ [ are constants, %/(:.) is called the constant partial space of%/and is denoted by
%/c.

The adoption of the derivative operation on a D-space %/introduces an important
family of nonlinear operators on %/, defined as follows.

DEFiNiTiON 2.7. Let :%/- %/be an operator on a D-space %/. Then g is said to
be partially linear if

(a) {x+ y} g{x} + {y},
(b) g{Cx} C{x}

for all C [F. and for all x, y %/.

It is readily verified that if and = are partially linear on V, then + 2 and
are also partially linear. In essence, a partially linear operator on %/is a nonlinear

operator that is linear on every partial space %/([F,) in %/. In particular, every linear
operator on %/is partially linear. Note that the derivation operator on %/is partially
linear. In the next section we investigate linear differential equations (1.1) viewed as
partially linear operators on some D-space.
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Before concluding this section, we recall the following important result on matrix
decomposition, which will be needed in the subsequent sections of this paper. In the
sequel, a matrix A= [a!i], aij:, i,j= 1,2,..., n, will be denoted by A Mn(:).

DEFINTION 2.8 [15]. Let A Mn(z), where : is an (augmented) differential field
with z.=C. (:.=C). The Cartesian decomposition of A is defined by A=
Re {A} +i Im {A}, where Re {A} and Im {A} are Hermitian, and are given by Re {A}
(A + A*)/2, and Im {A} (A- A*)/2i.

3. The LDE operator on V([F). In the sequel we will be concerned with the
n-dimensional vector space /([F)=", where IF is the differential field IF C.e.(l, :.),
I to, oo), and :. C. The derivative operation dx/dt on V will be denoted by (or
(x)’). With this notation we define the LDE (Linear Differential Equation) operator
on V as follows.

DEFINITION 3.1. Let A,(I). The LDE operator a:VV is defined by
a{x(t)}--A(t)x(t)-(t), t L The matrix A will be called the characteristic matrix
for the LDE operator a.

Now we can establish the following properties of an LDE operator.
THEOREM 3.1. Let A n(). Then:
(a) The LDE operator A is partially linear;
(b) The mapping A:V-V is onto;
(c) The kernel K(A) ofA is an n-dimensional partial space V (:.) of V, where

I K(A) is a basis for /.

Proof (a) This part of the proof can be verified by Definition 2.7.
(b) If suffices to show that V

_
.A{V}. Let y V. We need to show that there exists

an x V such that A{X} Ax-z y. Recognizing A{X} =y as the nonhomogeneous
linear differential equation (t) A( t)x( t) y( t), and invoking the existence theory for
linear differential equations, we have the existence of such a solution x V.

(c) Since x K(A) implies that A{x} =0, K(A) contains nothing but solutions
to the homogeneous linear differential equation

(3.1) (t)=A(t)x(t).
From the theory of linear differential equations, K(A) is the n-dimensional solution
space of equation (3.1) over z,.. Since K(A)_ V, it is a partial space of V with a basis
consisting of n linearly independent (over IF,.) solutions to (3.1). Now, let XA be the
matrix consisting of the n basis vectors in/3; then det XA(t) 0, L Therefore,/3 is
also a basis of

Remarks. (1) Let I= {x, x2, ,xn} be a basis for the partial space K(A). Then
the matrix XA=[XX2"’" X] satisfies A{XA}=0, and is known as a fundamental
solution matrix for a linear differential equation (3.1) represented by A. In the sequel,
XA will be called a fundamental matrix associated with A, and for A.

(2) The partial space Va(:.)= K(A) and the constant partial space V, are of the
same dimension n and over the same field :; therefore they are isomorphic. For any
X0 X//c, A{XAXo} :0, i.e., XAXo:X//3. Since det XA(t)# 0, t/,X/ exists. Thus XA
is an isomorphism that maps V. onto V,. In particular, for any to I, the state-transition
matrix kA(t, to) given by (1.2) (also known as the normalized fundamental matrix) is
the isomorphism that maps any given initial vector X(to)= Xo V to the state evolution
vector (the unique solution to (1.1)) x(t) /([F).

(3) Note that not all partial spaces of V constitute a kernel for LDE operators.
In particular, linear independence over : does not imply linear independence over :.

The following theorem restates some well-known properties of a fundamental
matrix XA for an LDE operator A.
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THEOREM 3.2 [7], [22]. Let gA be an LDE operator on / with characteristic matrix
A c (:). Let XA be a fundamental matrix for A. Then:

(a) det XA exp tr A(-) d-;
(b) If A B + C, then XA XaXQ, where Q XlCXa;
(c) If A is semiproper on I, then XA exp A(’) d’.
The following result will be used in the next section.
THEOREM 3.3. Let A, XA c (ff:) such that A{XA} =0. If XA is unitary, then A is

skew-Hermitian. If A is skew-Hermitian, then there exists a unitary XA.
Proof Suppose that XA is unitary. Then gA{X} =0 implies that A= (XA)’X*A, SO

that A* XA[(XA)’]* XA(XA) ’. Since A + A* (XAX*A)’= 0, A -A*.
Conversely, suppose that A is skew-Hermitian. Let YA be an arbitrary fundamental

matrix for A. Then (YA)’= AYA, and

(Y’A)’ [(YA)’]* Y*AA* --Y*AA -Y*A(YA)’Y’.

Thus, (Y*A)’YA+YA*(YA)’= (YA*YA)’=0. This implies that Y*AYA=C, which is a non-
singular constant Hermitian matrix, and thus C can be written as C=B*B, for
some nonsingular constant matrix B. Now let XA=YAB-’, hence X*AXA=
(B-’)*Y*AYAB-’ I.

Next, we introduce the notions of D-eigenvectors and D-eigenvalues for an LDE
operator A, and its characteristic matrix A, where the prefix "D" is used to avoid
confusion with the ordinary eigenvectors and eigenvalues for the matrix A. Although
these "D-eigen" concepts are not explicitly used in the subsequent developments in
this paper, they will be useful tools for extending the results of this paper and for
addressing other related issues in linear time-varying system theory [30]-[33].

DEFINITION 3.2. A nonzero vector xV is called a D-eigenvector of an LDE
operator A, and of its characteristic matrix A, if there exists a y e such that
n(x(t)}=A(t)x(t)-i(t)= y(t)x(t). The scalar 3/ is then called the D-eigenvatue
associated with x.

Remarks. (1) In Definition 3.2, we have used the morpheme "eigen" primarily
because of the special form AX yX and operator theoretic convention. However,
the entities x k/ and y z satisfying AX TX for a given matrix A(t) are not what
we would call natural extensions of the tradiditional "eigenconcepts" used for constant
matrices, even though when A(t) -= A is constant, the conventional constant eigenvalues
and eigenvectors are, by Definition 3.2, D-eigenvalues and D-eigenvectors of A. In
fact, by the well-known Existence Theorem for solutions of linear systems (1.1), any
scalar function ycz is a D-eigenvalue of any LDE operator with Ae 1,([!z) (but not
every vector xe V is a D-eigenvector for a given LDE operator A)- Therefore, the
"D-eigenconcepts" as they appear in Definition 3.2 may have only limited usefulness
in applications such as solving for analytical solutions of linear time-varying systems
(1.1), and/or analyzing stability of linear time-varying systems (1.1). However, we have
recently used the D-eigenconcepts in Definition 3.2 to develop two new notions called
ED-eigenvectors and ED-eigenvalues ("ED-" stands for "Essential D-") which have
been quite useful in certain theoretical and practical applications [30]-[33].

(2) In a recent paper [24] (see also [23]), Wu introduces the notions of X-
eigenvectors and X-eigenvalues for arbitrary linear time-varying systems (1.1) ("X-"
stands for "Extended-") and has treated those notions as extensions of the conventional
eigenconcepts for linear time-invariant systems (1.1). Although the D-eigenconcepts
we have introduced are derived from a totally different line of reasoning, those concepts
do coincide with Wu’s X-eigenconcepts when the coefficient matrix A in (1.1) is
restricted to the D-field . By a similar argument used in Remark above, any (locally
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integrable) scalar function A (t) is an X-eigenvalue for any (locally integrable) matrix
A(t). Therefore the very essence of being "eigen" is lost in such attempts to extend
the traditional eigenconcepts for linear time-invariant systems (1.1). Our new results
on ED-eigenvalues and ED-eigenvectors [30], [33] are believed to constitute a more
precise and more meaningful basis, compared to the X-eigenconcepts, for extending
traditional time-invariant eigenconcepts to time-varying linear dynamical systems (1.1).

(3) In an operator theoretic sense we can speak of the eigenvalues A(t) and
eigenvectors y(t) of a matrix A(t). To find (t) and y(t) we need to solve the secular
equation [A(t) (t)I]y(t) 0. However, to find the D-eigenvalues y(t) and D-eigen-
vectors x(t) of A(t), we may have to solve the linear differential equation

[A(t) y(t)l]x(t) R(t),

which in general is not an easy matter. It should be pointed out here that the "recursive"
procedure for finding X-eigenvectors and X-eigenvalues presented by Wu in [24] is,
in fact, a trial-and-error procedure.

(4) In the special case A(t) A e Mln ([F.) and x e /(), where [ Ce.(l, [l:.), [!:. ,
the LDE operator represents a linear differential equation with a real, constant
coefficient matrix A. In this case, it is often necessary to extend the underlying field
IF,.. to C in order to have a full set of eigenvalues and eigenvectors. However, there
always exists a full set of constant D-eigenvalues F= {Yk} in :. =N and a full set of
D-eigenvectors in V(:). Moreover, to every eigenvalue a of A there corresponds a

D-eigenvalue y e I" such that .y Re {a}; the corresponding D-eigenvector is also
real-valued, but no longer constant. Therefore, the well-known stability criterion that
a linear time-invariant system is asymptotically stable if and only if all eigenvalues A
of A have a negative real part can be modified to read: if and only if all the D-eigenvalues
y e F are negative.

(5) In the special case A(t) A e n(:.) and x(t) x e /., the LDE operator
becomes A{X} Ax, and the D-eigenvectors x and D-eigenvalues 7 of A and A are
given by Ax yx. In other words, the (partially linear) LDE operator then coincides
with the (linear) left-multiplication operator A{x} Ax on /c, and the notions of
D-eigenvalues and D-eigenvectors then coincide with the conventional notions of
eigenvalues and eigenvectors on /..

4. D-similarity transformations. In this section we study LDE operators under a

"change of coordinate" transformation on /. Let [3 and , be two distinct ordered
bases for /. Let x and xy be the coordinate vectors for a vector x e /relative to the
bases [3 and /, respectively. Then we can always find an invertible matrix
such that xt Lxv, for all x e /. The matrix L is known as a "change of coordinate"
(CC) transformation matrix. Since L is invertible, the change of coordinate transforma-
tion is an equivalence relation. A linear operator on /under CC transformations
takes different forms, which are said to be similar.

Now let A be an LDE operator on /with characteristic matrix A e M] (=) relative
to an ordered basis [3. Let / be another ordered basis and L eMn(=) be the CC
transformation matrix. Then

A{X/3 PA{Lx/} (AL L)x, LRv Yt"
This latter result, when expressed with respect to the basis /, becomes

y L-’y (L-’AL- L-1L)x- Bx-R u{x},
where the matrix Be ,(:) is given by

(4.1) B L-’AL- L-1L -{A}
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and is the characteristic matrix for the same LDE operator relative to the basis /.
Notice that d(LL-)/dt =0. It is straightforward to verify the following result.

THEOREM 4.1. The transformation -:Mn([IZ)-Mln([F) defined by (4.1) is an
equivalence relation.

Now we can define D-similarity transformations of LDE operators, and of their
characteristic matrices, as follows.

DEFINITION 4.1. (a) The transformation -:y]n([F)---).]n( defined by (4.1) is
called a D-similarity transformation of a matrix A e M]n(t) if and only if

det L(t) C # 0

for some constant C c:. and for all c/. The matrices A and B in (4.1) are then said
to be D-similar via L.

(b) Two LDE operators A and are said to be D-similar via L if and only if
their associated characteristic matrices A and B are D-similar via L.

Remarks. (1) The restriction that det L be a nonzero constant provides many
desirable properties which will be used in subsequent developments in this paper.

(2) D-similarity transformations coincide with conventional similarity transfor-
mations on the constant partial space V..

The next result relates D-similarity transformations on a matrix A eMn(:) with
the usual similarity transformations on A over :. This relation may be useful in the
construction of D-similarity transformations for particular applications

THEOREM 4.2. Let A,B,LM]([I:) such that detL=-C0. If B=L-1AL-L-[,,
then there exists a matrix CMln([F) such that B= L-(A-C)L.

Proof Suppose that B=L-AL-L-L. Let C=LL-. Then CMI(:) and B=
L-’(A- C)L.

Note that the matrix C defines an LDE operator c such that P.{L} CL-L 0,
or L= X.. In essence, Theorem 4.2 states that if B is D-similar to A via L, then B is
also similar (in the usual sense) to a portion of A via L. In particular, if B is unitarily
D-similar to A, i.e., the transformation matrix L is unitary (thus [det L 1), we have
the following interesting corollary.

COROLLARY 4.1. Let A, B, U M,(g:), where U is a unitary matrix. If B is unitarily
D-similar to A via U, then Re {B} is unitarily similar (in the usual sense) to Re {A} via
the same U matrix.

Proof Suppose that B U*AU-U*. By Theorem 4.2, there exists a matrix C
such that CU and B U*(A- C)U. Note that by Theorem 3.3, C is skew-Hermitian;
thus,

Re {B} (B+B*)/2

{U*(A- C)U + [U*(A C)U]*}/2

[U*(A+ A*)U]/2

U* Re {A}U.

In light of Theorem 3.2, we can now give another interesting characterization of
a D-similarity transformation matrix.

THEOREM 4.3. Let L M],([F). Then L is a D-similarity transformation matrix, i.e.,
det L= C #0, for some C g:c, if and only if there exists a BM(:) with trB(t) =0
such that L(t) Xs(t), i.e., s(L} BL- L 0.
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Proof Suppose that Lc n() satisfying det L= C # 0, C c Ft. Let B LL-. Then
Bn() and L= XB. By Theorem 3.2,

det L(t) det X(t) exp f tr B(t) dt C # O,

which implies that tr B 0.
Conversely, suppose that there exists a matrix B () with tr B---0, such that

L XB. Then by Theorem 3.2,

det L(t) det X(t) exp I tr B(t) dt e O,

for some constant S zc.
At this point, it is useful to recall the following well-known result on the extent

of a D-similarity transformation.
THEOREM 4.4. Let A,B,L(). Then B is D-similar to A via L, i.e., B=

L-AL L-L, if and only if XA LX.
Now we define what are called primary D-similarity transformations. Such trans-

formations have many important applications. For instance, they may be used to
construct some desired D-similarity transformations, or, as in the main results of this
paper, can be used to reduce a linear differential equation (1.1) to some simpler form.
We start with the definition of the D-elementary row (column) operations on a matrix
A c [,(IF).

DEFINITION 4.2. Let A ,(z). Any one of the following three operations on the
rows (columns) of A is called a D-elementary row (column) operation:

(a) Interchanging any two rows (columns) of A;
(b) Multiplying any row (column) of A by a nonzero constant C
(c) Adding to any row (column) of A another row (column) of A multiplied by

a scalar a
Remark. Note that part (b) of Definition 4.2 is different from the usual definition

of elementary matrix operations over a field z. However those two definitions coincide
over the constant subfield z,.

DEFINITION 4.3. A matrix obtained from the identity matrix I by application of
any one of the D-elementary row (column) operations in Definition 4.2 is called a left
(right) D-elementary matrix of type (a), (b), or (c), and will be denoted by F, Fb, or
F (E", Eb, or E), accordingly. The superscript , b, or will be replaced by if the
type of a D-elementary matrix is indeterminate.

Remarks. (1) The determinant of any D-elementary matrix is a nonzero constant.
In particular, det F"=-1 (det E=-1); det Fb= C (det Eb= C), where CF is the
nonzero constant involved in the D-elementary operation; det F= (det E= 1).

(2) By Remark 1 the D-elementary matrices are always nonsingular. The inverse
of EX(FX) is a D-elementary matrix of the same type, and will be denoted by E-(F-).

With this notation we can now define the primary D-similarity transformations as
follows.

DEFINiTiON 4.4. Let A c (). A right (left) primary D-similarity transformation
is a D-similarity transformation with the change of coordinate matrix L in (4.1) given
by L E (L F-X).

The first two central results of this paper (Theorems 4.5 and 4.6) can now be
stated as follows.
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THEOREM 4.5. Let L n(:). Then L is a D-similarity transformation matrix, i.e.,
det L(t) C 0 for some C :c, if and only if L can be written as a finite product of
left and right D-elementary matrices.

In order to prove this theorem, we first need to establish two important lemmas.
For this purpose, denote by Ak(t) the kth leading principle minor of L(t), i.e.,

1! 1.
Ak(t)=det

lkl lkk

The notation A---B will be used to indicate that the matrix B is obtained from A by
a finite sequence of D-elementary operations.

LEMMA4.1. Let L6 n(:). If Ak(t 0, I, k <- n, thenbymeansofafinitenumber
of D-elementary row operations L(t) can be reduced to a diagonal matrix D of the form

where ZXo 1. Moreover, det D(t) det L(t).
Lemma 4.1 can be proved by induction on n and therefore the proof is omitted.
LEMMA 4.2. Let D M (g:) be a diagonal matrix with nonzero constant determinant.

Then D can be written as a product of c. finite number of D-elementary matrices.

Proof. First it will be shown, by induction on n, that D---Do, where Do
diag [1,..., 1, det D]. Clearly, this is true for n 1. Now for arbitrary n, apply the
following D-elementary operations"

(a) Add the first row to the second row.
(b) Add to the first row the second row multiplied by (1-dll)/d.
(c) Add to the second row the first row multiplied by -dl.
(d) Add to the first row the second row multiplied by (d-1)/d 11"

These steps lead to the final result:

D diag 1, dd2, d33, d,,,] Do,

where the last step follows from the induction hypothesis. Since det D is a nonzero
constant, the proof is completed with a D-elementary row operation of type (b) applied
to the last row of Do.

Proof of Theorem 4.5. The sufficiency is an immediate consequence of Remark
following Definition 4.3. To prove the necessity, suppose that det L(t)= C 0. By
means of m, m _-< 2(n 1), D-elementary row and column operations we can obtain an

L whose leading principal minors A(t) 0, I, k =< n. Moreover, det L(t) (-1)inC.
The proof is then completed by applying Lemma 4.1 and 4.2 to L1.

Remarks. As can be seen from the proofs of Theorem 4.5 and Lemmas 4.1 and
4.2 (and from proofs of other theorems in the sequel of this paper), the D-elementary
matrices of type (c) play an important role in D-similarity transformations. Thus it is
appropriate to observe here some properties of a D-elementary matrix of type (c). Let
E., r s, denote a right D-elementary matrix that performs the addition of the rth
column, multiplied by some nonzero scalar function q elF, to the sth column. Then
E;,. I q- Qrs, where I is the identity matrix, and Q,..,. [%] such that qrs q, and % 0
otherwise. Clearly, ’.Er=Qrs Now let Z,. [zii] such that z,..i 0 if i# r or j# s. Then
it can be shown that QrsZrs--O if r s. In particular, for r# s, ErY=I-Q and
E,, E; Q. Similarly, a left D-elementary matrix, denoted by F’;.,. I + Q adds the
sth row, multiplied by the nonzero entry qrs in Q,..,., to the rth row. Now let B, A M (IF)
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such that B= L-AL-L-L, where L= Es l+Qrs. Then B can be written as B=
ECAEr,- QF., [b0], where

bo=ao ifi#r, jCs,

(4.2)
be ao qr,asj if j # s,

bi ai, + qr.air if # r,

br.,. ar +(arr- a,.)qr- a.rq2r,- dlr..

The observations and notation above will be used in the proofs of Theorem 4.6 and
Lemma 4.3 given below.

THEOREM 4.6. Every matrix AMn(:) can be reduced to a diagonal matrix De
n(g:) by a finite sequence ofprimary D-similarity transformations.

In order to prove this theorem, the following two important lemmas are needed.
The first one presented below is also a main result of this paper.

LEMMA 4.3. Every upper-triangular matrix A (:) can be reduced to a diagonal
matrix D M,(:) by a finite number ofprimary D-similarity transformations.

Proof Let A= [a0] M,([F) be an upper-triangular matrix. The proof is by induc-
tion on n. For n 2, let

L=E’2=I+Q2= [10
for some q2 F. Now set

D L-AL L-L

0 a= 0 a22

It can be seen that q2 satisfies

(t2(t)=[a,l(t)-a22(t)]q,2(t)+ a,2(t).

From classical linear differential equation theory, such a q : can be expressed as

q,2(t)=ch,2(t) j" ch,’(t)a,2(t) dt,

where

6,2(t) =exp f [a,,(t)-a22(t)] dt.

Now for arbitrary n, assume that Lemma 4.3 is true for n- 1. Partition A into block
matrices:

A=
A21 A22

such thatA [a]. Let D22--diag [a22 a33 ., a,,], and let L diag [L, L22 such
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that Lll [1] and L2-21A22L22 LL= D2. Then we have

B Li-IAL1 L-L1
A12L22

D22

all

0

b12 bin

a2z. 0 0

0 0 "a.

Now let L: E cl2E3c En where Elk--|+Qlk. Set

D LlAL2
all

0

0

d12 _d_..]
a22.. 0 ! a22"
0 "... 0 "..

0 0 "a.n [ 0

0

annJ

where

(4.3) dk (a- akk)qk + blk 41k --O,

k 2, 3,..., n. Thus a qlk C[]: can be found as

(4.4) qlk(t) dp,k(t) f dp,-(t)b,k(t) dt,

where

(4.5) &,k(t) exp f [a,,(t)-a(t)] dt.

Now let L= LIL2; the lemma then follows from Theorem 4.1. 13
Lemma 4.3 has an immediate corollary, which greatly increases its applicability.
COROLLARY 4.2. Every virtually triangular matrix A n([F) can be reduced to a

diagonal matrix D (:) by a finite number of primary D-similarity transformations.
The next lemma is due to Perron [18] (see also [13] and [19]).
LEMMA 4.4. Let A (). If XA is a fundamental matrix for A, then there exist

a unitary matrix U n(:) and a nonsingular upper-triangular matrix T (:) such
that XA UT.

Proof of Theorem 4.6. Let A, XA, U, and T be matrices as given in Lemma 4.4.
Let B=T-. Then B is upper triangular and X,=T. By Theorem 4.4, B=
U-AU U-. Now by Lemma 4.3, there exists a D-similarity transformation matrix

L cn (IF) such that L-BL L-L D, where D is a diagonal matrix. Since ]det UI
1, we can, taking the principal branch, define :(t)=det U(t)-/. Now let L= :UL.
Then detL=detLl, and L-AL-L-L=D-s-I=D is a diagonal matrix. The
theorem hence follows from Theorems 4.5 and 4.1. 13

Remarks. Theorem 4.6 is an exciting theoretical result and has immediate applica-
tions in the semiproper reducible systems (1.1) defined by Definition 1.2. However,
there are limitations to the practical application of this technique because procedures
for finding the primary D-similarity transformations for the reduction of linear systems
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(1.1) with coefficient matrices A e n (IF) involve, in general, solving systems of Riccati-
type nonlinear differential equations that are usually as difficult to solve as the original
ones. These limitations are significantly reduced by the following important result.

THEOREM 4.7. For every matrix A e (:), there exist a unitary matrix U e n(:),
and a Hermitian matrix H e (:), such that H U*AU U* U* Re {A}U.

Proof Let A e n([F). For convenience, let AR Re {A}, and AI Im {A}. Since

AI is skew-Hermitian, by Theorem 3.3, there exists a unitary matrix U such that
(J AU. Thus, H U*AU-U* U*(A- A)U U*ARU. Note that Ae is Hermitian,
and it is readily verified that H is also Hermitian.

Remark. The importance ofTheorem 4.7 lies in the fact that instead of investigating
D-similarity transformations for a general matrix A, we need to study such transforma-
tions only for the two normal matrices A and H U*AeU, where U satisfies 1 AU.
That is, a procedure for finding D-similarity transformations for normal matrices is,
in general, all that is needed. This result, when applied to the reduction of linear
systems (1.1), enables us to "decompose" a general system (1.1) with coefficient matrix
A(t) into two normal systems, i.e., a skew-Hermitian system defined by A1(t), and a
Hermitian system defined by H(t). The solution of the original system can then be
expressed, by Theorem 3.2, as XA UXn. Therefore it suffices to investigate only the
reduction problem for normal systems.

5. Reducible systems and reducibility. Some examples. In this section, the results
obtained in the preceding section are applied to semiproper reducible linear dynamical
systems (1.1) defined by Definition 1.2. Note that although the matrices A(t) considered
in the previous section are assumed to be of class C almost everywhere on an interval
I, that requirement is not essential when we are interested in solving a particular case
of (1.1). Namely, from the proof of Theorem 4.6 it can be seen that, in a specific
problem, A(t) is only required to be locally Lebesgue integrable. Moreover, if A(t) is
upper-triangular, it is only necessary that the D-similarity transformation matrix L(t)
be over a ring of finitely differentiable functions. In this sense, therefore, we can relax
our results obtained over a differential field to what we called "well-defined" matrices
in Definition 1.2 and Theorems 1.1 and 1.3. With this remark, Theorems 1.1-1.3 follow
immediately from Theorems 4.5 and 4.6. We are now in a position to establish the
following fundamental result of this paper which characterizes the solutions of semi-
proper reducible systems (1.1).

THEOREM 5.1. A system (1.1) is semiproper reducible if and only iffor any toe I
and X(to)e /., the solution to (1.1) can be written as

(5.1) (t) L(t) exp B(’r) d’r L-(to)(to)

for some sufficiently differentiable matrixfunction L( t) with nonzero constant determinant
and for some locally integrable matrix B(t).

Proof. Suppose that there exist a locally integrable B(t) and a sufficiently differenti-
able L(t) with nonzero constant determinant such that (5.1) is satisfied. Let y(t)=
L-(t)x(t); then

(5.2) x(t)=L(t)y(t).

Substituting (5.2) into (1.1) and (5.1) yields

(5.3)
$,(t) [L-(t)A(t)L(t)- L-l(t)L(t)]y(t)

Bo(t)y(t),

(5.4) y(to) L-l(to)X(to), toe I,
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y(t)= exp B(’) d- y(to)

Note that the power series in (5.5) is uniformly convergent. Thus, differentiating (5.5)
and comparing with (5.3) term by term yields

Bo(t) B(t),

to to

for any toe L Therefore, by a result of Martin [16, Thm. 1] we conclude that B(t) is
semiproper, and consequently the given system (1.1) is semiproper reducible.

The converse is a straightforward consequence of Theorems 4.4 and 3.2.
The remark following Definition 1.2 regarding the relationship between Lyapunov

reducibility and the semiproper reducibility can now be formally stated and proven
as follows.

THEOREM 5.2. Every Lyapunov reducible system (1.1)is semiproper reducible.

Proof Suppose that system (1.1) is Lyapunov reducible and L(t) and B are as

given in Definition 1.1. Since 0 < N < Idet L(t)], we can by taking the principal branch,
define sc(t)=(detL(t)) ’/". Now let Lo(t)=-I(t)L(t), then det Lo(t) 1. Thus Lo(t) is
a D-similarity transformation matrix. Moreover, let fl(t) (t)/(t); then

B(t) L-l(t)A(t)Lo(t) Ll(t)Lo(t)

L-l(t)A(t)L(t) L-l(t)L(t) +/3(t)l

B+fl(t)l,

which is readily verified to be semiproper.
Some illustrative examples. In the remainder of this section we work some specific

examples to illustrate the application and limitations of our results.
Example 5.1. Consider the system (1.1) with an upper-triangular A(t) given by

-(2t+cos t) e

A(t) 0 -sin (cos t+ sin t) esin t-e-, J.0 0 -e-t

According to the inductive proof of Lemma 4.2, let

L1 0 123 Li-1 0 123 L 0 0 i23
0 0 0 0 1 0 0 0

where 123(t) can be bound by formulas (4.4) and (4.5) as

123(t) b23(t) f )2--31 (t)a23(t) dt esin t--e-t
where

b23(t) exp {I [a22( t)-a33(t)]dt}=est-e-’’
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then

all ale a13 + 123ale 1B L]-1AL- L-l[l 0 a22 0

0 0 a33

Now let

1 112 113 -112 -113 0

L2 0 1 0 Lf1= 0 1 0 2 0

0 0 1 0 0 0

i12

where 12 and /13 are found to be

112(t) 2(t) f b [l(t)ble(t) dt e -sin t-cos ,,
113(t) 3(t) f dpl-31(t)b3(t) dt= e-COSt--e-’,

where

O,2(t)=exp{f [a(t)-a2e(t)]dt}=e
t13(t) exp {f [a11(t)-a33(t)]dt} =e

t2--COS

t2_e-t

Then

D(t) L-l(t)B(t)L2(t) Ll(t)[,2(t)

=diag [all(t), a22(t), a33(t)]

diag [2t, -sin (t), -e-t].

Now let L= LIL2; then

1 /12 113 --112 112123-- 113 0 i12 /13
L= 0 1 123 L-l= 0 --113 L-" 0 0 /23"

0 0 0 0 0 0 0

We see that L-1AL-L-I[, D. Denote by XD a fundamental matrix associated with
D; then

XD(t)=diag [exp f d11(t) dt, exp f dee(t) dt, exp f d33(t) dt]
=diag [e ’2, ecS’, e ].

By Theorem 4.4, a fundamental matrix XA for (1.1) with the given A(t) is found to be

XA(t)=L(t)XD(t)

0 eCOS esin
0 0 e e--’
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As a special case of Lemma 4.2, every linear system (1.1) with a Jordan coefficient
matrix A(t)=J(t) can be reduced to a diagonal system by primary D-similarity
transformations. The next example demonstrates this idea with a Jordan block of
order 3.

Example 5.2. Consider the Jordan block of order 3:

A(t) 1 0

J(t) 0 A(t) 1

0 0 A(t)

By the technique illustrated in Example 5.1, we can find a D-similarity transformation
L such that

L(t)= 0 1 L-’(t)= 0 1 -t L2(t)= 0 0 1

0 0 0 0 1 0 0 0

Then

D(t) L-’(t)B(t)L(t) L-’(t)L(t)
=diag [A (t), A(t), A (t)].

The following example demonstrates a limitation of the primary D-similarity
transformation technique for the reduction of linear systems (1.1).

Example 5.3. Consider a general second-order linear system (1.1) with A [a!j] e
,(z). Suppose we attempt to reduce A(t) to an upper-triangular matrix by letting

LI= 121 1

By formula (4.2), in the matrix B= L-1AL1-L-L1 [bij] we should set

b2, a21 + (a22- a)12, a21- ]2 O.

However, this latter condition yields the following nonlinear Riccati equation with
time-varying coefficients aij(t)"

i21 a21 q-(a22-- al)12- a121l,
which may be as difficult to solve as the original equation.

6. Summary and conclusions. A century ago Lyapunov introduced the notion of
reducing a linear differential equation (1.1) with a "time-varying" coefficient matrix
A(t) to one with a constant coefficient matrix. Since that time a great deal of research
effort has been devoted to the qualitative analysis of reducible systems and procedures
for construction of the reduction transformations. As a consequence, it appears that
today there is not much room for further developments within the original confines
of Lyapunov’s reduction technique.

Inspired by recent results [26]-[29], [34], [35] for obtaining explicit solutions for
time-varying semiproper systems (1.1), the present paper has formally extended the
family of Lyapunov reducible systems to include those systems that can be reduced
to semiproper ones via D-similarity transformations. We call such systems "semiproper
reducible." Within this new framework for reducibility studies, we have defined primary
D-similarity transformations, and have proven that every "well-defined" linear system
(1.1) is semiproper reducible by a finite sequence .of primary D-similarity transforma-
tions. We have also presented an explicit technique for constructing such transforma-
tions for systems (1.1) with virtually triangular coefficient matrices.
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From the resalts in [26]-[29], and in the present paper, the family of time-varying
linear systems which is now analytically solvable consists of all systems (1.1) with
virtually triangular coefficient matrices A(t) LT( t)L-1. This family includes the special
cases of (i) time-invariant, (ii) time-varying proper, and (iii) time-varying semiproper
systems (1.1) and can be summarized as follows:

I AI, t)=A j { } { } IVirtually triangular]A(t)LT(t)L-’jcefficient.Constant ] Proper Semiproper
co.e,.ffi,cie.nt,c A(t) f(t, A)

c
A(t)A(-)=A(-)A(t)

C

The last inclusion follows from a result due to Martin [16], which states that every
semiproper (functionally commutative) matrix is virtually triangular. Now, by virtue
of Theorem 4.7, the reduction of a general linear system (1.1) can be achieved by the
reduction of two normal subsystems. Therefore, the only family of linear systems (1.1)
that needsfurther investigations, in terms ofsolvability, is that ofthe normal systems (1.1).

As a byproduct of achieving our main results (Theorems 1.1-1.3, 4.5-4.7, 5.1, 5.2,
and Lemma 4.3 and its corollary), we have also obtained some important and interesting
new results in the theory of matrices over a differential field, among which are the
notions of partial spaces and partially linear operators; the introduction of LDE
operators and associated D-eigenvalues, D-eigenvectors, and D-similarity transforma-
tions; and Theorems 3.1, 3.3, 4.2, and 4.3, Lemmas 4.1 and 4.2, and Corollary 4.1.

Example 5.3 in 5 of this paper has been presented to illustrate a limitation of
the proposed technique for constructing D-similarity transformations for reduction of
general linear systems (1.1). However, other approaches to such problems are currently
being investigated, and these alternative approaches may circumvent those limitations.
Further characterizations of D-similarity transformations and qualitative properties of
the solutions of semiproper reducible systems are other topics currently being investi-
gated. Results from these investigations will appear in forthcoming papers.

Aeknowlelgment. The authors thank the reviewer for calling their attention to the
important references [23], [24] by M.-Y. Wu.
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GENERALIZED REACHABILITY SUBSPACES
FOR SINGULAR SYSTEMS*

K. OZCALDIRAN- AND F. L. LEWIS,:

Abstract. One of the most important concepts of the geometric theory for proper linear systems is that
of the controllability subspaces of (A, B). In an attempt to extend this concept to singular systems, it became
clear that the nonequivalence of teachability and controllability for singular systems makes it necessary to
define both controllability and reachability subspaces of (E, A, B) as different, though naturally related,
entities.

A subspace R (respectively, C) is defined to be a generalized reachability subspace (respectively,
generalized controllability subspace) if there exist linear maps F and G, such that R (respectively, C) is the
reachable (respectively, controllable) subspace of a regular singular system E2=(A+ BF)x+ BGv. It is
proved that (1) R is a generalized reachability subspace if and only if it is a (generalized) (A, E, B)-invariant
almost teachability subspace; (2) every subspace K contains a unique supremal generalized teachability
subspace R*(K); and (3) a subspace C ImE is a generalized controllability subspace if and only if
C= ER*(E-K). In the case where R is a generalized reachability subspace, the F and G matrices that
make R the reachable subspace of the closed-loop system are constructed explicitly. Spectral assignability
properties of generalized teachability and controllability subspaces are also treated. For completeness, all
results are finally extended to the nonregular case (i.e., det (sE-A)=0).

Key words, singular systems, descriptor systems, geometrical system theory, reachability subspaces,
controllability subspaces

AMS(MOS) subject classifications. 93C05, 93C35

1. Introduction. In recent years, the study of generalized or singular systems of
the form E2 Ax + Bu, with E generally singular, has become of interest (see referen-
ces). Indeed, the study of singular pencils of matrices of the form sE- A has been of
mathematical interest since the writings of Weierstrass in 1867 [25] and Kronecker in
1890 [6]. (See [5] and [26] for a summary of their work.)

There are many reasons for the current revival of singular systems. They arise
more naturally than state-space systems in the study of naturally occurring systems,
such as in power, economics 10], 11], neural networks 16], and circuit theory 14];
in the last instance, they may additionally be used to model hysteresis [15]. They also
provide a convenient form for the dynamical equations of large-scale interconnected
systems [21]. Even the usual state and costate equations for optimal control are singular
if the control weighting matrix is singular 1]. For a survey of linear singular systems,
see [9].

Although, under certain conditions, some semistate variables may be eliminated
to reduce the system to the usual state-space formulation, there are several good reasons
for not doing so. Among these is the loss of sparsity, both in the system matrices and
of the physical meaning of the variables. Some cases where the state equations do not
exist may also be useful from a physical point of view.

Moreover, the state-space formulation has some notorious deficiencies. For
example, these systems are closed under neither system inversion, where derivatives
of the output are generally required, nor derivative feedback, which classical control
theory has shown to be useful in many cases.
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It is, therefore, desirable to extend the state-space techniques of design, which
have been so successful in the control of dynamical systems, to the singular case.

Unfortunately, in so doing we find a major problem. Even if a singular system is
well defined (i.e., det (sE A # 0) so that there exist unique solutions x(t) for all x(0)
and suitable u(t)), it may be ill defined after the application of feedback of the
proportional (sE-(A+BF)) or derivative (s(E-BK)-A) sort. Therefore, the
extension of state-space results is notoriously difficult.

In [23], a group-theoretic approach was used to extend the state-space geometric
theory to singular systems, providing solutions to many design problems for these
systems. However, because the feedback used was of a constrained form (e.g., "constant-
ratio proportional-plus-derivative" (CRPD)), all of the limitations of state-space sys-
tems, such as the two mentioned above, were also extended to singular systems.

Our goal in writing this paper was to provide a rigorous foundation for a geometric
theory for singular system’s under proportional feedback (since such a feedback is
generally easier to implement than proportional-plus-derivative feedback). This case
is more difficult to deal with than the CRPD case. To achieve our goal, we rigorously
define some basic geometric entities for these systems, exploring their properties, and
examining some important distinctions that do not occur in the state-space case.

For simplicity in the following, we assume a regular (i.e., well-defined) system.
Then, for completeness, at the end of the paper we extend all results to the nonregular
case.

Let X and U be finite-dimensional vector spaces and let A:X- X and B:U- X
be linear maps. A subspace R X is said to be a teachability subspace of the pair (A, B)
if there exist two linear maps F:X U and G: U U such that R is the reachable
subspace of the linear, time-invariant system defined by (A + BF, BG) [28].

The notion of reachability subspaces of (A, B) has been demonstrated to be a
very applicable as well as versatile tool in analysis and synthesis for linear systems,
and consequently, it remains one of the major achievements of linear system theory.
For a thorough discussion of the reachability subspaces and of the practical problems
to which the concept has been successfully applied, the reader is referred to the classical
text by Wonham [28].

One of the major results of the geometric system theory answers the question:
Exactly when is a given subspace R c X a reachability subspace of (A, B)?

THEOREM 1.1 [28]. Let B denote the image of B. R X is a reachability subspace
of (A, B) if and only if:

(1) ARcR+B;
(2) R=limk Sk, where Sk is defined by Sk+I=RCI{ASk+B}; So=0.
It is the aim of this paper to show that the pioneering work of Wonham and

Morse on reachability subspaces can be extended to encompass the linear, time-
invariant singular system

(1.1) E2( t) Ax( t) + Bu( t)

where x(t) X, u(t) U, and E, A, and B are linear maps with det (E) possibly equal
to zero. For a discussion of the diversified disciplines where singular systems do arise
naturally, see [1], [9]. If the constant-ratio proportional-plus-derivative feedback
u F(x cos 0-2 sip... 0) (with 0 a parameter) is allowed, the extension of geometric
notions to singular systems is straightforward [23]. However, our aim is to use only
proportional feedback (i.e., K =0). In this case, as we shall see, the situation is far
more challenging.



GENERALIZED REACHABILITY SUBSPACES 497- denote theNow, let c be the index of nilpotency of E and let C- and Cr
spaces of (c- 1) times continuously ditterentiable and (c- 1) times piecewise con-
tinuously ditterentiable mappings of R into U, with R the real numbers. We consider
both spaces as embedded subspaces of D’, the space of distributions on R (with range
space in X). We also let D denote the space of piecewise continuous distributions
(again, with range space in X).

Equation 1.1 ), or simply the pair E, A), is said to be regular 5 if det (hE A) 0.
It will be our standing assumption throughout the paper that (1.1) is a regular system.
Given any initial condition x(0) Xo and any u c Cr -1, there exists a unique distribu-
tional solution x c D of (1.1) if and only if (1.1) is regular. Then, x D, is the solution
of (1.1) in the following sense. If x+ and u+ denote the (unique) restrictions of x and
u to [0, oc) and if x[’] denotes the impulsive part of x at - (as defined in [3]), then
E:?+ Ax+ + Bu+ + 6EXo, x(O) Xo, and E:[ -] Ax[ -] (SE, Ax, where is the Dirac
delta and A,x is the jump in x at ’. For imporous definitions of these entities and for
details, see [3] and also [2], [24].

Here we would like to point out that this formulation renders both of the feedback
laws u Fx + v and u K2 + Fx + v, v C, as admissible inputs.

Noting that it is really E,Xo rather than Xo that determines x+, we say that a point
y X is reachable from EXo E,X if there exists u c C-1 and T> 0 such that the
solution x(t) does not contain an impulsive part on [0, T), is continuously differentiable
on (0, T), and satisfies x(T)= y. It is shown in 17] that there exists a subspace, called
the reachable subspace of (1.1) and denoted by (E, AIB), such that y X can be reached
from the origin if and only if y (E, AIB). Similarly, the origin can be reached from
an E,Xo if and only if E,Xo E(E, AIB) [17]. Consequently, E(E, AIB is called the
controllable subspace of (1.1). Equation (1.1) is called reachable if (E, AIB X and
controllable if E(E, AIB)= EX (or, equivalently, if (E, AIB)+ Net E= X). Reachability
(respectively, controllability) is equivalent to the absence of both finite and infinite
zeros of the pencil [hiE-AB] in the sense of Rosenbrock (respectively, Verghese)
[3], [8].

The question that will be posed and investigated in the sections to follow is: Given
a subspace R c X, how and when can two linear maps F:X-U and G:UoU be
found so that (1) (E,, A+BF) is regular; and (2) R is the reachable subspace of
(E, A + BF, BG)? Note that a careless choice of F may yield a closed-loop system that
is not regular. As the definitions of reachability and controllability depend on regularity,
we need to guarantee the regularity of the closed-loop system to be able to talk about
its reachable subspace. If there exists F and G to yield R =(E, A+ BFIBG with
(E, A + BF) regular, then R will be denoted a reachability subspace of (E, A, B) or a
generalized reachability subspace.

Naturally, we will also define a subspace C c EX to be a controllability subspace
of (E, A, B) or a generalized controllability subspace if C ER for some generalized
reachability subspace R. It should be clear that once a characterization of generalized
reachability subspaces is available, a similar characterization for generalized control-
lability subspaces follows immediately. Therefore, we will mainly be interested in a
geometric characterization of generalized reachability subspaces.

Notation. In this paper, vector spaces and their subspaces are written in boldface
capital letters. Vectors are denoted by lowercase and linear maps are denoted by
uppercase letters. If E:X- Y is a linear map, then the image of E is written as E. If
Sc Y, then E-S is the inverse image of E (i.e., {x X:Exc S}), and Ker E= E-0.
The restriction of E to a subspace R is written as EIR, and EIR with restricted codomain
S is denoted by SIEIR. If Rc X, then RE:= R Ker E. If S is a vector space, then dS
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denotes its dimension. The symbol + stands for direct sum of subspaces (or of linear
maps). If q is a positive integer, then q denotes the set {1, 2,..., q}. If {S:} is a
sequence of subspaces and if S is a subspace, then {S:}’S (respectively, {S}$S) means
that {S} is nondecreasing (respectively, nonincreasing) and converges to S. Where
the operations of subspace intersection and summation (+) occur without paren-
theses in a single expression (e.g., RS + T), we use the convention that the intersection
is performed first. Finally, the reader should note that the shorthand notation A: will
sometimes be used for A + BF.

2. Backgroand and problem formulation. Let K and Q be fixed but otherwise
arbitrary subspaces ofX. A subspace R c K is said to be an (A,/3, Q)-invariant subspace
of K if ARc/3R+Q. If R satisfies R= Kf3/3-1(AR+Q), then R is called a restricted
(/3, A, Q)-invariant (or, in short, an (/3, A, Q)r-inv.) subspace of K. The class of all
(A,/3, Q)-inv. subspaces of K contains a unique supremal element V*(A,/3, Q; K) 19].
The class of all (/3, A, Q)r-inv. subspaces of K contains a unique least member
S.(/3, A, Q; K) [19]. If Vk and Sk are defined by

(2.1) V:+ K f-’l A-(EV: + Q), Vo=K,

(2.2) Sk+l K ( E-I(AS, + Q), So K Ker E,

then {V}$V*(A, E, Q; K) and {Sk}’S,(E, A, Q; K) [19].
In the sequel, (2.1) and (2.2) will be performed with different maps and Q’s. To

economize in space, the following abbreviations will be used:

Vo* := V*(A, E, 0; X), S := S,(E, A, O; X),

V*,o := V*(A + BF, E, 0; X), S," := S,( E, A + BF, 0", X),

V* := V*(A,/3, B; X), S, := S,(E, A, B; X),

V*; := V*(A + BF,/3, BG; X), S,F’ := S,( E, A + BF, BG’, X).

Vo* and S were first studied in [27]. If or(E, A) denotes {A C; det (AE -A) =0},
then Vo* is the direct sum of the eigenspaces corresponding to A o-(E, A) [17] and is
called the initial manifold of (E, A) [27]; S on the other hand, is called the final
manifold of (E,A) [27], and is the eigenspace corresponding to the unbounded
eigenvalue of E and A 17]. The import of the analysis in [27] is the following theorem
that presents what seems to be the only geometric test for the regularity of (E, A).

THEOREM 2.1 [27].
(1) (E, A) is regular if and only if Ker E (’1Vo* 0;
(2) If (E, A) is regular, then Vo*@S X;
(3) o(E,A):o(EIVo,AIVo)and dVo*=deglAE-A[.
V* and $, have been defined in [19], where they have been shown to be instru-

mental in a coordinate-free characterization of the reachable subspace (E, AIB) of
(/3, A, B). Generalizing Schumacher’s algebraic characterization of almost invariance
[22], Malabre has shown in [12] that if Q= B, then (2.2) generates the supremal
(generalized) almost reachability subspace contained in K. Thus, a subspace R that
satisfies R S,(E, A, B; R) will be said to be a (generalized) almost teachability subspace.
The reader should also note the initial condition of the recursion (2.2), which was
taken to be 0 in [19], has been modified in light of the analysis given in [12].
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This change, however, does not affect the limit of the recursion. The main result of
[19] is the following.

THEOREM 2.2 [19].
(1) (E, A[B) V* 0 S.;
(2) (E, AIB V*(A, E, B; S,).
The following result was stated as a conjecture in [19].
THEOREM 2.3. (E, AIB S.(E, A, B; V*).
Proof See the Appendix for the proof.
An immediate consequence of Theorem 2.3 that will prove to be crucial in our

discussion is given by the following corollary.
COROLLARY 2.1. (E, AIB)=S,(E,A,B; (E, AIB)). That is, if Sk is defined by

(2.3) Sk+I=(E, AIB)E-{AS+B}, So (E, AIB) f-) Ker E,

then {S}’(E,
Proof Let S be defined by (2.3) and define S by

k+l V* f-] E-’{Ak + B} go V* D Ker E,

then, by Theorem 2.3, {,}’(/5, A[B). Hence, c (E, A B) for all k, and therefore

(2.4) ,+, (E, AIB (-] V* D E-’{A + B}.

Using Theorem 2.2(1) in (2.4), we have

g,+ <E, AIB)E-{A, + B}.

Then, S S for all k. Consequently, lim Sk liml, S. That is, {S}q’(/5, A B).
In view of Theorems 2.1 and 2.2(1), the question of whether or not a given subspace

R c X is a generalized reachability subspace can now be formulated as follows.
Problem formulation. Given Rc X, find, if and when possible, two linear maps

F" X-U and G’U--> U so that if V*,o, V* and ’,, S. denote lim Vk
v,o, lim V;,

and lim S;, respectively, where

+-1 (A+BF)-(2.5) V,o EVv,o, V,o X,
’+ (A + BF)-(2.6) VF;c {EVo +BG},, VF,,; X,

(2.7) S+, E (A + BF)S + BG}, So Ker E,

then we have the following:
(1) Ker EV*,o:O;
(2) R=V* (S’F,G

The solution of this problem will involve a generalization of the notion of the
friends of an (A, B)-invariant subspace [28] that will be discussed in 3.

It is clear from the problem formulation that what is at hand is a set of two
intertwined problems formulated by (1) and (2) above. The problem of choosing F to
render (E, A + BF) regular will be tackled in 3. The latter problem, as given by (2),
will be solved in 4.

Before closing this section, we present three properties that will find very frequent
applications in the sequel. Let R, S, and Q be subspaces of X.

PROPERTY 2.1. If R S, then S (-] (R + Q) R + S 0 Q. This is (3.1.b) of [28, p. 4].
PROPERTY2.2. E-(R+S) E-R+ E--SifandonlyifEfq(R+S)=ER+RS.

(See [28, p. 8].)
PROPERTY 2.3. Rf3E-(ASfqER+Q)=RfqE-1AS+R(qE-Q.
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Proof By Property 2.2,

RCI E-’(ASfq ER+Q)= Rfl {E-I(AS f3 ER)+ E-Q}
Rfq {E-ASCI E-ER+ E-Q}
Rf"I {E-AS f (R + Ker E)+ E-Q}.

KerE E-AS and therefore, by Property 2.1,

R E-I(AS ER+ Q) R E-AS (q R + Ker E + E-Q}

R f’I {E-AS fq R+ E-Q}.

Applying Property 2.1 one more time,

3. Friends anti regular friends of an (A, E, B)-invariant subspaee. We start our
discussion by recalling that a linear map is said to be a "friend" of an (A, B)-inv.
subspace V if (A + BF)V c V [28]. A naive generalization of the notion of "friends"
of an (A, B)-inv. subspace [28] motivates the definition of a linear map F’X- U as a
friend of a given subspace R c X if (A + BF)R ER. Let F(R) denote the class of all
friends of R. It follows easily that F(R) # & if and only if R is (A, E, B)-inv.

The necessity of choosing F to make (E, A+BF) regular, and the following
proposition, which states that some friends of R may be "bad friends," severely limit
the applicability of the notion of "friends" to singular systems.

PROPOSITION 3.1. Let R be (A, E,B)-invariant. If RCIKerE#0 and/fF F(R),
then E, A + BF) is not regular.

Proof Define R := R f’l Ker E and assume Re # 0. If F F(R), then (A + BF)R
ER; that is, R is (A+ BF, E, 0)-inv. As V*F,o is the supremal (A+BF, E, 0)-inv.
subspace of X, R V*.o. Therefore, KerECIV*,oRe #0 and, by Theorem 2.1(1),
(E, A + BF) is not regular.

We remark that in general we cannot expect that R Ker E 0. To remedy the
situation, the following definition is introduced. It will become clear in the sequel that
the central role played by friends of an (A, B)-inv. subspace in the analysis of teachabil-
ity subspaces of (A, B) will, in the context of singular systems, be played by regular
friends of an (A, E, B)-inv. subspace, as next defined.

DEFINITION 3.1. A linear map F’X U is called a regular friend of a subspace
R c X if (1) (E, A + BF) is regular; and (2) F is a friend of R1 for some R1 satisfying
R=RI@Re.

The class of all regular friends of R will be denoted by RF(R). Clearly, if Re 0,
then RF(R) F(R). If Re 0, then Proposition 3.1 yields RF(R) t"l F(R) . However,
it is not because RF(R)= when Re 0 that the intersection is empty. Indeed, by
explicitly constructing a regular friend, the following theorem establishes that RF(R)

whenever R is (A, E, B)-inv.
THEOREM 3.1. If R is (A, E, B)-invariant, then RF(R)
Proof Recall that V* is the supremal (A, E, B)-inv. subspace of X. Then R V*.

Write R R1 @ Re for some R. As R f3 Ker E 0, there exists a V satisfying (1) R c V;
and (2) V* V@V* fl Ker E. Let V := V* CI Ker E. Note that ER ER and EV* EV.
Then AR c ER1 + B and AV EV+ B. Choose K" X- U to satisfy (A + BK) V EV.
Then (A + BK) R AR + B c ER1 + B and let a K2" R1 --> U be chosen to yield (A +
BK + BK2) R1 c ER. Let K--0 on a complement of R in X. Then it immediately
follows that K + Kz F(R1) f3 F(V). Let Fo :-- K + K2.
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It follows from [19] that V* satisfies d(EV*+ B) dr*. Write EV*+B= EV*l
for some m B. Then d d(EV* + B) dEV* dV* dEV* dV. Define q := dV*.
Let {vi" i q} and {Bcoi" i q; wi U} be bases for V* and B, respectively.

Note that (A + BFo) V* m AV* + B AV* + B EV* + B EV+ B. Then there
exists 5i V and ui U such that

(A + BFo)vi Ei-+- Bui, q.
Define F" V* - U by

Note that (A+ BFo+ BF)V*= EV* + l, but (A+ BFo+ BF)V*f-) EV* 0. Extend
to X by defining F-= 0 on a complement of V* in X. Finally, let F-= Fo+ F. Then
(A + BF)R (A + BFo)R = ER because Fo F(R). Therefore F F(R), too. Also
note that (A + BF)V (A + BFo)V EV, and consequently, F F(V). It remains to
show that E, A + BF) is regular.

Recall that V*,o denotes the supremal (A + BF, E, 0)-inv. subspace of X. As V*,o
satisfies (A + BF)V*,o EV*,o, there follows AV*,o EV*,o/ B, i.e., V,o V*. Then
(A+ BF)V*,o = EV*,oEV*. This and (A+ BF)V* EV*=0 imply V*,o V* =0. Then,
as V*,o = V*, V*,o Ker E V*,o V* Ker E V*,o V* 0. Therefore, by Theorem
2.1(1), (E, A + BF) is regular. Thus, F

Remarks. (1) The reader should note that the last paragraph of the proof above
shows that if F satisfies At:V* EV*=0 and dAt:V* dV*, then (E, At:) is regular.

(2) It is by construction that F is a regular friend of V* also. Thus, if R is
(a, E, B)-inv., then RF(V*) (’i RF(R) # 0.

COROLLARY 3.1. Define V*(R):= V*(A, E, B; R). Then RF(R) # 0 if and only if
R V*(R) + R f-) Ker E.

Proof If F RF(R), then At:R ER for some R satisfying R R R TI Ker E.
As At:R ER implies AR ER+B, we have RV*(R). Consequently, R=
V*(R)+RKerE. To prove the converse, simply note that, by Theorem 3.1,
RF(V*(R)) # 0 and by definition, any regular friend of V*(R) is also a regular friend
of R.

Some of the properties of regular friends of R are presented below.
PROPOSITION 3.2. If F RF(R) and if At: := A + BF, then the following are true:

(1) R = V*,0 for some R satisfying R R Re
(2) d (At:R) dR
(3) ARE CI ER=0;
(4) At:R + ER At:R + ER R+ B;
(5) d(At:R+ER)= dR;
(6) Jt:R + ER+ l for some B with d dRE
(7) o-(EIR, AFIR)- o’(EIV*(R), A-IV*(R))- o-(EIR,,
(8) If KRF(R) also, then B(K-F)R B(3(ER+At:R).
Proof (1) The proof of (1) is immediate from Definition 3.1 and the fact that V*,o

is the supremal (At:, E, 0)-inv. subspace of X.
(2) Note that V*,o satisfies V*v,o A:EV*;o. Then Ker Arc V*,o. If F RF(R),

then KerECIKerAvKerECIV*,o=0 (by Theorem 2.1(1)). Therefore, d(At:Re)=
dRe.

F,0 F,0(3) Recall that S, the least (E, At:,0)-inv. subspace of X, satisfies S,
E-At:S :’ Now, let R be as in (1) and let x At:RE ER. Then x At:r Er for#

some re Re and r R. Then r E-At:Re E-At:Ker E = E-At:S’ S’, and
therefore rRf3St:’ Since (E, At:) is regular, Theorem 2.1(2) implies r=0, which#

in turn implies x 0.
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(4) Note that if R1 is as in (1), then AR1 c ER1 and AR+ ER ARE + ER1.
Also, At-R+ ER ER+B+ ER= ER+B.

(5) d(A,R+ER)=d(At:RE+ER)=d(AR)+dER-d(ARef-)ER). Note
that ER= ER. As Rio V*,o and as Ker E f3V*,o=0, d(ER)= dRl. Then the result
follows from (2) and (3).

(6) Write (AFR+ER)B=ERf)B@ for some lcB. Note that (4) implies

AFR + ER (A.R + ER) ffl (ER + B).
Using Property 2.1, we have

AR+ ER= ER+(AR+ ER) if/B

ER+ERf3B
:E (R)fi.

Then, (5) implies dR=d(ER+). As 1 ER=0, d=dR-dER=dRE.
(7) The first equality follows immediately from Theorem 2.1(3) and the fact that

the initial manifold of (EIR AIR is contained in V*(R). To prove the second equality,
write R RI@Re and let vi be the eigenvector corresponding to A cr(EIR, A.IR).
Writing vi ri+re, where riR and re,RE, we have AiEri=Ar;ri+Arr. As
AriARER, we have, by (3) above, rE=0. Thus, viR and, therefore,
cr(EIU, Av.I R) cr(ElR,,

(8) Let K RF(R). Then by (5),
dR=d[ER+(A+BK)R]

d[ER+(A+BF)R+B(K-F)R].
Since FRF(R), dR=d[ER+(A+BF)R]. Thus, B(K-F)RcBO(ER+AR).

4. Generalized reachability subspaces. Recall that a subspace R X was defined
in to be a generalized reachability subspace if there existed linear maps F:X- U
and G:U- U such that (1) (E, A+ BF) was regular; and (2) R was the reachable
subspace of E, A + BF, BG).

An immediate consequence of the definition and Corollary 2.1 is the following
theorem.

THEOREM 4.1. If R is a generalized reachability subspace, then R is (A, E, B)-
invariant and R S,(E, A, B; R).

Proof If there exist F and G such that R is the reachable space of (E, A + BF, BG),
then, by Theorem 2.2(2) R satisfies R=.’f3(A+BF)- {ER+BG} Then (A+
BF)R ER+ BG implying AR ER+ B.

Corollary 2.1 shows that R=S,(E,A+BF, BG;R). Note that R=
S,(E,A+BF, BG;R)=S,(E,A+BF, B;R) because BGB. On the other
hand, it is by definition that S,(E, A + BF, B; R) R. Therefore, R
S,(E,A+BF, BG;R)S,(E,A+BF, B;R)R. Then R=S,(E,A+BF, B;R). As
(A+ BF)Sk +B for any Sk X, it trivially follows that S,(E, A, B; R)
S.(E, A + BF, B; R) R. Hence the theorem is proved.

The reader should remember that R S.(E, A, B; R) means R limk Sk, where
is defined by

(4.1) Sk_I=Rf3E-{AS,+B}, So RCI Ker E.

It is not only because the algorithm (4.1) reduces to the well-known almost-teachability
subspace algorithm of Willems [29] in case E I, but also because of the reasoning
given in 12] that we call (4.1) the generalized almost reachability subspace algorithm
(GARSA). A subspace R will be said to satisfy GARSA if lim S R; that is to say,
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R is the supremal generalized almost reachability subspace contained in R. By proving
that the converse of Theorem 4.1 is also true, Theorem 4.2 below will show that R is
a generalized reachability subspace if and only if R is an (A, E, B)-inv. generalized
almost-reachability subspace. However, before proceeding to Theorem 4.2, we need
to prove two propositions.

PROPOSITION 4.1. Let an (A, E, B)-invariant subspace R satisfy GARSA. Given
an F c RF(R), choose G: U- U so that BG=BCI(ER+At:R). Then R=
S,(E, A + BF, BG; R).

Proof Let F c RF(R). Then F F(Rl) for some R1 satisfying R R1 Re. (Recall
that Re R(3 Ker E.) Note that S,(E, A, B; R) S,(E, A+ BF, B; R)=R. Let Bl) B,
B2)= (ER+At:R) B, and define Si) for i= 1, 2 by

s(i)k+l =R[’IE-I{At:Si)+Bi)}, S(oi) R CI KerE
where, as before, At: denotes (A+ BF) Clearly, if Sl)(R):= lira Sl) and (R):=: k ’limk S(k2), then S,(2)(R) c S,I(R) because B(2) c B(1). On the other hand,

(2) (1) = RCI E -1 .(2)(R)+B}. Let xeSS(o1) S (2)(’,.. and if S(k1) Sg< (R), then. -k+l {A.,., k+l"

2)(R). Then,Then, xR and Ex=At:s+Bu for some uU and soS,
Bu Ex At:s ER + AS2)(R) = ER + At:R and, therefore, we have x

1) is arbitrary, we conclude thatR E-I{At:S)(R)+BFI(ER+At:R)}. Since x,+
S(1) --1{ (2) (2)(R). This proves that S(kl)C S(,2)(R)+lRE At:S, (R) +B (ER+ At:R)} ,,
for all k. Thus S,(1){-kl) C ’>g’(2)" This and S(2)(R), c S)(R), together imply S)(R) S(2)(R).
Then, defining G by BG (ER+ At:R) (3 B completes the proof.

PROPOSITION 4.2. Let an (A, E,B)-invariant subspace R satisfy GARSA. Let
FRF(R). Write R=RI@RE, where FF(R) and RE =RCKerE. If G is chosen to

satisfy BG (ER+ At:R) CI B, then"
() S, ,
(2) v* *
Remark. Recall that if k o . ,oV t:,, V t:,0, S and S are defined by

[k+l k(4.2) t:,G A-I{EV t:, + BG}, V t:.ox,O
7k+l k 0(4.3) t:,o A{{EV t:,o}, V,o X,
F,G ,G FG(4.4) Sk+l E-I{At:S + BG}, So’ Ker E,
e,o -A ,o, o(4.5) Sk+l E t:S So’ Ker E,

k , ;o}V;o, {Sk }’S, k o, It should be clear thatthen {VF,G}$VF,G, {V k * t:,G t:,G and {S
F,0 C F,GV*.o V*;G and S, S,

’ Since R satisfiesProof (1) Note that S,(E, At:,BG; R)=S,(E, At:,BG; X)=S,
GARSA, R=S,(E, A, B; R), and by Proposition 4.1, R S,(E, At:, BG; R). Therefore

F,GR= S,(E, At:, BG; R) S,(E, At:, BG; X) S,
t:,o + R define S byThis and S,t:’= s;G, imply S;+RS’G. To prove S’G S,

Sk+l E-I{At:Sk + BG}
E-I{At:S, + B(3 (ER+ At:R)},

So Ker E,
t:,o + R. If Skand note that So c S, S, + R is assumed, then

t:,o+ At:R+ B(3 (ER+ At:R)}S+
’+ At:R+ ER}
t:,o+ At:RE + ER} (by Proposition 3.2(4))

E-{At:S,
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F,o S F,o Then,The last equality follows from the fact that Re R f3 Ker E c E-AzS, ,
by Property 2.3, we have

,o+ R+ Ker ESk+ E-AS,
,O+RE-AFS,

,O+R"=S,
z,O+RcS z’6 this implies S z’-z,O+R. Together with S,Thus S’=limS=S, , ,

F,G F,Oz,o + R. Then S,S, =S, +R+Rz=S,
k(2) Let V Z,G be defined.by (4.2) As V,o V,G and {V Z,G} is nonincreasing, there

kfollows V,o V,G VZ,G for all k. Let R be as before. As AzR ER, Rt V,o
because V,o is the supremal (A,E,O)-inv. subspace of X. Then ER=
ER EV,o EV,G EV,G for all k. Thus (4.2) can be rewritten as

k+l kV, A{’{EV F,o + ER + (AzR + ER) B}
and the proofs of Proposition 3.2(4) and (6) imply

k+lV, A{EV,o + ER+AR}
=A{{EV,o+AR}.

Property 2.3, applied to the equations above, yields

Wk+l
F,o A{ EV,o + RE + Ker Av

(4.6)
A{EV,+R;

* * together show that V,o + ReR V for all k yields R Vz,o This and V z,o = Vo

Vo. lfV Assumez,o is defined by (4.3), then Vz,o Vz,o+ Re.oo Vz,o= Vz,o+ Rz. Then
by (4.6),

V+ kz,oA E(Vz,o+Rz)+RE
AEV,o+Rz
lk+l

----F,0 +RE.
As V *VF,oV z,oV z,o + Rz. This, together with, V z,o +R for all k, there follows * *
V,o+ R, proves (2).

The main result of this paper can now be proved.
THeOReM 4.2. A subspace R X is a generalized reachability subspace if and

only iy:
(1) AR ER+B;
(2) R lim S, where

S+ R E-{AS +B}, So=RKerE.
Proo Necessity was proved in Theorem 4.1. To prove suciency, let F RF(R)

and define G by BG (AzR+ ER) B. By Theorem 2.2(1) (E, A+ BF[BG), the reach-
able subspace of (E, A+ BE BF) is given by S’ *Vz,o. Proposition 4.2 implies

’+R (Vo+R)(4.7) (E, A + BFIBG (S,
where R + Rz R and (A + BF)R ER, i.e., R Vz,o. Then R V,o+R and
Property 2.1, applied to (4.7), yields

(E, a + BF[BG) S,o (V,o+ RE + R.
z,o (see (4.5)), it follows by Property 2.1 thatAsRz KerES,

(E, A+ BFIB> R +S’ V,o+ R,.

Because FRF(R), (E,A+BF) is regular. Then, by Theorem 2.1(2), S’V,o=0
and the result follows.
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Now let K c X be a subspace and let R(E, A, B; K) denote the class of all generalized
reachability subspaces contained in K. As 0 is a reachability subspace, R(E, A, B; K)
is nonempty, and the proof of Lemma 5.5 in [28] with only very minor modifications
shows that R(E, A, B; K) is closed under the operation of subspace addition. Therefore,
K contains a unique supremal generalized reachability subspace that will be denoted
by R*(K).

Recall that V*(A, E, B; K) denotes supremal (A, E, B)-inv. subspace contained in
K and can be computed by the recursion

Vk+ KO A-{EVk + B}, Vo K.

Let V*(K) := V*(A, E, B; K). Then the proof of the following theorem mimics the proof
of Theorem 5.6 in [28] and will be left to the reader.

THEOREM 4.3. R*(K) is given by limk Rk, where

Rk+l V*(K) CI E-I{ARk + B} Ro V*(K) Ker E.

Recall that in 1, a subspace C was defined to be a generalized controllability
subspace if C ER for some generalized reachability subspace R. More precisely we
have Theorem 4.4.

THEOREM 4.4. C is a generalized controllability subspace if and only if C
ER*(E-1C).

Proof. If C ER*(E-C), then C is clearly a generalized controllability subspace.
If C-ER for some generalized reachability subspace R c E-C, then

C= ER ER*(E-1C) EE-C C

and consequently, C ER*(E-1C). [3

The class of all generalized controllability subspaces contained in a given subspace
K contains 0 and is closed under the operation of subspace addition. Thus, it contains
a unique supremal element C*(K). Theorem 4.5 follows immediately from Theorem 4.4.

THEOREM 4.5. C*(K) ER*(E-K).
5. On spectral assignability. The equivalence of reachability and controllability

for (1.1) to E I is well known. Therefore in this case it is unnecessary to distinguish
between teachability and controllability subspaces. Indeed, the accepted practice is to
talk about the property of controllability and controllability subspaces of (A, B) [28].
However, this simplification in the terminology of proper state-space systems has the
adverse effect of concealing the relations between different characterizations of con-
trollability subspaces and the different properties that produce such characterizations.
Indeed, the dynamic characterization [28] of a controllability subspace R of (I, A, B)
as having the property that any x R can be reached from the origin in finite time

along a smooth trajectory, generated by a smooth input and not leaving R, clearly and
explicitly reflects the property of reachability. In light of our discussion in the previous
sections, it should be clear that a similar dynamic characterization applies to reachability
subspaces, though not necessarily to controllability subspaces, of (E, A, B).

On the other hand, a very important result [28] states that R with dR=q is a

controllability subspace of (I, A, B) if and only if, for every symmetric set A of q
complex numbers, there exists a friend F of R such that the spectrum c ((A + RF)I R)
of (A + BF)IR the restriction of (A + BF) to R, is precisely A. In this section, we show
that this characterization depends on the property of controllability (as opposed to

teachability) by showing that an extension of the characterization applies to controlla-
bility subspaces but not, in general, to teachability subspaces of (E, A, B). Indeed, the
following theorem, which has already appeared in the literature [4], [7], 13] explicitly
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or implicitly, justifies this comment immediately. However, our proof, which is
geometric in nature, is new.

THEOREM 5.1. Given any symmetric set A of r :-rank E complex numbers, there
exists a linear map F: X - Uso that A or(E, An) ifand only if E, A, B) is controllable.

Remarks. (1) Note that A or(E, An) implies that or(E, A;) C, that is, (E, An)
is regular.

(2) Note that reachability of (E,A, B) the condition (E, AIB)=X implies
controllability, that is, the condition E(E, AIB EX, but not vice versa. Thus, reacha-
bility of (E, A, B) is sufficient but not necessary for the arbitrary assignment of or(E, A:).

Proof Let A have r distinct elements and assume that A f3 or(E, A)= . Let F
assign A as o(E, Av). For ,;eA, let v; be the corresponding eigenvector. Then

vi (E, AIB) and {Ev: e_r} is a linearly independent set [18]. Then E(E, AIB) EX
and (E, A, B) is controllable.

Let (E, A, B) be controllable. Then (E, A[B)+ Ker E X and thus, V* + Ker E X.
Let Fo be a regular friend of V*. Then Fo assigns some V satisfying V@V* VI Ker E V*
as the initial manifold of a regular system (E, Azo, B). Then, by Theorem 2.1, V(R)
Ker E= X and EV(R)AoKer E= X. Let V and N be basis matrices for V and Ker E.
Let P=[VN] and Q=[EVAN]. Then (Q-EP, Q-1At:P, Q-B) becomes

where xl e R and x2 e R"-r.
As controllability is preserved by regular friends and by coordinate transforma-

tions, (5.1) is controllable, implying that (A, B) is a controllable pair [2], [3]. Then,
there exists an F" R- U such that A r(A1 + BIF). Let F2: X U be the extension
of F, which is zero on Rn-r. Then

[AI A’ B’F’ O] det (AI A, B,F, ),det
-B2F I

Thus, F Fo + F2P- is the map that yields A o-(E, A-).
In light of Theorem 5.1, the following result is not unexpected.
THEOREM 5.2. Let C EX be a subspace with dC=q>-1. C is a generalized

controllability subspace if and only if, given any symmetric set A of q complex numbers,
there exists a linear map F" X- U so that"

(1) F is a regular friend of E-C;
(2) A= cr(EIE-’C
Proof Let C be a generalized controllability subspace, i.e., C ER*(E-C). Let

FoeRF(R*(E-C))f3RF(V*) be as constructed in Theorem 3.1. Since E-C
R*(E-C)+Ker E, Fo is also a regular friend of E-C. Define (2= EE-C+A,,E-C
and let Eo:--(IEIE-C, Ao:-(EIAfi,IE-C and choose G so that Bo BG satisfies
Bo B (-] C. Now

R*(E-’C) R*(E, A, B; E-’C)
R*(E, Ao, B; E-C)
R*(E, A,,, Bo; E-C)
R*(Eo, Ao, Bo; E-C).

(Proposition 4.1

Since EoR*(/70, Ao, Bo; E-C) =/7oR*(E-C) EoE-C Eo, then (Eo, Ao, Bo) is con-
trollable. Then, by Theorem 5.1, given any symmetric set A of rank Eo dEo/7-C q
complex numbers, there exists an F" E-C-+U such that A r(/7o, Ao+ BoF).
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It remains to extend F1 to X without destroying the regularity of the closed-loop
system. To that end, let R denote the initial manifold of (Eo, Ao + BoFI). By Theorem
2.1(3), dR=deg IAEo-(Ao+ BoF) q. This and regularity of (Eo, Ao+ BoF) imply
that RKer E R(R) Ker E E-C. Let F2 F1 on R and let F2 0 on a subspace which
complements R to X. Finally, let F Fo+ GF2. Since F V* Fo V* and since, by
construction, Fo satisfies A,,V* EV*=0 and dA,V* =dV*, (E,A) is regular (see
the remark following Theorem 3.1). Also note that (A+ BF)R=(A+ B(Fo+ GF))R
[(A+ BFo)+ BoFI]R=(Ao+ BoF)Rc EoR= ER. Thus, F is a regular friend of E-C.
Also, A cr( Eo, ao + BoF,) o( E]E-’ C, A]E-’ C).

To prove the converse statement, note that the existence of an F in RF(E-C)
implies, through Corollary 3.1, that E-C=V*(E-C)+KerE. Fix Fo
RF(V*]E-C) 7)RF(V*) (use Theorem 3.1 to construct Fo). If F is another regular
friend of E-C, then, by Proposition 3.2, B(F-Fo)E-C Bf(EE-1C+AoE-1C)
B(3(C+AoE-C)=Bo. Defining Fl: E-C->U by BoFI=B(F-Fo)E-IC, we con-
clude that given any symmetric set A of q complex numbers, there exists an F such
that o-(Eo, Ao + BoF) A. Then, by Theorem 5.1, (Eo, Ao, Bo) is controllable. That is
to say, EoR*(Eo, Ao, Bo; E-1C)--Eo--EoE-C C. Then the result follows by noting
that R*(Eo, Ao, Bo; E-C) R*(E, A, B; E-C). Thus, C ER*(E-C) and C is a gen-
eralized controllability subspace.

COROLLARY 5.1. Let R be a generalized reachability subspaee with dER =q >-1.
Given any symmetric set A of q complex numbers, there exists a regular friend F of R
that renders A o-(E[R, AIR).

Proof Note that ER is a controllability subspace, and RF(R)7)RF(E-1ER)# 0.
Then choose Foc RF(R) 71RF(E-1ER) 71RF(V*). Then the proof of Theorem 5.2
also proves the corollary because r(EIR A]R) o-(EIE-’ER A]E-’ER)
r(EIR+ Ker E, AvIR+ Ker E).

As the nonequivalence of reachability and controllability for singular systems is
due to the singularity of E, it may be conjectured that if R Ker E 0, then the converse
of Corollary 5.1 is also true. This indeed is the case.

LEMMA 5.1. Let R with dR= q_>-1 satisfy R Ker E=0. Suppose that, given any
symmetric set A of q complex numbers, there exists a regular friend F of R that yields
A o-(EIR, AIR). Then R is a generalized reaehability subspace.

Proof If R has a regular friend, then by Corollary 3.1, R V*(R) + R Ker E. As
RKerE=0, we have R=V*(R), that is, R is (A, E, B)-inv. To show that
R*(E, A, B; R) R, fix Fo RF(R) 71RF(V*) and let Eo ER+AIoR]EIR; Ao
ER+ AoRIAIR and Bo B (ER+ AR). Then the premise of the lemma is equivalent
to asserting the existence of an F: R- U that yields cr(Eo, Ao+ BoF)= A for any
given symmetric set A of q complex numbers (see the proof of Theorem 5.2). As rank

Eo dER dR q, we conclude by Theorem 5.1 that (Eo, Ao, Bo) is controllable, that
is, (Eo, Ao]Bo) + Ker Eo R. As Ker Eo Ker E 71R 0, we have (Eo, AolBo) R. Then
S,(Eo, Ao, Bo; R) R and as S,(Eo, Ao, Bo; R) S,(E, A, B; R), R is a generalized
almost-reachability subspace also. Thus R is a generalized reachability subspace.

We shall end our discussion by investigating the effects of using proportional-plus-
derivative feedback (rather than only proportional feedback) on the spectral assignabil-
ity properties of generalized reachability subspaces. We first note Lemma 5.2.

LEMMA 5.2. R is a generalized reachability subspace if and only if there exist F, K,
and G such that R= (Ek, AFJBG).

Proof (If.) Take K =0 and F, G as in 4. (Only if.) R is (Av, Ek, BG)-inv.
and, therefore, it is (A, E, B)-inv. Also, S.(Ek, AF, BG;R)=R clearly implies
S.(E, A, R; R) R.
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LEMMA 5.3. There exists a linear map K: X U such that ifR is (A, E, B)-invariant,
then R (3 Ker Ek 0.

Proof Note that d(EV*+B)=dV*[3], [20]. Write EV*+B=EV*@B. Then
d(V*f3KerE)= dB1. Let p=dBl and choose {vi: ip} and {Bwi: ip} as bases for
V’f3 Ker E and B1, respectively. Define Kov =-w, i p and let K be any extension
of K0 to X. Then EkV* EV* d- B and thus, dEkV* d V*. If R is (A, E, B)-inv., then
R V*, and therefore R f3 Ker Ek--0. []

Lemma 5.3 will be instrumental in showing the following fact.
THEOREM 5.3. A subspace R with dR q _-> is a generalized teachability subspace

if and only if, given any symmetric set A of q complex numbers, there exist linear maps
F and K such that we have the following:

(1) (Ek, AF) is regular;
(2) AFRo EkR;
(3) tr(EklR, AF[R)= A.
Proof Let R be a generalized teachability subspace. Choose K as in Lemma 5.3.

Then R is a reachability subspace of (Ek, A, B) satisfying R Ker Ek 0. The result now
follows from Corollary 5.1.

Now, suppose that there exist F and K to satisfy (1)-(3). As q=card
cr(Ek]R, AelR) --< rank (EglR) -<_ q, we have rank (EklR) q, that is, Ker (E/R) O.
Thus, Ker Ek t3 R 0. Then, by Lemma 5.1, R is a teachability subspace of (Ek, A, B).
But then R is clearly a reachability subspace of (E, A, B) also. El

Indeed, it is also possible to prove a much stronger version of Theorem 5.3.
However, as the proof that we have is too long to be reproduced here, we would rather
state it as a conjecture.

CONJECTURE. A subspace R with dR >-1 is a generalized teachability subspace
ifand only if, given any integer r, 0 <-_ r <- q, and any symmetric set A oft complex numbers,
there exist linear maps F and K such that:

(1) Ek, AF) is regular;
(2) AFRo EkR;
(3) cr(Ek[R, A]a)= A.
The conjecture above states that some or all of the eigenvalues of the closed-loop

system restricted to R can be shifted to infinity if so desired.

6. Extension to nonregular systems. We emphasize that, although regularity of the
open-loop system (1.1) has been a standing assumption throughout the paper, this
choice has not been motivated by the dependence of the results on the regularity
condition. Rather, we have been trying to simplify the exposition that has already been
complicated enough by the condition of the closed-loop regularity. Now, assume that
(1.1) is not regular, but is regularizable as defined in [20]. That is to say, suppose that
(E, A + BFo, B) is a regular system for some linear map Fo. Suppose R is an (A, E, B)-
inv. subspace that also satisfies GARSA given by (4.1). Then, (A+ BFo)Rc ER+B
and R also satisfies (4.1) when the recursion is performed with (A + BFo) rather than
A. Thus, R is a reachability subspace of (E, A + BFo, B), and there exist linear maps
F1 and G so that R becomes the reachable subspace (E, A + BFo + BFIlBG) of a regular
closed-loop system (E, A + BFo+ BF, BG). Letting F--Fo + F, we realize that even
when (1.1) is not regular, if R is an (A, E, B)-inv. subspace satisfying GARSA, then
there exist linear maps F and G so that R (E, A + BFIBG.

7. Conclusions. It has been shown that the concept of reachability subspaces can
be generalized to encompass singular systems also. This was accomplished by demon-
strating that if (and only if) a given subspace R is an (A, E, B)-inv. (generalized)



GENERALIZED REACHABILITY SUBSPACES 509

almost-reachability subspace, then there exist two linear maps F and G such that R
is the reachable subspace of a regular closed-loop system (E, A + BF, BG). Instrumental
in handling the complexities caused by the condition of closed-loop regularity was the
notion of "regular friends" of an (A, E, B)-inv. subspace. We emphasize that our
approach uses only proportional feedback, as opposed to the constant-ratio propor-
tional-plus-derivative feedback used in [23].

A subspace C= EX was defined to be a generalized controllability subspace if
C-ER for some generalized reachability subspace (in which case C becomes the
controllable subspace of a regular system (E, A + AB, BG) for some F and G). Spectral
assignability properties of generalized controllability subspaces (as well as those of
generalized reachability subspaces) were also discussed.

To simplify the presentation, we assumed a regular (i.e., det(sE A) # 0) system.
However, all the results were finally extended to the nonregular case.

Appendix.
Proof of Theorem 2.3. Let K :X-* U be as constructed in the proof of Lemma 5.3.

Then K satisfies Ker Ek V* 0 and EV* + B EkV*. Now, it is easy to mimic the
proof of Theorem 5.6 in [27] to show that S,(V*):= S,(E, A, B; V*) is (A, E, B)-inv.
Then an F: X- U satisfying AFS,(V*) EkS,(V*) can be found. Note that AFV*c
AV*+ B c EV*+B= EkV*. This V* is (A, Ek, 0)-inv. and is, therefore, included in
the initial manifold of (Ek, AI). On the other hand, as (A, Ek, O) invariance clearly
implies (A, E, B) invariance, the initial manifold of (Ek, Av) is also included in V*.
That is to say, V* is the initial manifold of (Ek, AF). Note that Theorem 2.1 and the
fact that Ker Ek V* 0 imply that (Ek, A) is regular. Let S denote the final manifold
S,(E,, A, O; X) of (E, A).

If Sk is defined by S+1 E-I(AS + B); So 0, then So S,(V*) + S. If $S,(V*) +
S, is assumed, then it follows that

Sk+, E-’{AS,(V*)+ AS + B}

= E{’{AS,(V*) + AFS +B}

E’{EkS,(V*)+ E,S +B}

E-{EkS.(V*)+ EkS +BEkV*} (because B EkV*).
= S,(V*) + S, + V* EB+ Ker E (by Properties 2.1 and 2.2)

=S,(V*)+S, (because KerE =S and V*f3E{B=S,(V*)),
Thus, S S,(V*) + S% for all k, and therefore, lim S := S, = S,(V*) + S%. Then

S, V V* (S,(V*) + S,) V*

S,(V*) + So (3 V* (by Property 2.1).
As (Ek, A) is regular and V* and S, are the initial and final manifolds of (Ek, A),
respectively, S, (3 V* =0 by Theorem 2.1. Consequently, S, V*= S,(V*). It is also
trivially true that S,(V*)=S, f3V*. Then S,(V*)=S, f3V*, and the proof is
complete. [3
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Hoo INTERPOLATION IN SYSTEMS WITH COMMENSURATE INPUT LAGS*

GILEAD TADMOR

Abstract. Hoo optimal control and system design problems are known to mathematically reduce to the
framework of operator interpolation. Here a solution scheme in the context of systems with multiple input
lags is provided. The main result, a linear algebraic characterization of eigenvalue/eigenfunction pairs, can
be utilized also in finite-dimensional approximations of the associated Hankel Operator. A particular feature
of the analysis is the heavy reliance on time-domain techniques and utilization of explicit time-domain
properties of the transfer function.

Key words. H, interpolation, input delays, time domain analysis, eigenvalues, eigenfunctions
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1. Introduction. Our note is part of a recent effort to develop a theory of H
optimization for distributed parameter systems. Strong motivations come from control
and system engineering. H theory addresses a wide spectrum of worst-case analysis
design and control issues, including robust control, weighted sensitivity minimization,
model matching, tracking error attenuation, gain-phase margins, and the like (see 12],
[13], [17], [22], [23] for overviews and references). Problems involving distributed
parameter systems that are currently of great interest, such as the robust design of
large space structures, or the control of flexible robot arms, naturally fall in its domain.
The general difficulty is, of course, in handling the inherent infinite dimensionality of
distributed parameter systems.

The central component in an H optimization procedure is the (approximate or
exact) solution of an operator interpolation problem. (An account of the relation of
operator interpolation to H optimization can be found in the manuscript [12]. The
technical details of the problem are given in 2.) In the context of distributed parameter
systems, the operator to be interpolated, say T, becomes infinite-dimensional, which
renders the problem quite difficult. First attempts to solve it were restricted, therefore,
to case studies [3]-[6] of SISO (scalar) systems with single pure delay; these are
perhaps the simplest distributed parameter systems. Nonetheless, the analysis revealed
considerable complexity already in this case.

Delay systems are of interest for their own virtue. But they also serve as relatively
simple realizations of input-output maps, in some systems that are actually governed
by partial differential equations (PDEs), and distributed control mechanisms.
(Examples are linear elements subject to tension, compression and torsion, with
boundary control and observations. These systems are internally modeled by the wave
equation; yet, their input-output transfer function is that of a delay system.) To my
knowledge, the present investigation is the first beyond the initial studies mentioned
above to provide a solution scheme in the context of an infinite-dimensional system.
It treats the entire class of systems with multiple (commensurate) input lags, which
seems a natural follow-up. Our technique readily generalizes to also cover certain
systems with distributed input delays [21]. Hopefully, it will provide insight into H
optimization problems in other interesting classes.
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A special feature of the developments in this paper is that they are based on a
predominately time-domain analysis. We derive and work with time-domain formulae
for the operator T and for its adjoint T*. We do so utilizing the time-domain meaning
of the system’s transfer function and some elementary semigroup theory. In particular,
we do not use an inner-outer factorization of the transfer function, as is the common
practice.

Our main result, Observation 4.1, is a workable (linear algebraic) characterization
of eigenvalue/eigenfunction pairs for T*T. These pairs are known to play a key role
in suboptimal solutions, via finite-dimensional approximations of T (see, e.g., [18]),
and in optimal solutions, as we describe in 2, below.

Indeed, studies that became available following the preparation of the first version
of this paper [7]-[11], [24] concentrate also on spectral analysis of the operator T,
with some beautiful results. In particular, [11] provides an algebraic characterization
of eigenvalue/eigenfunction pairs in a very general setting. In point of fact, we were
motivated by the discussion in [24] to improve certain developments from the original
version of this paper. We shall make note of these improvements during the discussion.

The paper is organized as follows: the problem statement and some preliminary
results are given in 2. Time domain formulae for T and for T* are derived in 3.
In 4 we characterize eigenvalue/eigenfunction pairs for T’T, and conclude, in 5,
with an illustrating example.

2. Preiiminaries. He and H are the usual Hardy spaces of analytic functions on
the open right half complex plane, with Le and L boundary values (respectively) on
the imaginary axis (the frequency domain). Since the Laplace transform defines an
isometry between Le[0, oo) and He, we shall not distinguish between a function in
Le[0, ) and its transform in He by some particular notation (e.g., by "^" or "v").
Thus if fe He then f(t) will be the time-domain function, f(s) will be its Laplace
transform, defined over the right half-plane, and f(joo) will be the boundary function
of the latter, over the frequency domain. A good source on Hardy spaces, inner and
outer functions, etc., is [14].

A star will denote the adjoint of an operator (e.g., T*, in particular, if A is a
matrix then A* is the transposed complex conjugate of A), and the conjugate f*(s)=
f(-g) of an analytic function.

The following is a general setup of the operator interpolation problem. Given are
a rational function w(s) H, and an inner function re(s). Let K be the orthogonal
complement of m(s)H2 in He (K H2mHe), let 7r be the orthogonal projection of
H2 onto K, and let T’K -, K be the bounded linear operator formed by compression
of multiplication by w(s) to the space K. Namely, Tf= 7r(wf) for f K. A function
Woe H interpolates T if it satisfies (i) Tf= 7r(wof) and (ii) IlWoll {]TI] (equals the
induced operator norm of T). We look for an interpolating function.

Notice that, by definition of T, the function w(s) satisfies (i), but that in general
it can only be expected that Ilwll_-> IITI. Condition (ii)is therefore an optimality
requirement on the family of functions Woe H that define T via (i).

Details on the way to reduce an H system optimization problem to the framework
of an interpolation problem can be found in [12]. Let us just mention here that m(s)
is the inner part of the transfer function G(s) of a system at hand, and that w(s)
reflects a design objective; e.g., a weight function in the context of weighted sensitivity
minimization. Consequently, optimal compensators are computed in terms of interpol-
ating functions.
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Let us also mention that substituting G(s) for rn (s) in the definition of the subspace
K will have no effect on that definition. The reason is that for an outer function
(s) H2, the linear manifold qs(s)H2 is dense in H2.

Here we are interested in systems with multiple input delays. We assume, therefore,
that G(s)= P(e-"), where P(z)=i=o aiz is a polynomial. For technical simplicity
we also assume the following: w(s) has only first-order poles; using the notation
w(s)= /+__ c/(s+fi); w(s)=0 implies Re s<0 (i.e., w(s) is of minimum phase);
and P(z)-0 implies

Sarason [20] has established the existence of an interpolating function. The
following observation of Sarason is generally used as a starting point for computing it.

LEMMA 2.1 [20, Prop. 5.1]. Suppose the operator T has a maximal function f K.
Then the unique interpolating function is Wo(S) Tf(s)/f (s). The function Wo(S) is

all-pass: IWo(jW)l rll almost everywhere.
It follows from Weyl’s lemma [16, pp. 32, 295] that r*rll is equal to the spectral

radius p(T* T). (We shall justify the use of Weyl’s lemma in the proof of Observation
2.2 in 4.) We are therefore led to compute p(T*T) and check whether it is an
eigenvalue of T* T. For if it is, then the associated eigenfunction is the desired maximal
function for T. Via Lemma 2.1, that function provides the solution to the interpolation
problem.

In 4 we find a parameterized family of 2m x 2m matrices D.(,2), A2_-> 0, such
that A2 is an eigenvalue if and only if det f(,2)= 0. Associated eigenfunctions are
then easily recovered from zero vectors of f(12). This characterization is to be used
in searching for maximal eigenvalue/eigenfunction pairs. The following observation
restricts the domain of the numerical search. (The proof is deferred to 4.)

OBSERVATION 2.2. (1) Iffor some COo> 0 there holds Iw(j o)l > almost everywhere
for Ito]> COo, then a maximal eigenvalue exists.

(2) If a maximal eigenvalue exists, it is situated in the interval r/[ 2, Ilwll  .
(3) If [w(joo)[<= w for all to, then unless w(s)=- rl (then T= rlI), a maximal eigen’

value does not exist. Yet, then w(s) itself is an interpolating function.

3. The time-domain setup. Our first task is to provide a tangible description of the
subspace K H2@ P(e-)H2, and a workable formula for the projection r. We do so
in the time domain, identifying H2 with L.[0,

OBSERVATION 3.1. The subspace K consists of all the solutions to the difference
equation

(3.1) 2 gif(t+i)=O fort
i=0

that satisfy flo,n L2[O, n].
Proof Let P:H2- H be the multiplication operator associated with the function

P(e-’). By Fredholm’s alternative, K ker P*c Lz[0, co). Provided that f L2[0,
equation (3.1) explicitly rewrites the equality P’f= 0. Hence, we have the necessity of
the conditions on f

To establish sufficiency it has to be shown that a solution of (3.1), with an initial
trajectory in L2[0, n], must belong to L2[0, ee). Indeed, let S(t) be the Co-semigroup
on L[0, n], which shifts along solutions. That is, if f is a solution with flo,n
L2[0, n], then [S(t)](r)=f(t+r) for -[0, n]. The characteristic equation of the
infinitesimal generator of S(. is G*(s) P(eL) 0. Our assumption (P(z) Olz < 1,
in 2) is that solutions of this equation all lie strictly within the open left half-plane.
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Thus it follows, from the standard theory of delay and difference equations (see, e.g.,
[15]), that ]]s(t)ll Me for some positive constants M and e. Hence the claim is true.

For future use we add the following notation: E -S(n) and Q =i=-o E*iEi are
operators on L2[0, n]. (The stability of S(.) assures that Q is well defined.) Given a
function f on [0, oo), and -> 0, the symbol f’ stands for the function on [0, n], defined
by - -f( + -).

COROLLARY 3.2. The orthogonal projection 7r" L2[0, oo)--> K is given by the formula

(3.2) [Trf] t’’= E’Q- 2 E*’f’" l=O, 2,...
--0

Proof Taking the right-hand side of (3.2) as a definition of 7r, we shall now show
that it is the orthogonal projection onto K. That is, that (i) Im 7r

and (iii) 7r*= 7r.

(i) As in the previous proof, ]]E*i I--- Me-". Hence, the series on the right-hand
side of (3.2) converges forf L2[O, oo), and [rf] L2[O, n]. The definition of E implies
that rf satisfies (3.1), and by Observation 3.1 it is a function in K.

(ii) If j’ K then fi"= Elf, whereby

[Trf] ’n EtQ-’ E E*iEif
0

(iii)

=EtQ-lQfO=EtfO=f in.

/=0

/=0 i=0 L2[0 n]

fin, E.Q-, 2 E*ln
i-o /=o L2[0,n

COROLLARY 3.3. Let X be the space Lz[0, n] when endowed with the inner product
(’,’)x (’, Q’)L:to,. Then K and X are isometric, and the isometry is defined by the
mapping X K, where

[(]’:=Et( forl=O, 1,2,

Proof Following from Observation 3.1, we have that the mapping defines an
isomorphism between X and K, and -f=fo for f K. The observation that is
isometric follows from

i=0

, <E’(, Ei>Lz[O,n]
i--0
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So far we have essentially used only the fact that the difference equation P’f= 0
gives rise to an exponentially stable semigroup. Taking into account the commensurate
structure of the delay operator P(e-), we discover that the operators E, E*, and Q
(indeed, the key elements in our formulae) have very simple, finite-dimensional struc-
tures, as follows: Set

and, given a (scalar) function X, define an n-vector function , on [0, 1), by

(r)= :(r+l).

(r+n-1)

for re[O, 1).

OBSERVATION 3.4. Sr E => (=/ and E*, :> =*Proof The observation follows directly from (3.1).
Consequently, ( i=o/*i/ is a matrix representation of the operator Q. It can

be computed in a finite process, as a solution of the Lyapunov equation 0-/*(/ i
(see [1] for detail). Henceforth we shall use these matrix representations, and in
particular, the associated matrix version 7 of the projection onto K.

We turn to the operators T and T*. In view of Corollary 3.3, we shall interpret
them as defined over the space X. The appropriate definition of T is thereby T=
[(w t)]o, where stands for the convolution in L2[0, oo) and w(t) is given by

w(t)=r/6(t)+ 2 ai e-/,
i=1

t=>0

(with Re/?i > 0, since w(s) H).
Since for X we have 6, r/: r: and [r r/:] r, it remains to compute

concrete formulae for terms of the form [r(e-’* t)]o, where Re/3>0. Invoking
Observation 3.4, a straightforward computation yields

[e-t" ]i"(r)=/i e(o-)( 0) dO

(3.3)
+ FoEi+kl . e(k-i)n k e(-)(O)dO, r[0,1)

k=0

where k--O :=0 for i=0, and the matrices Fo=o(fl)=[(fo)pq] and /, Fl(fi)
[(f)pq] are as follows"

and

(q-p)/ for n => p > q -->_ 1,
(f)Pq

0 forl<=p<=q<=n,

(fl)pq e(q-P) for p, q 1, 2, , n.
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For simplicity we assume that e-n is not an eigenvalue of/ and rewrite (3.3) as

(3.3o
i et(-’l(O) dO

+((o-,(i-e")-’)i+,(i-e")-’ e -’") e(-)-(O) dO.

where

d= d(/3) O-’( 9+ (i-/* e-"t)-’l(I-e"t)-’)
and

I?= 2 /*’(Fo- F,(i- E e")-’)/ ’.
i=0

Note that by assumption (Re/3 > 0) the matrix -/* e-" is indeed invertible,
and that can be computed by solving the Lyapunov equation -*=o-,(- e")-. Substituting fl for and d (fi) for G, we thus have observa-
tion 3.5.

OBSERVATION 3.5. Interpreted as defined on X, the operators T and T* are given
by the formulae

i=l

[T*]() O(r)+,2l= S e(’-(0) dO+ =,2 aiO-ldO e,-[(O) dO

(()- e’-(0) dO+ S[f+ O-ldO] e*(’-(o) dO
i=1 i=1

for r [0, 1 ], and where d is the usual matrix adjoint.
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The proof is obvious once we notice that the adjoint of the operator G" X- X
has the matrix representation 0-1 t*0.

In what follows, it will be useful to work also with scalar formulae for T and T*,
utilizing this next observation on the exact structure ofthe matrices (i and + 0-1 (* 0.

OBSERVATION 3.6. Let t be as in formula (3.4). Then three exist n-vectors d, b’, ,
and such that

((/3)-/o(/3)=ab* and +d-ld*(/g)d+o(-/)=*.

Proof For the moment we return to a frequency domain discussion, motivated
by [24, 1.2]. Let r+ and r_ be the orthogonal projections from La(j,)t) onto H2 and
H’2, respectively, and recall that m(s) is the inner part of G(s)= P(e-’). It is very
easy to see that the frequency domain formula for the projection r: H2- K is rf(s)
m(s)r_(m*(s)f(s)). Thus

r
q_ fl

f (s) m(s)r_ m*(s)
1

s+ f(s)

1 (1 )s + fi
f(s)- m(s)’n’+ m*(s)f(s)s+

forf K.
Consider the second term on the right-hand side of (3.5). Forf K, the function

m*(s)f(s) belongs to H-. It follows from the standard theory of Hankel operators
(see, e.g., 12, Chap. 6]) that the operator that takes h(s) H to r+(1/(s + )h(s)) H2
is of rank one. We rewrite the conclusion in a vector form, and in the time domain

(3.6) r(e-" * f) e-t" f= a first-order operator applied to f forf K.

Now we are almost done! Invoking formulae (3.3) (with i=0) and (3.4), the
left-hand side of (3.6) is equal to

(d-o) e(-’)(O) dO.

So (-/o must be a matrix of rank one, namely, of the form /*.
The conclusion regarding the matrix [+ 0-1(*t follows from a completely

similar line of arguments, app,lied to the operator T*.
COROLLARY 3.7..Let ti, bi, ?i, and di correspond to the matrix G, i= 1,..., m, as

in the previous observation. Then

myrT(r) (r) + E , e,{o-)(0) dO
i=1

+ Y’, c,e-t’ et’aix[,k+,(") e’(g, (0)) dO,
i=1 k=O

T*(r) (7")-i21 i e,{*-)(O) dO

+ 2 i e#7 e cikx[k,k+l)(7" e-’(, (0)) dO
i=1 k=O

for re [0, n], and where X.(" is the usual characteristicfunction of the interval [e,
The scalars aik and ck are the k + components of the n-vectors t and , respectively.
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Remark. Information on the order of zero of P(z) at z =0 can help in simplifying
some of the constructions above and facilitate the numerical computations suggested
in the following section. The particular case P(z)= z" is the simplest" it stands for a

single, pure input lag, which is the case studied in [2]-[6]. In those papers it is observed
that then K is isometric to L2[0, n], and that T is the restriction of the Volterra operator
of convolution with w(t), to the interval [0, n]. Indeed, it turns out that if ao al
an-1--0, and an # 0 (which is our case), then the matrix / vanishes, ( is simply the
identity, and G Fo, for all i.

In a more general case P(z) will have a zero of order 1 -<_ k-<_ n at the origin, i.e.,
ao al + ak-1 =0, ak S0. This information can be utilized as follows, Denote
bi ai+ for i=0, 1,..., n-k, and define a new version of E, for the polynomial
yn- biz Now E is an operator on L2[0 n- k] It easily turns out that the followingi=0

counterpart of Corollary 3.2 holds.
COROLLARY 3.2. The orthogonal projection r" H2--> K, is given by the following"
(i) [rf](r)=f(’)for’[O, k);

(ii). [’n’f]k(’r) Q-’ 2i=, [E*ifk+i(n-k)](7")fr’r[O, n-k);
(iii) [rf]k+i(n-k(r)=[Ei[rf]k](r)forr[O,n--k), i=0,1,2,....
Of course, Corollaries 3.2 and 3.2o are equivalent, but the latter offers a simpler

computational tool" the matrices / and ( corresponding to the revised definition of
E are of smaller size, (n k) x (n k) instead of n x n, as before. The computation of
the coefficients Gi (which will remain n x n) will then require solutions of Lyapunov
equations of lower dimensionality, and thus simplify the numerical computations
needed for the solution of the maximal eigenvalue/eigenfunction problem, as explained
in the following section. For notational simplicity, we shall nonetheless continue the
discussion in the general framework of Corollary 3.2 and Observation 3.5.

4. Characterization of eigenvalues and eigenfunctions of T* T. In what follows we
rule out the trivial case w(s) 7 (for then T 7I). Our solution strategy is to identify
a 2ran-dimensional subspace U U(A2) X, associated with each positive number
A2, such that if A2 is an eigenvalue of T’T, then all its eigenfunctions must belong to
U. Then we shall narrow the domain of possible eigenfunctions of A2 to a smaller
subspace Uo U, with dim Uo 2m. Finally we shall define an operator (A) on Uo,
with the property that 0 : Uo is an eigenfunction if and only if (A2)(=0. The
operator (A z) will have an easy-to-construct matrix representation, so the characteriz-
ation reduces to simple linear algebra. The original statement of the following useful
observation was made by Flamm and Mitter [3], [5], for the particular case P(z)= z.

OBSERVATION 4.1. Suppose that A is an eigenvalue of T’T, and that X is an
associated eigenfunction. Let U U(A2) X be the subspace spanned by the functions
:(’r), such that (’)= zq e"’a, where is a constant n-vector, and where s=() is

a zero of order q + of the equation

(4.1) w*(s)w(s)=A .
Then U.

(Note that dim U=2nm, unless for the case AZ=llz, where dim U=2n(m-1).)
Proof Suppose T( and (= T*O, for some (, , and X. Denote

fo’ )Y(r) e’(-(O) dO+ d e(-)(O) dO
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for i= 1, 2,..., m and r [0, 1]. Then the following equations hold:

X --[iYi + Oi 1, m,

(4.2)

Equation (4.2) can be written in a standard system form as

(4.2) d az + B, Cz +[r/I2

where z is a 2nm vector. We leave out the obvious detail of the matrices A, B, and C,
and mention just the following two facts.

The first is captured in the formula

(4.3) C(s- A)-’B W*(s) W(s)- ]ql)L

where is the n x n identity matrix.
The second fact is that for each k=0, 1, 2,..., the matrix CAkB is a scalar

multiple, say, by some e(k), of the matrix . In particular, either CAkB vanishes, or
it is an invertible matrix.

Suppose now that A is an eigenvalue of T*T associated with the eigenfunction
X. Then A2 substitutes for in (4.2), and we have the following proposition.
PROPOSITION. There exists a matrix L such that Lz.
Proof The case A2# I/[2 is easier: from the second equation in (4.2) we obtain

L-- C/(A2-1"q[2).
Suppose that A=[/2. By assumption (w(s)q,w(s)=O::>Res<O, and

w(s)- 0:: Re s<0), there holds w*(s)w(s)[ql2. It thus follows from (4.3) that an
integer k->0 exists, such that CAJB=O for 0=<j<k and CAB#O. (By Cayley-
Hamilton, k -< n 1.) As we have noted above, CAB s(k) for some nonzero scalar
s(k). In particular, CAB is an invertible matrix.

Now, Cz=-O and = A2. Thus,

0 Cd CAz + CB
If k > 0 it follows that CAz =--0, which in turn implies

0 CAd CA2z q- CABS.
Continuing this way inductively, we deduce that CAJz=-O for j =0, 1,..., k, and
consequently that

0=- CA+z + CAkB
Thus, L =-(CAkB)-CAk+ is the desired matrix.

Having established the claim, it follows that z(-) satisfies a linear, autonomous,
time-invariant ordinary differential equation (ODE) for - [0, 1]. It can therefore be
extended analytically to a solution over the positive ray -_-> 0. The Laplace transform,
z(s), of the extended solution, is a strictly proper rational function. Consequently,
:(-) is analytically extendable for all " _-> 0, and the Laplace transform of the extended
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function, (s), is a well-defined, strictly proper rational function. Following Laplace
transformation, (4.2o becomes

C(s-A)-’(Zo+ B(s))
=C(s-A)-’Zo+(W*(S)w(s)-Irll2)(s) by (4.3)...

and we finally get

(4.4) (s) -(w*(s)w(s) A 2)-, C(s A)-’Zo,
where Zo is the initial value of the (time domain) function z(-).

By definition of A, the poles of C(s A)-lZo are poles of w*(s)w(s). Hence, poles
of (s) are finite (c) zeros of w*(s)w(s)-A2; that is, they are solutions of (4.1).
Hence belongs to U as claimed.

Our next effort is to restrict the initial 2ran vector Zo (from (4.4)) to a subspace
of dimension 2m.

We easily observe that the matrices A, B, and C of (4.2) are all built of n n
blocks which are each a constant multiple of the n n identity. Let A0, Bo, and Co be
the matrices obtained by collapsing each of these blocks to a scalar entry. Let K be
the 2m 2m main-diagonal matrix-valued measure on [0, n] where the first rn main-

n--1 ikdiagonal entries are ceie-id[k__o e aikX[k,k+l)(7)], i--1,’’", tn followed by the
--iktn entries ffi etid[k-O e CikXk,k/(’)], 1," ", m. Let y be the 2m-vector whose

first tn components are o et3’(i, (0)) dO, i- 1,..., tn followed by
1o e-i(i, (0)) dO, 1, , m. Finally, let x(’) be the 2m-vector valued function,
whose ith entry, xi(-), is the scalar version of the function Yi(. from (4.2).

Then, in the same way that (4.2o follows from Observation 3.5, Corollary 3.7
implies the dynamics

(4.5)
dx( ’) Aox( ’) + Bo( ’) dr + dK r)y,

for ’[0, n], and with x(0-)=0. By arguments similar to those in the proof of
Observation 4.1 we deduce that if :(-) is an eigenfunction for A 2, then there exists a
1 2m matrix Lo with (-)= Lox(’).

The first equation in (4.5) thus becomes

(4.6) dx(r) (Ao+ BoLo)x(’) dr+ d (’)y,

or, in an integrated form (since x(0-)= 0)

(4.6) x(-) [e(A+BL)’* d ](’)y.

Now define functions x(-) via (4.6o where y is allowed to be any
2m-vector. The linear mapping from the vector y to the 2ran vector z=
(zi-1),+g =xi(k-l+): 1, , 2m and k= 1, , n) is therefore a 2mn =2m matrix
which we denote by M. This matrix depends on , since Lo does, and it can be obtained
via numerical integration (that is, by computing n different 2m 2m matrix exponen-
tials).

COROLLARY 4.2. Fix A2 and let Uo U be the space spanned by functions (-)
L[0, n), such that (-) is the restriction to the interval " [0, 1] of the inverse Laplace
transform of

(s) (w*(s)w(s) A 2)- C(s A) -1 My

for some 2 m-vector y. IfA is an eigenvalue of T* T, then associated eigenfunctions must
belong to Uo.
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Proof From the above, the initial vector Zo z(0) in (4.2) and (4.4) must be of
the form Zo My for some 2m-vector y.

Now, given A2, we restrict our attention to the subspace U0(A2). For notational
convenience we also introduce the subspaces V, W, U, V, and W2 c X as follows"

V= span {v(r)" t(. e-;’t for 1, , n and constant n -vectors },

W=span{w(r)’(.)=e& fori=l,...,n and constant m-vectorsk},

U T(Uo) f3 U, V, T(Uo) CI V, W: T*(U,) f3 W.

(The latter three spaces depend on A2.)
Following from Observation 3.4 the operator T maps U into U + V, and T* maps

U+V into U+V+W. From the assumptions on w(s) it is born that UCIV=
{0}, U f3 W {0}, and indeed, V f3 W {0}. Thus, the appropriate restrictions of T and
T* have the block structures

[]_T_ and T*lt+v 0 T2"2TI= T T3*, T3"2

where T and T*’U---> U, T2 and T*2" V-> V, T*3’U--> W and T3"2" V- W. We denote

Uo

The following is our main result.
THEOREM 4.3. The number A2 is an eigenvalue of T*T and is associated with the

eigenfunction (r) X if and only if (r) Uo and f(A2)=0.
Before bringing the proof, let us note that f(A 2) maps Uo into V + W2. Computed

in terms of the formulae in Observation 3.5, a matrix representation of O(a 2) is (at
most) 2m x 2m, and the theorem becomes a linear algebraic rank condition.

Proof By Corollary 4.2, A 2 is an eigenvalue of T*T associated with the eigenfunc-
tion :, if and only if Uo and the following equations hold:

(4.7) T*, T= A2
and

(4.8) T*, T3*2J T2
so: 0.

Notice that (4.8) can be rewritten also as

[ T22 01 ’-(a 2) 0(4"8)
T3* I

so that the theorem will follow from these next two propositions.
PROPOSITION 4.4. T*I T1 A 2Iu.
PROPOSITION 4.5. T*2 is invertible.
Proof of Proposition 4.4. It will be easier to establish this claim in the frequency

domain, referring to the Laplace transforms of analytic extensions of functions from
U. This space is spanned by functions of the form /(s-i)q where / is a zero of
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order >=q of (4.1) and t is a constant n-vector. Now, as in the proof of Observation
4.1, we take the Laplace transform of (4.2), and invoke (4.3), to obtain

(4.9)
T*T(fi/(s-tx) q) C(S-A)-(Zo+ Bl/(s-t)q)+l’ql2l/(s-tx) q

C(s-a)-’Zo+ w*(s)w(s)fi/(s-lx) q

where z0 is a 2mn vector. By the assumption on x and by straightforward factorization
of rational functions, the right-hand side of (4.9) is further equal to

3‘2/(s-pc)q +terms with poles at {-/3i, fii, i= 1,. ., m},

which completes the proof of Proposition 4.4.

Proof of Proposition 4.5. Following from the formula for T* in Observation 3.5,
it turns out that (given a constant vector ()

’*( e-t,’)(t) w*(-i) e-t’’ + terms in ej’, j 1,. ., m.

So T2"2 has the block diagonal representation diag[w*(-/3), i= 1,... ,n]. Since
Re/3i > 0 and w(s) is of minimum phase, that matrix is invertible.

Remark. Based on the theorem, the computations needed for the characterization
of eigenvalues and eigenfunctions include" (i) linear algebraic computations (including
a set of Lyapunov matrix equations that are solved once, at a preparatory stage)" (ii)
solution of (4.1) (for various 3‘2), which is a polynomial equation; (iii) numerical
integration, in order to compute the matrices M(3‘2). We can avoid the need for
numerical integrations, at a cost. The theorem remains true (with the same proof), if
we extend the definition of f(3‘2) to the whole of U, thus relying on Observation 4.1
instead of on Corollary 4.2. The cost is, of course, that now the matrix representation
of D,(3‘ 2) will be of a larger size, 2nm x 2nm (2nm x 2n(rn 1), if 3, 2 1712) instead of
2m x2m.

Indeed, the latter has been the scheme suggested in an earlier version of this
article. The current form of the theorem is based on Observation 3.6, and is motivated
by the observation that the rank of the operator (I- r)(e-" * )]K is at most one.

We conclude this section, as promised, with the following proof.
Proof of Observation 2.2. To be able to apply Weyl’s lemma, which we need in

the proof, it should be first checked that T’T- ]/12 is a compact operator. And indeed
it is: By the formulae given in Observation 3.5, both T- r/and T* ,) are of the form
of Volterra plus finite-dimensional operators on L2([0 1], Cn), and the latter space is
homeomorphic to X. Hence T-rt and T*- are compact, and so is T*T-lrt]2=
(T*- )( T- rt) + ( T- rt) + rt( T* ). (A more general, yet abstract, argument was
suggested by the referee. The compactness of T*T-I{2 follows from the continuity
of G*(s)w(s) on the extended imaginary axis, via a Hartman-Theorem-type result of
Muhly 19].)

Having made this observation, we deduce that the norm T* TII equals the spectral
radius p(T* T) and that r/I2 is the only limit point of eigenvalues of T*T. We shall
now prove Observation 2.2, point by point.

(ii) Suppose 3‘ 2 were the maximal eigenvalue of T* T. By Weyl’s Lemma p( T* T)
T*7/"I] {]TII and l12-<a 2. Obviously, Ilrll-< Ilwll. Hence 3‘2G [],/./12, ilw]12oo].

(iii) Suppose wl]oo- I, l. We then have the "sandwich" argument Ir/]2-< p( T* T)=
r* rll rll -< will I, l which implies that rll wlloo. Hence w(s) interpolates

Yet if w(s) rl then [r/I2 cannot be an eigenvalueof T*T. Suppose it were; then
Sarason’s Lemma 2.1 tells us that w(s) should be all-pass, that is, a constant multiple
of a Blascke product. In particular then, w(s) cannot be ofminimum phase, as assumed.
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(i) Since Ir/I is the only limit point of eigenvalues of T’T, it suffices to verify
the existence of one eigenvalue a2> T]I2 to deduce the existence of a maximal eigen-
value. The equality p( T* T) T* TII further reduces the proofto a search for a function
fe K such that IITfll2>lr I[fll We now establish the existence of such a function.

We shall use the following fact which is stated in the frequency domain. (Namely,
if f(s) is a member of K, we restrict our attention to its values over the imaginary
axis, s jto.)

PROPOSiTiON. The restrictions of functions from K to any compact interval
[-joo,, joo] form a dense subspace of L2[-jw,, jwl].

Proof Following from Corollary 3.3, a frequency domain description of K is
given by

where

K f(joo)= (jw) e-aO(r) dr: L2[O, 1]

’(jw) [1, e-J’, e-("-l)J’](-/ e-a’") -1.

Suppose that g(joo) Lz[-jw, jw] were orthogonal to all members of K, over the said
interval. Then

0 g(jw), (jw) e-aO*(r) dr dw

--J

for all (r) e L2[0, 1]. Hence

#g*(Jw)g(Jw) dw =0 for re[0, 1],
Jwl

and by Plancherals equality and the analyticity of the Fourier transform, it follows
that g*(jw)g(jw)O. Consequently, g =0, as claimed.

Denote by R’K Ks the mappingf(I-)(w,f). Following from the proof
of Observation 3.6, rank R m.

Recall that by our assumption in part (i) of Observation 2.2, there exists some

Wo>0 such that I l> implies ]w(jw)> ][. Thus there exist e >0 and w2> w, > Wo,

such that for there holds Given w, and w2, let yc

L2[-jw2, jw2] be the space formed by the L2 closure of restrictions of functions
ker (R) to the interval [-jw2,jw2]. Let Z c y be the subspace of functions Dom Y
that vanish along [-jw,jw]. Following Dom the proposition above, codim Y<
and dim Z m.

Now choose a > 0 such that (+ e)2(1 6) > (+ e/2)2. Every nonzero mnction
g e Z can be approximated (in L[-jw,jw]) by the restriction to [-jw, jw2] of some
function fe ker (R), which satisfies

If (Jm)l dm > ( ) If(J) din.
1[1,2]

In particular, we conclude that there exists at least one function fe ker (R) that
satisfies this inequality.
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Since f6ker (R). there holds Tf(s)= w(s)f(s), whence.

Tf[[z= I_oo [w(jw)f(joo)lZ dw

i,o1>,o2

If (joo )l &o

+ It/l+ If(jw)[ dw
,01<=,0

do)

e-("+)

1

1
0

T= fl+s

0

[eT2 e-(.+)

e-(+/3)
T3*

e

+"-1 e-+"-1]

(e+ 1 e-(+)

(- )(t + )
(e-+ 1) e-(+t)

(t + )(- )

e-(+) + 1

fi s

e---I 1. fl+e
e-e+"- 1

0+e

0

1

So f(a2) is given by

As indicated above, the existence off completes the proof of part (i), and hence
of the observation.

5. A simple example. Set P(z)= 1-e’z and w(s)= 1/(/3+s) where c and/3 are

real, positive numbers and a /3. Then n 1, and the matrices E and Q are scalars.
We get E e and Q 1/(1-e ). Computation of the coefficient ( (l yields
( e-(+)/(1 e-(+t)).

In our example, (4.1) takes the form

1

/3+s /3-s

and solutions satisfy s +e, for e (//32, 2- 1)/a. So (given a), the space U Uo is
spanned by sOl(r)= e and sC2(r)= e -’. Computations of the matrices T, T2, and
yield
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The rank condition (since f(A 2) is 22) is that A is an eigenvalue when

(5.1) (/3 e)(e-- 1)(e-+ 1)-(/3 + e)(e 1)(e+’- 1)-0.

In this example we have IIw(s)lloo-- 1//3 and r/=0. By Observation 2.2 a maximal
eigenvalue exists, and it belongs to the interval (0, 1/[32]. When A descends from 1//32
to zero, the corresponding e ranges from zero to +joo along the imaginary axis. Thus,
our scheme prompts a search for the minimal imaginary solution e jw to (5.1). Given
such a solution, and the corresponding eigenvalue A2, it is easy to find a zero vector
x=[xl,x2]’ for -’(/2), Given such x, a maximal function for T in the space X would
be

:() x e + x2 e -’.

To use Sarason’s Lemma, we also need T(r), which is

[ x2(e-- 1)] -t"Ts(z) x x xl (e 1)
+ e=-e +e + 7/3 / e /3 e e-(+) + e fl e

Using Corollary 3.2 (as in the proof of Observation 2.2, above), we obtain the Laplace
transforms of the corresponding members of K:

x(e--l)+rl().(.,s, e_(+.) e-s -e-s

1 [ xl(e-s- 1) x2(e--s- 1)
T](S)

l e-(+) t.( + e)(e s) +( e)(-e s)

e-(+t’(e--s- 1)[x,(e--l)+x2(e---l)]]+ (i-- +
The interpolating function would then be T](s)/[g](s).
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ADMISSIBILITY OF UNBOUNDED CONTROL OPERATORS*

GEORGE WEISS-

Abstract. For linear systems described by (t)= Ax(t)+ Bu(t), where A generates a semigroup on the
state space X and B is an unbounded operator, some necessary as well as some sufficient conditions are

given for B to be admissible, i.e., for any t, the state x(t) should be in X and should depend continuously
on the input u

_
LI’. This approach begins with an axiomatic description of such a system in terms of a

functional equation. The results are applied to the wave equation on a bounded interval.

Key words, infinite-dimensional linear systems, unbounded control operators, admissibility,
multipliers

AMS(MOS) subject classifications. 93C25, 93C20

1. Introduction. In this paper we deal with infinite-dimensional linear time-
invariant systems. If we denote by x(t) the state at time of such a system, then the
evolution of x(t) is, in a certain sense, described by the differential equation

(1.1) 2(t) Ax( t) + Bu( t).

Here x(t)c X, the Banach space X being the state space, u(t)c U, the Banach space
U being the input space, and A is the generator of a strongly continuous semigroup
q]- on X. The input function u(. is assumed to be locally Lp for some p e [1, m].

Our interest will focus on the linear operator B, the control operator of the system.
B is called bounded if it is a bounded operator from U to X, and unbounded if it is
a bounded operator from U to some larger Banach space V,

XV,

but not from U to X. (This terminology may seem strange but it is now generally
agreed upon.)

Unbounded control operators appear naturally, for example, when we model
boundary or point control for systems described by linear PDE’s. There is extensive
literature dealing with systems having unbounded control operators, for example,
Curtain and Pritchard [4, Chap. 8], Curtain and Salamon [5], Desch, Lasiecka, and
Schappacher [7], Ho and Russell [12], Lasiecka [14], Lasiecka and Triggiani [15]-[17],
Pritchard and Wirth [23], Russell [25], Salamon [26]-[29], and Washburn [30].

Here we address the following problems: which operators B should be accepted
as "legitimate," and how to recognize them. We want to make those points somewhat
more precise.

Assume that X is dense in V and the semigroup q]- has a continuous extension
to V (denoted by the same symbol). This assumption might seem artificial at this stage
but we shall see later that it is a consequence of natural assumptions about the system
we want to model by (1.1). By a solution x(. of (1.1), for initial conditions given at,
say, 0, we mean the function defined for -> 0 by the variation of parameters formula

Io’(1.2) x(t) ql-ix(0) + q]-,_Bu(o.) do’.
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For the formula above to define an X-valued function, the integral in (1.2) must
be in the state space X, despite the fact that what we integrate is in V. If that is indeed
the case, for any >= 0 and any p-integrable U-valued function u(. on [0, t], then we
say that for the given semigroup -[I-, the control operator B is admissible.

Admissible control operators that yield (through (1.2)) the same solution x(.),
for any given x(0) and u(. ), will be identified.

We shall show that, given the state space X and the semigroup T on X, there is
a Banach space X_l, the same for all admissible control operators B (for various U
and p) such that X is dense in X_, 21- has a continuous extension to X_, and B is
a bounded operator from U to X_ (see 3).

However, even for fixed U and p, there is generally no Banach space V with the
property that B is admissible if and only if it belongs to ( U, V) (the space of bounded
operators from U to V) (see 5).

Example 1.1. Consider the wave equation on [0, r], without input for the time
being:

0 02

b(O, t) (Tr, t) O,

0

The weak solution , as a function of ’, is supposed to be absolutely continuous and
to have its ’-derivative in Lr[0, r], for a given r [1, oo). For that, the initial data
and t) have to be given accordingly.

To translate these equations into the semigroup language, let us denote

w’r[o, ,-t’l’] { x AC [0, r] - x gr[o, 7r], x(O) x(’rt’) 0

w2’r[o, 37’] {X AC [0,
d
xAC[0, r],-xLr[0, r]

AC means "absolutely continuous." We consider these spaces equipped with their
usual Lr-type norms. Introducing the state variable and state space

x(t ( t))t)
x=x,

L

we have

2( t) Ax( t),

where

) W2’"rhW"0 I
D(A) XA

d2/d2 0 w,’

and A generates a contraction group on X.
We take the simplest input space, U =R, and pc [1, oo]. A bounded control

operator B may be identified with an element b X, having components b and b2.
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The corresponding partial differential equation is

02 02 0

ate d(, t) =- q(sr, -)+ bl()-- u(t)+ bz()u(t).

Concerning unbounded control operators for the above semigroup, we shall prove the
following. The admissible control operators B are the image through a certain isomorph-
ism of those periodic distributions on [0, 27r] whose Fourier coefficients are in the
space of multipliers (L, Lr). Like the bounded control operators, the unbounded ones
have two components bl and be that are both distributions on [0, 7r], so the PDE above
is satisfied in a certain distributional sense.

We outline the contents of the following sections. In 2 and 3 we derive a general
necesary condition for B to be admissible (in fact, we do more than that). Our
approach is the following. Suppose B is admissible and define for t_->0 and u
([0, ), u)

Io(1.3) cI) u "]]- t--o-Bu (or) do’.

Then = (cb,),o is a family of bounded linear operators from LP([0, c), U) to X.
(Clearly , depends only on the restriction of u to [0, t] but we want to avoid the
unnecessary complications that would arise if the domain of , depended on t.)

The semigroup and the family satisfy a natural functional equation (see (2.1))
called the composition property (Kalman, Falb, and Arbib [13, p. 6]). We define an
abstract linear control system as a pair (T, ), where T is a strongly continuous
semigroup and is a family of operators such that the composition property holds.
Clearly (1.1), if B is admissible, defines an abstract linear control system via (1.3).
The latter is a simple and natural concept in whose definition no mention of unbounded
operators is needed. In 2 we derive some properties of such systems which will be
needed later.

In 3 we prove a representation theorem stating that for p < oo any abstract linear
control system is described by (1.1), with B admissible, and moreover B ( U, X_),
where X_I is a certain extension of X depending only on . The necessary condition
B ( U, X_I) may be regarded as an upper limit for "how unbounded" an admissible
B may be.

In 4 we introduce the Banach space of admissible control operators B for given
U, X, q]-, and p, denoted 3p, determine 3 for reflexive X, and give necessary and
sufficient conditions for B Y3p in the case of invertible semigroups.

In 5 we first deal with the periodic left shift semigroup on Lr[0, 27r], describing
Y3p in terms of multipliers. Then we turn to the controlled wave equation of Example
1.1 which is closely related to the controlled periodic left shift.

Some of the abstract machinery developed in 2-4 of this paper has already
been used (see Weiss [31]). For admissible unbounded observation operators, see
Weiss 32].

2. Abstract linear control systems. We begin by giving the formal definition of an
abstract linear control system, as announced in 1. For that we need the notion of
concatenation on f U’([0, ), U), where U is a Banach space.

Let u, v f and let r_>- 0. Then the r-concatenation of u and v, u v f, is given

by

v(t r) for _-> r.
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Recall that we work with f because we want to define our system as receiving
U-valued locally p-integrable input functions, and any segment of such an input
function can be thought of as the restriction to a bounded interval of an element of f.

DEFiNiTiON 2.1. Let U and X be Banach spaces, p 1, oo] and f Lp ([0, oo), U).
An abstract linear control system on X and f is a pair

where ]1- (-,),->_-o is a strongly continuous semigroup on X and (,),o is a family
of bounded operators from f/to X such that

(2.1) +,(u9 v)
for any u, v e 11 and any r, _-> 0.

The functional equation (2.1) is called the composition property. The operators
are called input maps.

Remark 2.2. Taking r 0 in (2.1) we get o 0, whence, taking now only
in (2.1), we get that is causal, i.e., for any r_>-0

(2.2) P,

where P is the projection of f/onto LP([0, v’], U) defined by

Pu=uOO.

In practice, an abstract linear control system can be given in the form (1.1) and
(1.2) (the "semigroup formulation") as in Curtain and Pritchard [4], or as a boundary
control system (i.e., described by a nonhomogeneous boundary value problem), as in
Lions and Magenes [20], Russell [25], or as a neutral functional differential equation,
as in Salamon [26]. The system can also be modeled using a strongly continuous cosine
operator, as in Lasiecka and Triggiani 15]. The problem of translation of the boundary
value formulation into the semigroup formulation is discussed in Curtain [3], Curtain
and Salamon [5], Desch, Lasiecka, and Schappacher [7], Fattorini 11 ], and Washburn
[30]. For an abstract and very general treatment of when and how this translation is
possible, see Salamon [27] or [28].

PROPOSITION 2.3. Let X and f be as in Definition 2.1 with p < oo and let (-, )
be an abstract linear control system on X and f. Then the function

q(t, u) OP,u

is continuous on the product [0, oo) x 11, in particular (oo,),>__o is a strongly continuous

family of operators.
Proof Taking in (2.1) u 0 and taking the supremum for v II- we get, denoting

T=r+t,

(2.3) II@,l[--<_ II@rll for t--<_ T,

i.e., [[@,[[ is nondecreasing.
Let us first prove the continuity of q(t, u) with respect to the time t, so for the

time being let u e be fixed and let

f(t)

Inequality (2.3) together with causality (2.2) implies that for e [0, 1]
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Obviously I]P,ull-o for t->O (because of p <oo), so

limf(t) =0.
t0

The right continuity off in any z > 0 now follows easily from the composition property
(2.1). To prove the left continuity offin z>0 we take a sequence (en) with en [0, z]
and end0 and define un(t)=u(e+t), so unf and unu (because of p<oc).
We have

so according to (2.1)

From here

which yields

u _,,u M. ][f(s. )11 + I1 II" u u

where M is a bound for IIr,II on [0, ]. Thus the eft continuity of f in any z > 0 is
also proved.

The joint continuity of ( follows easily now from the decomposition

,v-u ,(v- u) + (,-)u

where t, v) - (z, u).
PROBLEM 2.4. In the above proof we have twice used the fact that p < oo. do

not know if the proposition holds for p
We give an estimate for the growth rate of
PROPOSITION 2.5. Let X and t be as in Definition 2.1 and let (-lY, ap) be an abstract

linear control system on X and .
IfM >= 1 and to > 0 are such that

then there is some L >-0 such that

(2.4)

Vt->O,

I]*,llge’ Vto.

Proof From (2.1) we get through induction

whence for t (n-1, n] (using (2.3))

I1", --< I1" -<- (11 r_, / T._ /"" / I II) (I)

e
<=Meo_l

so we can take

e
L MI1", II.
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Remark 2.6. For to 0, does not have to be uniformly bounded but we can
easily obtain from (2.4), using the Cauchy-H61der inequality, that

II,ll<-_L. ( + t) ’-/ vt_->o,

for some L >_-0. For to < 0, is uniformly bounded.
Remark 2.7. Let Loc([0, oo), U). Concatenation and the projections P have

obvious extensions to f. f is a Fr6chet space with the family of seminorms p,,(u)=
IIP.ull, n . Any family of input maps q defined on 12 can be extended to by
continuity, which is the same as using formula (2.2) as a definition.

3. The representation theorem.
DEFINITION 3.1. Let X be a Banach space and ql- a strongly continuous semigroup

on X with generator A:D(A)- X. Let/3 p(A), the resolvent set of A (if X is real,
take/3 ). We define the space X1 to be D(A) with the norm

and the space X_I to be the completion of X with respect to the norm

Ilxll_,--II(i-m)-lxll.

Remark 3.2. It is easy to verify that for any different/31 p(A) instead of/3 we
get equivalent norms I[" II, and I1 I1-, (so x_, does not depend on/3). In particular,

I1 is equivalent to the graph norm on D(A), so X is complete.
The spaces X, X_ appear, for example, in Nagel [21, p. 19] and Da Prato [6].

If X is reflexive then X_I can be defined equivalently as the dual of (X*), where
(X*) D(A*) with the graph norm. In this setting, X and X_I are investigated in
Salamon [26] and also appear in Salamon [27]-[29], Lasiecka and Triggiani [17].

PROPOSITION 3.3. With the notation of Definition 3.1, let p(A) (if X is real,
take tz ). Then the operator

R (tzI A)-
has a (unique) continuous extension to an operator in 5(X_), which we denote by the
same symbol. R is an isomorphism from X-1 to X and from X to X1.

IfL (X) commutes with A, i.e., if
LAx ALx Vx D(A),

then the restriction of L to X belongs to (X) and is the image of L via any of the
isomorphisms R,. Further, L has a (unique) continuous extension to an operator in
(X_t), which is the image of L via any of the isomorphisms R- 1.

Proof The fact that R, is an isomorphism from X-1 to X and from X to X1
follows from Remark 3.2. The properties of L follow from the identities

Lx RLR-,lx Vx D(A),

Lx R/ILRx Vx X.

Remark 3.4. Taking L=g,, t=>0, we get from Proposition 3.3 that 7 has a
restriction to a semigroup on X whose generator is the restriction of A to D(A) and
7 has an extension to a semigroup on X_ whose generator is an extension of A, with
domain X. Thus

A(X1,X) and A(X,X_I).
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DEFINITION 3.5. Let X be a Banach space, let be a semigroup on X with
generator A, and let

f Loc([O, oo), X_,).

Then we say that the function

x(. )e Loc([O, ), X)

is a strong solution of the differential equation

(3.1) (t) Ax(t) +f(t)

if for any t_->O

x(t)-x(O) {Ax(s)+f(s)] ds.

If additionally, x(. is continuous in X, i.e., if

x( e c([o, oo), x),

then we say that x(. is a continuous state strong solution of the differential equation
above.

Our definition of strong solution follows that of Pazy [22, p. 109], if we replace
X_l by X and X by X1. (His Definition 2.8 is slightly flawed; we must add an absolute
continuity condition.) What we call a continuous state strong Solution is called simply
a solution by Salamon [26] (his Definition 3.3).

Remark 3.6. It is obvious that, as an X_l-valued function, any strong solution of
(3.1) is absolutely continuous and almost everywhere differentiable. However, since
as an X-valued function it is only defined almost everywhere, it might happen that on
a null set x(t): X. For example, suppose X is a Hilbert space, is analytic, and
fe Loc([0, ), X_1). Then for any initial condition x(0) Xo, (3.1) has a strong solution
x(.) e Loc([0, o), X) (see Lions and Magenes [20, Vol. II, p. 22] or Lasiecka
[14, p. 325]). However, this strong solution might blow up in finite time with respect
to the norm of X (see, for example, Lions [19, p. 202]).

Remark 3.7. In Definition 3.5, the condition

x(. L/oc([O, oo), X)

is equivalent to

Ax( Loo([O, oo),

and to

(" Loc({O, oo),

If 0 p(A), then this is obvious, A being an isomorphism from X to X_. If A
is not invertible, then to prove the equivalence we must take some A p(A), replace
x(t) by y(t)= e-A’x(t), and do some simple computations.

Remark 3.8. In the conditions of Definition 3.5, if (3.1) has some strong solution,
then for any Xo e X it has a unique strong solution with x(0)= Xo and that is given by
the variation of parameters formula (see (1.2) with f= Bu).

To prove this statement it is most convenient to introduce the space X_z, which
is obtained from X_ in the same way as X_I is obtained from X. When we take
as our new state space and X_2 as our new extended space, it is clear that any strong
solution in X is a continuous state strong solution in X_I. For continuous state strong
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solutions, we can easily prove the statement by slightly adjusting a proof in Pazy
[22, p. 105].

Now we can state the representation theorem.
THEOREM 3.9. Let U and X be Banach spaces, let pc[l, oo), and let 1)=

LP([0, oo), U). Let (, do) be an abstract linear control system on X and . Then there
is a unique operator B ( U, X_) such that for any u and any >= 0

(3.2) ,u -,_,,Bu(r)

Moreover, for any Xo X and u the function of >= 0
(3.3) x( t) - ,Xo + OP ,u

is the (unique) continuous state strong solution of the differential equation

2(t)=ax(t)+Bu(t)(3.4)

with

x(O) Xo.

Proof For any v e U let us denote by Wv the constant function on [0, oo) equal to
v everywhere. Then coy belongs to the space (see Remark 2.7) and so

v()

is a well-defined function from [0, oo) to X. Proposition 2.3 and causality (2.2) imply
that &v(" is continuous. Using again causality (2.2) and the fact that
we get from Proposition 2.5 that for suitable o > 0,

lO(t)l L e’ t’/llvll.
It follows that for s C with Re s sufficiently big, the Laplace transform v(S) of v
is well defined.

The composition property (2.1), in the particular case of the input Wv, means that
for any t,r0

v( + ) ,v() + v(t).

Applying the Laplace transformation with respect to t, we get

e.’(s)-e e-’Ov(t dt=(sI-A)-lv(7)+(s),

or, rearranging and assuming r > 0, we have

es- 1 e f&v(S) e-"’&v(t) dt+(sI-A)-’ v().

Taking the limit for r 0 (with respect to the norm of X) and using the continuity of
Ov and the fact that v(0)= 0 (Remark 2.2), we get

(3.5) Sv(S) lim (sI-A)-’ Ov(r),
r0 g

in particular the limit on the right-hand side exists. Since (sI-A)- is an isomorphism
from X_ to X (Proposition 3.3), it follows that with respect to the norm ofX_ the limit

()
(3.6) By= lim

r0 T
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exists and defines a linear operator from U to X_. We can rewrite (3.5) in the form

(.7) (s) =1 (si_A)_Bv,
S

which shows ((sl-A)- being an isomorphism) that

(u,x_,).

The Laplace transformation being one-to-one on the space of continuous, exponentially
bounded functions, (3.7) implies that

(3.8) 6v(t) r,Bv do-.

Next we show that if u is a step function, then (3.2) holds. We proceed by
induction after the number n of bounded intervals on which u is constant (which are
of course followed by an unbounded interval on which u(t)= 0). For n 1 we already
know that the statement is true (see (3.8)). Suppose we know it is true for some n
and let u be constant on n + 1 bounded intervals, the last of these being [-, T).
Let u(t)=u(’+t), so u=uO u. We have for t-> (see (2.1))

,u -,_u+,_u

-,_..Bu(r) dcr + -,__Bu(’+ or) d

,_,Bu() d.

Thus we have proved (3.2) for any step function. The step functions being dense
in (recall that we have assumed p < ), it follows that (3.2) is true for any u

The uniqueness of the operator B for which (3.2) holds is obvious.
Let us prove that x(.) given by (3.3) is the continuous state strong solution of

(3.4) with x(0)= Xo. Using

Xo Xo AXo ds

the integral equation that x(. must verify (see efinition 3.5) reduces to

,u A,u ds + Bu (s) ds,

which is verified by an easy computation using the representation (3.2).
The fact that x(. ) C([0, ), X) follows from Proposition 2.3. For uniqueness

see Remark 3.8.
POM 3.10. How much of Theorem 3.9 remains valid for p
Remark 3.11. Salamon [28] has proved a representation theorem that partly

overlaps our Theorem 3.9. It concerns systems that have input, state, and output (as
opposed to our theorem, which considers only input and state). The part of Salamon’s
representation theorem that concerns the relationship between input and state is
somewhat less general than our Theorem 3.9 in that X and U are assumed to be
Hilbert spaces and p 2. Further, the continuity of the state x(t) as a function of the
time is assumed from the outset. Salamon’s technique of proof is different from ours.
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We mention another representation theorem which appears in Desch, Lasiecka,
and Schappacher [7, p. 194]. There, it is proved that the solution of a well-posed initial
boundary value problem is given by a formula equivalent to (1.2) of our paper.

Remark 3.12. It follows from Proposition 2.5 that for any u f, H,u has a Laplace
transform H.u. Using the representation (3.2) for p < oo we get that

,u (sI- A)-’ Bt(s).

Remark 3.13. In the Introduction we have given a definition of admissible control
operators. According to that definition, we can say that Theorem 3.9 yields a necessary
condition for admissibility of B, namely B ( U, X_). However, in the definition of
admissibility, which we give at the beginning of 4, we cut things short by demanding
from the beginning B ( U, X_), which makes the formulation easier.

Remark 3.14. If we assume from the outset that the system is modeled by (1.2),
where X c V with continuous and dense embedding, B ( U, V), 3- has a continuous
extension to V and A has a continuous extension to an operator in (X, V), then the
necessary condition B ( U, X_) can be obtained directly from the identity

Bv 3-,Bv dt A 3-_,Bvt dt,

valid for any v U (proof by continuity, approximating Bv by elements of D(A)). No
reference to Theorem 3.9 is needed.

4. Spaces of admissible control operators. It is natural to ask whether the converse
of Theorem 3.9 is true. More precisely, the problem is as follows. Let U and X be
Banach spaces, p [1, ) and 1 LP([0, ), U). Any abstract linear control system
(3-, H) is, according to Theorem 3.9, completely determined by the pair (A, B), where
A generates 3- and B ( U, X_). However, as we shall see, not any such pair generates
an abstract linear control system. This fact motivates the following definition.

DEFINITION 4.1. Let U and X be Banach spaces, let pc[l, oo], and let f
Lp ([0, oo), U). Let -[I- be a strongly continuous semigroup on X and let B 5( U, X_).
For any -> 0 we define the operator H D. --> X_ by

(4.1) H,u 3-,_Bu(o-) do’.

Then we say that B is p-admissible for 3- if for any => 0, H, (f, X).
It is easy to see that B is p-admissible if and only if the corresponding families

of operators (3-, H) are an abstract linear control system on X and f (see Definition
2.1). For p < oo this is further equivalent with the fact that for any u f the differential
equation (1.1) has a continuous state strong solution (see Definition 3.5). Ifthe exponent
p is clear from the context, we simply say that B is admissible.

Hypotheses equivalent to p-admissibility have appeared several times in the
literature. For example, in Salamon [26] this condition is called hypothesis H2; in
Salamon [29], $2; in Curtain and Salamon [5], HI; in Pritchard and Townley [24],
A6. In Dolecki and Russell [9] and Ho and Russell [12] the condition appears in a
dual form, essentially expressing that H,* is bounded. The following simple proposition
permits us to relax the condition posed on B in Definition 4.1.
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PROPOSITION 4.2. Let U, X, p, , and q[ be as in Definition 4.1, let B 5( U, X_),
and let t be given by (4.1). Iffor some fixed T > 0 and any u

uX,

then B is admissible.

Proof. With the notation of Proposition 3.3, let Bo RB. Then Bo ( U, X) and
we have

TU=(I--A) TT-Bou() d,

which shows that is closed. By the closed graph theorem T is bounded.
By (2.3) (see the proof of Proposition 2.3), , is bounded for all The identity

(2.4) (see the proof of Proposition 2.5), with rescaling, implies that if , is bounded
for some t, it is bounded for all multiples of t. Therefore is bounded for all

For invertible semigroups, Proposition 4.2 admits the following strengthening,
which is useful in applications.

PROPOSITION 4.3. Let U, X, p, , and be as in Definition 4.1, let B ( U, X_),
and let be given by (4.1). If is invertible and iffor some fixed T > 0 and any u

{t T[u X} ,
then B is admissible.

Proof If B is not admissible, by Proposition 4.2, for any T> 0, we can find a
v such thatvX. Let u be equal to v on [0, T], and zero for t> T; then
,uX for any t Z

Later we will prove a nontrivial strengthening of this proposition for the case
p < (see Theorem 4.12). For semigroups that are not invertible, Proposition 4.3 is
generally false (see Remark 3.6).

Remark 4.4. It happens that for certain A and B we can prove that for any u
(1.1) has a strong solution x(.) (see Definition 3.5), so x(.)Loc([0,),X), in
particular x(t) is almost everywhere in X. If is invertible then Proposition 4.3 implies
that B is admissible. In particular, if p < then, by Proposition 2.3, x(. is continuous.

In other words, for invertible, p < , and x(. given by (1.2), we have

x(. Loc([0, ), X) x(. C([0, ), X).

There are some other techniques to lift regularity from Lo to C (see Lasiecka and
Triggiani [16] and Lasiecka, Lions, and Triggiani [18]).

DEFYVOY 4.5. Let U, X, p, and be as in Definition 4.1. The space p( U, X,
is the vector space of all p-admissible control operators B for the given U, X, and
with the norm

(4.2) IIIBl[ sup TT_Bu() d

where T> 0 is fixed (see Remark 4.6 below).
We use the notation Ill" Ill (with three bars)to avoid confusion with the norm of U

as an element of( U, X_). When U is just Y{, the field ofthe scalars ( orC), we denote

G(x, v) (, x, v).

We usually write and 6, without the arguments, when there is no danger of
confusion. An operator from the scalars Y{ to a space will always be identified with
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an element of that space; in particular, elements of 6p will be identified with elements
of X_I.

Remark 4.6. It is easy to verify, using (2.3) and (2.4), that for any different T1 > 0
instead of T in (4.2) we get an equivalent norm and, using the representation theorem
(Theorem 3.9), that N, is complete for p < oe (for p oe, I do not know).

Remark 4.7. The following inclusions are immediate:

e( U, X) e( U, X_,), X p X_,

(4.3) p, c Np2 for Pl <- P2,

all with continuous embedding. Further, it is clear that a necessary condition for B Np
is that the range of B satisfies

(4.4) Ran B p
(this condition is not sufficient; see 5).

It now seems plausible that Y3p can be obtained as the completion of (U, X)
with respect to [11" II1 . But we shall see in 5 that this is not the case.

There is one case when the determination of Ne is very easy, namely when p 1
and X is reflexive.

THEOREM 4.8. Let U, X, and - be as in Definition 4.1 and suppose X is reflexive.
Then , e(u, x).

Proof. It will be enough to show that

(4.5)

Indeed, if (4.5) holds, then by (4.4) we have for any B N1 that Ran B X, and by
the closed graph theorem, B (U, X).

So let b and let the operator 4 :L[0, ]- X_I be given by

(4.6) Ov -bv(o’) do.

Because 4 is obtained from 1 by a change of variable in the integration, we have
that, in fact, b e (L1, X). X, being reflexive, has the Radon-Nikodym property (see
Diestel and Uhl [8, pp. 76, 82]), so 4 is representable (see [8, p. 63], i.e., there is some
g L([0, 1],X) such that for any v L

When we compare the above equality with (4.6) it follows that g(o’)=b (a.e.),
i.e., b L([0, 1], X) (but we do not know yet if b X for all o-, in particular,
for o" =0). From the identity

-I b Al fo -.bdo"

we get that for all t (0, 1]

b IIAII" IlglJ
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(by [[A[I we mean the (X, X_,) norm). By a theorem in Butzer and Berens [2,
p. 88], b is in the domain of the generator of the semigroup ql- acting on X_a, i.e.,
b X (see Remark 3.4).

Remark 4.9. In the above proof, once we have established that ql-b is essentially
bounded in X we could have alternatively used a lemma in Lions and Magenes
[20, Vol. I, p. 275] to get the final result.

The above theorem is not true for general X, as we shall see in 5.
Next we show that if a control operator is not admissible, then the state trajectory

can be driven out of the state space using a smooth input on an arbitrarily short
time-interval.

PROPOSITION 4.10. Let U, X, p, and - be as in Definition 4.1, with p< o. Let
B ( U, X_l) not be p-admissible. Then for any T> 0 there is a function u LP[O, T]
such that u is of class C on [0, T) and

(4.7) T_Bu() d X.

Proof Let T> 0. Consider the Fr6chet space

F L[0, r] C[0, T),

with the topology given by the increasing family of norms

q,(u) Itull+ sup
k=0 t[O,(1-(1/n))T]

where n . Let denote the operator from LP[0, T] to X_ defined by the left-hand
side of (4.7). We have to show thatF is not contained in X. Suppose the contrary,
then by the closed graph theorem (F,X), i.e., there is some n and some
K 0 such that

IITull g. q,(u) u F.

In paicular, for functions u F the suppo of which is contained in (( 1 (1 / n)) T, T),
we have q, (u) u , so for such u

r_Bu() d K. Ilull,.
1--(1/n))T

Making the change of variable =(1-(1/n))T+ s, we get that for any v C(O, T/n)

By the density of C in Lp (it is here that we need that p <) we get that B p, a
contradiction.

Now we give a necessary and sufficient condition for admissibility in the case
when the semigroup is inveible. For that, we need the following remark concerning
groups.

Remark 4.11. If the semigroup acting on X is inveible, then for any (input)
Banach space U and any p [1, ], the admissible control operators for
are the same, i.e.,

.(u,x,v)=.(u,x,v-’).
The proof is very simple, by a change of variable.
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THEOREM 4.12. Let U, X, p, f, and - be as in Definition 4.1, with p < , let
B ( U, X_) and let I be given by (4.1). If - is invertible and iffor any u

(4.8) {t>O],uX},
then B is admissible.

Proof Suppose B is not admissible. Then it is not admissible for -g-- either (see
Remark 4.11), so by Proposition 4.10 there is some v LP[O, 1171 C[0, 1) for which
z X, where

Let

z --(Bv(O.) do’.

u(s)={ v(1-s)O for

for s[0,1],s>l.
Then U -- Z, SO (I)1 U I X. For any > 0 we have

di) U -[ t_rBU o" do" + -l t_ ) u.

The first term on the right-hand side is in X (by the smoothness of u), but the second
is not. It follows that ,u X, so condition (4.8) is not satisfied.

I do not know if Theorem 4.12 remains true for p
Remark 4.13. In the conditions of Theorem 4.12, if B is not admissible, then for

any T> 0 there is an LP-function with support in [0, T], of class C on (0, oe), such
that ,u X for any > 0. To see that, we must multiply the function u constructed
in the last proof by an appropriate cutoff function.

5. The wave equation on [0, ’]. To deal with the controlled wave equation of
Example 1.1, it will be helpful to analyse the periodic left-shift semigroup on [0, 2r]
first. We introduce some notation.

We shall denote by C the Fr6chet space of infinitely differentiable functions on
the circle group /2r7/(periodic test functions). Following Edwards [10, Vol. II, p. 52],
we shall denote by D the space of periodic distributions on [0, 2r], the dual of C.
For s 7/ and r [1, oe), W, will denote the periodic Sobolev space of order s and
type r on [0,, 2r], which we define as the space of those q D for which the Fourier
transform (Ok) (which is a sequence over 7/) satisfies

(1 + ik)k k,

where i= v/-Z-1 and q Lr[0, 2r]. For such we set

For r 2 that becomes the more familiar

1[011 ,2- II(1 / k2)S/2k[[,2.
It is easy to prove, using propositions in Edwards [10, Vol. I, pp. 56, 114], that

W, is decreasing with increasing s. It follows that for s > 0, W, contains exactly
those 0 D for which q, 0’,""", 0() are all in gr[o, 2-n-].

Since the trigonometric polynomials are dense in Lr[O, 2"n-], it follows that they
Wp. In particular, for s < 0, W; can be thought of as theare dense in all the spaces ’

completion of Wr= Lr[O, 2r] with respect to the norm I1" Its,
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For any combination of indices 1 _-< p, r _-< oo, (Lp, Lr) will denote the corresponding
space of Fourier multipliers. The elements of (Lp, Lr) are functions/3" Z - C, for which
the map q -* q, q3g fig. qg, is a bounded linear operator from LP[O, 2r] to Lr[O, 2"n’].
The norm of/3 is the norm of this operator. For more on multipliers see, for example,
Edwards 10, Vol. II, Chap. 16].

Example 5.1. Let 1-<_ r < oo. Let S be the semigroup of periodic left shifts on
Z Lr[O, 2r], i.e.,

(S,z)()=z(+t-k’2r) for k.2r<_-’+t<(k+l) .2r., the generator of S, is given by

D(M) w, (z)() z’().
The eigenvalues of are ik, k 7/, and the corresponding eigenfunctions are e ikc, so
S can be expressed in terms of Fourier series by

(S,z) e z.
It is easy to check that for this semigroup Z-1 W,’r.

We want to determine the space p(Z, S) of admissible control operators for scalar
LP-inputs.

PROPOSITION 5.2. For the semigroup above and for any index p with 1 <-_ p <-_ oo, we
have

vCZ, S)= {be DIt+ (L, Lr)},

IIIblll- 27r. IItll<",
Proof. First we prove that

{bDIfCLP, Lr)}c Z_,.

Let b be in the set on the left-hand side above. Then obviously/ . It follows that
for any , (1, 2], (1 + ik) -lk ’. By the Hausdorff-Young Theorem (Edwards
[10, Vol. II, p. 153]) we get that (l+ik)-k=k, where L[0,2r] for any
[2, oo), and hence for any/ [1, oo). In particular, U[0, 2r] Z, so b Wol’= Z_1.

Next we take b Z_I. It is easy to check that for any u LP[0, 2-],

(5.1) z= S2=_,bu(o-) do if[ k 2r/g.

Using Proposition 4.2 with T 2r, we bet that b p(Z, S) if and only if f (Lv, Lr).
Moreover, choosing T= 2r in the definition of II1"111,

Illblllp= sup IlZllL,, =2+rllll<,,,c.).
Ilull,.,,=

Generally, it is not easy to describe the spaces (Lp, Lr), but there are cases when
it is. One such case is r<=2<=p. Then(L’,U)=l (see Edwards [10, Vol. II, p. 301]).
Periodic distributions b for which b + are called pseudomeasures and following
Edwards [10, Vol. II, p. 108], we shall denote their space by P. The norm on P is
b t;ll ,+, so we have for r _-< 2 _-< p,

6nCZ, S) P,

with equivalent norms.
The completion of Z with respect to.Ill, , still considering r =< 2 =< p, is the space

of periodic distributions b for which b Co, where Co is the space of sequences
convergent to zero for Ikl . But this is only a closed subspace of P. Therefore we
have the following.
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NEGATIVE RESULT 5.3. The state space Z may be a nondense subspace of p(Z, S).
In other words, in the space p(Z, S), admissible unbounded control operators cannot
always be approximated by bounded ones.

NEGATIVE RESULT 5.4. If Z is not reflexive, 61(Z, S) may contain unbounded
elements (i.e., which are not in Z) (cf. Theorem 4.8).

That can be seen taking p r 1 in Proposition 5.2. Indeed, (L1, L) consists of
the Fourier transforms of elements of M, the space of regular bounded Borel measures
("Radon measures") on [0, 2r) (see Edwards [10, Vol. II, pp. 53,289]). Hence
I(Z, S) M, which contains L[0, 2r] strictly.

We give a negative result concerning reachability.
NEGATIVE RESULT 5.5. It is possible to have elements z Z that are completely

unreachable. By that we mean

ioz S,_bu(o") do"

for any > 0, any b dp(Z, S) and any u LP[O, t].
Indeed, consider the case r<=2<=p in Example 5.1. Then, as we have seen,

(Z,S)= P, which is independent of r and p. Therefore the reachable states are
contained in the smallest of the state spaces for the various r-< 2, namely in L2[0, 2wr].
If r<2, the state space Z Lr[0,2r] is larger than that and therefore contains
completely unreachable elements.

We mention that for r= 2, all elements of Z are reachable, for any p [2, oe).
Indeed, for any given z L2[0, 2r] and p [2, oe), we can choose b P with /k +1
and u LP[0, 2r] such that ffk 2r/k" . That follows from a theorem in Edwards
[10, Vol. II, p. 220], about changing signs of Fourier coefficients. According to (5.1),
z is reachable.

The equality

(5.2) ( u, z, s) e( u, G(z, s))

is true for finite-dimensional U, and simple reasoning shows that if the equality
p( U, Z, S) ( U, V) holds for some p [1, oo] and some Banach spaces U and V,
then V p(Z, S). However, we have the following negative result, already mentioned
in the Introduction.

NEGATIVE RESULT 5.6. The representation (5.2) does not hold in general.
Indeed, take r=p=2, U=2(Z,S)={bD])I}, and B=I (the identity on

U). Let Uo U\Z with o Co. Then u(t)= S,uo is a continuous U-valued function and

’
S2_,Bu(o") 2wr" Uo,do-=

so B is not admissible.
Now we turn to the controlled one-dimensional wave equation. The notation

X, A, r, r, p, W’r, W2’ will have the same meaning as in Example 1.1. In addition,
the notation of Example 5.1 still holds. We want to determine the space p(X, ) of
admissible one-dimensional control operators.

Using an isomorphism, we shall reduce this problem to that discussed in Example
5.1, with the minor ditterence that the coefficient with index k=0 in all Fourier
:ransforms must be set to zero. Let

D:{O6DIfo:0}.
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The spaces

Z= Z f-1D, Z_ Z_ CI DO

are closed subspaces of Z and Z_, respectively. Let the isomorphism H:Z- X be
given by

+
z()- z(2- )

The operator H- is given by

’,() + x2()] for [0, ],(H-lx)()= [x(2-)-xz(2-)] for (,2].
The image of through H-- is the semigroup S on Z generated by

o H-AH d/ d,
D()= H-1D(A)= D()D.

Hence S is the restriction of S to Z, i.e., the periodic leh-shih semigroup on Z.
Intuitively, the restriction of z to [0, ] represents the left-bound component of xe and
the restriction of z to , 2] represents the right-bound component of xe, with opposite
sign and reversed. The eigenvectors of A are

H e 2i
sin k for k {0}.

sin k(

Since (sI-o)- H-(si_ A)-H, the operator H can be extended (uniquely) to an
isomorphism from Z to X_, still denoted H.

We get the general characterization

(5.3) p(X, $) H#p(Z, S) H{fi DI (L, Lr)}.
For example, for r N 2 N p,

(x, )= H{ ol }.
We give a more concrete description of the operator H appearing in (5.3), defined

only as a (hard to visualize) continuous extension. For this we need some notation.
For periodic test functions C we shall denote ()

denotes the distribution defined by (, )=(, ). A distribution D is called
antisymmetric if =-. The antisymmetric elements of D form a closed subspace of
D, which we denote Da.

We introduce the test function space

= C[0,] p(0)=p()=0, fork=0,2,4,...

with the topology of uniform convergence of all derivatives. Any has a (unique)
antisymmetric extension to [0, 2], denoted Aext , which is an element of C. The
operator Aext is an isomorphism from onto the antisymmetric part of C.

Any 0 D has a natural restriction to [0, ], denoted Rest 0, which is an element
of ’, the dual of . Rest 0 is defined by

{, Rest

If the distribution 0 is represented by an integrable function, then Rest 0, as defined
above, coincides with the usual restriction. The operator Rest is an isomorphism from
D onto ’.
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On D, as opposed to D, we can integrate distributions freely. That means that
for any 0 D there is a unique 0, DO such that 0 0. We shall write 0, 0.

We define the isomorphism H," DO DA DA by

It is easy to check that for any z Z

Hz Rest H1 z.

Since Rest H is an isomorphism from D onto @’x @’, the formula above must also
hold for elements z in the extended space Z_.

We give now a more concrete description of X_,.
On @, the operator d/d makes no sense, but d2/d2 is well defined and even

invertible. By duality, this operator can be defined on @’"

d d

If 0 happens to be twice ditterentiable and q(0)= q,(Tr)--0, then the definition above
coincides with that of the usual second derivative.

If we denote by W-’r[0, 7r] the image of W’r[0, -] through d2/dff:, then

L

X_,= X.
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APPROXIMATIONS AND OPTIMAL CONTROL FOR THE PATHWISE
AVERAGE COST PER UNIT TIME AND DISCOUNTED
PROBLEMS FOR WIDEBAND NOISE-DRIVEN SYSTEMS*

HAROLD J. KUSHNER’

Abstract. The average cost per unit time problem for wide bandwidth noise-driven control systems is

considered, where the average cost is in the pathwise sense; no expectations are used. Let time of control
and BW bandwidth. For the class of processes considered here, various unformity properties are proven
for the convergence of the pathwise average costs as t-->oe, BW->oe. Let u(.) be a smooth 6-optimal
control for the limit controlled diffusion (the limit as BW- ee) for the (mean) average cost per unit time
problem. It is shown that for large enough and BW, u(.) is 26-optimal (with a probability arbitrarily
close to one) for the pathwise wide bandwidth problem. This uniformity is important in applications, for
often there is only one long sequence to control, and the expectation is inappropriate. Also, otherwise, as
BW--> ec, it might take longer and longer to approximate the limit pathwise average cost well. Applications
to related "pathwise average" problems are given: the convergence of the average pathwise errors for an

"approximate" nonlinear filter with wide bandwidth observation and system driving noise, and the conver-

gence and accuracy of Monte Carlo calculations of Lyapunov exponents for wide bandwidth noise-driven
systems (as BW- ec) via average cost/unit time methods. It is also shown for the discounted cost problem
that the optimum pathwise costs converge to the minimum average cost per unit time as both the discount
factor goes to zero and BW

Key words, pathwise average cost per unit time, ergodic control, approximations of ergodic control,
wide band noise driven systems, approximate nonlinear filtering, Lyapunov exponents, discounted cost

AMS(MOS) subject classifications. 93E20, 93E15, 93Ell, 60F17

1. Introduction. Average cost per unit time (over an infinite time horizon) optimal
control problems for diffusion and other Markov models have been dealt with in
various ways, as in, e.g., 1]-[3]. We treat such a problem for ’wideband, noise-driven,"
and related systems, which are "close" to a diffusion, and when the average is in the
pathwise but not necessarily in the mean value sense. The general method wocks for
many other classes of processes that are suitably approximated by an appropriate
controlled Markov process. As is pointed out below and in 4 and 5, the results have
applications to many other problems where pathwise averages are important, and the
noises are "wide band." For example, in 5 we treat the problem where both BW-->
and the discount factor goes to zero.

Let the diffusion model be given in the relaxed control form:

(!.1) dx= b(x, a)mt(dce) dt+o’(x) dw, x Rr, Euclidean r-space

where b(.,.) and or(.) are continuous (other conditions will be listed below) and
rnt(" is an admissible relaxed control [1], [3], [4], over a compact control value space
U. The relaxed control might be of the feedback form. The w(.) is a standard
vector-valued Wiener process, and the dimensions of the vectors b, w, and o- are
compatible.
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DEFINITION. Relaxed Control. Let U be a compact set in some Euclidean space.
Let the w(. in (1.1) be a Wiener process with respect to a filtration {t}. A measure
valued (a measure on the Borel sets of U x[0, c)) random variable m(.) is an
admissible relaxed control if tof(S, a)m(ds da) is progressively measurable for each
bounded and continuous f(. and m([0, t] x U) t, for all _-> 0. If m(. is admissible,
then there is a derivative m,(.) (defined for almost all t) that is nonanticipative and

f(s, a)m(ds da)= ds f(s, a)m(da)

for all with probability one (w.p.1). Sometimes we use the "feedback" relaxed control
(which we write as m.(. )), which is a measure on the Borel sets of U for each x, and
m(B) is Borel-measurable for each Borel B. The m,(. and m(. will also be referred
to as relaxed controls.

In [1], relaxed controls have been used to get nearly optimal controls for several
"wideband" noise-driven systems, and in [3], they have been used cleverly to get an
"occupation measure" for the state-control pair, which ultimately allowed the authors
to demonstrate the existence of an optimal stationary control. These advantages also
occur for the paicular problems described below. In [1] and [2], the cost of concern
is ([2] does not use relaxed controls)

(1.2) (m)=liml IorlT
Ek(x(t), a)mt(da) dt

for a bounded continuous k(. ).
In practice, of course, we do not have a process that is a diffusion, and it is of

considerable interest to consider systems of the following form:

(1.3) 2 j- b(x, a)mt(da)+ F(x, ),
where (. is a wide bandwidth noise process and we wish to minimize the following:

(1.4) (m)=lim
T

Ek(x (t) )m,(d) dr.

For convenience in the development (to simplify the details), we use a process defined
by the scaling (t)= (t/e), where the primitive" process (.) satisfies certain
mixing conditions (one of the four sets (A2.3), (A2.4), (A2.5) or (A2.10) or (A3.2),
(A3.3), (A3.4) or (A3.5) below). This scaling is, in fact, a common way of constructing
a wide bandwidth process, and is also used in [13] and [14]. But it should be clear
from the development that the method is much more generally applicable. Reference
[1] has dealt with a system of type (1.3) (with weak limit of type (1.1)) and cost of
the form (1.2). It has been shown, under the conditions there, that for any > 0, a
smooth -optimal control u for (1.1), (1.2) was also nearly" optimal for (1.3) and
(1.4), for small e in the sense that lim (m)lim (u) -6 for any sequence m.
Such results are helpful in justifying the use of the ideal limit process (1.1) for use in
control theory.

In [3], Borkar and Ghosh have shown the existence of an optimal feedback control
for the diffusion model (under this control the diffusion could be taken to be stationary)
and cost function (1.2), but with the E deleteda pathwise result. This paper is devoted
to a related problem for the model (1.3). Define

(1.5) r(m) == k(x(s), )m(d) ds, (m) lim r(m),
T
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(1.6) y(m) =- k(x(s), a)m(da) ds.

If m(. is equivalent to a classical control function u(.), we write u in lieu of m in
y(m), etc. The "pathwise" convergence result in [3] is of particular importance in
applications, since we often have a single long realization, and then the expectation
is not appropriate in the cost function. The results in [3] (under their conditions) give
the existence of a feedback relaxed control t(. such that

(1.7) y(r)- y=inf.lim y-(m) w.p.1.
T

In our problem here, owing to the wideband noise and the appearance of the two
parameters e and T, convergence results of the "almost sure" type are often rather
meaningless from a practical point of view as well as being nearly impossible to obtain.
They might have little meaning for the following reason. Typically, in an application
we have a particular process with a given wide bandwidth driving force. We are
interested in knowing how well good controls for the "limit" problem do on the actual
"physical" problem as well as various qualitative properties of the "physical" process.
The wide bandwidth driving term is imbedded into a sequence for the purpose of getting
such an approximation result, and "almost sure"-type results might have little practical
importance.

Let u(.) denote a "nice" -optimal classical control ("nice" is defined in the
next section) for model (1.1) and cost function (1.4). Then we wish to show:

P
(1.8a) yr(U)-- /(u) as e-*0,

(1.8b) lim P{yr(m) >= /(u) 6}=

for any sequence of admissible relaxed controls m(.). Since the time derivative of
y)(m) is O(1/T) uniformly in e,m, oo, the convergence is somewhat stronger than
indicated by (1.8). Equation (1.8b) implies a type of uniformity of convergence, since
the way that e- 0 and T- oe is not important. Were this "uniformity" not the case,
it would be possible that as e - 0, a larger and larger T is needed to closely approximate
the limit value. In that case, the white noise limit (1.1) would not be useful for predictive
or control purposes when the true model is (1.3).

In 2, we list several assumptions and prove (1.8). To simplify the development,
the technique of perturbed test functions from [5] is used. To facilitate the calculations,
some of the conditions will be adapted from those used in that referencebut many
useful generalizations should be clear. In 3, we redevelop the result of 2, using a
"first-order perturbed test function" method, with less smoothness required on the
functions and less mixing required on the noise but more details required in the proof.
Some extensions are discussed in 4. The ideas of "pathwise uniform" convergence
of a sample average cost per unit time have many other applications; for example in
the Monte Carlo evaluation of Lyapunov exponents with wide bandwidth noise
coefficients for linear systems [6]. The formula for the Lyapunov exponent is of the
form of an average cost per unit time. For this problem, it is shown in 4 that the
Monte Carlo-evaluated pathwise average cost per unit time converges (as
to the same limit that we would obtain were the actual limit diffusion used for the
evaluation. The limit depends only on the correlation function of the noise ( (.). Such
a result is essential for the Monte Carlo method to be useful and for the Lyapunov
exponents of the limit system to be meaningful indicators of the behavior of the actual
(wide bandwidth, noise-driven) physical system.
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An extension to a problem of average pathwise error per unit time for an "approxi-
mate" nonlinear filter for a system with wide bandwidth driving and observation noise
is also discussed in 4.

In 5, we treat extensions to the discounted cost case. Define the pathwise
discounted cost

V(m) fl e k(x(s), a)m(da) ds,

and let m(. be a sequence of "61-optimal" controls. We show that, for uS( defined
as above (1.8):

P

(1.9a) V;(u)---C/(u) as/3-0, e-0,

(1.9b) lim P{V(m)>= /(u)- 6} 1.
e,fl

The uniformity result is important, since we would not want the speed with which

fi- 0 to depend on the bandwidth--to get the proper approximation. The sense in
which m(. is 6-optimal is purposely left vague--since (1.9) holds for any {m( )},
under the conditions below. Thus for small e,/3, u(. is always nearly optimal. There
also are extensions to impulsive and singular control problems.

2. A basic convergence theorem. For convenience in this section, we use the
assumptions of [5, Chap. 4.6], with appropriate modification for the relaxed controls
(definitions given below). The system (1.3) will take the following form"

(2.1) 2= I O(x’ a)m’(da)+G(x’ (t))+F(x’ (t))/e.

DEFINITION. An admissible relaxed control m(. for (2.1) is also a measure-valued
random variable (as above) but of(S, a)m(dsda) is progressively measurable with
respect to {7}, where 7 is the minimal tr-algebra measuring {(s),x(s),s<-t}.
Also, we impose m([0, t] U)= for all _-> 0. As in the definition given ,n 1, there
is also a derivative m,(.), where the m,(B) are 7-measurable for Borel B. We
sometimes use the symbol me( or mT(. for the relaxed controls, when (2.1) is used.

The scaling in (2.1) is a common way of getting a wide bandwidth, noise-driven
system [5], 13], 14]. Other forms for ((.) can be used. Many examples of alternatives
are in [5], where the use of perturbed test functions for weak convergence is illustrated.
In particular, Example 2.2 of [5, chap. 4] describes a noise process composed of
suitably scaled sums of "physical impulses"--a commonly occurring model in applica-
tions. For Go and F linear in , noises of the "Wong-Zakai" type can also be
usedwalthough these do not represent physical models. In this paper, we use either
bounded noise or Gaussian noise. For the first case (A2.1)-(A2.6) are used. The second
case is covered by (A2.10). Let E7 denote the expectation, conditioned on (s)=
(S/e2), S t, and E, the expectation conditioned on (s), s_-< t.

(A2.1) ((., .), F(., .), Go(’, "), Fx(’, ") are continuous and are bounded by O(1 +
]x]). Go.x(’, () is continuous in x for each ( and is bounded. ((.) is bounded,
right-continuous, and EGo(x, (t))- 0, EF(x, (t))-* 0 as t- oe, for each x.

(A2.2) Fx.(’, :) is continuous for each (, and is bounded.
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(A2.3) Let V(x, ,) denote either eGo(x, ,), Go.,(x, ,), F(x, ,), or Fx(x, j). Then
for compact Q,

e sup E7 V(x, (s)) ds 0
XeQ tie

in the mean square sense, uniformly in t.

Let Fi denote the ith component of F.

(A2.4) There are continuous Fi(" ), (" {0(" )} such that

EFI,x(X, (s))F(x, (t)) as F,(x),

aij(X)
EFi(x, (s))Fj(x,( t)) ds

2

as t- , and the convergence is uniform in any bounded x-set.

Since ,ij(’) is not necessarily equal to j(.) for ij, and we need a symmetric
covariance matrix below, we define a(x)=[(x)+ ’(x)].
(A2.5) For each compact set Q, and all i,j,

(a) sup e dr ds[Et/F,,(x, (s))F(x, ())
xeO

F;,x(X, (s))F(x, ())] - O;

(b) supe
xQ ,/2

dr ds[Et/2Fi(x, (s))Fj(x, (’r))

-EFi(x, (s))F(x, ((’))] 0,

in the mean square sense as e- 0, uniformly in t. The last sentence also
holds when the bracketed terms are replaced by their x-gradients.

Remark. If (.) is stationary, then we need not let t- c in (A2.4), but can set
t--0. As (A2.4) is written, it allows asymptotic stationarity, i.e., it allows the effects
of the initial condition to "disappear." A similar interpretation can be given for (A2.3),
since the "stationary" values are EV(x, ,(t))=0. Essentially, (A2.5b) is a condition
on the rate of convergence of the conditional expectation ds E,Fi(x, (s))F(x, ,(r))
to 8,..j(x) as r-t-c, and similarly for (A2.5a). They can be shown [5, p. 82] to be
satisfied if (.) satisfied a uniform mixing condition with mixing rate b(.), where
[.o chl/2(s) ds < @ (e.g., a finite state ergodic Markov chain) or a stable ARMA model
with bounded and independently and identically distributed inputs. Very similar
conditions were used in [13], [14], but where the :(.) were restricted to a class of
Markov processes. The conditions in 3 are closer to "ergodic" conditions, and are
often easier to verify.

Define b(x, a)=G(x, ce)+F(x) and the operators A" (when m is a feedback
relaxed control mx), and A" and A as follows:

1
af(x) Fx(x)b(x, a) +- E ao(x)fx,x2(x),

i,j

af(x) I af(x)mx(dc),



ERGODIC CONTROL FOR WIDEBAND NOISE SYSTEMS 551

and for Au, we replace the a in the definition of A by the classical control function
u(.). For a fixed control value a, A will be the operator of the process that is the
weak limit of {x (.)}.

(A2.6) The martingale problem for operator A has a unique solution for each
relaxed admissible feedback control mx(" ), and each initial condition. The
process is a Feller process. The solution of (2.1) is unique in the weak sense
for each e>0. Also a(x)=tr(x)cr’(x) for some continuous finite-
dimensional matrix tr(. ).

Remark. The uniqueness and existence is guaranteed if the operator A is that
for the system

(f(x,a)mx(da)dt) (tr(x) dw)(2.2) dx b(x) dt + +
0 0

where

a(x)=[trl(x)’(x) ]0

and where trltr >_- 61 for all x and some 6 > 0,/(. and o’1(" are Lipschitz-continuous
and/(., is merely bounded and Borel-measurable and the dimensions of (the vector)
/ and (square matrix) crlcr are equal.

Let denote the space of probability measures on the Borel sets of Rrx U, with
the "weak compact" topology where P, - P if and only if If(x, a)P,,(dx da)
If(x, a)P(dxda) for each continuous function f(.) with compact support. For an
admissible relaxed control for (2.1) and (1.1), respectively, define the (occupation)
measure-valued random variables pT,e(. and PT(. by, respectively,

P’’e(B x C)=- I,(t)B)mt( C) dt,

PT(B x C)=- I{x(t)B}mt( C) dt.

We sometimes write me( ), if the model is (2.1). If the relaxed control for (1.1) is of
the feedback form (mx or u(x)), then we use the modification

PT(B)= Ix(t)B dt

(or with u replacing m), and similarly define P7’e (B), P(B) for feedback m (.) and
u(.).

Let {me( )} be a given sequence of admissible relaxed controls and let uS( be
defined by (A2.8) below. The value of B is fixed in (A2.7).

(A2.7) The sets of random variables

{x(t), small e > 0, t dense set in [0, oe), m used},

{x(t), small e>0, te dense set in [0, oe), u s used}

are tight.

Actually (A2.7) is used only because it implies that (A2.7a) holds--so we can use
(A2.7a) in lieu of (A2.7).
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(A2.7a) The sets of measure-valued random variables

{PT’( ), small e > 0, T < oe},

{P-’(. ), small e > 0, T <

are tight.

In turn, (A2.7a) is implied by (A2.7b).

(A2.7b) There is a function q(. such that 0_-< q(x) oe as Ix]-oe and

lim E .,,_1 for,T T
q(x (s)) ds < o,

and similarly for u s replacing rn.
A criterion ofa Lyapunov function type for (A2.7b) is given at the end ofthe section.
In many applications, a stabilizing control is usedmin the sense that the system

is stable for any set of bounded disturbances. Then an additional bounded control
term G(x, u) is added, and we choose the new control to minimize an average cost.
Of course, if the state space is compact, as for the "Lyapunov exponent" problem in
4, then (A2.7) always holds. In lieu of a "universal stability condition," a condition

on the minimum (over the control values) magnitude of the cost k(. as [x - oe was
used in [3] (for the model (1.1)) to get that an optimal control for that model is
"stabilizing." Perhaps a similar idea can be used here. But this point will not be pursued.

(A2.8) For g > 0, there is a continuous g-optimal control for (1.1) and (1.2), for
which the martingale problem has a unique solution for each initial condi-
tion. The solution is a Feller process and there is a unique invariant measure
/x(u,.). (u s is g-optimal in the sense that /(u)<-(mx)+6 forany
feedback relaxed control mx for which there is a stationary solution to the
associated martingale problem and the initial condition is the invariant
distribution.)

(A2.9) k(. is bounded and continuous.

Remark. The existence of such smooth g-optimal controls (for any g > 0) is dealt
with in [7]. They will exist under an appropriate stability condition on the uncontrolled
(1.1), and either nondegeneracy of (1.1) or for a system of the form (2.2) [7]. It turns
out that y(u) </(u s) w.p.1 (this follows from the method of proof of Theorem 1
below, or from the method in [3], under the conditions there).

(A2.10) (Gaussian case.) :(. is a stable Gauss-Markov process with a stationary
transition function and let F(x, )= F,(x), Go(x, )= Go(x), where
G, Go, and F satisfy the smoothness in (A2.1)-(A2.2). Define F(.) and
a(. as in (A2.4). (Note that all other parts of (A2.3)-(A2.5) hold.)

THEOREM 1. Assume either (A2.1)-(A2.9) or (A2.6)-(A2.10) (with either (A2.7)
or (A2.7a) or (A2.7b) used). Let (2.1) have a unique solution for each admissible relaxed
control and each e. Then (1.Sa) and (1.8b) hold.

Proof We do the "Gaussian" case only. The other case is treated in essentially
the same way. Let @ be a (countable) measure determing set of bounded real-valued
continuous functions on R" having continuous second partial derivatives and compact
support. Let rn:( be the relaxed control in (A2.7). For a test function f(. @, define
the test function perturbations (the change of scale ’/e2- r yielding the right sides
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of the equations below will be used frequently and often without specific mention)"

ff(x, t)= Eff’(x)Go(x, ()) d

2e Etf’x(x)Go(x, ()) (t)l,
tie

f(x, t)= f’(x)F(x, (’)) d’/e

t/

f(x, =-- d ds {[f’(xlF(x, :(sl]’F(x,

-[f’x(xF(x, ’(s]’(x,

2e dT ds{E ,[f’(x)F(x, (s))]’F(x, st(r))
tie

-E[f’x(x)F(x, (s))]’F(x, (T))}

o(e2)[l (t)l 2 + 1 ].

To evaluate the integrals write F(x, )= F(x), and use the conditional expectations
or expectations associated with the Gauss-Markov process.

Define the perturbed test function

f(t)=f(x(t)) + 2 ff(x(t), t).
i=0

The operator/"’ and its domain @(" ) are defined in the Appendix. By a direct
calculation, using the correlation and conditional expectation properties of the Gauss-
Markov process :(. ), we get that f(x( )) and thef[(x( ),. are all in @(,"’), and

m%f(x(t)) fx(X(t))2(t)

f’(x(t)) G(x:(t), c)m;(dc)

+ Go(x:(t), :(t)) + F(x(t), ((t))/e].
(The "small" perturbationsf are added to the test function to facilitate the averaging
of the "noise" in the above expression. Related calculations are used in [13] and [14].)
continuing, we have

,m%f(x(t), t)=-fx(X(t))Go(X(t),

+ [ETf’(x(t))Go(x(t), (s))]’x2(t) ds/e,

m"f(x(t), t)=-f’x(X(t))F(x(t), (t))/e

+ ds[E;f’(x(t))F(x(t), sC(s))]’2(t)/e,

1Acting on functions f(x(t)), the operator tme’e is just a differentiation operator. It is also a
differentiation operator when acting on functions such as f(x (t), t) or f(x (t), t). The calculation is
actually a differentiation with respect to the appearing in x(t) and also in the lower limit of integration.
The in E7 plays no role in the calculation, owing to the way that E7 appears in the definition of m’.
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, f;(x(t), )= cts{F;[f,(x(t))(x(t), (s))]’xF(X(t), ())

-E[fx(x)F(x, (s))]xF(x, (t))lx=x(t)}
+ [f(x, t)]x2(t)lx=x(,.

The dominant component of the right-hand term of the last expression is
O(e)[ + I: t)13]. This can be seen by using the double scale change inf,(x, t) (namely,
s e2- s, ’/e2- ’) and the properties of the Gauss-Markov process :(. ).

We have

(2.3a) ]f(x(t))-f(t)l o(e)[l(t)l=/ 1].

By adding 2 .m,efi--o (t) to fi’"f(x (t)), subtracting from
Af(x;(t))mT(da) and canceling terms where possible, we get

(2.3b) 13m f(t)-a’f(x(t))] O(e)[l((t)]3+ 1].

Amf(x(t))

(The perturbations were constructed just to get the cancellations of the bad terms or
the replacement by their averages.) All the O(e) are uniform in t, e, and co. By (6.4)
of the Appendix (with our f replacing the q there), the function

(2.4) M(t)=f(t)-f(O) Am’f(s) ds

is a zero mean martingale. We next show that Mr(t)/t 0 as oo and e 0 in any
way at all.

Write (where [t] denotes the greatest integer part of t)

(2.5) M(t) [(M(t) M([ t]))+ M(0)] +1 ’-,o: [M(n+l)-M(n)].
Using the fact that f(.) is bounded and (2.3), (2.5), and the martingale property of
M(. ), we get that E[ Mr(t)/t]2 O(1)/t. The fact that M(t)/t, f(t)/t, andf (0)/t
all go to zero in probability as too (uniformly in e) together with (2.4) and the
second line of (2.3) implies that as t- oo and e- 0,

I0(2.6a) A"f(x(s)) ds/ O.

By the definition of PT’( ), (2.6a) can be written as

(.6b) Af(x)e’(&d)O as T and e0.

Now, let the control be the classical control function u(. ), and choose a weakly
convergent subsequence of the set of random variables {P’(. ), e, T} (and also such
that 1/tIoAf(x (s))dsO w.p.1 for all f(.)), indexed by e, T, and with
(random) limit denoted by (. ). We let the limits (. be defined on some probability
space (, P, ) with generic variable . Now, (2.6b) implies that

(2.7) [ Af(x)(&)=O for galmost all .
Since our class of f(.) is measure-determining, (2.7) implies that almost all

realizations of/2(. are invariant measures for (1.1) (under u). (This is proved by a

slight extension of Proposition 9.2 of [8].) By uniqueness of the invariant measure,



ERGODIC CONTROL FOR WIDEBAND NOISE SYSTEMS 555

we can take/z (u ,. fi (.) for all o5, and the limit/2 (.) does not depend on the chosen
subsequence en, Tn. Furthermore, by the definition of --tu’(.),

(x(s, u(x(s s/= (x, u(xer’(x

k(x, u(x))(u, dx)= (u).

Next, choose a weakly convergent subsequence of {P’(. ), e, T} (and also such
that (2.6a)0 w.p.1 for all f(.) ) indexed by e, T,, and with limit denoted by
P(. (again, defined on some probability space (fl, P, )). For each 6, we can factor
fi(. as (dxda)= mx(da)(dx). We can suppose that the m(B) are x-measurable
for each Borel B and 6.

By (2.6), for all f(. ) ,
(2.8) Af(x)m(d)(dx)=O for P-almost all .
This implies that (for almost all ), (.) is an invariant measure for the process
(1.1) with relaxed feedback control m(. ). As above we also have

But, by the -optimality of u(.), for almost all we have (mx) (u) & Since
this is true for all the limits of the tight set {P (. ); e, r}, (1.8b) follows.

A Lyapunovfunction criterionfor (A2.7b). For illustrative purposes, we do a simple
case where the stabilizing dynamics G" are dominant. In [5, Chap. 6.6], a related
calculation is given for a case where the F-terms must be taken into account. Our case
concerns the situation where a globally stabilizing control for the limit system is given
a priori, and the control to be chosen is bounded. The main problem arises from the
F(x, )/e term. We will use the following assumptions.

(A2.11) There is a twice continuously differentiable function 0N V(x) and a 0N
g(.) and K< such that g(x) as Ix and V2(x)G(x,)N
-g(x)+ K, all x, . Also V(x)/g(x)O as

(A2.12) Go(’," ), F(.,. are bounded and continuous, F(., ) has a bounded and
continuous (uniformly in ) derivative, and (2.1) has a unique solution
for each admissible relaxed control. (. is right-continuous and bounded
G(.,. is continuous and is bounded by O(1 +

Define the perturbation o V(.)"

V(x, =- V2(xlF(x, (s s= ,/V(x(x, (s s.
tie

(A2.13) The limits below are uniform in t, w (w.p.1),

lim ]V(x, t)/V(x)]=O, lim ](V(x, t))/g(x)l=O(e),
xi xi

lim I(V(x, t))G(x, )/g(x)] O(e).
lxi

THO 2. Assumption (A2.7b) holds under (A2.11)-(A2.13), for each initial
condition x (0) x.
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Proof Fix {m "} and define the perturbed Lyapunov function V (x (t), t)
V(x(t))+ V(x(t), t). Similarly to what has been done in Theorem 1, W(x(t), t)
(Am’.) and

t)= Vx(x(t)) f (r(x(t), ce)mT(dce)’,Vxt,

+ Wx(X(t))Go(x(t), (t))

+- ds ET[V’x(X(t))F(x(t), : (s))]

[Go(Xe(l),,e(t))W f (xe(t),a)m(da)+F(xe(t),,e(t))/e].
By (A2.13) and a change of scale S/e2 S we have that the right-hand term of

(2.10) is bounded in absolute value by O(e)g(x)+ o(g(x)), where o(g)/g
Thus there is K1 < c such that for small e

Hence

(2.11)

tim’eVe(xe(t), t)<=-1/2g(x(t))+ K1

[Em’V(xe(t))+Em’V(x(t), t)- V(x)- V(x, O)]/t---- E m%e g(xe($)) ds+ K1.2t

By the first line of (A2.13) and the fact that V(x) O, by taking we get

lira -1 m, (s)) ds < 2K,, g(x

which is (A2.7b).
3. Alternative conditions. In this section we redo Theorem 1 under somewhat

different conditions. The perturbed test function is only "first-order" here and (2.3)
will not hold. But similar results are obtained via a direct averaging method of the
type introduced in [5, chap. 5]. We will use either bounded "mixing" or Gaussian
noise, as in 2, and subsets of the following conditions. Let E, denote the expectation
given ((s), s t.

(A3.1) (.) is bounded, and right-continuous Go(’,’), G(.,.), F(.,.), and
F( .,. are continuous and bounded by O(1 +[xl).

(A3.2) EF(x, (s)) ds, E,[f(x)F(x, (s))]F(x, (t)) ds, are bounded and
x-continuous uniformly on each compact x-set and uniformly in t,

(A3.3) 1/T’+WE,Go(x,(s))ds&O for each x as and T

(A3.4) There are continuous F(.), a(.) such that with Ao (acting on twice con-
tinuously differentiable real-valued functions f(.) with compact support)
given by

Aof(x)=f(x)F(x)+Z ai(x)L,,(x), aq(x) aii(x),
i,j

we have

lf’+fds du E,[f(x)F(x, (u))]’ F(x, (s)) ao/(X),

for each x as and T
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(A3.5) :(. is a stable Gauss-Markov process, with a stationary transition function,
and F(x, ) F(x), Go(x, ) Go(x), and F(. ), G(.,. and Go(" have
the smoothness of (A3.1). (We continue to define F(. ), a(.), and Ao as in
(A3.4), when (A3.5) is used.)

As in 1, set af(x)=f’x(x)G(x, c)+ aof(x), and b(x, a)= G(x, a)+ F(x).
THEOREM 3. Assume (A2.6)-(A2.9) with either (A2.7) or (A2.7a) or (A2.7b) used,

and either (A3.1)-(A3.4) or else (A3.5). Let (2.1) have a unique solution for each
admissible relaxed control and each e > 0. Then (1.8a) and (1.8b) hold.

Proof Let f(.) be as in Theorem 1. We use the "direct averaging first-order
perturbed test function method" of [5, Chap. 5], [9], [1], but the development here is
self-contained. Define f(x, t) as in Theorem 1 and set f(t)=f(x(t))+f(x(t), t).
Then (write x for x(t) for convenience here)f(.) e @(."’) and

3"’f(t)=f’(x)[f (x, c)mT(da)+Go(x, s(t))]
+-fi ds[ETf’,,(x)F(x, (s))]’F(x, (t))

+ terms of order O(e)[l (t)[ 2 + 1 ].

(See the expressions given above (2.3).) When we use the scale change s/e2-* s, the
second term can be seen to be bounded in mean square for the bounded noise case
and O(1)[[: (t)l 2 + in the Gaussian case.

Define the martingale

M}(t)=f(t)-f(O)- m’f(s) ds.

If

P

M(t)/t---O as e-->0, t-->oo,(3.1)

then as in Theorem 1, we have

If we also have that

1
(3.2) (s) Af(x (s))] ds

(and also for u used in lieu of m(. )), then the proof can be completed as in Theorem
1. Thus, we need only show (3.1) and (3.2).

To get (3.1), we use the representation (2.5). The maingale difference M(n + 1)-
M(n) equals

f(n+ 1)-f(n) ds f(x(s)) (x(s), )m(d)+Go(x(s), (s))
(3.3)

Since the mean square value of (3.3) is bounded uniformly in n, m, e, we get that
[M](t)]/t O(1/t) and (3.1) holds, exactly as for Theorem 1.
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We now prove (3.2). To simplify the proof, we drop the terms (x, a)mT(da) and
Go(x, ). The first dropped term causes no problems (as in Theorem 1) and the second
is dealt with by an averaging method similar to that employed below. Now, we have

Io1 Am’f(s) ds

_1 ds du E[f’(x(s))F(x(s), (u))]’F(x, (s))/e2

+ negligible terms
(.4)

s du ,[f;(x(es)F(x(s) (u))]’ F(x(s), (s))

+ negligible terms

where the negligible terms go to zero in the mean square sense as e 0. Henceforth,
for simplicity, we consider the scalar case and work with only the term
f(x)F(x, ((u))F(x, (s)) in (3.4). Write N for integer N and >0. Define

O(x, s)= du ,Zx(X)V(x, (u))V(x, (s)).

Then the desired term in (3.4) can be written as follows:

l E J (i+)/e2

d[ekO(x(s),s)-O(x(s),s)]
(3.5)

/

E,Q(x(e2s), s) ds.+
N i/

Since ElETQ(x(e2s), s)-Q(x(e2s), s)[ z is bounded uniformly in s, e, and ,
the first set of summands in (3.5) are martingale differences with uniformly (in e, N, t)
bounded mean square values. Thus the first sum is O(1/N) and goes to zero in
probability as N , uniformly in e, t. Let f(x)= 0 for [xl K. By [5, Thm. 4, Chap.
3], and the uniform integrability of {m’f(t), e >0, <}, the sequence

{[x(ia +. )-x(i)]Ix(, i, > 0, e > 0}

is tight in D[0, ) (Skorokhod topology) and has continuous limits w.p.1. Because of
this, we can replace the x(eZs) in the ith summand of the second term in (3.5) by
x(i) for all i, and only alter the sum by an amount that goes to zero in probability
(uniformly in e and N) as 0.

Doing this replacement and using either the Gaussian property (A3.5) or else
(A3.4) for the bounded noise case, and the continuity of F(., () (uniform in in the
bounded noise case) and the continuity and compact support offxx(" yields that the
second sum in (3.5) and

dsL(x(i))a(x(i))/2(3.6)
N :i/e

have the same limit in probability as N , O, e 0, N . We next use the
rightness of

{[x(i +. x(i)]I,, i, > o, e > o}
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again to replace the x(iA) in (3.6) by X(e2S), and get the same result, namely that
the limit in probability is the same as N oo, ZX 0, e 0, NA co. Finally, repeating
the approximation procedure used from (3.5) on for the various neglected terms yields
(3.2).

4. Extensions.
Discrete time problem. There are direct extensions to the discrete parameter model

(4.1) XT,+, X, + e f O(XT,, a)rn,(do)+ eGo(X,, f7,)+v/-F(X, ).
d

In both (4.1) and (2.1), we can allow some "state dependence" of the noise (cf. the
"Markov"-dependent type used in [5, Chaps. 4.4 or 5.5]).

Approximate nonlinear filtering. In the following two applications, there is no
control. In 7 of [10], an "approximate" nonlinear filtering problem was dealt with,
where the system driving and observation noises were wideband. It was shown (under
a condition concerning the uniqueness of a certain invariant measure) that the average
error (using the notation of that paper)

(4.2) lip- E[b(x(t))-(P(t), 4))]2 dt

converged to what we would get if the true optimal filter were used on the "limit"
process. Here x( is the state of the "signal system" (say, of the form (2.1)), b(.
is bounded and continuous, and P(. is the measure-valued output (not necessarily
the conditional distribution) ofthe "approximate" filters used in 12]. Via the technique
of this paper, similar results can be obtained if the E in (4.2) were dropped. This is
useful, since we would normally filter only one pathmover a long timemand the use
of the expectation might give an inappropriate measure of the filter performance.

Lyapunov exponents for wide bandwidth noise-driven systems. The theory of
Lyapunov exponents is well developed for systems of the form

(4.3) dx Ax dt + Bix dwi,
i=l

where the denotes that the stochastic integral is in the "Stratonovich" sense and
where the w(. are real-valued and mutually independent standard Wiener processes
11 ]. The "Stratonovich" sense integral is used to be consistent with the usage in 11
and because it simplifies the identification of the limit process and its "projection"
below in this case. Of practical interest are the convergence properties of numerical
methods of evaluating these exponents, as well as the study of the asymptotic behavior
of wideband noise-driven systems (4.4) via

(4.4) 2 Axe +
i=1

the method of Lyapunov exponents. In (4.4), the :7 (") are orthogonal and scalar-valued
processes. Of particular interest is whether the exponents for (4.4) converge to those
for the limit system (which will be of the general form of (4.3)) as e -0.

Under the conditions of Theorem 3 on :7(" )= (’/e2), the above orthogonality
condition, and the normalization

ds Eti $ i u du -T 2
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in probability as and T go to ee, the x(.) of (4.3) is the weak limit of (4.4), if the
initial conditions converge. We can assume this normalization to hold in general, since
otherwise we absorb the "constants" into the Bi in the obvious way.

Define y x/[xl. Then

/[xl- x[x’]/Ixl

(4.5) ,9 Ay +

Assume the noise conditions ofTheorem 3. Then, it is not hard to show that P{x (s) 0,
any s

Of interest is the. calculation of quantities such as lim, E Io q(Y (s))ds/t for
bounded and continuous q(. ). In the Monte Carlo evaluation of the limit, we often use

(4.6)
1

q(y(s)) ds

for large and some small e; it is of interest to know whether or not the convergence
is to the correct limit and whether it is uniform in e and in the sense of (1.8a). (An
alternative is of course to fix T < and approximate E Ij q(y(s)) ds/T for small e

by taking many independent runs and averaging. But, the "uniformity" questions still
arise.)

Define y( t) x( t)/lx( t)l and

1
[y’(B + B])By-(y’By)2],q(y)=y’Ay+=

and assume that y(. has a unique invariant measure on the sphere (this is true under
a Lie algebraic condition on the set (A, B, iN k) [11]). Then [11] the (maximal)
Lyapunov exponent is the limit (which is a constant w.p.1)

Io(4.7) lim q(y(s)) ds/ t.

We are interested in whether or not (4.6) converges to (4.7) as e

By Theorem 3 (x( ), y(. ))(x(. ), y(. )) (Skorokhod topology), and the weak
limit process y(. is characterized completely by the correlation functions of the (. ).
Let #(. denote the assumed unique invariant measure for y(. ). Then

(4.8) lfot q(y (s)) ds q(y)#(dy) as e0 t,

and the limit value is just the (maximum) Lyapunov exponent for x(. ). The general
method is applicable to a wide variety of noise processes and can readily be extended
to yield convergence of various numerical approximations to the (maximal) Lyapunov
exponent for (4.3), via use of either a discrete time approximation to (4.3) or the
various interpolations that can be used to approximate the stochastic integrals.

5. Convergence of pathwise fliscounted costs to the ergoic cost. In this section, we
treat the discounted cost result (1.9). Again, the exact sense in which the m(.) are
6-optimal is left a little vague. Since u(.) is asymptotically &optimal, no matter

and
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what the m(. are, the pathwise costs are (for small/3, e) no better (modulo 28) than
the costs for the uS(. ), with an arbitrary large probability.

THEORV.M 4. Under the conditions of either Theorem 1 or 2, the limits (1.9) hold.
Remarks on the Proof The proof is essentially the same as those of Theorems 1

or 3, and we only remark on the differences. We use the discounted occupation measures

m, I0P (BxC)= e-’I),(,)cBm,(C) dt,

(5.1)

and analogously for the feedback control cases.
Then the cost can be written as

V;(m )=// k(x, a) m’eP (dx da)

By the tightness condition (A2.7), or (A2.Ta), or (A2.Tb), the (P (. )) and (P"’(.))
are tight. Define

(5.2) f(t)=e-7(t).
This will be used in lieu of the f(. defined in either Theorems 1 or 3. We have

(5.3) 3m: f( t) _f12 e-T( t) + e-’m f( t).

Define the martingale

f;( t) f;(O) Am’f;(s) ds

=e-Z()-f(0) [- e-f(s)+e-’A"f(s)] ds.

As in Theorems 1 or 3

(5.4) 0= lim e-’Amf(x(s)) ds.
(,e)o

Thus,

(5.5) 0= lim Af(x)P (dxdc).

Again we choose weakly convergent subsequences of the {P" (.)} or {Pf’(.)} and
continue as in the proofs of either Theorems or 3 to get Theorem 4.

6. Appendix.
DEFNTOY. Let q(.) be progressively measurable with respect to {}, the

minimal o’-algebra measuring {(s), x:(s), s <-_ t}. Suppose that there is a progressively
measurable (with respect to {o7})g(" such that

(6.1) supE]g(t)[<oa, Eg(t+s)-g(t)l-,O as s0 almost all t,
t__<__ T

(6.2)
E; q( + 8) q( t)

g( t)sup E
tT
0

(6.3) lim E
,$o

E;q(t+8)-q(t)
-g(t) almost all t.



Then we say thatAq(’) (A"’), the domain of the operator /’’ and that
m,q=g. If q(’) @(Am’), then [3, Chap. 3], [12],

(6.4) q(t)- Am’eq(s) ds

is an fiT-martingale. This martingale property will be heavily used in the proofs. We
define "’ to be m, with m, concentrated at , and "’ is defined in the obvious way

The form given for m, in Theorem 1 satisfies (6.1)-(6.3) if (x, )m,(d) is
right-continuous w.p.1. Since we are only concerned in this paper with the use of Am’q
in an integralto get the martingale property (6.4)the forms for m, given in the
text are valid even without the right continuity, as shown below.

If (x, a)m,(d) is not right-continuous, we can get the correct m,q that makes
(6.4) an fiT-martingale by an approximation procedure. Simply let m(. be replaced
by a piecewise constant right-continuous admissible control m’a, and replace x(.)

A am,a Aby the associated process x (.). Calculate A q(x (t), t) for the functions q(.,
used in the text, then take limits in q(x’Z(t), t)-jo A"q(x(s), s) ds. This will yield
the forms used in the text, which are, in fact, just what we get by assuming the right
continuity of (x, a m, (da).
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DISTRIBUTED COMPUTATION OF NASH EQUILIBRIA IN
LINEAR-QUADRATIC STOCHASTIC DIFFERENTIAL GAMES*

TAMER BAAR’ AND SHU LI:

Abstract. In this paper, a class of n-person stochastic linear-quadratic differential games under multiple
probabilistic modeling is studied, with each player acquiring a noisy measurement of the initial state.
Conditions for the existence and uniqueness of the Nash equilibrium is obtained, and a method is provided
for an iterative distributed computation of the solution. The distributed algorithm involves learning in the
policy space, and it does not require that each player knows the others’ perceptions of the probabilistic
model underlying the decision process. For the finite horizon problem, such an iteration converges whenever
the length of the time horizon is sufficiently small, and the limit in this case is an affine policy for all players
if the underlying distributions are jointly Gaussian. When the horizon is infinite and a discount factor is
used in the cost functionals, the iteration converges under conditions depending on the magnitude of the
discount factor, the limiting policies again being affine in the case of Gaussian distributions.

Key words, stochastic differential games, stable Nash equilibria, multiple probabilistic models, repeated
incomplete games, distributed algorithms

AMS(MOS) subject classifications. 93E05, 90D25

1. Introduction. The majority of the results in dynamic and differential game
theory pertain to the so-called "complete games" where the players have a complete
knowledge of the rules of the game and the cost functionals of other players, while
"incomplete games" (cf. [1]-[3]) have attracted relatively little attention. One recent
study on the latter class of problems is [4], which has developed a framework that
allows different decision makers (synonymously, players) to adopt different (not
necessarily consistent) probabilistic models. In this framework, [4] obtains conditions
for existence, uniqueness, and stability of Nash and Stackelberg equilibria in quadratic
static games and shows that under jointly Gaussian distributions, the Nash equilibrium
is affine in the observations while the Stackelberg equilibrium policies are intrinsically
nonlinear. Furthermore, it has been shown in [4] that multimodeling is well posed
under the Nash solution concept (in the sense that the solution is "structurally
continuous" in the limit as we go from multiple probabilistic models to a single model
for all decision-makers), whereas it is structurally nonrobust under the Stackelberg
solution concept.

In this paper, we extend the multiple probabilistic model of [4] to n-person
stochastic differential games. The mathematical framework allows each player not to
have access to the probability measure and parameters of the cost functionals adopted
by other players, and the presence of a communication link between the players permits
transmission of policy information, thereby enhancing learning in the policy space.
We show that distributed computation and iteration in policy space leads to a unique
Nash equilibrium when the finite time horizon is sufficiently short, and that this solution
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is affine for all players when the underlying distributions are jointly Gaussian. When
the horizon is infinite and a discount factor is allowed, we show that the conditions
depend on the magnitude of this discount factor.

In 2 of the paper, we formulate the problem in precise mathematical terms in
a Hilbert space setting, using a multiple probabilistic description; we also develop
necessary and sufficient conditions for existence of an equilibrium solution. These
conditions are further refined in 3 in the proof of uniqueness and stability of the
Nash solution and convergence of a related distributed algorithm. Section 3 also
includes results on the special case when prior distributions are jointly Gaussian.
Section 4 extends these results to the infinite horizon case, and the paper ends with
the concluding remarks of 5 and an Appendix.

2. Problem formulation and characterization of Nash equilibria. Let (, F) be a
measurable space, and let denote the class of probability measures defined on it.
Let X [2 be the state space, let Y/= E, be the observation space for decision maker
(DMi), i:: {1,2, , n}, and let Z:= X Y . Y. Introduce B Borel field
of subsets of Z, B Borel field of subsets of E, k= m, m,..., m, and random
vectors Xo" (, F)- (X, B), yi (-, F)--> Yi, Bm), with corresponding Borel probability
measures P, and Py induced by each P .

Now, we consider a system modeled by an m-dimensional sample-path-continuous
random process, satisfying the Itt5 stochastic differential equation

(1) dx,=(A(t)x,+
i:1 Bi(t)uit) dt+C(t) dw,, t>-O

under the n probability measures P,..., pn p, perceived by DM1, , DMn. Here
Xo is a random vector under the n probability measures P, , pn, X0(O) X w,} is
an m-dimensional Brownian motion under p,... pn., A(t), B(t), Bn(t), C(t)
are appropriate dimensional matrices, continuous in [0, tf]; {ui,} is a pi-dimensional
random process denoting DMi’s action, i; and y(w) Y is the static measurement
of DMi, i, related to the initial state Xo, with all these random quantities being
well defined under the probability measures P,..., pn. Furthermore, y,..., Yn and
Xo are independent of {w,} under the n measures. Note that this is an open-loop
information pattern, and one possible relationship between the yis and the Xo would
be given by the linear measurement model:

y Hxo+ vi

where Hi is an m x m dimensional matrix for each , and {vi, } is a sequence
of independent random vectors, defined under each of the measures P,..., Pn. We
will have occasion to use this specific model later in 3.

A permissible decision rule for DMi is a Borel-measurable mapping %’[0, tt]
R mi -’-)’ R t’i such that

E Ily,(t, yi)ll dt <oa

where the norm IIl{ is taken as the Euclidean norm on R , for i and E’ refers to
unconditional expectation under the probability measure P. Let F denote the set of
all such permissible decision rules (strategies) for DMi, iN.

Define the quadratic cost functional for DMi as follows"

T TRij(t dtJi(’)/) Ei xtfOilxtt.+ XTt Oi(t)xt + E Ujt Uj,
o

ui, y/( t, y), e

ie,
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where Qil => 0, Qi(t) -> 0 for all t, R,(t) > 0 for all t, for N, "T" denotes the transpose
and y := (y,. ., %). Note that the above specifications make J strictly convex in y
for each N. Furthermore, for each Z to be well defined and finite for all (y, , %)
F ,..., F, and under the given n probability measures, we have to make the
following two basic assumptions, as in [4].

Assumption 2.1. For each fixed N, P-iy,, j i, j N, are absolutely continuous with
respect to Py,.

Assumption 2.2. The Radon-Nikodym derivatives [5] satisfy, for some non-
negative scalars h.

y,(d()Nhji<

uniformly in ( almost everywhere Py,, for j # i, i, j N.
To establish existence and uniqueness results, we also introduce the Hilbert spaces

X,..., X and F,..., Fn as follows. First, we let X denote the completion of the
space of continuous functions from [0, tj.] x fl into X, under the inner product

{f0’"x’ x, dt+x,. ,,.}, iN.(X1,x2)xi=E 2 lx2

F, on the other hand, is the policy space for DMi, defined as earlier but now also
endowed with the inner product

(%fi)ri=E’ " yr(t, yi)fl(t, yi) dt i.

Finally we let F := F , , F, and y_ := (y, , y_, y+, , y,). We are now
in a position to introduce in precise terms (in Definition 2.1 below) the equilibrium
solution adopted in this paper, and also (in Definition 2.2) a refined version to be
studied in 3.
DEvio 2.1. An n-tuplet of policies (y, , y):= yN F is in Nash equi-

librium if

Z(v)Z(v,v) vvr,, i.

DEVVON 2.2. A Nash equilibrium solution yN F is stable (with respect to a

parallel update of the players’ strategies) if for all yo) F,
N lim yk) i

where

yl+’)=argminJ(y,,y()), iN, k=O, 1,2,....
Ti

Remark 2.1. It is important to note that the above is one possible definition of a
stable Nash equilibrium, which is the one we are going to adopt in this paper. Here,
the players update on their strategies in parallel, with each player using the most
recently computed (and announced) strategies of the other players as fixed and given.
There could be other definitions of stability, where the players update their strategies
following a particular sequential order (see, for example, [6]). However, the different
sequences generated by these different schemes will all have the same limit (provided
that they converge), even though each may require a different condition of convergence,
some being more restrictive than others. The parallel scheme adopted in this paper
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seems to be well suited for an analysis in the framework of repeated games, and also
it enables us to obtain rather strong results on the existence of a unique Nash
equilibrium. It is needless to say that, since the definition of a stable Nash equilibrium
requires convergence for all starting strategies y F, a stable Nash equilibrium is
necessarily unique.

Remark 2.2. The formulation above models a decision scenario where the players
have different (and necessarily inconsistent) perceptions of the statistics of the underly-
ing stochastic phenomena, and stay with this perception until the end of the decision
process. However, to completely characterize (and compute) the Nash equilibrium
solution, all this statistical information and the cost structure of each player have to
be common information to all. In view of this, what the algorithm presented in
Definition 2.2 accomplishes is to free the players from the task of acquiring all this
information, at the expense of repeating the game a number of times and by transmitting
(only) policy information from one stage to another. At each stage, DMi uses the same
measurement Yi he acquired at stage zero, and in this sense there is no learning with
respect to the random variables involved, nor is there any learning with respect to the
measurements made by the other players (i.e., there is no learning in action space);
however, if this had been the case, then the convergent solution of the sequence of
repeated games would have no relationship with the solution of the original stochastic
differential game. In our formulation, learning takes place only in the policy space,
ensuring the players to arrive at the (Nash) equilibrium (in the limit), with this end
result depending explicitly on the different probabilistic perceptions and the cost
functions of all players (even though this information is never shared by them).

We will now first focus on the derivation of necessary and sufficient conditions
for Nash equilibria, without giving consideration to stability. This is done below in
Theorem 2.1. Subsequently, in 3, we turn to the stability analysis of the solution,
using the iterative scheme of Definition 2.2.

THEOREM 2.1. For the continuous-time decision problem formulated above, there
exists a Nash equilibrium solution if and only if there exist 2n processes
satisfying the following set of coupled differential equations with mixed boundary condi-
tions:

:io i(xolYi), litf Qif:it,,

where

jit :-- Ei{yf(t, y#)]yi},

If (2) admits a solution subject to the given boundary conditions, then the set ofpolicies

(3) -lBIAit(Yi) a.e. pi, [TiN t, yi) -Rii

constitutes a Nash equilibrium solution.
Proof We prove the theorem by using a variational approach. For fixed i, and

fixed y,/3 F, perturb yi Yi + e/3i where e is a nonzero scalar; then, correspondingly,
x, -* x, + e7,, 7i Xi. Using this in (1), we obtain

(4) it A’qit -1- Bii( t, Yi), TiO O, [.
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Now,

{ T fO" TR,fl(t,y)dt)eE x,1 Q(tit + (X f QiBit + u i,

Since Qr 0, Q(. 0, R,(. > 0, the second term above is positive for all fl F,
0, and hence a necessary and sucient condition for (y, y_) to constitute a Nash

equilibrium solution is that

(5) v r, Z (x,,.ly),, +
o

Rifli( t. y)] dt O,

iN.

where

tf
A.:= OpT(r. t)Q(’)E(xly) dr+r(tf.

The latter can equivalently be written as

it Qiit ArA., A i(

where , is the conditional mean of xt under the measure P. given y and the set of
fixed policies T F:

it := i(xt [Yi)"
For each i it satisfies the differential equation:

Xit Ai,- BiRiilBAit + E Bjji,, Xio
j
joi

Now, by (4),

Io’(6) r/,, (t, ’)Bii(’, Yi) dr=: TAil3i, iN,

where TAi" 1-’i i c Xi i {X E Xi, X is a yi-measurable (under Pi) stochastic process},
and ((t, s)= A(t)(t, s), (s, s)= I, i.e., is the state transition matrix associated
with A. It is not hard to see that the adjoint of TA is

(7) (Tix),= B(t) .T(z, t)x. dz+ B(t)*T(tf, t)X,.

First substituting (6) into (5), and then using (7) in the resulting expression under the
inner.product defined earlier on X, we obtain for all i F (cf. [7]):

E’ B(t) " *T(r, t)Q,(z)E’(x, lY,) dr

Fi

which holds if and only if

u. =-RBIi,, a.e. pi
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with

jit: Ei{Tj(t, yj)lyi}, j# i, i,jN.

This completes the proof of the theorem. El
We observe that the condition given in the theorem is reminiscent of the one

available for deterministic linear-quadratic differential games (cf. [6]), but here we
have n different state equations, because of different perceptions of the players, and
likewise n different co-state equations (see Remark 3.4 in the next section for further
elaboration on this point).

3. A distributed algorithm and existence of a stable equilibrium. We now study
further the condition of Theorem 2.1 and in particular the stability of the equilibrium
solution, as in Definition 2.2. Recall that the iterative (distributed) computation of the
Nash solution involves the sequences {yl); k =0, 1,... }, i, generated by

(8) ’)/I k+l)= arg min Ji(/i, ’)/(kl)), k O, 1,’", N
Ti 1"i

for fixed (but arbitrarily chosen) (o3 F. Now, utilizing the main idea of the proof of
Theorem 2.1, we can rewrite algorithm (8) equivalently as follows"

(9) (k+l) Urn(k)Ti t, Yi) -Uii it (Yi), ,
Xit A -BiR’B

jit

ji

(10)

( xiO ) (i(xoli))(k) (k) N

(k) i{where u.i, E yk(t, y)lyiI. Hence, to implement the learning scheme, at each stage
(k+) (k)k+l, DMichooses-i astheoptimalresponseto 7j ,jN,j#i, by(9) and (lO).

Our goal is to obtain conditions under which the sequences yk)}, N converge, with
the limit necessarily being the n-tuplet (7, i N), which constitutes the unique Nash
solution to the original game. Note that if such conditions can be found, then the
players can achieve the stable Nash solution through the given learning process (cf.
Remark 2.2), even though DMi does not know R, QJ, and PJ, j # i, i,j N.

First, by the transition matrix method, we can solve (2) and obtain the solution
to be the following lemma.

LEMMA 3.1. e solution to (2) is given by

(11)
tl

i, Ai(t)’(O)io+ i(t, )B)()=i d

where

it .y it |

A/(t)

’ ’ is a solution of (2) with zero input (i. e., , 0), and with theandfor each s, (, a,
initial condition

io=[0,’’’,0, I,0,’’’]7
where the sth component is one" and A if fff
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Furthermore, Fi( t, ’), Gi( t, ’) satisfy the following equations"

(i)

dF,(t, )
dt

-1=A(t)Fi(t, ’)-Bi(t)Rii (t)Bf(t)Gi(t, ’), Fi( t, t) I,

dG(t,’=-Q(t)Fi(t, ’)-Ar(t)Gi(t, ), G(t, t)=0;
dt

Fi( r)=0 fort < r <-_ t.r(ii)
G( t, r) O for O <- r <-_ t.

Note that in (11), , denotes the conditional mean of the state vector x, as perceived by
DMi.

Proof See the Appendix for the proof of Lemma 3.1.
Next, we substitute (11) into (9) to obtain, for each i,

(12)

where

(13a)
-1,i(t, yi)=-R, (t)B(t)A,(t)XT, (O)o,

o E(xoly),
and " F F is the linear operator

(13b) (iY),

with

(14a)

(14b)

K(t, .)i(.) d-

K(t, ’):=-Rl(t)Bf(t)Gi(t,
i(’):= E Bj(’)E’[yj(’,

r

Let :F F be defined by

Then, the convergence of the distributed algorithm (8) (or, equivalently, ofthe sequence
generated by (12)) is equivalent to existence of a limit, in the Hilbert space F, to the
sequence {} generated by

(15) 7g+)=yk), k =0, 1, ,
for arbitrary 7) F. Such a limit is guaranteed to exist if, for some a [0, 1),

this result being a direct consequence of the contraction mapping theorem in complete
metric spaces (cf. [7]). Our main result below makes this condition precise.

THEOREM 3.1. Let functions a(s) and A(s), iN, be defined on [0, t] as follows"

(17a) a(t) := tr[K(t,s)K2(t,s)] ds, t[0,

(s):=am[b (s)b(s)](17b)

where

(17c) bi(s) := [B,(s), Bi_,(s), O, Bi+,(s),’’’, B,(s)],
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’max[" denotes the largest eigenvalue of the matrix [. ], and Ki(t, s) is as defined by
(14a). Let there exist a scalar a, such that

(18) a := max hihi(s) a t) dt<l,
i,s
iN ji

s[O,9

where hi are as introduced in Assumption 2.2.
Then,
(i) There exists a unique Nash equilibrium solution;
(ii) The solution is stable, i.e., the distributed algorithm (8) (equivalently (12))

converges to the Nash equilibrium regardless of the choice of initial strategies.
Proof. Since i in (12) is a linear operator, it will be sufficient to show that under

the hypotheses of the theorem, is a contraction mapping [7]. Toward this end, first
consider the quantity

(11 "dt E Ki(t, z)i(z) dz(,) I/,i,)/[[ 2

where as before, [I’ll (without a subscript) denotes the Euclidean norm. To show that
this quantity is bounded above by

tr f {r
(**) dta2(t)  }dr.

0

we introduce the partitioned representation

T TK,(t, s)= [k(t, s),’’’, k,p,(t, s)]

and note that the integrand of (,) can be written as follows"

" IIk,(t, s)[[ ds. E{llai(z)ll 2} dz,
j=l

which is equivalent to the integrand of (**) since the first (product) term above is
aZ(t) by (17a). We should note that in arriving at the inequality above we have used
the Cauchy-Schwarz inequality (cf. [7]) (twice) in two different inner product spaces.
Next, let us concentrate on the inner integrand of (**)"

].jN Bj s E ")/J S’

ji

(majorizing by the largest eigenvalue of the weighting matrix)

B(s)E lIE [Tj(s,
.j

(nonexpansive property of conditional expectation (cf. [5])

.j



DISTRIBUTED COMPUTATION OF NASH EQUILIBRIA 571

(change of measure)

--A9(S) EJ{gj(yj)lITj(s, y))ll2}-Ai
ji ji

Using this bound in (**) we can thus bound (.) by

II*,vll = <
ri-- dta(t) dsA(s) hi)E

0 j
ji

t!
ai(t) dt.E h) ds %(s)E){ll)(s, y))ll 2} 2

j
j#i

Now, finally,

II*ll-- II*i’ll <, E hj ds A (s)EJ{ll/j(s, yj)[I 2}
i=1 i=1 jNI

ji

’!
Ei{l[Yi(s, yi)ll 2} as. , hjiAJ(s) a](t) at

i=1 j[
ji

IO1 i:,

E’{[Iyi(s’ Yi)II2} ds" a-  =11 11 

where, in arriving at the next to the last line, we have interchanged the order of the
two summations, and in the last we have used (18). This, then, shows that is a
contraction mapping, thus completing the proof of the theorem (using the Banach
contraction mapping theorem (cf. [7]). 71

Remark 3.1. A courser bound for (18) is

2 -2a =< ty max E hiA(s)aj
,s jeN

j#i

where aj := maxs ). This shows that there always exists a s, sufficiently small, such
that the learning process converges.

Remark 3.2. In general, it is difficult to solve the two-point boundary value problem
(2) explicitly (other than to obtain the implicit representation provided in Lemma 3.1)

-1BTiAit(Yi) into thebecause we cannot "close the loop" by substituting a/i(t Yi)----Rii
differential equations. The presence of the conditional expectation term Ei{AjtlYi}
(which is the stochastic product term of jit} contributes to this difficulty. When the
distributions are jointly Gaussian, however, certain simplifications are possible, and
there emerges the possibility of obtaining the solution analytically, as we discuss next.

Now, let us consider the special class of problems in which the joint distributions
of Xo, yl, , yn are zero-mean Gaussian under all n measures. In this case there exist
matrices oi, :E0, of appropriate dimensions, such that

iO-- Ei[xolYi] oiYi, Ei[jolYi]=Yji:io, i#j, i,j[.

This would be true if, for example, Yi Hixo+vi, i N, as given in 2, where x0, v,..., v,, are
independent Gaussian random vectors under the measures P, P".
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We introduce matrix functions Mi(m m) and Ni(m x m) on [0, t.t-], 6 N, satisfy-
ing the differential equations

(19a) [//, + M,A + ATM + Q,- MB,R,-,’ BT M]N 2 MBjR.’ BjTM./N;j, 0,
ji

-’BT MiNi 2 BjR.’BjT MjNjZji(19b) //i ANi B,R ,
.j

Then the following result follows as a corollary to Theorem 3.1.

mi(tf )= Oi,,

N,(0) L

COROLLARY 3.1. When the underlying distributions are zero-mean Gaussian under
the n measures we have the following:

(i) There exists a unique stable Nash equilibrium solution, linear in the measure-
ments, provided that c2< 1;

(ii) The unique linear solution is given by

(20) -1yN(t, y,)= -Rii (t)Bi(t)Mi(t):, a.e. Pi, iN,

where

(21) 2, N( t)Z0iyi, 6 N,

provided that (19) admits a solution.
Proof Linearity of the solution alluded to in Theorem 3.1 follows readily from

recursions (9)-(10) by taking yl)(yi) to be any linear function of Yi, iN, and seeing
that, since the underlying distributions are jointly Gaussian under all n measures, 21,)

(k)and Ai, are linear in yi for all iN, k=0, 1,,... For a proof of part (ii) of the
corollary, it is sufficient to note that if (19) admits a solution, then 2i, N/(t)ZoiYi and
Ai, M(t)2i,, N, solve (2). [J

Remark 3.3. Even though (19) is a complicated set of differential equations, it
does offer the advantage of computing the unique Nash policies off-line, as opposed
to the general result of Lemma 3.1 which requires on-line computation (for the
non-Gaussian case).

Remark 3.4. For the special case when the players make identical measurements,
Yl Yn =- Y, we have Zji---I (but still Z0i is dependent of the index i, since the
subjective probabilities are different), under which (19a) and (19b) simplify, with
Ni( t) N( t), to

(19a’) Mi -{- MiA .at- ATM -[- Qi MiBiR1BTM M E BjR-BTMj 0,

((19b’) 1I A E BjR’BfMj N, N(O) I,
je

Mi( tf Q(f,

where in arriving at (19a’) from (19a) we have made use of the fact that the unique
solution of (19b’) for each fixed {M} is a full-rank matrix function (in fact a state
transition matrix). The above are precisely the matrix differential equations arising in
the open-loop Nash solution, of deterministic differential games (see, e.g., [6, Thm.
A-2]); (19a’) is the open-loop (coupled) matrix Riccati differential equation, and (19b’)
is the linear differential equation satisfied by the state transition matrix N.
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4. Infinite horizon games. In this section we obtain counterparts of the results in
3 for similarly structured infinite horizon stochastic differential games with discounted

costs. We can cite at least two main reasons for studying such a problem. First, for
differential games with long (but not infinite) horizon (be they repeated or not), the
results presented here could provide a good approximation for the true Nash solution.
Second, for genuine infinite-horizon stochastic differential games with different subjec-
tive probabilities for the players, the distributed learning algorithm presented here
could provide an effective means of computing the Nash strategies.

With this prelude, we now go into a precise formulation of the problem. The
system is still characterized by the stochastic differential equation (1), with the apparent
modification that every quantity is defined on the interval [0, ). The cost functions are

Ji(’y) E e -t’’ x Oi( t)xt +-j uj, Rij( t)ujt dt u,, y,( t, y,),16 t

[,

where i > O, i are the discount factors. A permissible policy for DMi is a Borel-
measurable mapping %: [0, ) x m, such that

e-’ %(, )1 de < .
The policy space F for DMi is now the Hilbert space of all permissible policies, under
the inner product

lIo
Similarly, we define the Hilbert spaces X, N, as the completion of the space of
continuous functions from [0, ) x into X, under the inner products

(x x) := e-’[xx]

Clearly, in order that the state trajectory {x,} be in X, we need the following assumption:
Assumption 4.1. The system parameters A, B, , B., C, and the discount factors

are such that for all % F, the resulting trajectory {x,} (that is, the solution of (1))
satisfies the boundedness condition

e-’xx, dt < foriN.

Now we state the following two results, which are the counterparts of Theorem
2.1 and Lemma 3.1, respectively.
ToaM 4.1. Suppose that Assumption 4.1 is satisfied, and that

(2.3) lim e-(’-’r(r, t)Q(r)E(x,y) dr=0, iN,

where (% t) is the state transition matrix function associated with A.
Then, the infinite-horizon stochastic differential game admits a Nash equilibrium

solution if and only if there exist 2n processes ,, A,, , satisfying the following set
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of coupled differential equations with mixed boundary conditions"

A Q fl I AT l -- ajit

j

(24)

where

iO E i(XOIyi), lim /it O, ,
j,,:= Ei{’y(t, yj)ly}, j: i, i,j.

If (24) admits a solution subject to the given boundary conditions, then the set ofpolicies
y(t, y)= R(t)B(t)h,(y) a.e. P, i,

constitutes a Nash equilibrium solution.
LEMMA 4.1. e solution to (24) is given by

(25a) Xit Ait
j
ji

(25b) h,, h(+it 2 Oi(t r)Bj(r)d
j
j

where (), A) is a solution to the homogeneous part (assuming , 0), and i(t, ),
G( t, ) satisfy the following"

dF t,=a(t)F(t, )- u(t)(t)ui(t)O,(t, ), E(t, t)= I,
dt

dGi( t, ’) =-Q,(t)i(t, z)+(iI-AT(t))i(t, z), i(t, t)=O;
dt

Fi( t, -) O fort<(ii)
Gi(t,’)=O forO<’<-t.

Now, the distributed algorithm replacing (12) in this case is

(26) yk+l)(t, y) ( t, Yi) + (iy(k))t ,
where all terms are as defined before (without overbar), with the obvious change that
ty. We therefore seek conditions for existence of a limit to the sequence
generated by the counterpart of (15):

y(k+l) y(k), k =0, 1,
for arbitrary y(o 6 F. Toward establishing the validity of (16) for some a < 1, we first
proceed as in the proof of Theorem 3.1 and obtain the following sequence of equalities
and inequalities:

i111 r e-’E K(t, r)(r) dr

, e-,’ d,ll0t,ll. -,llai]la

dse-gi{[[i(s)[2} e-t dt ei tr [g/(t, z)(t, z)] dr

dse-’{a(s)ll} e-’a(

(i)
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where we have introduced the term

(27) i/(t) tr [/(t, r)/ r(t, r)] e" dr, t[0, ).

Now, using in (,) the bound on E{(s)} obtained in the proof of Theorem
3.1, we arrive at the result

< ds E hjA(s) e-,EJ{lyj(s, yj)ll z} a(t) dte
je
ji

io ds e-sl e-s(s) E h{ e+.," e-,si{llj(s, y)ll 2} a(t) dr.
jeN
ji

Hence,

I"
i:1

<= E e-’E{ll’(s, yi)ll} ds. E hjiA(s) e-(t.’-’) e-tVgt.(t) dt
Nl

ji

where

(28) max hj,A(s) e-(., -’)S e-/gt}(t) dt.
i,s jN
[

s[O, o)

Then, the following result readily follows from the classical contraction mapping
theorem (cf. [7]).

THEOREM 4.2. Let A (s) and bi(s) be as defined by (17a)-(17c), h.i be as introduced
in Assumption 2.2, and t(.) and 6"2 be as defined by (27)-(28). Furthermore, let

(29) 2 < 1.

Then, for the infinite-horizon stochastic differential game, we have the following:
(i) There exists a unique Nash equilibrium solution;
(ii) The solution is stable under the distributed algorithm (26).
Remark 4.1. The main condition of the theorem above, i.e., (29), may be overly

restrictive, especially if the discount factors in different cost functions are different
(i.e., fl !., j). However, if fl . =-fl, then can be written as follows"

Io-2ce max 2 hA(s) e-t3’t(t) dt
i,s .j
i[ ji

se[O, oo)

and if, furthermore,

/ := max i i(t)%00, iN,
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then condition (29) can be replaced by the courser bound:

--max E hj,AJ(s)fi[1-e-] <1,
[3 N

which makes the dependence on/3 more explicit.
To parallel the development in 3, let us now consider the special class of infinite

horizon problems wherein the joint distributions of Xo, y,’’’, Yn are zero-mean
Gaussian under all n measures. Let Zoi, Zj be defined as in 3, and introduce matrix
functions Mi and Ni on [0, ), i N, satisfying

2 2

(30a) E IIiBjR.’ B[M.NE.ji O,
ji

lim M(t..) O,
t!

(BOb) ]i ARi- Biei-ilB]MiNi- 2 Bje.jlB.f.ij,.ji, i(O) I,

ji

The same reasoning as in the proof of Corollary 3.1, now leads to the following result.
COROLLARY 4.1. For the infinite horizon differential gameproblem, let the underlying

distributions be zero-mean Gaussian under the n measures. Then, under the conditions

of Theorem 4.1, we have the following:
(i) There exists a unique stable Nash equilibrium solution, under the distributed

algorithm (26), linear in the measurements;
(ii) The unique linear solution is given by

YN(t, Yi)= --RC,i(t)BTi (t)lQl(t)i, a.e. pi, iN,

where

it NitZoiYi, ,
provided that (30) admits a solution.

5. Conclusions. In this paper, we have presented results for a class of n-person
stochastic linear-quadratic differential games under multiple probabilistic modeling,
and with each player acquiring noisy measurement(s) of the initial state. We have seen
that if the time interval on which the game is defined is sufficiently short, then the
stochastic differential game admits a unique stable Nash equilibrium solution, and this
solution can be obtained as the limit of a distributed learning algorithm that involves
iteration in the policy space. For the special case when the underlying distributions
are Gaussian, this limiting solution is affine in the measurements. If the time horizon
is infinite and possibly different discount factors are included in the cost functionals,
the same qualitative results hold, this time the conditions of existence and convergence
depending also on the magnitude(s) of the discount factor(s).

The distributed algorithm adopted in this paper (see (12) or (26)) allows each
player to update on his policy by taking the most recently computed policies of the
other players as given. This "parallel scheme" is not the only possible updating scheme
if n->_ 3; the players may, for example, update on their policies sequentially either in
a fixed order or in an order which changes from stage to stage in a predetermined
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manner, or there may be a combination of sequential and parallel schemes, also
allowing a delay in the transmission of policy information from one player to others
(see [9] and [10] for elucidation of this point in the context of static games). Since
the conditions for convergence under these different schemes are, in general, different
even in static games [10], [12], it is quite natural to expect them to be different also
for the class of stochastic differential games considered in this paper. In principle, the
approach developed in this paper could be applied to these other "nonparallel"
schemes; however, since the expressions involved are in general quite complicated
even for n 3, not leading to clean results (see, e.g., [12] for the strictly sequential
scheme for the static case and n 3), we have not discussed such schemes in this paper.

Another possible major extension would be the study of more general distributed
algorithms incorporating memory, such as the relaxation algorithms introduced in 13]
for static games. As evidenced from the analysis of [13], incorporation of past values
of self-policies in the update mechanism by each player could result in considerable
improvements in the conditions of convergence and the speed of convergence towards
the unique Nash equilibrium. Developing precise conditions for such relaxation-type
algorithms, and obtaining the "best" mix between the other players’ past policies and
self-policies in the update mechanism would be a promising avenue of research for
the future. Yet another challenging extension would be to games with dynamic informa-
tion patterns, where the players receive on-line (imperfect) information on the current
value of the state; but such problems are much more difficult to analyze, even in the
case when players have an identical perception of the underlying statistics, partly due
to "informational nonuniqueness" (cf. [14]) and partly because a separation of estima-
tion and control is not possible in stochastic games. For the special case of zero-sum
games, however, such an extension would be manageable (at least in principle), by
taking the results of [15] as the starting point; this is a topic that is currently under
investigation.

Appendix.
Proof of Lemma 3.1. First, we note that the zero input solution to (2) is

Xi,*(h) Xi( t) )i,. Xi( t)XT, ’(O),o

-’(0)oA{,h)= A/( t).,.-,. Ai(t)Xi

Now if we can find a particular solution (If), al,p)) to (2), then

,,()
xit x it -- X it Ait A(h) q- A (p)

it it

To guarantee that )i, and ai, satisfy the boundary conditions 9,1,=o 9o and a
Qit.ir, respectively, let us choose

.(v) Ioi, 2 Fi t, 7 Bjaji dr,
,j#

,, Y G,(t, r)Bj(r)aj,dr.
jeN Jt
.j#
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substituting back into (7), we obtain n sets of equations:

d------ BJ " lJi- d’r

.i

ji ji

’ dGi( t, r)
-Gi(t,t) 2 Bj(t)USi,+ 2 Bj()jid

j j dt
,j j

jN jN
ji ji

We now observe that the above equations are satisfied if G(t, r), F(t, r) satisfy (i)
and (ii) of Lemma 3.1, thereby completing the proof.
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Abstract. Some estimates for the approximation of optimal stochastic control problems by discrete time
problems are obtained. In particular an estimate for the solutions of the continuous time versus the discrete
time Hamilton-Jacobi-Bellman equations is given. The technique used is more analytic than probabilistic.

Key words, diffusion process, Markov chain, dynamic programming, finite difference, Hamilton-Jacobi-
Bellman equations

AMS(MOS) subject classifications. 65K10, 65G99, 49D25, 93E25, 93E20

Introduction. We are interested in the approximation of optimal control problems
for diffusion processes by means of finite difference methods. It is well known (e.g.,
Kushner [16], [17-1) that a basic probabilistic counterpart is the approxifnation of a
diffusion process by a Markov chain. A typical problem in stochastic control theory
is the following.

In a complete filtered probability space (fl, P, , (t), t->_O) suppose we have
two progressively measurable processes (y( t), A t), t>=O) satisfying the following
stochastic differential equation in the It6 sense"

dy(t):g(y(t),A(t)) dt+cr(y(t),A(t)) dw(t), t>--O,
(0.1)

y(0)=x,

for given x, g, o-, and some n-dimensional Wiener process (w(t), t>=O). The processes
(y(t), -> 0) and (A (t), -> 0) represent the state in t a and the control in A (a compact
metric space) of the dynamic system, respectively.

The cost functional is given by

(0.2) J(x, A) E f(y( t), A t)) e -st at

where f is a given function, a > 0, and r is the first exit time of a domain D in Yt a

for the process (y(t), => 0).
The associated Hamilton-Jacobi-Bellman (HJB) equation (e.g., Bensoussan and

Lions [2], Fleming and Rishel [9], Krylov [14]) to be satisfied by the optimal cost

(o.3)

is indeed

u(x) inf {J(x, h)" any control h (.)}

au=inf{L(A)u+f(.,A):AcA} in D,
(0.4)

u=O on caD,

with the differential operator

(0.5) L(A)= O’ik(’, l)O’jk(’,l) Oij "JI- Z gi(’, A) Oi,
i,j=l k=l i=1

where Oo, Oi denote the partial derivatives and g=(g, i=l,..., d), r=(ri, i=

1,...,d, k=l,...,n).
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Let denote a h-finite difference grid in a. Consider the finite difference

+ (x)]L,,(t)(x)=h-’E {#+(x, h)[(x+,(x,t,h))-
k--1

(o.6)
+/3 . (x, , h)[(x + (x, , h))- (x)]},

where the coefficients satisfy

(0.7)
/3),(x, A, h) -> 0 Vx, A, h,

x + 7(x, ,, h ",, Vx ", , A.

The finite difference approximation of the HJB equation (0.4) using the operator
(0.6) is

cuh=inf{Lh(A)u,+f(’,A)’AA} inD,,
(o.8)

u=0 in\D,
where DI, is the set of points in a belonging to D.

Our purpose is to estimate the difference

(0.9) sup u(x)- uh(x)l" x Dh}

in terms of the parameter h. We expect to dominate (0.9) by

sup {inf {l/(x, A)- l(x’, A )l" x’ }" x a, A A},
(0.10)

for =f, gi, O’ik, i- 1," ", d, k 1," ", n.

For instance, if f, g, tr are Lipschitz-continuous in x, then

(o.) lu(x)-u,,(x)l<=Ch ’/ VxDh, h(0,1],

for some constant C independent of x and h.
Let us mention that finite difference operators ofthe form (0.6) satisfy automatically

the so-called discrete maximum principle. Problem (0.8) is indeed the discrete HJB
equation associated with some suitable optimal control problem of a Markov chain.
We remark that several computational methods are available for the discrete HJB
equation (0.8) (e.g., Kushner and Kleinman [18], Puterman [29], Puterman and
Brumelle [30], Quadrat [31], and Theosys [33]).

Actually, the objective of the paper is to show how the underlying technique can
be used with a typical problem (0.1)-(0.5). The probabilistic interpretation of the finite
difference operator (0.6) is part of the key idea.. From a purely stochastic control
viewpoint, an estimate on an approximation to the optimal cost is certainly of great
value. However, we may question how optimal the discrete optimal feedback is when
it is applied to the actual continuous time problem. Toward an answer to the preceding
questions, we can argue in the following way. First of all, what really matters for the
optimizers is to know how far they are from the minimum cost in the real model. The
stochastic equation (0.1) is only an approximation of the real evolution, as well as
being the Markov chain associated with the operator (0.6). Our claim is that by
preserving the structure of the problem, i.e., to have a probabilistic interpretation of
the approximating HJB equation (0.8), and by getting some estimates ofthe convergence
of the corresponding optimal costs, we cannot be far away from the real model.

Even if the Markov chain associated with the operator (0.6) always has finite
state, we may want to discretize the set A, just to improve the implementation of the

operator
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infimum in equation (0.8). In this case, we can replace A in (0.7) and (0.8) by a
discretization A(h), and similar results hold true (cf. [24]).

Deterministic versions along with the same kind of ideas can be found in Capuzzo-
Dolcetta [4], Capuzzo-Dolcetta and Ishii [5], Crandall and Lions [6], Falcone [8],
Gonzalez and Rofman [12], Menaldi and Rofman [27], and Souganidis [36].

The cases where the discount factor a is actually a function, the coefficients g, o-

are time-dependent, the horizon is finite, the HJB equation is indeed a set of inequalities,
and the domain D is unbounded can also be studied.

In 1 we consider the one-dimensional case. Even if this case is very restrictive,
we obtain enough information from it to deal with the multidimensional case. Moreover,
this section can stand by itself, but we believe it is a natural step in the technique to
be developed. General problems are treated in 2.

1. One-dimensional case. It is clear that for one,dimensional problems we dispose
of many classic tricks, probably more efficient in practice than the one we will describe.
However, we claim that by studying this simple case we may obtain some nonstandard
ways of looking at a multidimensional finite difference scheme.

Let g, cr be real continuous functions on A such that

(1.1)
Ig(x, A g(x’, A )l / l(x, A ,r(x’, A )[ <- Klx x

for some constants C C(g, or) and K K(g, or). The set A is a compact metric space,
generally a compact subset of .

On a complete Wiener space (, P, , (t), (t), t->_ 0), i.e., (, P, ) is a com-
plete probability space, ((t), => 0) is a right-continuous family of complete sub-or-
algebras of , (w(t), => 0) is a one-dimensional standard Wiener process adapted to
(,(t), >_- 0); we consider the controlled diffusion process

(1.23 dy(t) g(y(t), h (t)) dt + o(y(t), h (t)) dw(t), > 0,

where the control (h(t), t_->0) is a progressively measurable process taking values in
A. Its associated infinitesimal generator L(A) is the second-order differential operator

(1.3) L(h)q=1/2o-(.,h)q"+g(.,h)q ’, or(., ")_-->0,

where q’ and ,;" are the first and second derivatives of
For the moment, let us forget about the h-finite grid Y, i.e., the last condition

of (0.7) is disregarded. Consider the finite difference operator

L(1)q =- q + gh + oy/- +- q + gh oy/- q

(1.4)
g=g(x,h), cr=cr(x,a), y= y(x,a,h);

the function 3/>= 0 is to be chosen later (cf. (1.8)).
In 1.1 we will construct a controlled Markov chain associated with the finite

difference operator, from which a piecewise constant (on stochastic time intervals)
process (y,(t); => 0) is defined in such a way that

(1.5) E sup{ly(t)-y,(t)l e-’: t>-O}<=Ch/ Vh(O, 1],

for some constants C, ce > 0 depending only on g, or, and p > 0 uniformly with respect
to a class of controls to be specified.

Next, we use this estimate to obtain (0.11) for a linear equation, i.e., without
control a.
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In 1.3 we realize the above technique gives only a one-sided estimate of the type
(0.11) for nonlinear problems. The difficulty is the lack of information on the optimal
control A(. ). At this point, we need to use analytic techniques to obtain (0.11).

1.1. A Markov chain. Define

(1.6)

’(x, A, h, w)=inf{t>-0: g(x, A)(t-h)+cr(x, A)w(t)

equals either 6(x, A, h) or -6(x, A, h)},

6(x, A, h) or(x, A)3’(x, A, h)x/, w(0) 0,

(x,A,h, w)=g(x,A)’(x,A,h, w)+o’(x,A)w(7"(x,A,h, w)).

Note that w(. is a standard Wiener process and - h and gh whenever o- vanishes.
Let A (.) be a feedback control, i.e., a Borel-measurable function from into A.

We construct by induction the sequences of random variables (X,, 0,, n 0, 1,. -) as
follows. For a given initial data x,

Xo =x, 0o=0, Wo(t) w(t),

(1.7)
X/,=X+(X,x(X),h,w.),

0.+1 0 + -(X,,, A (X), h, w),

w.+,(t) w(t+O.)-w(O.), n=0, 1,"

If instead of a feedback control A(.) we have a nonanticipating control (A., n
0, 1,...), where A. is a random variable valued in A and adapted to (Xo,’’’, X._I),
then the procedure (1.7) still works.

Let us define the function y(x, A, h) by

3’-0 if 0---<lgl,/-,
(1.8) 3’=1 if g=0,

y 3"o(gr-lx/-l) if 0 < Igl,/- <-- ,
where

(1.9) 3’o(r) (2r) -1 In [e2r’ + sign (r)(e4r2- 1)1/2],
for r # 0, 1 _-< r _-< 1. Note that 3’o(r) > 0; moreover,

(1.10) O<3"o(r)-l<=lr[ Vr [-1, O) U (0, 1].

This implies the inequality

(1.11) Ir(x, A )./(x, A, h cr(x, A )l <= 2lg(x, A )[v/-,
for every x, h, h.

THEOREM 1.1. If we choose 3’(x,h, h) by (1.8), then for any feedback A(.) the
procedure (1.7) defines a Markov chain (X,, n=0, 1,...) with transition probability
determined by

E((X.+) Ix. x) n((x))(x),

(1.12) II(A )q(x) 1/2p(x + g(x, A )h + or(x, A )y(x, A, h)x/)
+1/2q(x + g(x, A )h -or(x, A y(x, A, h )x/),

and a sequence (0, n =0, 1,...) ofstopping times relative to ((t), >-0), with indepen-
dent increments % O, 0_1,

(1.13) E%=h Vn=l,2,....
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_Proof. Without loss of generality, we may assume g and r constants. Consider
the two functions u(x) and v(x) defined by the equations

1/2r2u"+gu’=-I in (8, 6), u(-6)= u(6)=0,

1/2o’2v"+gv’=0 in (-8, 6), v(-6)=0, v(6)=l,

where 6 cry,/. If -8 <= -gh <= 8, then

(1.14) ET’(h, u(-gh), P(sC(h, )= gh + 8) v(-gh),

with the notation (1.6). Since we can compute explicitly,

yielding

,yh ( eZr’ + e-2r’ 2e2rZ)u(-gh h +m
e-2r’r e2r3’

ea e-aX
a 2go"-2, v(x) e e_,

e2r3 e2r2

v(-gh e2r e_2r, r go’-l/-.

Suppose we have chosen 3’ such that u(-gh)= h, i.e.,

(1.15) e2r + e-2v- 2e22 0, 3,> 1.

Since

e2r e2r’
1 v(-gh) e2 e_2r,

the relation (1.15) implies v(-gh)=1/2, i.e.,

(1.16) Er(h, .)=h, P((h,. gh + r3,/) 1/2,

whenever 0< Igl-< r% Note that (1.16) still holds if we take 3, 1 for g=0 and that
(1.15) gives y= yo(r) as in (1.9), for 0<lgl_-<r, because y> 1.

If0 -< o- < Igl, then the equalities (1.14) hold true for functions u and v satisfying

1/2o2u"+gu’=-I in (-c,-6), u(-6)=0, u with polynomial growth,

1/2o’2v"+gv’=O in (-,-6), v(-6)= 1, v with polynomial growth,

for g > 0 and replacing the interval (-c, -8) by (8, +) if g < 0. It is clear that v 1
and

x 6
u(x) --+--

g Igl

So

u(-gh h + lgl-’ oTx/-,

and 3/= 0 is the right choice.
All of the above proves (1.12) and (1.13) after using standard facts on Brownian

motions.
Remark 1.1. If g=0 and o-= then the construction (1.7) coincides with the

classic Skorokhod’s representation (cf. [35]).
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For a given feedback (.) let us denote by (y(t,A(.)), t->0), and (Al’(t), t->0)
the processes

(1.17)
yh(t,A(’))=Xn if0n<--_t<0n+l, n=0,1,’’’,

Ah(t)=A(Xn) if On<-t<O,+l, n=0,1,...,

where (X,, 0n, n =0, 1,...) are defined by (1.7) with the choice (1.8) of function y.
Note that these processes are adapted to ((t), _-> 0) and piecewise constants on

stochastic intervals. This approach is different from the one used by Pardoux and Talay
[28]. Our partition is on the range, i.e., X, takes values in a variable grid of , and
the time partition is chosen accordingly; our time intervals are random.

Now consider the controlled diffusion process (y(t) y,(t, A h), -> 0) given by the
stochastic equation (1.2) with initial data y(0)= x and control process A (t)= A h(t).

THEOREM 1.2. Let the assumption (1.1) and the choice (1.8) hold. Then for any
positive number p there exist two positive constants C, depending only on p and the
constants C(g, tr), K(g, o’) of (1.1) such that

(1.18) E sup {lyx(t, A)-- yh(t, A(" ))] p e-’’ t>-O} <- Chp/z,

uniformly for any feedback A (.) and x in .
Proof Based on the procedure (1.6), (1.7) we have

Xn+,=Xn+g(Xn, A(X,))(On+l-On)+cr(Xn, A)(w(On+,)-w(O,)), n=0, 1,’’’,

which gives

X=x+ g((, a(+ ((,a((,

where y(t)=y(t,(.)) and (t) are the processes defined by (1.17). If we set

io ioq(t)=x+ g(y(s),A(s)) ds+ (y(s)) dw(s), tO,

then

q(t)-y(t)=g(X,,A(X,))(t-O,)+(X,,A(X,))(w(t)-w(O,)) if

Again, in view of the definition (1.6) we deduce

(1.19) q(t)-y"(t)C(g,) VtO, 0<hl,

where C(g, ) is the constant of the assumption (1.1).
Now, consider the process z(t)=y(t)-q’(t), with y(t)=y(t,A’),

dz(t) =[g(y(t), Ah(t))--g(yh(t), Ax(t))] dt

+[(y(t),A"(t))-(yt’(t),Ah(t))]dw(t), tO, z(0)=0,

and apply It6’s formula to the function

(z, t) (+ z2)p/2 e -’, , , p > O,

to get

d(z(t), t)= {pz(t)[g(y(t), A"(t))-g(y"(t), A"(t))](z+ z2(t))
+(pfl2 + p(p 1)zZ( t))][ (y(t), A "(t)) (yh(t), A "( t))]

(f12 + 22( t))2}(2 + Z2( 1))p/2-2 e-, dt

+pz(t)[(y(t),A"(t))-(y"(t),A"(t))](2+zZ(t))p/2-’ e-’ dw(t).
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If we take

(1.20)
sup {[g(x, A) g(x’, a)](x x’) -1

+ (p v 1)[o’(x, a o’(x’, a )]2(x x’) -2" x # x’ in , a in A},

where v denotes the maximum, and

then we obtain

=sup{lqh(t)-y’(t)l t>-O, o in };

dq(z(t), t)<--(oq,-o)q(z(t), t) dt+dM,, t>=O,

ly(t)-yh(t)) e -’’ <=q(z(t), t), tg0,

with M, being the martingale term. In virtue of (1.19) we deduce

E ly(t)-y"(t)l e +(-%) ly(s)-y(s)l e ds

(1.21)
[C(g,)] vto, o<.

Next, by means of the stochastic inequality

sup (s) dw(s) 0 (t) dt

we bound the martingale term

( Iosup dM O N3pK(g, ) p(z(t), t) dt

{(z(t), t)}[C(g,)]e-(-%,’, t>0.=

Hence we obtain (1.18) for 2 > p as in (1.20) and

C= C(g, )[1 +3pK(g, )(2 )-],
where C(g, ) and K(g, ) are the constants of (1.1).

Remark 1.2. Notice that the constant p defined by (1.20) is bounded by
p(p 1)K(g, ), the constant of (1.1). It is clear then that p vanishes as p goes to zero.

Remark 1.3. Similarly, we can show for any 0 the estimate

(.22) {1(, (.)) -,(, (.))1 e-%’}N(C(g,

where C(g, ), are the constants of (1.1), (1.20) and x, x’ belong to , h in (0, 1],
and the feedback I (.) is arbitrary.

1.. Te linear efim In this section we consider the case without controls,
i.e., the set A reduces to one element, and we drop it.

Recall the stochastic differential equation

(.3 (l=g((ll+((ll w(l, e0, (0=x,

where g, are bounded and Lipschitz-continuous. For a bounded and uniformly
continuous function f we set

 Io’(1.24) u(x, t)= E f(yx(S)) ds Vx, tO.
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This function is the unique solution of the following partial differential equation that
is bounded and uniformly continuous:

(1.25) O,u(x, t) Lu(x, t) +f(x) Vx e , > O, u(x, O) O Vx e

where O, denotes the partial derivative in and L is the differential operator

(1.26) Lq(x, t) =1 2(x)02(x, t)+ g(X)Ox(X, t).

The partial differential equation (PDE) (1.25) is understood in the Schwartz’ distribu-
tions sense. On the other hand, we set

Uh(X, nh)= h E{f(X,)}, n =0, 1,. .,
i=0

where (X,, 0,, n 0, 1,. .) is the sequence of Theorem 1.1. It is clear that

(1.27) u(x, nh)= f(y(t)) dt n =0, 1,. .,
with the notation of Theorem 1.2. For convenience we set

uh(x, ) uh(x, nh) if nh <- < (n + 1)h.

By means of Markov’s property, we can deduce

Vhtlh(X, t)= Lhtlh(X, t)+f(x VXe ?:,
(1.28)

u(x, 0) 0 Vx,

where Lh is now the finite difference operator

1
Lhq(x) -[q(x + g(x)h + cr(x) y(x, h )x/)

(1.29)
+q(x+g(x)h-cr(x)y(x,h)x/)-2q(x)] Vh in (0, 1],

and

1
(1.30) Vhq(t)=-;-[q(t+h)--q(t)] Vh in (0, 1].

Note that x belongs to Y2, so our Markov chain has states in . Actually, we
discretize first the time variable and then the state variable.

Denote by p(r) the modulus of continuity off, i.e.,

(1.31) p(r) sup {If(x)-f(x’)]: x, x’ , [x-x’l<-- r}.

THEOgEM 1.3. Under the assumptions of Theorem 1.2, for any p, T > 0 there exists
a constant C depending only on p, T, the Lipschitz constants of g, r, and the bound off
such that

(1.32) [u(x, t)--Uh(X, t)[<-C[x/-+p(r)+(r-lx/)p] Vr>0,

valid for any x in , in [0, T], h in (0, 1 ].
Proof In view of the representations (1.24) and (1.27) we have

[u(x, t)- uh(x, t)[ <= E If(y(s))-f(Yh(S))l ds + C(f)E{]O. tl} I + II,
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where

Thus,

If(x)-f(x’)l =< C(f) Vx, x’6 .
}I <- c-’(e’- 1)C(f)r-PE ly(s)-yh(s)lp e ds

+ tp(r) <- ce-l(e7"- 1)C(f)Cl(r-lx/)t’ + Tp(r),

with a, C C1 being the constants of (1.18) in Theorem 1.2. Also,

E{IG tl} <-- h + E{IG nhl} <- h + (E{l(rl- h)+... + (r, h)12}) 1/2

h q- (/’/E {( 7" h )2})1/2 h q- C2V/’",
where ’i 0i- 0_1, and C is a constant such that

(1.33) E{(’l’l-h)2}<=(C2h) Vh(0, 1].

It is clear that the above proves (1.32) provided we have established (1.33).
To show (1.33), we see that if-6 <=-gh _-< 3, tr),v/ then the characteristic

function of 7"1,

u(x,s)=E{eS,},

is the solution of the differential equation
2

(r u + gu’ su O in(-6,6),

and

s > 0 fixed,

u(-6, s)=u(-6, s)=l,

E{(7.1)2}=O2u (-gh, O).
Os

Hence, after some calculations we obtain (1.33). [3

Remark 1.4. Analogously to the above theorem, and by means of Remark 1.3, we
can prove that

(1.34) lua(x, t)-ua(x’, t)l<-_C{x/+p(r)+r-P[h+lx-x’12]p/2} Vr>O

for any h in (0, 1], x in , in [0, T] and some constant C depending only on the
bound off, the Lipschitz constants of g, r and the constants T, p > 0. Actually, we can
do better, i.e., in the estimates (1.22) and (1.34) we may have the right-hand side with
h 0, but this requires the use of another explicit Markov chain, the one used in 1.3.

1.3. Fully nonlinear equation. Let us return to the control problem (0.1)-(0.5) for
one dimension, i.e., D is the whole real line Y2, A is some compact subset of ,
n d 1 in (0.5). Recall that for any adapted control process (A (t), 0) we obtain
the state process (y(t)= y(t, A), 0) as the solution of the stochastic differential
equation (1.2) with initial condition y(0)= x. Next, the cost functional is defined by

(1.35) S(x, A) E f(y( t), A t)) e-’ at

and the optimal cost is

(1.36) u(x) inf {J(x, A): A any control process}.
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The associated HJB equation is

(1.37) cu=inf {L(A)u+f(., A)" A

which is indeed an ordinary differential equation in the real line, since L(A) is given
by (1.3). If the data are smooth and the operator is uniformly elliptic, then the HJB
equation (1.37) has one and only one solution with Lipschitz second derivative (cf.
Krylov [13]). In general we use either the viscosity solution (cf. Lions [20]) or the
maximum subsolution in the Schwartz’ distribution sense (cf. Lions and Menaldi [21]).

The approximate control is then

Jh(X,A(.))=E f(yh(t),A(yh(t)))X(t) dt

(1.38)
X(t)=(l+oh) if On<=t%On+l, n=0,1,.’.,

where (yh(t)=yhx(t,A(’)), t>=O) and (On, n=O, 1,’" ") are defined by (1.17) and (1.7).
Note that

(1.39) Jh(X,A(.))=E h f(X,,A(X,))(l+o+oh)
n=0

The optimal cost is

(1.40) uh(x) inf{Jh(x, (. ))" (. feedback control},

(1.41) OUh =inf {Lh(A)Uh +f(’, A)" A

It is clear that an estimate of the type (1.18) will provide only a one-side bound
for the rate of convergence of Uh toward u. Then we will modify the continuous time
control problem as follows.

To simplify the exposition we assume g, o- Lipschitz-continuous in the control
variable, i.e.,

(1.42) Ig(x, A) g(x, a’)l + let(x, A) or(x, a’)l <-- KIA A’I Vx , A, A’ A,

for some constant K--K(g, or), and we call A (.) an M-feedback control if A(. is

Lipschitz-continuous, i.e.,

(1.43) I(x)-(.x’)l<= MIx-x’l
Consider the M-optimal cost

(1.44) u(x, M)= inf {Jh(x, A(. ))" A(. )M-feedback control},

for any M > 0, M destined to become infinite.
It is clear that u(x, M)>-u(x) and, under reasonable assumptions we will have

u(x, M)

Moreover, sometimes the M-optimal cost is meaningful by itself.
THEOREM 1.4. Let the assumptions of Theorem 1.2 and (1.42) hold. Then for any

M, p > 0 there exist two constants C(M), C > 0 depending only on p, , the bound off,
and the constants of hypothesis (1.1); C(M) depends also on M and the K(g, r) of
(1.42), such that

u(x)-u,(x)<-_ C[x/+p(r)+(r-lx/)p] Vr>0,
(1.45)

u,,(x)-u(x, M)<=C(M)[x/+p(r)+(r-’x/)p Vr>0,

for any x in , h in (0, and p(r) given by (1.31), uniformly for A in A.
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Proof Starting from

u(x)-u,,(x)<=sup{J(x,A,,)-Jt,(x,A(.)) a(.)},
t-h)e

-, <=X,(t)<=e- Vt>=O

and in view of the estimate (1.18), we deduce the first part of (1.45) as in Theorem 1.3.
For the second part of (1.45) we use

ul,(x)-u(x, m) <=sup {Jh(x, a(. ))-J(x, a(. )): a(.) any M-feedback control}

and we prove

(1.46) E sup {]yx(t, a(. ))-y(t, A(. ))l n e -’’ t->0} C(M)hp/2,

as in Theorem 1,2, but now, C(M) depends also on the Lipschitz constant M of the
feedback control a (.), as well as on the constant K (g, r) of (1.42). Thus, we complete
the proof of the estimate (1.45).

Until now, we have used only estimates on the stochastic state equation to obtain
some bounds for the rate of convergence ofthe discrete HJB toward the continuous-time
HJB.

Now we will look at the approximation problem in a more analytic way.
Suppose q(x) is a smooth function; then we can write

1
(1.47) Lh(a)q =o- .+gh+tov)(1-[t]) dt+g q’(.+tgh) dt

-1

where the primes denote derivatives and we must take 3’ 1 in (1.4), i.e., for g g(x, ),
o-= (x, a),

(1.48) Lh(a)q = q( + gh + ox/-) +q + gh o’-) q(x) ].
First,

(1.49) [L(A)q(x)-Lhaq(x)l<-Chp/2 Vxe, he(O, 1],

and in A, and some constant C depending on the bounds of g, or, q", and the
p-H61der constant of q", i.e., the constant K K(q")satisfying

(1.50) ("(x) "(x’)[ _--< Klx x’l
for some exponent 0 < p-<_ 1.

Let us define [q]p as the infimum of the set of all constant C satisfying

inf {L(h )q (y)" [y x] _-< Cx/} Chp/2 <- Lh(h )q(x)
(1.51)

--< sup {L(A)q(y)" ly-xl<-_Cg-}+Ch/2 Vh(0, 1],

for any x in A. It is clear that ]0]v can be bounded by the constant C of (1.49).
However, here we can do better:

(i) [q]l is dominated by the bounds of the second derivative q" and the constants
C(g, o), K(g, or) of hypothesis (1.1).

(ii) If cr=o-(A), i.e., constant in x, then [q]p is dominated by the p-H/Sider
constant and the bound of the first derivative q’, and C(g, o-), K(g, or).
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(iii) If g=0 and o-= r(A), then [(fl] is dominated by the bound of r and does
not depend on (ft.

Suppose that f is bounded continuous and for some constant C, K > 0, 0 < p -< 1,

and

If(x,A)l<-C Vx, X A,

If(x,A)-f(x’,A)lglx-x’l’ Vx, x’, X m,

the constant given by (1.20).

THEOREM 1.5. Under the assumptions (1.1), (1.52), and (1.53) there exists a constant
C depending only on the constants C(g, tr), K(g, tr), C(f), K(f) of (1.1), (1.52), the
constant a of (1.53), and the value [U]p with u being the maximum solution of the HJB
equations (1.37), such that

(1.54) lU(X)- Uh(X)[ <= Chp/2 x , h 6 (0, 1],

where Uh(X) is solution of the discrete HJB equation (1.41) with the finite difference
operator 1.48).

Proof. We remark that the fact that [U]p is finite is implicit. To check that the
discrete HJB equation (1.41) has a solution, we rewrite it as follows:

(1.55)
uh inf {I-I(h)uh + hf(., A)" A ,A}

1-I (h)(fl (1 + ah)-l{hLh(A )(fl (fl],

and we note that the operator involved is a contraction map in the space of bounded
continuous functions on

First we will show that for some constants C, K >0 depending only on the
constants in the assumptions (1.1), (1.52), and (1.53) such that

(1.56)
lu(x)l+lu(x)l c
luh(x) Uh(X’)l + [u(x)- u(x’)] K[x x’[p

for any h in (0, 1], 0<p =< 1, the same p as in (1.52). It is relatively easy to obtain
(1.50) for u from the stochastic representation (1.36); however, we prefer to use analytic
arguments to present the technique used.

Consider the function

(1.57) m(x, q, e) (e 2 + x2) q/2 Vx
_ ,

for q, e >0 fixed, and the solution u(x) of the HJB equation (1.37). To prove the
second part of (1.56) we look at the point (Xo, Yo) of Yt x Yt where the function

w(x, y) u(x)- u(y)- Km(x- y, p, e)m(x + y, q, 1)

attains its maximum value, for a fixed K to be selected later. We want to show that
w(xo, yo)=< 0 for an appropriate choice of K.

The extended operator

/(A )(fl (x, y) 1/2tr2(x, A )(fl, + o’(x, A )tr(y, A (fltxty
(1.58)

+ g(x, h)(fl’ + g(y, h )(fly,+1/20"2(Y, A )(fl yy

is elliptic and satisfies

L(A)[u(x)- u(y)] L(A)u(x)- L(A)u(y).
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After some calculations, we have

f_,(A)[m(x-y,p, e)m(x+y, q, 1)] --[
p

o’(x, A) o’(y, A)]

m(x-y,p-2, e)m(x+y, q, 1)

[(p-1)(x-y)Zm(x-y,-2, e)+ 1]

+ q[tr(x,,)+o’(y, ,)]2m(x- y, p, e)
2

m(x + y, 1, q 2)

[(q-1)(x+y)Zm(x+y,-2, 1)]

+pq[ o-(x, , + tr(y, , ][ or(x, , tr(y, ,
(x-y)(x+y)m(x-y,p-2, e)

m(x+y, q-Z, 1)+p[g(x,,)-g(y,,)]

(x-y)m(x-y,p-2, e)m(x+y, q, 1)

+ q[g(x, , + g(y, , )]

(x+y)m(x-y,p, e)m(x+y, q-2, 1),

which shows that

(1.59) (,)[m(x-y,p,e)m(x+y,q, 1)]<-_(a,-qC)m(x-y,p,e)m(x+y,q, 1),

where a, is the constant defined by (1.20) and C is a constant independent of , x,
y, e, p, and 0 < q < 1. We choose q > 0 such that a ap + qC >- So > O.

Now, by means of the maximum principle, we have L(A)W(Xo, Yo)<--O, i.e.,

(1.60) L(A)U(Xo)-L(A)u(yo)<-(a-ao)Km(xo-Yo,p, e)m(xo+Yo, 1, q),

assuming that u is smooth and after using (1.59). But, from HJB equation (1.37) we
deduce

o[U(Xo)-U(yo)]<--[K(f)+(a-ao)K]m(xo-Yo,p, e)m(xo+Yo, 1, q),

where K(f) is the p-H61der Lipschitz offin (1.52). Hence, if we choose K agK(f),
then we conclude that W(Xo, Yo)<-0. Therefore, we should have

u(x) u(y) <- Km(x y, p, e )m(x + y, q, 1).

Because the constant K does not depend on e, q, we send e, q to zero to obtain the
second part of (1.56) for u, assuming that u is smooth.

Similarly, we show the H61der-continuous estimate for Uh. In that case we use the
extended operator

(a(x,,= (/(x,a,/(),,t+o(-(x,a,z-(),,a-o(x,),
z( ., a + g(., a h +/- (., a ,/.

Note that if u is not smooth then we have to approximate u by a smooth function u,
either by regularization, i.e., o- + e replaces o’, or by the so-called infimum convolution.
The proof of the first part of (1.56) uses a technique analogous to the above.

Let us prove the estimate (1.54). Consider the function

w(x, y) u,(x)- u(y)- Cm(x- y, p, e)m(x + y, q, 1)- C2h’/2
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for some constants C, C2, q, s > 0 to be selected later, and let (Xo, yo) be a point
where w(x, y) attains its maximum value. A calculation similar to the one to obtain
(1.59) shows that

(1.62) h(A)[m(x-y,p,s)m(x+y,q, 1)]<=(oo-rq)m(x-y,p,e)rn(x+y,q, 1),

for any x, y in , A in A, h, q in (0, 1], some constant r > 0 and the same c of (1.20).
We take q > 0 such that cn rq <- c Co, eo > O.

Because h(A) W(Xo, Yo) =< 0 we deduce

L(A)ut,(Xo)- L(A)u(yo)<=(c-Co)C, rn(xo-Yo, p, s)m(xo+Yo, q, 1),

and in view of (1.51),

(1.63) L(A)u(yo)<=L(A)u(y)+[u]php/2, lyo-y,]<-_[U]pX/.
From the HJB equations satisfied by u and u we obtain

a[uh(xo)- u(y,)] N sup {l/(Xo, h)-f(y,, A) I" , A}

+(a-ao)Cm(xo-Yo, p,e)rn(xo+Yo, q, 1)+[u]php/z,

and by means of (1.52), (1.56), (1.63) we get

[f(xo, )-f(y,, h )1 + u(yo)- u(yl)[ <= [K (f) + K (u)]m(xo-Yo, p, e),

provided e [u]px/-.
Collecting all, we have

a[u(xo)-U(yo)]N[K(f)+ K(u)+(a-ao)C,]m(xo-Yo, p, e)

m(xo+Yo, q, 1)+[u]vhp/2.

Hence, if we choose

-’[K(/) + K(u)], C2---[U]pC1 o
then W(Xo, Yo) <= O, i.e.,

(1.64) u(x)-u(y)<-C,m(x-y, p, e)m(x + y, q, 1)+ C2hp/2,
for any x, y in , h, q in (0, 1]. Letting q vanish and taking x y, we establish one
side of (1.54).

Reversing the role of u and u we complete the proof.
Remark 1.5. Note that in the proof of Theorem 1.5 we assume implicitly that the

function u is smooth. However, once the estimates have been established, we can
remove that assumption on u, only [U]p needs.to be finite.

1.4. Extension anl comments. The fact that the functions g, o- are bounded is not
really important, we need only to assume linear growth, i.e.,

(1.65) [g(x)[ + Io-(x)[ =< C(1 + Ix[) ’x ,
for some constant C C(g, o-). In this case the estimate (1.18) of Theorem 1.2 becomes

(1.66) E sup{]y,(t,A)-y(t,A(.))[p e -at" t>=O}<=C(l+]x]Z)P/2hp/2

for some constants C, a > 0.
To adapt Theorem 1.1 to the time-dependent case, we modify the construction

(1.6), (1.7), for instance,

’(x, t, A, h, w) =inf{s >=0 g(x, s+ t, A)(s- h)
(1.67)

+ or(x, s + t, A)w(s) equals +/-6(x, t, A, h)}.
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A generalization to dimension d _-> 2 is possible but more delicate. Let us describe the
procedure. We write er as the matrix formed by the column vectors o-1, o-2," ", o-n;
the drift vector g is expressed as g= gel +’" "+gnen, where gi are scalars and ei are
vectors in the direction o-i, i.e., eri o e, cr is scalar. We want to define ’i as the first
time for which

giei(zi h) + crieiwi(zi) +o’iyix/ ei.

This is the same as cancelling the vector ei and defining ’ as in (1.6) with g, r, y, w,
replaced by g,cr i, y, wi. Then we are interested in the stopping time
min {-: i= 1,..., n}, which is the first exit time of the box in ygn bounded by the
hyperplane zi +oyix/, z (z, , Zn) in n, for a Wiener process in n with drift
(g,. ., gn) and diffusion term the diagonal matrix (o-1, , o’n), starting at the point
(-gv/-, --gnx/-). Details of this construction will be presented in a future work.

In Theorems 1.3, 1.4, and 1.5 we can allow the functions g, r to satisfy (1.65) and
the function f to have polynomial growth, i.e.,

(1.68)
If(x, h )1--< C(1 + x2) q/2 Vx ,
If(x, h )--f(y, h )l <= Klx--Yl’(1 + x2 + y2) r/2 Vx, y ,

for q > 0’, 0 < q =< 1, r max {q p, 0}. The estimate (1.54) is modified accordingly. For
the estimates (1.32) and (1.45) we use

(1.69) p(r) inf {[f(x, h -f(y, )[(1 + x + y2)q/2: x, y in , h in A}.

A discretization in A can also be incorporated. In that case, a term of the form

(1.70) r(h)=sup{inf{]l(x,A)-l(x,h’)]’h’h(h)}’xga, hA,l=f,g,o}

will appear in the estimates (1.32), (1.45), and (1.54) of Theorems 1.3, 1.4, and 1.5.
Here A(h) is a discretization of A.

The constant a > 0 can be replaced by a function a(x, h).
The fact that we made only the discretization in the time variable is just the first

step. To discretize the space variable, we can add the second part of condition (0.7),
as in the next section. An alternative is to use finite elements to solve the discrete HJB
of the type (1.41). This issue is reserved for a future work.

2. General problems. In this section we will consider the typical control problem
(0.1)-(0.5) in a bounded open subset D of a.

Let g and r be bounded continuous functions from 5 a A into a and a n,
respectively, such that g (gi, i= 1,..., d), o-= (oik, i= 1,..., d, k 1,..., n),

(2.1)
Ig(x, a) g(x’, a)l + I(x, a) (x’, a)l-<-/(Ix x’ Vx, x’a,

for some constants C C(g, r), K K(g, o-), some locally compact metric space A
and where I" denotes the Euclidean norm in the corresponding space.

On a complete Wiener space (, P, o, (t), w(t), t-> 0) in n we consider the
state equation

(2.2) dy(t)=g(y(t),h(t)) dt+cr(y(t),h(t)) dw(t), t>O, y(O)=x,

where the control (h(t), t_-> 0) is a progressively measurable process taking values in
A. Denote by r the first exit time of D, closure of D, for the process (y(t), => 0), i.e.,

z=inf{t>_O.y(t)C_D}.
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For a given real bounded-continuous function f on d A such that

(2.4)
If(x, A )I <- C Vx d A A,

[f(x, A f(x’, A )I <-_ K[x- x’[ Vx, x’ Yt d, A A,

for some constants C, K > 0, 0 < p _-< 1, we define

(2.5) J(x,A)=E f(y(t),A(t)) e-’dt a>0,

and the optimal cost function

(2.6) u(x) inf {J(x, A): any control process A }.

The HJB equation is

(2.7) au=inf{L(A)u+f(.,A):AA} inD, u=0 on0D,

where the differential operator

(.s (
i,j=l k=l i=1

and the bounded domain D has a uniform exterior sphere, i.e.,

there exists r>0 such that for any x in OD there is y in dD such that(.9) {z" ly- zl rt {xI,

and L(A) is not degenerate on the boundary, i.e.,

(.10 2 l(x, (xl e o> 0 Vx e 0, a e A,
k=l i=1

with (,- ., d) being a normal direction to OD.
In 2.1 we will give some properties of the finite difference operator (0.6). Next,

we study the discrete HJB equations and its associated Markov chain. We present the
main estimate in 2.3 and then we give some comments and extensions.

2.1. The finite ifference operator. Recall the operator (0.6),

Lh(A)(x)=h-1 {(x,A,h)[(x+7;(x,A,h))-(x)]
(2.11) k=l

+ fl(X, , h)[(x + y(x, , h))- (x)]},

where k, Y k are bounded Borel-measurable functions in x, for h fixed,

(.1 (x, a, h e 0, x + (x, a, h e g Vx e g, a e A.

The h-finite difference grid is given, 0< h N 1.
We denote

Lh(k, A)(x) h-l{fl[(x+ )- (x)]+ fl[(x + )- (x)]},(2.13)

and

(2.14) ,)/ (/+ --I + *

where the variables x, A, h have been omitted.
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We can rewrite

L(k, h)q(x) h-{fl+ (x+ +[ v)-(x+ v,)]
+ ;[(x + ,;)- (x + )]+(+ ;)[(x + )- (x)]},

and when is smooth,

(x+-(x+= (- oe(x++(-
i=1

i=1

with , y being the components of y, y. Using the fact that
+ +e- e=(#+{)- (e- e;),

we have

where

If

then

(2.15)

Note that

3;[,(x + v;)- (x + v,)] + B;[,(x + v;)- ,(x +

a,,(s)=(+ -, + ++t3;) [(t3-s)v

k+/3;) [1-s(/3-)
Xk(S)=

2(/3+ -1 -,

2(/3+ --1 --1+/3;) [l+s(fl-)
if s_>-O,
if s-<_O,

’;

X,(s) ds

and that 8k(S), yOk are convex combinations of ),- and
Therefore, let us assume that for some constant C > 0 and any i,j 1,..., d, we

have

(2.16)

i [trikO)kh (fl + + + +

k=l

gih (fi + +
k ’ +-’)

k=l
<= Ch 3/2

3/2
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uniformly for the variables x in Y2hd, a in A, h in (0, 1]. Then we have the following
estimate:

(2.17) IL.(A),# (x)- L(A )(x)l C,#hp/2 [x, A, h,

where C is a constant depending only on the bounds of functions g, or, 00, q and the
H61der-continuous constants of the second derivatives 00q with exponent 0<p_-< 1,
i.e., the constant K(Ooq) of (2.4) for Ooq in lieu of f.

Typical examples where the assumption (2.16) holds are the following cases: any
"}l ik, 3 k, gik, O’ik satisfying

’Y, gik(X, h, h)fl-2(X, h, h)h + Crik(X, A, h)13;l(x, h, h)x/,

(2.18)
k =-flk(X, A, h), fi(X, A, h) > 0, k=l,...,n,

g,(x,a)- gik(X,h,A) <-Ch 1/2,
k=l

[o-,g(x, A )o)(x, A )- o- (x, A, h)tr.ik(X A, h) <= Ch 1/2,
uniformly in x, A, h and for some constant C > 0. A more classic possibility is to choose
r/

{+x/ if/=<
(2.19) Yik(X, a, h)

0 otherwise,

and accordingly the coefficients/3 (x, , h) to insure (2.16). Also, we may take n d + 1,

y, +o,(x, , h),8(x, , h)v/- if k 1,..., n 1,

=/3(x,h,h)>0 if k=l,...,n-1,

y,=&(x,h,h)/3-2(x,h,h)h, /3,>0,
(2.20)

/3 =/3,(x, h, h), /3 0, r,(x, h) 0

[gi(x,h)-g(x,h,h)l<--Ch ’/ Vi,

Io,,(x,h)er.,,,(x,h)-o’i,,(x,h,h)oT.,,,(x,h,h)l<-Ch ’/ li, jk, k n,

uniformly in x, ,, h for some constant C > 0.
When the differential operator (2.8) is degenerate with constant order of degener-

ation, i.e.,

(. (a ? (’, a t.(’, a 0 + 2 g(., a 0,
i,jl --1 i=1

where 0 <_- m <_- d, n _>- 0 and clearly d m is the order of degeneration, it is convenient
to choose (2.18) or (2.20) instead of (2.19). In this case the constant C of (2.17) will
depend only on the constants K(Oo, q) and bounds of g, or, 00q for i,j 1,..., m.

Denote by an h-finite difference grid in ", i.e.,

"={x=(x x,)’Vi=l d, qk=0,+/-l suchthat&

<= r(k)- r(k- 1) <2 Vk=0,+l,....

For the open bounded subset D of " we denote

(2.23) Dh {x x + ,2(x, a, h) D, va, },
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and its boundary

(2.24)
r,, u {r(a u r(a), a, k},

F.(h)={xeDr"lR’. x+,2(x,a,h)eOnYe ’ and x+ yk(x, a, h) Or-] "h },

for a fixed h in (0, 1].
Under the assumptions (2.11), (2.12) we can easily prove the discrete maximum

principle for the finite difference operator Lh(h). It is as follows. If a function u,(x)
defined on D D U Ftl attains its maximum value at some point Xo, then

(i)(2.25)
(ii)

IfxoDh, then L,(h)uh(xo)<-O VaA;
If Xo e F(a), then V+/-(a)u(xo) <0,k

where V:(a) is the operator given by

(2.26) v(a)(x) h-’(x, a, h)[(x + ;(x, a, h))-(x)],

for any q.

2.2. Study of the discrete equation. Here, we are interested in the discrete HJB
equation (0.8), i.e., in finding a function Uh(X), X in Dh such that

(2.27) auh=inf{Lh(a)uh+f(.,h)’a cA} in Dh, uh=O on Fh,

where D, I’h, D are defined by (2.23), (2.24), and the finite difference operator L(A)
is given by (2.11), (2.12).

First, we will associate an optimal control problem of a Markov chain to the HJB
equation (2.27).

Let

(2.28) G() exp dt, -oo <_ <_ +oo,

and

1, +/7),

(2.29)
o(/) =/-’(/ T +/7 +... +/+), k=2,"" ,n,

(;) -,(+ "1-/1-1-’" k hi- -), k=2,...,n-1,

/=/;+/, +...+/++/. /a=-oo, /.=+oo
where the variables x, , h have been omitted. For a random variable r/with Gaussian
density (2.28), we define the random fields sC(w)= sc,(x, , h; r/) by

sc:(w)=jl ifweA:,
(2.30) 0 otherwise

where

(2.31)
A-= {w" i-_, < r/(w) < fit,},

A; {w"/- < r/(w)<
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Suppose we are given a sequence (r/i" i= 1, 2,...) of independent random vari-
ables with the same Gaussian density (2.28) in a complete probability space (lq, P, ).
Then we consider the following controlled Markov chain:

+ ),h)"i(x,a(x),h;xi+l xi _]_ [,yk (X l (X
k=l

(2.32) + y-(X’ , (X’) h)-(X’ , (X’) h" r/,+,)], O, 1,"

X given in ,
where A A (.) is a feedback control, i.e., a Borel-measurable function from Y2 a into
A; actually it suffices that A be defined only on ha.

A simple calculation shows that the transition probability operators of the Markov
chain (2.32) is given by

E{,(X’+’)IX’- x}= r(,x (x))(x),

(2.33)

,(a)(x) t-’(x. . h) [t(x. . h).z(x + r-;(x. ,. h))
k=l

+ #(x. ,. h).(x + ,/-;(x. ,. h))] v,

t(x, ;, h)= [t2(x, ;, h)+ t(x, ;, h)]
k=l

for any x, ,, h.

Standard arguments of the discrete optimal control theory (e.g., Bertsekas and Shreve
[3], Gihkman and Skorokhod [10], Ross [32]) show that the optimal cost function

u,(x)=inf {Jh(x,,): ,(. any feedback control},

Jh(X,A)=E hf(X ,(xi))[qh(X ,,(xi))]ilx--x
i=o

(2.34)
qh(x, [ha + (x, , h)]-’(x, , h),

=inf{i=0, 1,...: XeFh}

satisfies the discrete HJB equation (2.27). Note that

F-,{xi+IlXi=x}=x4- i ]/Ok,
k=l

(2.35) Var{X,+,lX,=x}= y [(y-_yo)(y-_yo),+(y-_yo)(y-_yo),],
k,i,j

=-(+ +e +;e;),

which are related to the condition (2.16).
We remark that the random fields (2.30) possess the following propey"

e{wa" ;(x,A,h; n(w))#(x’,M,h; n(w))}NZ-(x,A,h)
(.36)

k=l

for any x, A, h. All the above properties are useful for directly studying the dependence
on the data of the optimal cost (2.34) (cf. [24]).
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On the other hand, we can use the technique of barrier functions used in continuous
time control problems (e.g., Lions [20], Lions and Menaldi [21]) to construct subsol-
utions of the discrete HJB equation; this method uses the assumptions (2.9) and (2.10).
So, we suppose that:

(2.37)

There exist functions rib(X) defined on a that are bounded and H/Sider-

continuous uniformly in h with exponent 0 < p-< such that for some
constants tip -_> 0, K > 0 we have Lh (h)lh <= --1 + flpfth, in Dh, VA e A,
fib(X) O, Vx Fh, he(O, I], la(x)-a(x’)l<-_Klx-x’l, Vx, x’d.

THEOREM 2.1. Let us assume (2.11), (2.12), (2.37). Then for any bounded Borel-
measurable function f(x, A) and any constant a > 0 there exist a unique solution of the
discrete HJB equation (2.27). Moreover, for two data f f we have

(2.38) llu a ll--<  -’llf- ll Vh 6 (0, 1],

where (th denotes the solution corresponding to f and I1" is the supremum norm. Further-
more, if a >-p in (2.37) then

(2.39) lUh(X)I <= IlfllOh(X) VX Dh, h (0, 1].

Proof It is possible to use the Markov chain (2.32) to establish the results as in
[24], but we prefer to illustrate its analytic counterpart.

First of all, we rewrite the discrete HJB equation (2.27) as

(2.40) Uh=inf{gh(’,h)rrh(h)Uh+fh(’,h)’heA} in Dh, u=0 onr,
where

(2.41) fh(X, A) h[ha + (x, A, h)]-’f(x, a ),

and rrh(a), /3(x, A, h), qh(X, A) are defined by (2.33), (2.34). If we denote by Th(Uh)
the right-hand side of (2.40), then Th is a contraction mapping on the space of bounded
Borel-measurable functions from Dh onto (actually just functions, since Dh is a
finite set) with the norm

(2.42) Ilvll-- sup {Iv(x)l x

Hence there exists a unique solution to (2.40).
Since we can express for any u given the following"

i+1uh=limu, uh =Th(u), i=0,1,...

we easily deduce (2.38), where II" denotes the supremum norm in the corresponding
space, i.e., for II/ll we take the supremum over L3h x A or x A.

To check (2.39), we use the discrete maximum principle on the function w=
+/-u.- II/ll .. [3

Consider the extended finite difference operator (h) given by

(2.43)

h(a)(x,y)=h-’ [-(k,a)q(x,y)+-(k,a)q(x,y)],
k=l

h;(k,. )q(x, y)= p(x, y, h)[ q(x + y;(x, h), y + y;(y, h))- q(x, y)]

+ q(x, y, h)[q(x + y;(x, h), y)- q(x, y)]

+ q(y, x, h)[q(x, y+ y(y, h))-q(x, y)],



600 JOSE-LUIS MENALDI

where

p(x, y, a h)=3 k(Y, a, h), /x minimum,
(2.44)

q(x, y, a, h)= (x, ,, h)-(x, A, h) (y, A, h).

Note that our choice implies that

(2.45) ,,(A)[p(x) + O(y)] L,,(A)(x)+ L(A)O(y),

for any functions (x), O(Y), and L,(a) as in (2.11), (2.12). It is clear that

(2.46) %,(h)=sup{m(x-y,-p,h)n(A)m(x-y,h)"
is finite, for h in (0, 1], 0 < p N 1, and

(2.47) m(x,p,e)=(e+[x[2)el2, x", e>0.

Suppose that (2.1), (2.16), and

(2.48) lye(x, A, h)-7(Y, A, h)] N Kh’/2lx-yl,
]q1(x, y, h)2(x, a, h)+ q;(x, y, a, h)w;(x, a, h)] Khlx- y[,

for some constant K > 0, uniformly for the variables x, y in , A in A, h in (0, 1],
k= 1,2,..., n, hold true. Then, for some constant C depending on the various
constants of the hypotheses (2.1), (2.16), and (2.48), we have

(2.49) p( h p + Chp/2, p > O,

where

d

cp=ksup Ix-y] -2 Y [gi(x,a)-gi(y,A)](xi-yi)
i=1

d

+(pv 1)]x--y]4 2 (xi--ys)(x--y.)[o’k(x,A)--o)k(y,A)]
k=l i,.j

(2.50)
d

[7.it,(x,A)-’j,(Y,A)]+Ix-Y] -2 E [’i,(x,A)-’i,(x,A)]2:
k=l i=1

in a in Ax#y’

Note that cp(h) and % vanish as p goes to zero. The condition (2.48) is almost
equivalent to the Lipschitz condition of (2.1), i.e., that (2.16) and (2.48) imply (2.1)
and (2.48) is expected to hold if we wish to insure (2.1).

THEOREM 2.2. Under the assumptions (2.4), (2.11), (2.12), (2.37), and

(2.51) c > max {co(h),/3p} Vh e (0, 1],

the unique solution uh to the discrete HJB equation (2.27) satisfies
(2.52) ]Uh(X)-- Uh(y)]<= Klx-y]" Vx, y Dh, h (0, 1],

for some constant K depending only on the various constants appearing in the hypotheses
(2.4), (2.37), and (2.51).

Proof Consider the function

w(x, y)= uh(x)- uh(y)- Km(x- y, h, p),
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where m(., .,.) is given by (2.47) and K > 0 is a constant to be selected later. We
want to show that w(x, y)<-0 at any point x, y of /h, which implies (2.52), since
]x- y[ => h, if x y. Let (Xo, Yo) be a point in Dh x D where the function w(x, y) attains
its maximum value; such a point exists always. If either xocF or yocF then
W(Xo, Yo)<=0 provided K => ]]f]]K(ti), the constant of (2.37). Herein we have used the
estimate (2.39). Let us look at the case when Xo, Yo belong to Dh.

B,y means of the discrete maximum principle for the extended operator L (A) we
have L, (A) W(Xo, Yo) -< 0, which implies

L(A)u(xo)- L(A)uh(yo) <- KL(A )rn(xo-Yo, h, p)

after using (2.45). If we choose 0< Co<_- c- cp(h), for any h in (0, 1], then in view of
(2.46) we get

h(A)rn(xo-Yo, p, h) <-_ c Oo)m(xo- Yo, p, h)

for any in A. Since uh satisfies the discrete HJB equation (2.27) at Xo and Yo, we deduce

o[uh(xo)-U,(yo)]<--sup {If(xo, A)-f(yo, A)[" A c A}

+ K sup {h(A )rn(xo-Yo, p, h)" A c A}
<- [K (f)+ (c Co)K]m(xo-Yo, p, h)

-1K (f), thenwhere K (f) is the constant of hypothesis (2.4). Hence if we take K Co
W(Xo, Yo) <-- O, i.e.,

uh(x)- uh(y) <-_ Km(x- y, p, h) Vx, ycDh, he(O, 1].

Thus, the estimate (2.52) follows.
Remark 2.1. Note that in the assumption (2.51) we suppose implicitly that (2.16)

and (2.48) hold true.

2.3. Main estimate. Let us look at the continuous time HJB equation (2.7), i.e.,

(2.53) au=inf{L(A)u+f(.,A)’AcA} in D, u=0 on0D,

where the differential operator is

d d

(2.54) L(A) 2 a,..j(., A)0ij + 2 ai(’, A)0i,
i,j=l i=1

and we have identified the coefficients

oik(x,A)cr.i,(x,A)=2ao(x,A)

(2.56)

Suppose that

and

gi(x,A)=ai(x,A) VxcD, A cA.

D is a bounded domain in a with smooth boundary OD, say C2,p for
some 0<p-< 1,

c>0 and for some ’o>0wehave UoX2<Ji,j:l aii(x, A )i. <-
(2.57) Vx,A, AA, a.

It has been proven independently by Evans [7] and Krylov [14] (cf. Gilbarg and
Trudinger 11]) that under the assumptions (2.56), (2.57), and

(2.58) ai, ai, f are smooth, say C in x uniformly in A,
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the HJB equation (2.53) has a unique classic solution, which is continuous on the
closure D and its first- and second-order derivatives are H61der-continuous for some
exponent 0 < Po < 1 on the open domain D.

This result has been improved by Krylov [15] to show that under the same
assumptions, the first- and second-order derivatives of the solution u are indeed
H61der-continuous on the closure D.

Then an almost optimal result due to Safonov [34] provides an equivalent of
Schauder estimates for HJB equations. Precisely, under the assumptions (2.56), (2.57),
and

(2.59) IIII(=<K V=a,j(.,x),a,(.,x) vxA,

where [l’l]p) denotes the H61der norm in CP(D), 0<p-<_l, there exists a constant
P0(’o, d) in (0, 1] such that the estimate

(2.60) Ilull,z+) < C sup (liT(’, )ll(.)" A m},

holds for some constant C depending only in K, ’o, P and the domain D, provided
0<p <po(uo, d). Note that I]" ]12+) denotes the H61der norm in the space Cz’P(E)).

Another case in the quasilinear equation is

(2.61) aj(x,A)=ao(x VxD VAA.

Thus we do not control the diffusion term. Under the conditions (2.56), (2.57), (2.59),
and (2.61) the estimate (2.60) holds for every 0 < p < 1 (cf. Ladyzhenskaya and Uraltseva
[19]).

It is known (cf. Lions [20], Lions and Menaldi [21], Krylov [13]) that under the
assumptions (2.1), (2.4), (2.9), and (2.10) the HJB equation (2.53) has a unique solution
in some weak sense, e.g., either as the maximum subsolution with L()) acting in the
Schwarz distributions sense or as the unique viscosity solution. Moreover, if we denote
by u the solution of the HJB equation (2.53) with L(A) replaced by L(,)+ eA, A the
Laplacian operator, then we can assert that

(2.62) u C(E3), u - u in C(/3),

where C(D) is the space of continuous functions on D.
For a smooth function q, say C2’p(/), 0< p =< 1, let us define [q]p as the infimum

of the set of all constant C satisfying

inf{L(A)q(y)" [y-x] <= Cx/}- ChP/<= L(A)q(x)
(2.63)

=<sup{L(A)q(y)’ly-xl<=Cx/-}+Chp/2 Vh(O, 1],

for any x in D, A in A.
It is clear that [q]p can be bounded by the constant C of the estimate (2.17).

However, occasionally we can do better:
(i) [q] is dominated by the bounds of the second-order derivatives of q and

the constants C(g, o-), K(g, or), C of hypotheses (2.1), (2.16), provided n 1. This
means that only one-dimensional Brownian motion is allowed, e.g., the system associ-
ated with an equation of order d perturbed by a white noise.

(ii) If cr r(A) and n 1, i.e., constant in x and only one Brownian motion, and

O.ilO.jl h (fl+ + ++fi-)- fl-fl,(y,,-y,,)(y./,-y.) Vi, j,A,

then [q]p is dominated by the p-H/Sider norm of the first-order derivatives of p and
the constants C(g, or), K(g, o’),
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(iii) If g=0 and (ii) holds, then [q] is dominated by the bound of r and does
not depend on q.

THEOREM 2.3. Let the assumptions (2.1), (2.4), (2.9)-(2.12), (2.16), (2.37), (2.48),
and

(2.64) a > max { ap,/3p }, 0 < p _-<

hold true. Then there exists a constant C > 0 depending only on the various constants of
the hypotheses (2.4), (2.37), (2.48), (2.64), and [U]p as in (2.63), such that

(2.65) lUh(X)-- U(X)I <-- Chp/2 ’x /3h, h (0, 1],

where uh is the solution of the discrete HJB equation (2.27) and u is the viscosity solution
of the HJB equation (2.53).

Proof We remark that we are using (2.62) to suppose [u]p finite and defined as
the limit of u ]p.

First, we will give a proof where the constant C of (2.65) depends on the C,
q u of the convergence property (2.17), i.e., the p-H61der norm of the second-order
derivatives of u. This argument uses implicitly the discrete maximum principle in a
way similar to Lions and Mercier [22].

Indeed, let us define the nonlinear resolvent operators

R(q) v iff v=0 on OD and av=q+inf{L(h)v+f(.,h)’h cA} in D,(2.66)

and

(2.67) Rh (qh) vh iff vh 0 on Fh and
av q + inf {L,(A)v +f(., A): e A} in Dh.

It is clear that if uh and u denote the solutions to the HJB equations (2.27) and (2.53),
then

Uh U R(O)- R(O) Rh[R-I(R(O))]- Rh[R-I(R(O))],
where R- and R- are the inverse operators. By means of Theorem 2.1, the inequality
(2.38) gives

[[Rh(q)-Rh(b)JJa-’[Jq-O[ Vh(O, 1],

for any functions o, q and with [[. denoting the supremum norm on /h. Hence

Since we can bound

]R-’(u)- R-’(u)] ]inf {t(X )u +f(., X )" X A}-inf {Lh(A )u +f(., X )" X

-<sup {IL(A )u Lh(A )u A A} _<- C,hp/2,
where C, is the constant in (2.17), we deduce the estimate (2.65) with C a-C.

Next, to fully prove (2.65) we will show first that

(2.68)

(2.69) ]u(x)- u(y)] <_- Klx- y[p

for some constants C, K depending only on the various constants of (2.4), (2.9), (2.10),
and (2.64). To that effect, we construct a p-H61der-continuous subsolution tT, i.e., a
function satisfying in a weak sense,

L(A) fi _<- -1 + jpfi in D, fi 0 on 0D,
(2.70)

ti(x)-
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for some constants K K (fi),/3p => 0, as in (2.37). The maximum principle applied to
the function

w(x)- +u(x)-

yields w(x) <- O, i.e., (2.68).
To obtain (2.69) we proceed as in Theorem 2.2. We consider the extended

differential operator

A - O’ik X, l. O’jk X, 1. O ] 4- O’ik X, , jk Y, O;’i,j=l k=l

(z.7) +,(y,h)(x,a)ox+,(y,h)(y,h)o5
d

+ 2 [gi(x, )o + g,(y, )o]],
i=1

xywhere 0i and 0i denote the derivatives with respect to x, N and xi, yi, respectively.
A simple calculation shows that

(2.72) (h)m(x-y,p,e)Napm(x-y,p,e) Vx, y", hA,

any e > 0 and with av being the constant (2.50). The function m(.,., is given by (2.47).
Now, define the function

w(x, y)= u(x)- u(y)- Km(x- y, p,

for some constant K > 0 to be selected. Let (Xo, Yo) be a point in D x D where w(x, y)
attains its maximum values. We want to prove that W(Xo, Yo)0, which implies (2.69)
as e vanishes. In fact, if either Xo OD or Yo OD, then W(Xo, Yo) 0 provided K C(u),
the constant in (2.68). So, if xo, Yo belong to D, then the maximum principle yields
i(h )W(Xo, Yo) 0, i.e.,

(h )U(Xo)- (a )u(yo) K(a)m(xo-yo, p, ).

In view of the HJB equation (2.53) and the inequality (2.72) we get

[U(Xo)- u(yo)] sup {[f(xo, A )-f(Yo, A)[" A A}

+ g sup {E(a)m(xo-Yo, p, )" a a}

[K(f) + K]m(xo-yo, p, ),

where K(f) is the constant of hypotheses (2.4). Hence, take K=(a-ap)-K(f) to
obtain W(Xo, Yo) O.

Let us prove the estimate (2.65). To that effect, we consider the function

w(x, y) uh(x)- u(y)- Clm(x- y, p, h)- Chp/2,

for any x, y in Dh, and some constants C1, Cz> 0 to be selected. We want to show
that at the point (Xo, Yo) in Dh x Dh where w(x, y) attains its maximum value, we have
W(Xo, yo) 0, from which (2.65) follows immediately. Indeed if either Xo Fh or Yo Fh
then W(Xo, Yo)NO, provided C1 =max {K(u), K(u)}, the p-H61der constants given by
(2.52) and (2.69). Actually, the constants in (2.39) and (2.68) suffice, i.e., p-H61der
constants near the boundary. When Xo, Yo D, we can use the discrete maximum
principle for the extended operator h(h), defined by (2.43), to get h(h)W(Xo, Yo) 0,
i.e.,

,,(h )u(xo)- (h )u(yo) c, ()m(xo-yo, p, h ).
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In view of the discrete HJB equation (2.27) we get

L, (h )u,, (Xo) Lh (h )u(yo) >- au, (Xo) L(A )u(y) +f(y, h )]

+[L(A )u(y)- L(h )u(yo)] + [f(y, , )-f(xo, h )].

Thus, by taking the supremum over , in A and y such that

ly-yol

we deduce

a[ Uh (Xo) U (yo)] u]php/2- [aN u) k- K (f ]( 1 + u])m(xo- Yo, P, h

<--_ ap(h)C,m(xo-Yo, p, h),

after using the definition (2.46) and (2.63), and the p-H61der constants K(f), K(u)
of (2.4), (2.69). Since we need only to show (2.65) for h >0 sufficiently small, the
hypothesis (2.64) and the inequality (2.49) permit us to choose

C,>[a-ap(h)]-’(1 +[u]P)[aK(u)+ K (f)],p

C2 a-l[u]p,
in order to have W(Xo, Yo) -< 0, i.e.,

ut,(x)- u(y) <= Cm(x- y, p, h) Vx, yZ, he(O, ],

where C a + C2; this implies one side of (2.65).
By symmetry we obtain (2.65) after using the estimate (2.52) of Theorem 2.2.

2.4. Final comments. Sometimes we need to discretize the set A, where the control
takes values. In this case, a new term of the form

(2.73) sup{inf{ll(x,,)-l(x,,’)l" ,’ A(h)}" x 5", a A},

for l=f, gi, O’ik, i= 1,’" ", d, k 1,’’’, n, will appear in the right-hand side of the
estimate (2.65). Here A(h) is a discretization of A. Also, the constant a could be a
function a(x, h ), for which the preceding results extend. If the domain D is unbounded
and the data f has polynomial growth, then the solutions u(x), u,(x) will have also
polynomial growth, and some weight function is needed to obtain an estimate similar
to (2.65) (cf. [24]).

We may be interested in the performance of the optimal control of the discrete
problem, when suitably extended and applied to the initial problem. That issue is not
considered here. However, the optimizer will face the problem of actually computing
uj,(x). In general, only an approximation j,(x) is computed and from that, a control
policy 1,(" is derived. This ,(.) allows us to simulate a trajectory )7,(. ). To this
policy (!,(.), )7(. )) a new cost fi,(x) is associated. Then, starting from (2.65) we need
really to estimate [ffh(x)-fi,(x)l. Again, this issue is not addressed here.

As mentioned in the theorems, the assumption on uniform ellipticity (2.57) is not
required, at least explicitly. For instance, the case of a one-dimensional Brownian
motion can be considered. This includes the control of a one-dimensional ordinary
equation of order n, perturbed by a white noise.

We have assumed (2.10) for simplicity and to have the Dirichlet condition on the
whole boundary OD. However, we need only to correctly identify the part F of the
boundary where the diffusion process exists, and then we can use the technique
described in this paper. This requires supposing that the operator L(h) is degenerate
with constant order of degeneration, i.e., (2.21).
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From the practical point of view, the estimate h/2 is not relevant, since better
results are usually expected. However, this gives a precise relation between the grid
for the space variable and the control variable, when A(h) is used. The constant ap(h)
defined by (2.46) plays an important role in the stability of the numerical schemes.
This is not obtained in classical schemes.

Perhaps the most interesting part is the fact that the finite difference operator (0.6)
does not require any condition of "stability." It is stable in nature, and most estimates
valid for the differential operator (0.5) have an equivalent in the discrete case.

In Bancora-Imbert, Chow, and Menaldi 1 ], the numerical solution of an optimal
correction problem for a damped random linear oscillator is studied. The HJB equation
takes the form of a variational inequality, namely,

Otu+Lu>-_:O in2[0, T), -c<=Ou<-c in[0, T),

(2.74) (O,u + Lu)(O2u + c)(02u c) 0 in 2 x [0, T),

u(., T)=f in,

where the differential operator is given by

Lu(x x2 t) = 2_2-r o2U(Xl, x2, t) (px2 + q2x)OzU(Xl, x2, t) + x2u(xl, x2, t),

and r, p, q, c are constants; r, q, c > 0; and f is a given function. A precise algorithm
is described and used there. The solution of the discrete problem is found as the
common limit of two sequences, one decreasing and the other increasing. This allows
us to bound the error and to give an almost optimal policy. We refer also to Sun and
Menaldi [37], [25]. Note that in the case of (2.74), the solution u is Lipschitz-continuous
together with its second derivative in the x variable.

In a subsequent paper, the (quasi-) variational inequalities will be studied. It is
well known that for those problems the solution is not smooth, i.e., the second derivative
must have a jump. For that reason, only the second approach of Theorem 2.3, i.e.,
using [U]p, seems to be appropriate. Perhaps a combination with finite elements of
the type used by Menaldi and Rofman [26], [23] could be of some help.

Acknowledgments. The author thanks Professor P. L. Chow for the useful dis-
cussions on this work and the reviewers for the opportunity to improve the first version
o,f the paper.
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Abstract. The classical Poincar6-Bendixson Theorem on limit sets of solutions of planar differential
equations is generalized to solutions of planar optimal control problems maximizing a discounted present
value that does not depend explicitly on the control function.

Key words, infinite horizon optimal control, Poincar6- Bendixson Theorem, optimal resource management

AMS(MOS) subject classifications. 49D50, 49A99, 34C25, 92A15

1. Introduction. The main result of this paper is a generalization of the classical
Poincar6-Bendixson Theorem for the following class of optimal control problems (P)
(with n 2):

(1.1) Maximize e-’R(x(t)) dt,

subject to

(1.2) 2j(t)= x.(t) (x(t))+ Y ui(t)f{(x(t)) a.a. tR+, j= 1,..., n,
i=1

(1.3) u(t)=(ui(t))f=N a.a.tlR+,

(1.4) x(0) x e _;
here 8 > 0 and R :[R_ JR, f (f) :R-* are locally Lipschitz continuous, the set f
of control values is compact and convex, and the control functions are chosen in

(1.5) U,d Ud(N+) := {u :N+ - f, measurable}.

Thus we consider discounted optimal control problems where the integral of the
performance index does not depend explicitly on the control, and the system equation
has the "ecological form" (1.2) with control appearing linearly. Our original motivation
for considering asymptotic properties of optimal solutions comes from bioeconomics.
Here the study of such problems is often decomposed into two parts.

First an optimal equilibrium point e is searched for and then a determination
optimal approach path from the initial point Xo to e is tried (compare, e.g., Clark [5,
p. 317]). This approach is justified in the case of a single-state variable (n 1), since
here, in general, bounded solution x(. of (P) converge monotonically to an optimal
equilibrium as tends to +oc (see Theorem 2.7 below). For two state variables (n 2)
the classical Poincar6-Bendixson Theorem describes the asymptotic behavior of the
special class of (uncontrolled) differentiable dynamical systems; here the limit set w(x)
of a trajectory either is a periodic trajectory or consists of trajectories connecting
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equilibria. The Poincar6-Bendixson theorem generalizes within the framework of local
(nonditterentiable) dynamical systems (see Hajek [10]). However, optimal solutions
of (P) are not, in general, unique (cf. the examples given in 6 below). Hence they
need not form a local dynamical system. Nevertheless, the present paper shows that
the Poincar6-Bendixson Theorem can be generalized to optimal control problems of
the type above. The problem of nonuniqueness must be met at the following crucial
steps in the reconstruction ofthe classical argument for proving the Poincar6-Bendixson
Theorem.

(1) We want to form Jordan arcs from parts of solutions; however, solutions may
be self-intersecting. This problem is solved via the optimality principle: if an optimal
solution x returns at time t2 > t into the same state as at time t, then it is also optimal
to run through the same piece of trajectory x l[t, t2] again and again. The solution
obtained this way is optimal and periodic after time t. This is our justification for
studying only the limit sets of nonself-intersecting solutions.

(2) To construct "flow boxes" at nonequilibria we cannot rely on a local paralleliz-
ation theorem such as in dynamical systems. To prove existence of transversal sections
and appropriately defined "flow boxes" we use that the integrand in (1.1) does not
depend explicitly on the control u. Sometimes more general problems can be reduced
to this form (cf. Remarks 2.12, 4.8). The possibility of defining optimality by means
of such a functional has been exploited by Clark in a number of resource management
problems.

The literature on the asymptotic behavior of optimal solutions for (P) concentrates
mainly on establishing sufficient conditions for convergence to equilibrium. We only
mention Arrow [2], Rockafellar [15], [16], Feinstein and Luenberger [8], and Feinstein
and Oren [9]. The convexity assumptions made here are quite restrictive and are usually
not satisfied in resource management. Haurie 12], 13] relaxes the convexity condition,
such that they are, e.g., applicable to Volterra-Lotka equations. However, he must
assume existence of optimal equilibria (with additional properties).

Oscillatory behavior of optimal solutions is often attributed to nonlinear cost
effects and to age structure (Clark [5, pp. 166, 293], Deklerk and Gatto [7]). In 5
we present an example that possesses neither of these attributes.

For a problem arising in economics, Benhabib and Nishimura [4] analyze the
optimality system resulting from the Pontryagin maximum principle. Taking the dis-
count rate as a bifurcation parameter, they show that Hopf bifurcations occur. The
corresponding periodic solutions are optimal due to convexity assumptions.

The paper is organized as follows. Section 2 contains the basic assumptions and
what is needed later about convergent subsequences of solutions and their limit sets.
Furthermore the key lemma about transversal segments is proved as well as the existence
of "flow boxes." Section 3 is a study of optimal equilibria. As a consequence of
Pontryagin’s maximum principle it is shown that in "general" there are only finitely
many optimal equilibria, and a sufficient condition for attractivity of optimal equilibria
is established. The main result is Theorem 3.5, which settles a case in the Poincar6-
Bendixson Theorem. Section 4 contains the proof of the Poincar6-Bendixson Theorem
for nonself-intersecting solutions. Section 5 discusses resource management problems.
A predator-prey system where the predator is subject to harvesting is analyzed. As a
consequence of the Poincar6-Bendixson Theorem, there are optimal solutions having
as limit set an optimal periodic solution. Section 6 discusses nonuniqueness arising
when an optimal periodic trajectory does not contain an optimal equilibrium in its
interior as well as nonuniqueness in an example of a symmetric system of two harvested
competing species. Here nonuniqueness stems from the bifurcation of behavior in the
nonharvested system.
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2. Limit sets and flow boxes. We will denote solutions of (1.2), (1.4) by (t, x, u),
=> O, and always assume global existence of q(., x, u) on + (uniqueness follows from

local Lipschitz continuity). Let q(x, u):= {q(t, x, u): +} and denote the value of
(1.1) corresponding to (x, u) by V(x, u). If not specified otherwise, convergence in
U means weak convergence in the L2-sense on compact intervals. We will also use

Ua() := u: -> , measurable}.

Throughout this paper, we assume that the following hypothesis is satisfied:

(2.1) For every compact subset K c[2_, the set {q(t,x, u): tE+,xK,u Uad}
is bounded.

DEFINITION 2.1. A pair (x, u) Eg Uao is called optimal if for all v Uo we have

V(x, u)>- V(x, v).

A pair (e, ue) [_ X 1 is called an optimal equilibrium, if e q(t, e, u e) for all +
and the pair (e, u e) is optimal (here u is identified with the constant control in Uad
with value U e). For an optimal pair (x, u), we let V(x):= V(x, u).

Remark 2.2. The notion of optimality above keeps the initial point x(0) x fixed
and considers only the effect of different control actions v.

Remark 2.3. Frequently it willminstead of (2.1)--be sufficient that for a fixed
(optimal) pair (x, u), we have that q(x, u)c

_
is bounded.

Remark 2.4. Let (x, u) x Uad be given and suppose that for some > 0, we
have j(t,x, u)=0 for all jJ {1,2,..., n}. Define

rli(S, X, hi)
O, J,
qi(s, x, u),

_
J,

for s in a neighborhood of t. Then q, also solves (1.2) and 4’(t, x, u) q(t, x, u). Hence
by the uniqueness of solutions of ordinary differential equations q q, in a neighbor-
hood of t. Hence either qj (s, x, u) 0 for all s _-> 0 or qj (s, x, u) > 0 for all s _-> 0. Therefore
none of the species can become extinct in finite time and for any J
{yly)-O,jJ}_--+J) is invariant and the restriction of the system to [) is a
system of the same form.

LEMMA 2.5. Suppose xk-x in [_ and uk--> U in Uad. Then q(.,xk, uk)-->
q(’, X, U) uniformly on bounded intervals and V(x k, u k) --> V(x, u).

Proof The first assertion follows in a standard way from Gronwall’s inequality.
For the second one, take e > 0. Then for T and k large enough and xk(t):= q(t, Xk, uk),
t[2+, k=0,1,2,’’’,

IoV(x, u) e-’R(xk(t)) dt V(x, u) e-’R(x( t)) dt

+ R(x(t)) R(xk(t))]dt

+ e-’R(xk(t)) dt
T

using the first assertion and (2.1).
COROLLARY 2.6. Let (x k, u k) [_ x Uao (k ) be optimal and (xk)k bounded.

Then there are a subsequence (xki, bl ki) (iE) and an optimal (x, u) such that
limi q(., x ki, u k,) q(., x, u) locally uniformly and limi u k, u in Ud.
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Proof Existence of a subsequence (x k;, u k,) converging to (x, u) follows from
boundedness. Now let v Uad. Then, by optimality of (x ;, ui),

V(x, u) lim V(x, u i) >-_ lim V(x, v)

V(x, v).

This proves optimality of (x, u).
Let (x, u)

_
Uad be optimal and define x(. ):= q(., x, u).

THEOREM 2.7. (1) Suppose that n and x( t) is neither increasing nor decreasing;
then a < exist such that each e (a, is an optimal equilibrium.

(2) If e lim,_. x( t) then e is an optimal equilibrium.
Proof (1) If x(t) is neither increasing nor decreasing, there exist r < s < such

that x(r)=x(t), x(s)# x(r). We may choose s such that either x(s)=minx([r, t]) or
x(s) max x([r, t]), say x max x([r, t]). Choose any b (a,/3) (x(r), x(s)). There
is a first instant r > r such that x(r)= b, a first instant s > r such that x(s:)= b + e,
and a first instant t, > st such that x(t,)= b. Let s’ be the last instant < t such that
x(s’:) b + e. Then define

u() u( + ) for 0-< cr s r,,

u,(s-r.+o)=u(s’+o) for 0-< o-_-< t s.
This way u (o-) is defined for 0 _-< o- -< s re; + t s’ zr. Now extend u,j to obtain a
periodic function on + with period zr. Define x in the same way as u using x(t)
instead of u(t). Then x satisfies (t)=f(x(t), u(t)) almost everywhere on [_ and
(x, u) is a solution of (1.1)-(1.4) with x(0)=b. Note that for all t_->0 we have
Ix(t)- b _-< e. Let en > 0 tend to zero. Then Corollary 2.6 implies that b is an optimal
equilibrium.

(2) Suppose e=lim,_x(t). For nputx(t)=x(t+n), Un(t)=u(t+n). Then
(xn, u) solves (1.1)-(1.4) with x,(O)=x(n). Hence e is an optimal equilibrium by
Corollary 2.6.

Next we introduce the central notions of this paper.
DEFINITION 2.8. For (x, u)_ Uad define the omega limit set co(x, u) by

(2.2) co(x, u) := {y "" there exist t + such that t -* and q(t, x, u) - y}

cl{p(t,x,u)" t>=n}.

For I [+ or I [, we call (x, u)

_
Ua(I) an optimal/-solution if the correspond-

ing solution q(., x, u) of (1.2) exists on I and for all I

V(cp(t,x, u), u(t+.)) V(qv(t,x, u)).

Frequently, we call optimal [+-solutions simply optimal. If (x, u) is an optimal
-solution, define the alpha limit set ce(x, u) by

(2.3) a(x, u):= f-) cl {q(t,x, u)" t<--n}.

Finally define for optimal (x, u)

(2.4) a3(x, u):= {(y, v)" (y, v) is an optimal -solution and there are t+ such
that t -* oo and q (tk +., x, u) p (., y, v) locally uniformly on
and u( t +. )- v in U}.

DEFINITION 2.9. A subset L of is called (positively) invariant if for all y L
there is an optimal (+-) -solution (y,v) with (,y,v)mL (respectively,
(+, y, v) ).
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PROPOSITION 2.10. Let (x, u) be optimal. Then co(x, u) is nonvoid, compact, and
connected. For every y co(x, u) there is v Uad such that (y, v) (x, u) and q(, y,
to (x, u). In particular, to (x, u) is invariant.

Proof Using (2.1), we see that to(x, u) is nonvoid, connected, and compact. Let
y to (x, u). Then there are tk - o with q (tk, x, u) -* y. By Corollary 2.6, we can, without
loss of generality, assume that s u(t + s), s [+, converges in Uad to some Uo
and s - r (t + s, x, u), s e +, converges uniformly on bounded intervals to r (., y, Uo).
Taking again, if necessary, subsequences, s u(t- 1 + s), s +, converges weakly
on bounded intervals to u_ :[-1, o)-. 12 and s -* q(t 1 + s, x, u) converges uniformly
on bounded intervals to p(.,y,u_):[-1, oo)- with Uo=U_ and o(.,y, uo)
(’, y, u-s) on [0, oo). By successively taking subsequences of (tk) we obtain sequences
u_n :[-n, oo) --> , p(., y, u_,) [-n, oo) -> [n with u-n u-n+ on [-n + 1, ) and

d

d--- p(t, y, u_,)=f(cp(t, y, u_n), u_,(t)),

V(cp(-n, y, u-n), u_n(-n +" ))= V((-n, y, u-n)).

Defining

v(t) u_.(t) on I-n, oo),

we obtain an optimal R-solution (y, v).
The following lemma is our key for the construction of local transversal sections.
LEMMA 2.11. Let L be a compact positively invariant set and R(e)=

sup {R(x)lx L} for some e L. Then one of the following conditions is satisfied:
(i) e is an optimal equilibrium;
(ii) L contains a point x with O:f(x, ).
Proof If (ii) is violated there is v el) such that f(e, re) =0. By invariance of L

we find v Ud such that (e, v) is optimal with q(+, e, v)m L. Hence

V(e)= e-’R(q(t, e, v)) dt<= e-’R(e) dt

e-’R(q(t, e, re)) dt= V(e, re).

Thus (e, v) is an optimal equilibrium, i.e., (i) holds.
Remark 2.12. In 5, we will consider a two-dimensional problem from resource

management (n 2), where the integrand of the performance criterion depends also
on u. However, the problem can be transformed into one in which in the interior of
+ we obtain a criterion of the form (1.1) (R(x) becomes unbounded for x-->O 2+).

In fact, Lemma 2.11 remains true here, since it holds in the following general situation.
Suppose (1.1) is replaced by

(2.5) e-’ go(x(t))+ E ui(t)gi(x(t)) dt,
i----1

with g" +-* , 0, 1," ", m, locally Lipschitz continuous, and the following condi-
tion holds:

(2.6) There is a continuous function R" int + - such that

a, u)) converges for every adt int[ 2+,U Uad
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to a real number VR (a, u).

() Apair(a,u)int2+ Uadisoptimalifandonlyif VR(a,u) >- VR(a, v)
for all v Uad.

First observe that Corollary 2.6, Proposition 2.10, and Theorem 2.7 remain true for
the criterion (2.5). If L cint 2+ this follows from Lemma 2.11. Otherwise, L (’102+ ;
suppose, for example, L L tq rr-(0) where rr(x, x2)= xl. By Remark 2.4, the
restriction of the system to rr-l(0) is well defined and L is compact and invariant for
this system. Since the restricted system again is of the form (2.5), (1.2)-(1.4), Theorem
2.7 yields the assertion.

We first consider case (ii) of Lemma 2.11, and show that it translates into a
geometric condition.

DEFINITION 2.13. Let x E", I:E --> E linear and a > 0. If

If(y, u)> c

for all y in a neighborhood W of x and all u e fi, then

S := W 1-’(x)
is called a local transversal section through x.

PROPOSITION 2.14. Suppose that O:f(x, 1). Then x possesses a local transversal
section. Hence a compact positively invariant set L either contains an optimal equilibrium
or a point possessing a local transversal segment.

Proof In view of Lemma 2.11, we only have to show the first assertion. If
O_f(x, ), then by the Hahn-Banach Theorem this assertion follows, since f(x, )
is compact and convex.

Obviously, trajectories "can cross a local transversal section only from one side."
The next result presents an important consequence from the existence of a local
transversal section.

We need the following definition.
DEFINITION 2.15. Let S be a local transversal section through x, and let V c Vo

be neighborhoods of x. Then the triple (Vo, V, S) is called a flow box around x, if
it has the following property:

If (., x, u) satisfies

q(to, X,u) Vo, (t,,x,u)V1, q(t2,x,u) Vo
for some 0_-<to<t<t2, then there exists te(to, t2) such that q(t,x,u)eS and
q(s, x, u)e Vo for all s between and tl.

THEOREM 2.16. Let S be a local transversal section through x. Then there are
neighborhoods Vo and V ofx such that (Vo, VI, S) is a flow box around x.

Proof There exist a linear map l: , a constant a > 0, and a neighborhood
W of x such that S W fq 1-(x) and

l(f(y,v))>oe for allyW, v.
Choose a ball Vo=B(ro, x) around x with radius ro>0 such that Vo c W and put
c := sup {If(Y, u)l lY e Vo, v e }. Then choose rl e (0, ro) so small that

(2.7) lz- ce/2c(ro- rl) --< ly <- lz + a/2c(ro- rl)

for all z, y e V B(q, x). We have for t> ’->0:

q(t, x, u)= q(t’, x, u)+ f(q(s, x, u), u(s)) ds
t’
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and hence

l(q(t,x,u))=l((t’,x,u))+ lf(q(s,x,u),u(s))ds
t’

>-- l(q(t’, x, u))+ a(t- t’)

provided that p(s, x, u)e W, ’<- s <_-t. Without loss of generality, we may assume

q(s,x,u)Vo for all to -<-s_-<t2
replacing, if necessary, to by the last time before tl at which q(t, x, u) is in the
complement of Vo and t2 by the first time after tl at which (t, x, u) leaves Vo. We have

ro- , -< I(, x, ) (o, x, u)[ _-< c(- o),

ro- rl--< Iq(t2, x, u)-- q(t, x, u)l c(t2- t).

If lq(to, x, u) <= lx <= lq( t2, x, u), or lq(t2, x, u) <= lx <= lee(to, x, u), the assertion follows
by continuity of - If(t, x, u). Hence we only have to consider the following two cases.

Case 1./x < min {lq(to, X, u), lq(t,x, u)}. Here lq(t,x, u)>= lq(to, x, u)+ cr(tl-
to)> lx+c/c(ro-r), contradicting (2.7) for y=q(t,x, u).

Case 2. lx> max {lq(to, x, u), lq( t2, x, u)}. Here lq( t, x, u)>- lq( tl, x, u) + a( t-
t) > lq(t, x, u)+ a/c(ro- r), again contradicting (2.7).

3. Optimal equilibria. In this section we first characterize optimal equilibria by
necessary optimality conditions. It turns out that "in general" only finitely many
optimal equilibria exist. Strong additional assumptions ensure that optimal equilibria
in a limit set are already reached in finite time. Furthermore, limit sets co(x, u) reduce
to a single optimal equilibrium provided that co(x, u) consists of equilibria only and
contains at most finitely many optimal equilibria.

First we discuss the following problem:

Maximize (2.5) subject to (1.2)-(1.4)

where 12 is a rectangle in 2 (in fact, the "ecological form" of (1.2) is not needed in
this section, if not stated otherwise).

Abbreviate

g(x, u) go(x) + E bligi(x), f(x, U) =fo(X) + uigi(x).
i=1 i=1

For any equilibrium e (x, x), there are the two equations (for x, x2, u, u2) defining
an equilibrium, namely

(3.1) o =f(x, u).

To derive a second set of equations we shall use Pontryagin’s maximum principle (cf.
Ha|kin 11 ]). Write

H ho e-’g + h f,

,k(t) =-Ao e-’’g-f’A (adjoint equation).

Here

f= f2
and f.’,,=\f,, f,/,2_

A=
A2

Thus,

H ao e-a’go + a,fo + a2f) -- //1(/0 e-a’gl + a,fl + a2f2) + u2(ao e-’g2 + a,f + a2f).
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Put/z e’h. Then/2 /z + e’. Hence the adjoint equation reads

4 -Aogx + 6I f)tx,
and

H h(t, x, A + Ul(Aogl + txlf + tx2f) + u2(Aog2 +/xf +/xf).
Pontryagin’s maximum principle implies that (ho, h (t) 0 for all -_> 0 and H attains
its maximum over f in (ul, u). We may assume that Ao 0 or o 1.

Now we discuss the possible numbers of optimal equilibria. There are three cases:
Case 1. u (u, u) is one of the corners of
Case 2. u lies in the relative interior of one of the edges of
Case 3. u int
Case 1. Recall that there are only four corners of
Case 2. One equation for u is given by the condition that u lies on one of the

edges of . Furthermore the derivative of H in direction, say v (v, v2) (parallel to
the edge of ) containing u), vanishes, i.e.,

(hogl + t.tlf + Uzf)v + (hog2-k-/zf +/.t2f22)v2--0 for all t.

Thus with q := vf + v2f, vlf + v2f)
(3.2) q/.t -ho(gv + g2v2) for all t.

Insertion into the adjoint equation yields

(3.3) O=q12=q(-Aog,+(aI-f’)lz) or q(6I-f’)>=ho%, forallt.

If g and q(6l-f) are linearly dependent we obtain with (3.1), the assumption that
u lies on an edge of 2 and

(3.4) det (q’, (6I-f’)o’)-0,
four equations for the unknowns xl, x2, ul, u2. If p and p(6I+f’) are linearly
independent, (3.2) and (3.3) imply that /z is constant and that ho= 1. We assume
det (aI-f’x)# O. Then by the adjoint equation and (3.2)
(3.5) q(tI--ftx)-lgx =--glVl d- --g202,

and again we obtain four equations for xl, x2, u, uz.
Case 3. Put

\ST ST/
Then

Suppose det F 0. Then

/x=-hoF-(g)g2

and it follows that Ao 1, and O. The adjoint equation yields

(3.6) 0= gx+(6I-f’)x and gx=(6I-fx)F-l(g’).
\ /g

Hence together with (3.1) we obtain four equations for (x, x2, u, u).
Now suppose det F 0. By introducing new control variables we can eliminate

one control variable in the system equation and proceed with the discussion as in Case
or Case 2 above.
We formulate the conclusion of this discussion in the following remark.
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Remark 3.1. Consider problem (2.5), (1.2)-(1.4) with n=m=2 and f=
[0, U] [0, U2]. Then every optimal pair (x, u) such that u 1), 0 =f(x, u) must satisfy
four equations in the unknowns xl, x2, u, u2. In concrete examples, these equations
may serve to compute all candidates for optimal equilibria (recall that the maximum
principle is only a set of necessary conditions). On the other hand, these equations
justify the statement that "in general" there exist at most finitely many optimal
equilibria. We shall use this as a hypothesis further below in this section and in 4.

We proceed to analyze finite-time reachability properties of optimal equilibria in
limit sets.

DEFINITION 3.2. An equilibrium e is called strongly optimal if the constant
function x(t)= e is the unique optimal trajectory for start in e.

LEMMA 3.3. Let (x, u) be optimal and suppose that e is a strongly optimal equilibrium
in to(x, u). Thenfor every T> 0 and every neighborhood Vole there exists a neighborhood
U of e such that q( t, x, u) U implies q ([ t, + T], x, u) c V.

Proof Assume, contrary to the assertion, that there exist a neighborhood V of e,
T>0, and t,-o with q(t,,x,n)-e and q(t,+s,,x,u)V for some s,[0, T].
Without loss of generality, s-s[O, T]. We may assume that q(., q(t,,x, u),
u(t,+.)) converges uniformly on bounded intervals to an optimal q(., e, v). Since
q(s, e, v) V and q(0, e, v)= e, this contradicts strong optimality of e.

THEOREM 3.4. Let (x, u)

_
Uao be optimalfor (1.1)-(1.4). Let e to(x, u) with

the following:
(i) e is a strongly optimal equilibrium in int _;
(ii) There is u int f with f(e, u) 0;
(iii) m >-_ n andre(e),... ,f(e) are linearly independent;
(iv) R is a C2-function in a neighborhood of e and R’(e)=0, R"(e) is negative

definite.
Then for all > 0 sufficiently large q( t, x, u) e.

Proof (a) Suppose q V " is a coordinate change defined on an open neighbor-
hood V of e. If x(t) is in V and satisfies x(t)=fo(x(t))+= u(t)f(x(t)), then
y(t) b(x(t)) satisfies )(t)= (b(x(t))(fo q-)y(t)+= ut(t)(O(x(t))(f d/-)(y(t)),
which again is a system of equations of the type we are considering. Obviously our
assumptions (i)-(iv) carry over. By (iv) and according to the Morse Lemma there is
a coordinate change q such that R q (x)=-i= x for all x in a neighborhood W
of O(e).

Hence we may without loss of generality assume R(e+x)= R(e)+=l (x-e)
in a ball V(e, r) of center e and radius r.

(b) By (ii), (iii) and the implicit function theorem r may be chosen so small that
a smooth function u: V(O,r)x V(e,r)-->O exists such that for all (y,x)
V(O, r) x V(e, r) we have y f(x, u(x, y)). In fact, if F(x) is the matrix with columns
fl(x),""" ,f,(x) then

u(x, y)= F-l(x)(y--fo(X)).
In particular, if x(t)-- a+ t(e--a), 2(t)= e--a=f(x(t), u(x(t), e--a)) provided
a < r. Hence x(t)= q(t, a, u) is an admissible solution of our system at least up to
t-- (u(t)= u(x(t), e-a)).

(c) We now assume e q(x, u) and try to reach a contradiction to (i). See Fig.
3.1. Choose T > 3. According to Lemma 3.3 there is by (i) > 0 such that q((t, +
T),x, u)c V(e,r). By our assumption in (a) there is a first time s (0, 1) such that
for all s(s,l]

R(xo(s))> R((t+s,x, u))
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a
o

FIG. 3.1. q3 visits ao, a, e, a3, a:.

where

Put

then

Put

Xo(S)=ao+s(e-ao), ao=q(t,x, u).

a q(t+s, x, u),

le aol (e a,), 0_<- s <_---x,(s)=al+Sle_al

R(Xl(t))> R(q(t+s,+s,x, u)), O<--s<=s2

a2= p(t+ T, x, u),
x2(s)=e+s(a2-e), 0<--s<--l=s3.

Note that S + S -- S < 3 < T.
There is a last time S4 C (0, $3) such that

R(x2(s))> R(q(t+ T-s3+s,x, u)),

a3 qg(t+ T- s3 + s4, x u),

e + , _7 (ag e), 0 <-_ ,

R(x3(s))> R(q(t+ T-s3+s,x U)),

Put

Then

S C (0, $4).

S4

S (0, S4).
Now we combine the xj’s to build a solution that performs better than q(., x, u). Put

(s,x,u),
XI(S-- t--S2)

q3(s) e,
x3(s- t-,T+ s3),
,(s, x: u)

O<-s<-t+s,
t+ S S t+ Sl + $2,

t+S+S2<=S<---t+ T-s3,
t+ T-s3<=s<-t+ T-s3+$4,
t+ T-s3+s4<:s.

The definition makes sense since T> S --$2-I- S Using (b) we may find v gad such
that q3(s) q(s, x, v). But

0- t+ s < t+ T-s3+ $4-- 0"2
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and

R(q(s, x, v)) > R(q(s, x, u)) for s (o,, cry.),

R(q(s, x, v))= R(q(s, x, u)) for s (or,, or2).

Therefore V(x, v)> V(x, u) in contradiction to the optimality of (x, u).
Next we give a sufficient condition for optimal solutions to converge to a single

optimal equilibrium. This result will be used substantially in the next section.
THEOREM 3.5. Let (x, u)12_x Uad be optimal for (1.1)-(1.4). Suppose the fol-

lowing"
(i) to(x, u) contains at most finitely many optimal equilibria.
(ii) to (x, u) c E {y

_
there exists v f with o f(y, v)}.

Then to(x, u) consists of a single optimal equilibrium.
Proof Suppose that

4to(x, u)-> 2.

There is e to (x, u) and a sequence of points e, to (x, u) such that lim, e, e and

a sup {R(y)]y to(x, u)} lim R(e,).

There is to(x, u) such that

b R(g) < a.

Otherwise all points in to(x, u) would be optimal equilibria and by connectedness
to(x, u) would contain infinitely many optimal equilibria contrary to (i). We choose
numbers b0, b, b2 with

a > bo> bl > b2 2> b

such that there is at most one optimal equilibrium e in to(x, u) with R(e) > b2.
Choose (t) c I2+ with t ee and q (t, x, u) - e. For every k N there are sk __> 0,

0, 1, 2, with

s:= inf {s 0: R(q(t+s,x, u)) < bz},

S := sup {s-<_ s2
k" e(q(tk+S,X, U))> bl},

So
k := sup {s <-- sk" R(q(tk + S, X, U)) > bo}.

We may assume that the functions

q( tk + sko +’, X, U)

converge uniformly on every bounded interval to an optimal trajectory q(., y, v)c
to(x, u). Then y E and R(y)= bo. Next we show the following" The sequence t2

k

k+ls-Sok, k N, is bounded. Otherwise we might assume that t2
k < tz and tk oe. The

functions

R(qO(tk+Sko+t,x,u)), t[0, t2k]
have values in

V(bo, b) := {z" bo >- R(z) >- b}.

Hence also q(., y, v), to(y, v)c V(bo, b2).
Since to(y, u)c E, Lemma 2.11 implies that to(y, v) contains an optimal equili-

brium. This contradicts the choice of b2.



ASYMPTOTIC PROPERTIES IN DISCOUNTED CONTROL PROBLEMS 619

Thus (t2k) is bounded and, considering subsequences, we may even assume that
tzk _. t2 and lk sk So

k - tl with 0 < tl t2 < . Hence,

We obtain

R(y) R(q(O, y, v))= bo,

R(q(t,y, v))<-bo

R(q(t, y, v)) <= b
R(q(t, y, v))<=a

for [0, tl],

for 6 t, t2],

for [t2, ).

e-tR(q(t,y, v)) dt= + + =<-(1-e )+-(e-
tl t2

Since y E and (y, v) optimal

1 R(y)=b fo -’R-<= e (q(t,y,v))dt;

hence

or

bo =< bo- bo e-tl6 + b e-’,a b e-’2 + 6
t2

e-t2
t2

bo<-b(1-e(’,-’9)+t3e’, R(q(t,y, v)) dt.
t2

Note that the right-hand side is constructed independently of bo. Hence if a +oe we
may let bo tend to a +oe, thus obtaining a contradiction since ,2 converges to a finite
value. Hence we may assume that a is finite and thus

bo -< b e(’’-’) + a e

Letting bo tend to a, we find

a( e(’’-’ga) _-< bl( e("-’)),
leading to the contradiction aN b since q(t, y, v)= b2, q(tl, y, v)= hi, and hence

Using similar arguments as in the proof above, we can show the analogous result for
c-limit sets.

THEOREM 3.6. Let the assumptions of Theorem 3.5 be satisfied for a(x, u) instead

of to (x, u). Then c (x, u) consists of a single optimal equilibrium.
Remark 3.7. Let n 2, replace (1.1) by (2.5), and suppose that (2.6) holds. Let

(x, u)[+ Uao be optimal. Then when we assume (i), (ii), a slight change in the
proof of Theorem 3.5 shows that either to(x, u) consists of a single optimal equilibrium
or is contained in the boundary of 2+" Furthermore the following holds" Let (y, u)
t3(x, u) with to(y, v)= O+ such that to(y, v) contains only a finite number of optimal
equilibria. Then to(y, v) consists of a single optimal equilibrium.

Proof Suppose the assertion is false. Then #to(y, v)>-2, and since to(y, v) is
connected, to(y, v) contains infinitely many points. By assumption there is z (Zl, z2)
to(y, v), which is not an optimal equilibrium, say with z2 0. There is (z, w) o(x, u).
Since the first component q(., z, w) is not constant, it is by Theorem 2.7, say, increasing
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(if it is decreasing, analogous arguments will apply). By Remark 2.4, the second
component q2(t, z, w) vanishes for all t. Let > 0 such that the segment between z and
z’= q(t, z, w) does not contain an optimal equilibrium. Since z, z’ to (x, u) there are
tn, sn => 0 such that

limtn=+, limq(tn, x,u)=z’, limq(t,+s,,x,u)=z

and for all n , [0, s,],

zl<=ql(t,+t,x,u)<=z, O<=q2(t,+t,x,u)<=l/n.

We may assume that the sequence of functions q(t, + t, x, u) converges locally
uniformly to a function q(., z’, w’) such that (z’, w’) o3(x, u). If lim s11 +, then
to(z’, w’)c [zl, z] {0}. By Theorem 2.7, to(z’, w’) contains an optimal equilibrium,
in contradiction to our assumption.

Therefore a subsequence of (s11) converges to some s[0,). Obviously,
q (s, z’, w’) z. Define

w"(cr) w(cr) for 0<- o- =< t,

w"(cr)=w’(cr-t) fort<cr<=s+t,

and extend w" periodic on / with period s + t. Then (z, w") is optimal and periodic.
Now consider (z, w") as an optimal pair with respect to the restriction of our system
to +x{0}-l+ (Remark 2.4). Since q(., z, w") is neither increasing nor decreasing,
Theorem 2.7 implies the existence of infinitely many optimal equilibria contrary to the
assumption.

4. Poinear-Bendixson Theorem. The analysis of this section is restricted to two-
dimensional systems (i.e., n- 2). Our final result, Theorem 4.6, is a generalization of
the classical Poincar6-Bendixson Theorem. If we drop the assumption of that theorem
that q(., x, u) is nonself-intersecting, we obtain an optimal periodic solution in a trivial
way according to the following proposition.

PROPOSITION 4.1. Suppose that (x, u)

_
Uad is optimal and q(., x, u) intersects

itself i.e., there are T2 > T1 >- 0 with q( T, x, u) ( T2, x, u). Then there is Uo such
that (x, t) is optimal and q( T + s, x, u) q( T + k( T2- T) + s, x, ) for s [0, T- T],
k.

Proof Define (t)= u(t) for t [0, T],

(T+k(T2-T)+t)=U(Tl+t) fort6[0, Tz-T], k6.

Then the assertion follows since final segments of optimal solutions are optimal.
We call a solution (x, ) with the property above finally periodic.
For the reader’s convenience, we cite the following classical theorem (see, e.g.,

Beck [3, Cot. C.23]), which will be used frequently.
JORDAN’S CURVE THEOREM. Let J be a Jordan curve in 2 (i.e., a homeomorphism

from the circle into 2). Then 2\Im J has two components, one of which is bounded
(called ins J) and the other one (called outs J) is unbounded. Each one has boundary
Im J and is simply connected.

Since the orientation does not concern us, we identify J with its image.
LEMMA 4.2. Let (x, u)6+ Uo and suppose that the corresponding trajectory

q (., x, u) is nonself-intersecting. Then a local transversal section S has at most one point
in common with to(x, u). For optimal R-solutions it follows also that S has at most one

point in common with a x, u ).
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Proof As in the theory of uncontrolled differential equations (see, e.g., 1, Lemma
24.1] or [14]) we prove the following: Let (xi) be a sequence of points in (x, u)f3S.
If (xi) is increasing on (.,x, u), then it is also on S. Now suppose that y, Y2
w(x, u) S and y Y2. Let be disjoint neighborhoods of y., j 1, 2. Then there
exists a sequence tk - C such that

(t2k+,,x,u) U, and ( tzk, x, u) U2, k .
By Theorem 2.16, we may choose Uj= V, where (V, V, S) are flow boxes around
yj, j 1, 2, and Vo f-I Vo --. Then there exists a sequence (sk), Sk oO, with

(s+,, x, u) U, t S, (s2+,, x, u) U S.

This contradicts the assertion above.
The same arguments apply to a a-limit sets of optimal R-solutions.
PROPOSITION 4.2. Let (x, u) 2+ Uad be optimal and suppose that q(., x, u) is

nonself-intersecting. Let (y, v) be an optimal i-solution with (, y, v)c to(x, u). Then
w(y, v) and a(y, v) consist of equilibria only or (., y, v) intersects itself in a point z
possessing a local transversal section S.

Proof Suppose that to(y, v) contains a point z which is not an equilibrium. Then
z possesses a local transversal section S by Lemma 2.11. Using a flow box around z
we find that q(y, v) S # . Since (y, v), to(y, v) w(x, u) and z
w(y, v) S to(x, u)f3 S this implies by Lemma 4.2 that S to(x, u)= {z}, and hence
{z}= (y, v)71 w(y, v). Thus there is T1 >--0 such that (T1, y, v)= z. Since z is not an
equilibrium, there is a neighborhood Vo of z and s > T with (s, y, v) Vo. Using a
flow box Vo, V, S) around z, we find a T2 > s with (T2, y, v) S. Hence ( T2, y, v)

T, y, v) z. Thus (., y, v) intersects itself in z.
We prepare the proof of the next proposition by the following lemma.
LEMMA 4.4. Let (C,) be a decreasing sequence of closed sets in . Define

C := 71, C,, let nk - , and

D := {y q: there exist x, with x,,, OC and x, - y}.

Then 0C D.
Proof Suppose y D, i.e., there are (x,,,) with x, OC, and x, y. Let B(y, e)

be the ball with center y and radius e > 0. Then for k large enough x, B(y, e). Since

x, OC, there is y, B(y, e)\ C,, B(y, e)\ C. Since e > 0 is arbitrary, y int C. Since

C,. C,, for k > it follows that x, C,, for k > and, since C,, is closed, y 6 C,, for
all /. Hence y C\int C OC.

Conversely suppose that y OC and note C k C,. Then for every e > 0 there
exists z B(y, e)\C. Hence there is nk such thaty B(y, e)\C,. Suppose that B(y, e)f3
OC, . Then

B(y, e)=(B(y, e)\C,)U(B(y, e) f’) int C,.).
Since B(y,e) is connected and zB(y,e)\C, we conclude that =
B(y, e)int C. B(y, e)f3 C, y. This contradiction shows that there exist y,.
B(y, e) 710C,. Evidently, lim y, y, and hence y D.

PROPOSTOy 4.5. Let (x, u)2+ Uad be optimal and assume that q(., x, u) is

nonself-intersecting. Suppose that there are (y, v) t3 x, u) and T2 > T with

( T1, y, v) ( T2, y, v)=: z,

with z possessing a local transversal section S. Then

w(x, u) q([ T1, T2], y, v).
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Proof Since z co(x, u) we can use a flow box around z to construct inductively
a sequence of numbers tn such that tn+ is the first instant after tn with (t, x, u) S.
Then for all n we have tn < t,+, t, c, and (t,, x, n)--> z. Now define the Jordan arc

Fn to consist of ([t,, t,+],x, u) and the segment on S between q(tn, x, n) and
q (t,+, x, u). There are two cases.

Case 1. For all n ins F, =ins F,+.
Case 2. For all n outs F, = outs F,+.
Let us first consider Case 1. Put C := (3 cl ins F,. By Lemma 4.4, OC w(x, u).

Now let be arbitrary and consider a flow box (Vo, V, S) around z such that Vo
is a ball around z with radius 1/1. The set V contains a ball around z of positive
radius r. Since (y, v) o3(x, u), there is t> 0 such that

I(t+T,+s,x,u)-q(T+s,y,v)l<r, O<=s<=T2-T,.

By the flow box property we may follow q(t + T + s, x, u) starting with s =0 and
without leaving Vo until we reach + T + s t,,. Applying the same argument to the
instant + T2-T we find that the part of q([t,,, tn,+,], x, u) not contained in q([t +
T, t+ T2], x, u) is contained in Vo. Hence each a q([t,,, t,,+,],x, u) has a distance
less than 1/I to some a’ q( T, T2], y, v). Thus a second application of Lemma 4.4 yields

q([ T, T2], y, v) 0 F’l cl ins F,, 0 cl ins F, to(x, u).

Case 2 can be treated analogously.
The next theorem presents the main result of this paper.
THEOREM 4.6. Let (x, u) + Uad be optimal for (1.1)-(1.4) with (., x, u)

nonself-intersecting and suppose that w(x, u) contains onlyfinitely many optimal equilibria.
Then one of the following cases occurs"

There are T > 0 and an optimal [-solution (y, v) t3 x, u) such that y
q(T, y, v) and w(x, u) q([0, T], y, v).

(ii) ere are optimal E-solutions (Yi v w x, u) and optimal equilibria e
such that for all i,

(4.1) ef lim (t, Yi, v), e lim (t, Yi, vi),

(4.2) w(x, u)= q(E, yi, vi)w {e, e-}.

Proof Let y e w (x, u). By Proposition 2.10 there is v Uad such that (y, v) a3 (x, u).
If either o (y, v) or w (y, v) contain a point that is not an equilibrium, then Propositions
4.3 and 4.5 imply that (i) holds (naturally, we may take T =0).

In the other case, a(y, v) and w(y, v) consist of equilibria only. Since c(y, v),
w(y, v) w(x, u), Theorems 3.5 and 3.6 imply that there are optimal equilibria e- and
e+ with

e- lim q (t, y, v), e+ lim q (t, y, v).

COROLLARY 4.7. Let (x, u)2+ Ud be optimal for (1.1)-(1.4) and suppose that
w(x, u) does not contain an optimal equilibrium. Then either there is Ud such that
x, is optimal, finally periodic and q x, q x, u) or there are optimal periodic

(y, v) (x, u) (y, v).+ Ud with to

Proof If q(., x, u) is self-intersecting the assertion follows from Proposition 4.1.
Otherwise Proposition 4.5 implies the existence of optimal ()7, ) and Tz > T _>-0 with
q(T,)7, ) q(T2, .9, ) and w(x, u) q([ T, T2], y, v). Applying Proposition 4.1
again, we obtain the assertion.
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Remark 4.8. By Remarks 2.12 and 3.7, the results above remain true if the
performance criterion (1.1) is replaced by (2.5) provided that (2.6) holds.

5. Application to bioeconomic problems. The crucial assumption in the Poincar6-
Bendixson Theorem given above is that the integrand of the performance criterion
does not depend explicitly on the control u. In this section we show that the weakened
form of this assumption specified in (2.6) can be verified in bioeconomic problems.

Furthermore, we present a specific example where the w-limit set of an optimal
solution consists of an optimal periodic trajectory that is not an optimal equilibrium.
Feasibility of this case is a specific feature of the two-dimensional problem compared
to the one-dimensional problem.

We will have to ensure that the w-limit set has empty intersection with 0[2+. This
deserves special attention also independently of the question considered here. Hence
we give the following definition.

DEFINITION 5.1. A pair (x, u)eint_x Uad leads to extinction if oo(x, u)(-I
O

PROPOSITION 5.2. Let (x, u) int

_
Uad be optimal If (x, u) leads to extinction,

then there are optimal (Yk, vk) k O, 1, 2, , such that y int _, y - Yo OR

_
and

sup {d(z, ON_), z q(y, v)}-O for k-+.
Proof In the case co(x, u)= 0_ we may choose Yk := q(tk, X, U), Vk := u(tk +" ),

with tg-. Now assume that w(x, u)f30[+, but w(x, u):O_. For e>0 let

B := {z _: d(z, 0_) <_- e}. Choose e small enough such that w(x, u) B. Then there
are tl z and Sl > O, , such that for all large enough

q( tl, x, u) OB, q( h + s, x, u) B/t, q( tt + s, x, u) B fors[0, st].

Without loss of generality we may assume that t- q(h+ t, x, u) converges locally
uniformly to some q(., y, v) with (y, v) d)(x, u), y OBj. If (s) is bounded we may
assume that s- seN+. This implies q(s,y, v)ON_. Hence q(0, y, v)cON_. This
contradicts q(h,x, u)OB. If (s) is unbounded, we may assume that sl-*oo. This
implies q (y, v) c Be. Choosing a sequence (e) with ek -> 0, we obtain (y, vk) satisfying
the assertion.

Example 5.3. Maximize

V(a, u)= e-’{p,x,(’y,,u, "at- ’Yl2U2)Fl(x1)’nt-p2x2(’Y21Ul q’- "Y22u2)F2(x2)

Cl/’/1 C2U2} dt

(where dependence on has been dropped) such that

Xl(FA(X)- (3/llU t-

)2 X2( F(X) (’)121Ul q- ")122u2) F2(x2)),

(Xl(O) xz(O))=(a, a2)[2
+

(u,(t), u2(t))-=[O, U1]x[O U2].

This example is designed to model resource-harvesting of two resources, the stocklevel
of which (at time t) is denoted by x(t), respectively, x2(t). There are two technologies
available, such that an effort UJ spent applying technology j results in a catch-rate
]/qljFi(xi) with respect to the species i. y,..j are nonnegative efficiency coefficients; Fi(xi)
is a positive locally Lipschitz continuous function 2+-, which relates effort and
catch. There is a more detailed discussion of these "density profiles" in Clark [6].
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Pl, P2 are nonnegative constants to be interpreted as prices per unit biomass, c,
c2 are nonnegative constants to be interpreted as cost per unit effort spent applying
technology one, respectively, two. Therefore V(a, u) represents the "total discounted
net revenue."

The rewriting of V(a, u) in int 2/. Note first that

XlF(x)--l
3/11Ul " 3/12U2 x1FI(x1)

xlg(x e
3/21/,/1 q’- 3/Z2U2 x2F2(x2)
plXl(3/11/,/1 -}- 3/12/,/2)iwl(xl)-- F(x)plx
pzxz( ylU + yzzuz)FZ(x2)= F(x)pzx2-p222.

We assume that the matrix (%) is invertible. For obvious reasons the special case of
3/12 3/2 0 is called "selective harvesting." Suppose first yl # 0. Then

{ Y Y12’ F(x) 721F(x) 22 721 21
Y22 ) /’/2 F3/11 F2(x2) 3/llFl(xl)x2F2(x2 "-}-3’ x (x)

or with d Yl 3,’22 3/123/21

where

3/1--
cl

-}
Cl 3/123/21 C2 3/21 Cl 3/12 C23/11

3/1 d3/ d
3/2--

d d

and G, G, G are locally Lipschitz continuous functions of x. Put G4(x) G3(x)+
F(x)pxl + F(x)p2x2. Then

V(a, u)= e-tG4(x(t)) dt+ e-’ 3/ 3/2

xF(x)-Pl ) +
x2F(x2)-p2 2 dt.

Put g(y)=; (/fF(f)-p), where z=(z,, z2) is a pair of positive reals fixed
once and for all. Now

(5.1)

V(a, u)= e-a’G4(x(t)) at+ e-’[g(xl(t))),(t)+g’2(x2(t))2,2(t)] at

e-a’G4(x(t)) dt + e_a, d

-7 [g,(x,(t)) q- g2(x2( t))] at

io e-’G4(x(t)) dt+e-’[g(x(t))+g2(x2(t))]
t=O

+ e-a’6[gl(x,(t)) - g2(x2( t))] dt

r(a)+ e-’R(x(t)) dt
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with r(a):= -gl(al)-g2(a2), R(yl, Y2)= G4(y) + 8gl(yl)+ 8g2(Y2), provided that

(5.2) lim e’[gl(xl(t))+ g2(x2(t))] =0.

To establish (5.2) let c(t):= e-’gj(xj(t)) for j= or j= 2. It suffices to show that
limt_, c(t) 0. Now

(t)= _6c(t)+ e-,[ 7
x(t)FJ(x)(t))-PJ xj(t)[FJ(x(t))-(Ylul(t)+ yj2u2(t))FJ(xj(t))]

=-6c(t)+h(t),

where h is a measurable and, since FJ(O) O, also bounded function on +. By the
variation of constant formula

[c(/)[ _-< ([c(0)l + [[hl[/) e-’

and (5.2), and hence (5.1), follows.
The definition of R given above implies for Xl, x2 > 0 that

lim R(y)=+o if )’2X0,
y(x1,0)

lim R(y)=+oo if )’iX0.
y- (0,x

Property (2.6)(a) follows from (5.1) and (5.2).
Analogous arguments can be used if )’11 0, and also in the case of nonselective

harvesting, where )’l )’l 0.
Remark 5.4. We may construct examples of optimal control systems (with rn > n)

where condition (2.6) is not satisfied.
Now we present an example of a predator-prey system where both species are

subject to innerspecific competition. Only the predator is harvested and the costs are
proportional to the effort. The unharvested system possesses a limit cycle. We will
show that there are optimal trajectories tending to an optimal periodic solution as

oo. The system equation and the analysis of the uncontrolled system are taken from
Sieveking 17].

Example 5.5.

IoMaximize e-’[ pqx2- c]u dt

Subject to 21 xl[a )’xz- h(xl) exl],

2 X2[--/ -/X LI,X qu], +,
(Xl(0), X2(0))= X 2

U [0, U 1]
where p, q, c, a,/3, )’, ,, I, x, U are positive constants, and h is defined by

h(x,)={(xl-fl/A) forO<--xl<--fl/A,
0 for / Z X

The system above is a special case of Example 5.3, and conditions (2.1), (2.6) are
satisfied. First we analyze the uncontrolled equation where ul uz 0" All trajectories
q(., x, 0) are bounded and for e,/x>0, small, the only equilibria are (0, 0), (a/e, 0)
and a point e near e (fi/,, a / )’).
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The equilibrium e is (locally) asymptotically stable the points (0, 0) and (c/e, 0)
are saddles.

For e, p, > 0, small enough, the equation possesses a limit cycle (applying the
Poincar6-Bendixson Theorem to the time-reversed equation, this implies the existence
of another--unstable--periodic solution).

In the following, we assume that e, t are small enough such that existence of a

limit cycle is guaranteed. There exists an initial value xint[2+ on the line x2--
-/t.t +A/tzx such that p(., x, 0) spirals outward, i.e., there exists a (minimal) time

T > 0 such that ( T, x, 0) lies on the same line above x. Using continuous dependence
of solutions on the right-hand side, this implies that for U> 0, small enough, also
every trajectory q(., x, u), u(t) [0, U1] almost everywhere, spirals outward. In par-
ticular, this is true for an optimal trajectory q(., x, u). See Fig. 5.1.

The controlled system has exactly two equilibria on 0[ namely (0, 0) and (c/e, 0)+,

Next we show that no optimal pair (x, u) int 2+ x Uad leads to extinction. For
s> 0, let Ae :- [s, c/e] x [0, M] where M := max z2(t) and z (z, z2) is the unique
trajectory in int2+ of the uncontrolled system with lim,__ooz(t)=(c/e, 0). Then we
can show that there exists (> 0 with the following property" For all (y, v) int [+ Uad
there is T > 0 such that for all _>- T it follows that q (t, y, v) Ae; furthermore q (y, v) c

Ae for every (y, v)Ae U. Hence w(x,u)f-I{O}+=. Now suppose that
w(x, u)f-)+ {0} . Then Proposition 5.2 implies the existence of optimal (yk, vk)
int 2+ U with y -* Yo [+ {0} and

max{d(z,+{0})" zq(y,v)}-O fork-*oo.

But for x2 small, we have pqx:-c < 0. This contradicts the existence of (y, vk) with
the properties indicated above.

Conclusion. Suppose that in Example 5.5 the positive constants e, , U are small
enough. No optimal pair (x, u) int + U, leads to extinction and every trajectory
is bounded. There are initial values x e int [+ such that corresponding optimal trajec-
tories q(., x, u) spiral outward. Hence, according to Corollary 4.7, there are optimal
finally periodic (x, t) or w(x, u)= q(y, v) with (y, v) optimal periodic.

/

1/x c/c

FG. 5.1.
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6. Nonuniqueness. For given initial state, solutions of ordinary differential
equations are unique (provided that local Lipschitz continuity prevails). In general,
optimal control problems do not share this nice property. In fact in this section we
give a nonconstructive criterion implying nonuniqueness for a certain initial value.
Furthermore, a simple bioeconomic example is presented with nonunique optimal
solutions.

DEFINITION 6.1. An element x

_
is called a point of nonuniqueness if there

are u, v Ua such that (x, u) and (x, v) are optimal and q(t, x, u) q(t, x, v) for some
[2+.

"Nonuniqueness" requires that the trajectories corresponding to u and v do not
coincide. Thus "redundancies" in the controls do not lead, in our terminology, to
nonuniqueness.

THEOREM 6.2. Suppose that (x, u)+ Uad are optimal and that there are T2 >
T1 >= 0 such that q (., x, u), T1, T2] is a Jordan curve. IfI :- el ins F does not contain

any optimal equilibrium, then it contains a point of nonuniqueness.
Proof Suppose there is no point of nonuniqueness in I and note that I is positively

invariant. Hence for every y /, there is a unique control u(y) Uao such that (y, u(y))
is optimal and q(y, u(y)) c 1. Lemma 2.5 implies that y - u(y) I - Uao is continuous,
and hence for every t->_0 the map y-q(t,y,u(y)):I-I is continuous. By the
Schoenfliess Theorem (Beck [3, p. 22]), I is homeomorphic to the closed unit ball in
2. Hence, by Brouwer’s Fixed Point Theorem, there is for every _-> 0 a fixed point x,
with

(t,x,,u(y))=x,.

Let (tn) be a sequence of numbers with tn > 0 such that lim t, 0 and lim x,,,--e I
exists. We claim that e is an optimal equilibrium. In fact, for every n N, uniqueness
of optimal solutions implies that p(., xn, u(x)) is a periodic solution of period
Without loss of generality we may assume that q(., xn, u(x,)) converges uniformly to
the constant trajectory e, which therefore is an optimal equilibrium contrary to our
assumption.

In the following example, nonuniqueness is shown by a different argument.
Example 6.3.

Maximize V(x, u):= e--’{[p C(Xl(t))]u,(t)x(t)

+[p-c(xz(t))]u2(t)x2(t)} dt

Subject to (t)=x(t)[2-x(t)-2x2(t)-u(t)],

2(t) xz(t)[2- x2(t) 2x(t) uz(t)],

(u,), u)) := [0, _] [0, ],
x(0) x,, x(0) x,

where p > 0 and c(. is continuous and strictly decreasing on + with c()= p.
Assertion. For > 0 sufficiently small the point x (, ) is a point of non-

uniqueness.
Proof (See Fig. 6.1.) First note that existence of an optimal solution follows by

uniform boundedness of the trajectories, linearity in u and convexity and compactness
of ). Define

Y2 Y Y2
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x

3/2

3/4

09(. ,x, (I/2,0))

i 3/

FIG. 6.1. Illustration of Example 6.3.

The symmetry of the system equation and x Sx imply for u 6 Uad and t_-> 0

s( t, x, u) ( t, x, Su).

Furthermore,

V(x, Su): V(x, u).

Thus, if (x, u) is optimal, also (x, Su) is optimal. If the optimal solution is unique, it
follows that

ql( t, x, u) qz( t, x, u) for all :> 0.

Looking at the system equation we find that this implies

q,(t,x, u)<--, qz(t,X, u)<-_ forall t>0.

Hence

and

p-c(q(t,x, u))<-O, p-c(q2(t,x, u))<=O forallt>0

V(x,u)<=o.

Thus, in case of uniqueness, the only candidate for an optimal control is u--u2-= O,
which leaves x--(, ) fixed and

V(x, u)=O.

Thus it suffices to construct v Uad with

V(x, v) > O.

Consider first the control (3, 3)

=, e(t) - 0.

A phase plane analysis (cf. Fig. 6.1) yields that for increasing, (t, x, iS) decreases
and q(t, x, 3) increases, with

(6.1) lim q(t, x, 3) (0, 2).
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Now consider the system

(6.2) :(t) x(t)[2-x,(t)-Zx2(t)], 2(t) x2(t)[2-Xz(t)-Zx(t)-1/2].
For this system the point (0, ) is (locally) asymptotically stable. In fact, the Jacobian
at this point is

-1(_3
Since the region of attraction of an asymptotically stable point is always open and
(0, 2) is attracted by (0, ), it follows from (6.1) that there is t >0 such that in the
system (6.2), q(t, x, ) is attracted by (0, ). Define

(, 0), [0, t],
V(t):= (0,), t(t,,).

Then

lim q(t, x, v) (0, ).
t-->

By continuity of c, there is M1 > 0 with

(pl- c(q(t, x, )))p,(t, x, )1/2>- -M,
Thus

O<:ttl

without loss of generality we may assume

_(t, x, v)_-> 1

Since there is M2 > 0 with

it follows that

for all _-> t.

Together we get

p c(y) > M fory->l

(p-c(q2(t,x, v)))q2(t,x, v)1/2>=M2 fort=>t,.

V(x, v) >= -1/2M,(1 e -a’’) +1/2M2 e -at’.
For 6- 0, the right-hand side of this inequality tends to 1/2M2. Hence V(x, 5)> 0 for
> 0, sufficiently small. This proves the assertion.

The idea for this example may be sketched as follows. We start in an equilibrium
point x, where two competing species coexist, and where the net revenue p-c(x) is
zero. Catching one of these species we have a temporary loss. On the other hand, the
other species increases until it gets into a domain where it can be caught continually,
yielding positive net revenue. The initial loss is, for sufficiently small discount rate
8 > 0, less than the later revenue.
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ASYMPTOTIC ADMISSIBILITY OF THE UNIT STEPSIZE
IN EXACT PENALTY METHODS*

JOSEPH FReDeRIC BONNANS

Abstract. Two difficulties arise in the use of optimization algorithms based on an exact penalty function
and quadratic subproblems: the possible inconsistency of the quadratic programs and the admissibility of
the unit stepsize after a finite number of iterations. In this paper, assuming that no inequality constraint is

present, the author devises an algorithm, using a nondifferentiable augmented Lagrangian, that, under
convenient hypotheses, solves both problems.

Key words, nonlinear optimization, constrained optimization, Newton’s method, successive quadratic
programming, optimization algorithms

AMS(MOS) subject classifications. 90C30, 65K05, 49D15

1. Introduction. We consider a nonlinear programming problem having only
equality constraints"

(1.1) Minimize f(x) subject to gi(x) =0, to m,

f and gi, to m being smooth (C3) functions from " into . We suppose that
m-< n. Let 9 be a local solution of (1.1). We suppose that 9 is a regular point, i.e.,

(1.2) Vgi()), i-- to m, are linearly independent.

Then there exists a unique Nm satisfying

(1.3) Vf() + Vg(ff) 0, g()) 0.

Equations (1.3) may be solved by a Newton-type method with unknowns (x, A). This
reduces to the computation of a sequence (x a, A a) with xa+l= xa+ d a, where d a is a
solution of the quadratic program

tHkd (xk ’d=(1.4) Minimize Vf(xa)’d +-d subject to g )+Vg(xa) 0,

Ha being an approximation to the Hessian of the Lagrangian, and A a+l being the
multiplier associated with d a. We restrict our analysis to the case when Ha is a positive
definite approximation of the Hessian of the Lagrangian. When this approximation is
made using the BFGS (Broyden-Fletcher-Goldfarb--Shanno) method, a superlinear
convergence rate may be obtained (Powell [15], Boggs, Tolle, and Wang [2]). To
globalize this algorithm--i.e., to design some globally convergent algorithm that reduces
to a Newton-type method in the neighbourhood of a solution--a key idea is to use
the nondifferentiable penalty function

Or(X =f(x) + rllg(x)ll,

where r > 0 is called the penalty parameter and 11" is some norm of IR’; we denote
by I1" the dual norm, i.e.,

max E A,/i,
i=1
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A key fact is that if (1.4) has a solution d k associated to a multiplier A k+t, and
if r> II;"+’11,, then d k is a descent direction of Or(X) at X k. This result is due to
Pschenichnyi and Danilin (see [17]) in the case of the L norm and was rediscovered
by Han [10] in the case of the L norm. The general result can be found in Bonnans
and Gabay [4]. A difficulty arises if the m vectors {Vgi(xk)} are not everywhere linearly
independent; then (1.4) may have no solutions. Some empirical means for taking this
into account are given in Powell [14] and Tone [18]. The algorithm of Bonnans and
Gabay [4] seems, at least from a theoretical point of view, to give a satisfactory solution
to this problem. It is based on the function, defined for each iteration k:

Of(x) =f(xk) + Vf(x)’(x x) +1/2(x x)’H(x x)

+

which is a simple model of 0r(x), having the same behaviour around xk. A direction
k is computed as the solution of

(1.5) min Or(X + d); d N’}.

Being strictly convex and feasible, problem (1.5) always has a unique solution .
Then the iteration is

xk+l X
k _[_ pkk,

where p is a stepsize computed according to some linesearch rule. Define

(x) f(xk) + Vf(x’)’(x-- xk) + rllg(x’) / Vg(x")’(x x")[I
A convenient linesearch rule (see, e.g., Chamberlain et al. [6]) is the following extension
of the Armijo rule 1]:

(1.6) Choose/3 ]0, 1[, cr ]0, 1/2[ (independent of k),
p= (/3) t, where is the smallest nonnegative integer such that
Or(X k

__
(),k) Or(Xk) 0"( kr (Xk %" ()lk) Or(Xk)).

This means that we reduce the step until the ratio of the achieved decrease on
the penalty function divided by the decrease predicted by the local model ff is at
least

The complexity of problem (1.5) is, at least for the L and L norms, roughly the
same as that of a quadratic program. In addition, if (1.4) has a solution d k associated
with a unique multiplier A /, the solution of (1.5) will be equal to d if r is greater
than Consequently, when the parameter r is iteratively modified in a
convenient way, the method leads to a globally convergent algorithm, where computed
displacements reduce to the solution of (1.4) near a regular solution of (1.1). This
method is related to that of Fletcher [7], [8] who uses a trust region method instead
of a linesearch.

One point should be clarified. To compute descent directions, the algorithm
described above relaxes the linearized constraints by penalizing them. This is useful
when these linearized constraints are not necessarily compatible at any point. However,
if it is known a priori that the linearization of some subset of the constraints are
compatible, there is no reason to relax the constraints of this subset. A key fact is that
this subset must contain the linear constraints (otherwise, the problem has no solution).
This means that, in practice, the linear constraints should not be relaxed. To keep the
proofs short, in this paper we do not take this remark into account. However, this
modification of the algorithm should not essentially change the results.
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We now turn to the local convergence analysis. We suppose that a sequence {xk}
computed by the preceding algorithm converges to a local solution g of (1.1), which
is regular point. Let d k be the solution of (1.4) (well defined for k large enough). Let
]]’]]t be a norm of ". We suppose that the vector d k, which solves (1.4), satisfies

(1.7) IIx k + dk-- gllt/iixk-- fflic -->0.

This hypothesis allows the algorithm to have a superlinear rate of convergence,
if {pk} converges to 1. However, this does not seem to be the case in general: a
counterexample due to Maratos [12] shows that even if (1.7) holds, and if r has the
same order of magnitude as ]I]]D, Or(X k +flkdk) may be greater than Or(Xk) when

kp - 1. This may destroy the property of superlinear convergence. Two kind of methods
have been proposed to deal with this problem. The first (Mayne and Polak 13]) needs
the computation of the constraints at xk+ d k’, then a correction term v k is computed
as the solution of

Minimize (v/k) subject to g(xk+ dk)+Vg(xk)’vk =0.
i=1

If a linesearch is used, it can be performed along the arc

X
k --pd k -k-(p)2l)k.

Then it is shown that, under some convenient assumptions, the stepsize pk_: is
admissible if k is great enough. The second method, due to Chamberlain et al. [6], is
based on the observation that a sufficient decrease of the exact penalty function is
obtained (for k large enough) between the iterations k-1 and k+ 1. Consequently,
the linesearch criterion at step k should use the information of the iteration k-1.
However, if the point xk+ d k is not accepted, we must return to the point x- and
reduce the stepsize at xk-; this ensures global convergence. The main drawback of
these methods is that, in some situations, they can substantially increase the amount
of computations.

In this paper we propose to perform the linesearch, using the following criterion"

Op,r(X f(x)+p’g(x)+ rllg(x)l[.
Here p is an approximation of the optimal Lagrange multiplier and r > 0 is a

penalty parameter, as before. Choosing p close to A allows us to reduce the value of
r; we will prove that, if p and r are carefully adapted at each iteration, r being small
enough, the unit stepsize is asymptotically admissible. This result allows us to build
a "globally convergent" algorithm.

The paper is organized as follows. In 2 we give a technical result on exact penalty
functions that is the basis of the subsequent algorithm. Then in 3 we use this result
to formulate a globally convergent method, based on a linesearch strategy, for which
the unit stepsize is, under some convenient hypothesis, asymptotically admissible.

2. Some local properties of a class of exact penalty functions. Let . be a local
solution of (1.1) satisfying (1.2) and be the element of such that (1.3) holds. Define
the augmented Lagrangian (for c_-> 0)

L.(x, A :f(x)+ A ’g(x) + c E gi(x) 2.
i----1

Denote

OX
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We suppose that the standard second-order sufficiency condition holds at
(see, for instance, Fletcher [7])"

(2.1) dtHod>O for any d in n satisfying Vg(x)’d =0.

As is well known, (1.3) and (2.1) imply that

(2.2) There exists > 0 such that H is positive definite.

We now consider the following class of penalty function that can be viewed as a
class of nonditterentiable augmented Lagrangians:

Op,r(x) f(x) + p’g(x) + rllg(x)ll,

where (p, r) N’x N are given parameters with r > 0. We recall that I1"[[ is a norm of
Nn and II" D is its dual norm. We give a sufficient condition for these penalty functions
to be exact, i.e., to have a (strict) local minimum at 2. This is a variant of results of
Han and Mangasarian [11] (see also Bonnans [3]).

PROPOSITION 2.1. Let be a local minimum of (1.1) such that, for some ,k, (1.3)
and (2.1) hold. Then if
(2.3) r>IlX-PlID,

is a strict local minimum of Op.r(x).
Remark 2.1. As all norms on N are equivalent, there exists/3 > 0 satisfying

Y g,(x)_-</[[g(x)l] .
i=1

Proof of Proposition 2.1. We prove that the penalty function 0,,r dominates the
augmented Lagrangian. We have

Ot,,(x)-Le(x,)=(P-.)’g(x)+ rllg(x)ll-e E g,(x),
i=1

>= (r-IIP--XlID)IIg(x)Ile , gi(x),
i=1

>_ (r-IIP-XllD-   llg(x)ll)llg(x)[I.

As g()=0, if (2.3) holds, the right-hand side is nonnegative in a neighbour-
hood of ft. As He is positive definite, ff is a strict local minimum of Le(x, i); this proves
the proposition.

Let {x} be a sequence converging to ff and {p}, {r} be two sequences such that,
for k large enough and for some y > 0,

(3 + )llp Xl[ < r,(2.4)

(2.5)

We define

k(x) =f(xk) + Vf(x)’(x x) + (p)’(g(x) + Vg(xk)’(x x))

+ rllg(x)+Vg(x)’(x-xk)l].

We recall that the solution d of (1.4) is well defined in a neighbourhood of ) if
H is positive definite.
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THeOReM 2.1. We suppose that (1.3), (1.7), (2.1), (2.4), and (2.5) hold. Then for
any e, 0 < e < there exists ro > 0 and ko such that k > ko and 0 < rk < ro imply

(2.6) Ov.rk(xk+d)-OpLr,,(x)<-(1/2-e)((x+dk)-Op,,.?(x)).
The proof of the theorem uses two lemmas.
LEMMA 2.1. We suppose that (1.3), (1.7), and (2.1) hold. en, for any e>0, there

exists k such that k > k implies

3(x + d) Op,r(Xk --(1

Proof We have for k large enough

h (x + d) -OpLr"(X

VLo(X, X)’d + (p X)’Vg(x)’d r[[g(x)l[.
From (1.4) it follows that

VxLo(x, X)’d (p-X)’g(x rl[g(x)ll,

VLo(x, X)’d -(r + []p -XllD)llg(x)ll.

Now (1.3) and (1.7) imply

VLo(x, X) Ho(x ) + o(llx" , .),

d =,_x+ o(llx-,ll.),
where the notation o(lx-llv)indicates a term whose ratio to llx-[[v tends to
zero as k m. We deduce that

-(x *)Ho(x )-(r

The result is then a consequence of the inequality

d’Hed
and of the positive definiteness of He.

LEMMA 2.2. If (1.3), (1.7), and (2.1) hold, for any e2>0, there exists k2 such that
k > k2 implies

o,.(x + d) o,.r(x
(2.7) +

r" -1 p" x I, e ig() II)IIg(x) II.
Proof We have

o,.(x + d) o,.(x),
L(x + d) L(x) + (p X)’ (g(x + d) g(x))

O g(x + d)2-
i=1 i=1

Hence, using Remark 2.1, we have

L(x + d) L(x) + ([[p Xll + r) llg(x + d)
(2.8)

-(r -liP IID llg(x)ll)l[g(x") II.
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We focus onthe first terms, using (1.3) and (1.7)"

Le(xk + d k) Le(x‘) L(x + d) Le(X) + Le(X)- L(x’)
-(x -x)’i-i(x-x)+

This with (2.8) and the positive definiteness of H imply (2.7).
Proof of eorem 2.1. From the constraints of (1.4) and (1.7) we deduce the

existence of some a > 0 such that for k large enough

g(x + d)l] a,]x-From Lemma 2.2 and the positive definiteness of He, it follows that for some a2> 0
and k large enough, 0,,,,, (x + d) 0,,, (x)

N -[1 ez- a2([ p X IID + r)](x X)’He(x
-(r -1p X o e Ilg(X) 1[)IIg(x)

Using (2.4) and (2.5) we deduce that for k large enough, and ro small enough,, -(a 22)(x )’n(x )

From Lemma 2.1 and (2.4) we deduce that for k large enough

z= O(x + d) -0p,r’, (X) --(1 + e)(X- )’He(x-)We must prove that (- e) 0. Using the inequalities above, we find (for 0 <
and k large enough)

e(2 2- l)(X X)’H(x ).

Since e and e2 may be taken arbitrarily small for r0 small enough and k large enough,
we get the result.

This result suggests building an algorithm, using a penalty function oftype Op,,,? (x),
where p and r are modified at each iteration to ensure a global convergence, which
satisfies the hypothesis of Theorem 2.1 after a finite number of iterations. This is the
subject of the following section.

3. A globally and superlnearly convergent algorithm. We define a kind of quadratic
model of 0,,,, around x"
(3.) O(x) 8(x) +(x x)’H(x x).

We consider the following algorithm.

AORTM 1.
(0) Choose x p r, H such that r >0 and H is positive definite. Set k 1

Choose e ]0, 1 [, ]0, [.
(1) Solve the problem

(3.2) min O(x + d), d

Let be the unique solution of (3.2). If =0, stop.
(2) Let be the smallest nonnegative integer such that

(3.3) Opk,rk(Xk+()lk)--Opk,rk(Xk)(k(xk+()lk)--Opk,rk(Xk)),
k xk+l xk kkp =()’, +p

H r(3) k k + 1 Set p, r, with > 0 and H positive definite. Go to (1).
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We remark that Opk, rk and /k have the same directional derivatives at x k and that this
derivative in the direction is strictly negative; hence, the integer of step (2) is well
defined.

We now proceed to give an explicit adaptation rule for p and r. This needs
some preliminary considerations. Consider

Qk(A) =1/2)’Vg(xk)’(Hk)-’Vg(xk)A + a’(Vg(x)t(H)-lVf(xk)-g(x)).

It is well known that the quadratic program (1.4) is equivalent to

(3.4) (i) A+=argminQ(Z), ,
(ii) d -(H)-’(Vf(x) + Vg(x)A +’).

On the other hand, from Bonnans and Gabay [4] we deduce that (3.2) is equivalent to

k+l= arg min {Qk(A ), [A -pIID rk},
(3.5)

-(H)-’(Vf(x) + Vg(x)+’).
We deduce from (3.4) and (3.5) that

(3.6) {]+l--pl]D<r{(1.4) has a solution (d,A +’) equal to (, +’)}.

We define the sequences

D V/(x) + vg(x)X u + ]lg(x

s=max{1/D,l=ltok}.
The monotonically nondecreasing sequence {S} has the following property.
LMMA 3 1 If {(X,)} is bounded, there exists a subsequence of {(x, )}

converging to some (, ) satisfying (1.3) if and only ifS +.
Let , to 4, be some positive constants. The adaptation rule for p is as

follows. An initial value p is chosen; then

(3.7) Let l’ be the index of the last iteration at which p has been changed (/’=
if this event never occurred). Then

k k if Sg > St+
P pk- otherwise.

We need some tools to define the adaptation law on rk. For any a > 0, let

s(a) min { 10q; a 10q, q is an integer}.

If {a"} is a sequence of positive numbers, the transformed sequence {s(a")} has the
following properties"

(3.8) {{an}o}{s(a")O},

(3.9) {lim sup a +}(lim sup s(a") +},

(3.10) {a" a, 0< a < +}{s(an) s(a) for n large enough}.

We define the sequence &g by the following rule:

(0) ’= 1.
(1) Let l" be the index of the last iteration at which &r’ was nonnull.

If Sg-S’’> a and p # 1, &k= S_S’’.
Else &k 0.
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We obviously have

(3.11) limSk--/OO{kdpk--/OOorpk--1 fork large enough},
(3.12) lim Sk /dpk -0 for large enough.

We suppose that

(3.13) 0cr 1.

The adaptation rule for rk is given by

(3.14) (i) rk -(3-t-aa) max (llk-pkll,min (1, (yDk))),
(ii) r2 max (rlk, r2

k - t k),
(iii) rk s(rk2).

The motivation for this rule is as follows. First we compute an estimate r that
satisfies (2.4) if Xk is close to X; if the convergence occurs in the sense that x k and
D-0, then we also have rk => (Dk)a4; since o/tlx-xll cannot converge to zero,
hypothesis (2.5) is satisfied. Then in step (ii) we prevent rk from decreasing if no
sufficient progress has been made. Finally, in step (iii) we make a transformation in
the hope to get r constant for k large enough when the convergence occurs (see case
(b) of Theorem 3.1).

Remark 3.1. We may detail step (3) of Algorithm as follows, k is setto k + 1, then:
First D, S, and 4 are computed;
Then p is computed using (3.7);
Finally r is computed using (3.14), and H is set.

We now prove that the resulting algorithm is globally and superlinearly convergent.
THEOREM 3.1. Let {xk} be a sequence computed by Algorithm 1, pk and rk being

given by (3.7) and (3.14). We suppose that the sequences {Hk} and {(Hk)-} are bounded
and that 0 < tr < . Then we have the following.

(a) One of the following three events occurs"

(i) lim infk-oo (llVf(xk)+Vg(xk)Xk[It + IIg(xk)[I)=0.
(ii) For k large enough, (pk, rk) is equal to some (p, r), Xk is equal to A and

[IA’--pi[/ < r, Op.(xk)-->--o0 or {Vg(xk)} is unbounded.
(iii) For k large enough, pk is equal to some p, rk- +oo, lim sup ]]Xkll, +oo

and either {xk} is unbounded or some limit point of {xk} does not

satisfy (1.2).
(b) Ifx k --> g satisfying (1.2), then thereexists X satisfying (1.3) and (Xk, dk)(X, 0).

If in addition (, X) satisfies (2.1), then hypotheses (2.4) and (2.5) are satisfied,
and k= d k for k great enough. If (1.7) is also satisfied as well as (2.1), then
r is equal to some r>O and pk= 1 for k great enough, and x converges
superlinearly to g.

Proof (a) We suppose that (i) does not occur. Then Sk is bounded and is null
for k large enough. Hence by (3.7) and (3.14), for k large enough, pk is equal to some
p and rk is an increasing sequence.

if {Xk} is unbounded, (3.14)(i) implies that r - +oo. Then if {x k} is bounded, we
deduce from (3.5) that it has a limit point such that Vg(g), to m, are not linearly
independent. Hence (iii) is satisfied.

If {X} is bounded, so is {r} by (3.14); hence by (3.10), rk is equal to some r for
k large enough such that, by (3.14), r > IIX k -PlI. This implies that k A k and k d .
Let us suppose that Op.(xk) is bounded from below and that {Vg(xk)} is bounded; we
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must then get a contradiction to prove that (ii) holds. Let us prove that, for k large
enough,

(3.15) Op,r(X k Op,,.(x k + p’d ’) >- crp’(d’)’H’d ’.

As d=, we have, using the optimality conditions of (1.4)"

Op,,.(x ’) -fft’(x" + dt’) =-Vf(x’)’d t" -P’Vg(x’)’d " +
(d’)’H’d ’ + (A k -p)’Vg(x’)’d " + rllg(x)ll,

(dk)’Hkd k + (r-lid" --P[ID)g(xk)II,

(dk)tHgd.
The convexity of 0 implies

O,r(X (X +pd p((x (x + d)) p(d)’Hd.
Then (3.15) is a consequence of the linesearch rule (3.3). Summing (3.15) over k, we

pk(dk)tHkdk < "Foo.

The equality xk+l- xk-- pkdk and the boundedness of {(Hk)-1} imply

(3.16)
k

If d 0 for some subsequence k, then the boundedness of {(H)} and {Vg(x)},
relation (3.4)(ii), and the constraint of (1.4) imply that Sk, which is impossible.
If lim inf IIdl 0, then (3.16) implies the convergence of {x} toward some . From
the boundedness of {A}, Vg(x), and {(Hk) -1} and (3.4)(ii), we deduce that {d} is
bounded. As IIx+l-xll0 and liminf[Idl>0, {p} must converge to zero; this
implies that for any integer l 0, the following inequality holds for k large enough:

Op.r(x + ( )’d) o..(x) > ( (x + ( )’d) O,,,r(X) ).

Passing to the limit for some sequence K such that {d} # 0, we get that, for
all integers 0,

O.,r( + ()’) O.,r() > ((+()’) 0,()),

with ff defined as at point . Extracting from K a subsequence if necessary, we

may suppose that for k in K, X and H , with positive definite. Passing to
the limit in the constraints of (1.4) and (3.4)(ii), we find that d is the unique solution
of the quadratic problem

Minimize Vf(2)’d +d’d subject to g(2) + Vg()’d O.

Hence the linesearch rule of Algorithm starting at must be satisfied at the first
iteration by some fi ()r, in contradiction to the inequality above.

(b) If x satisfying (1.2), then cases (ii) and (iii) of (a) may not occur; hence
for some subsequences K, D 0 when k in K. As lira Vg(x) Vg(2) has full
rank, this implies that {h} is bounded; as [Vf(x)+Vg(x)] vanishes when
k in K, any limit-point of{} satisfies (1.3); from (1.2) we obtain that X is
unique and {]}

deduce that
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By (3.7), pk is changed only for values of Dk converging to zero, and hence for
values of k converging to ; hence pk . But (see (3.5)) we obtain that, for all k,

Since {Hk} and {(Hk)-} are bounded, necessarily d k -0 and Ak X; with the above
inequality, this implies that all the sequence k converges to X, and hence Dk 0. Now
consider the case when (2.1) is also satisfied. Then the Jacobian of the optimality
conditions (1.3) is nondegenerate at (if, A); from it we deduce (see [2]) that there exists
C > 0 such that for k large enough

With (3.13) and (3.14), this implies that rk/xg --ll r/llx"-11 >
min (1, (Dk))/(CDk)o+; hence (2.5) holds. Let us prove that (2.4) also holds
with y a3/2; if not, there exists a subsequence K such that (using (3.14) for the left
inequality), for k large enough in K,

k < rk (3 + a3/2)l[X pk[[D;(3 + ff3)ll k --pklIo N rl

hence

(1 + 3/3)11Xk -pk[[o N (1 + 3/6)llX-p o.

Using this inequality, we get

1 + a3/6 _p
1 +/3

Hence for k large enough in K and for some C> 0

1+-3/3
_

a3/6

la3/3

Hence for this subsequence X--pkllo/rk converges to +, contradicting our
hypothesis; hence (2.4) holds.

If in addition (1.7) holds, let us prove that p= 1 for k large enough; this will
prove that the superlinear convergence holds. If pk for some subsequence K, from

k(3.11) and (3.14) we deduce that r0 and r0 (for all k). As r N 10r, r 0. As
(2.4) and (2.5) are satisfied, r

g
will be inferior to the value ro given by Theorem 2.1

with e satisfying -e. Then the conclusion of Theorem 2.1 implies that pg= for
k large enough, in contradiction to our hypothesis. This proves that p= and k= 0
for k large enough; hence by (3.14), as r0, r and rk are constant for k large
enough.

We comment on Theorem 3.1. Conclusion (a) is concerned with global conver-
gence. Case (i) is the one in which the global convergence really occurs in a weak
sense. Let us assume that Vg(x) has full rank for all x. Then if (i) does not occur we
deduce that {x} is unbounded. An extension of the algorithm, including upper and
lower bound constraints on all variables, might exclude this case (however, such an
extension is not trivial). Conclusion (b) essentially says that when the convergence
toward a regular local solution holds, the algorithm reduces to Newton’s method
(without linesearch) after a finite number of iterations. Our algorithm needs essentially



ASYMPTOTIC ADMISSIBILITY 641

the computation of one quadratic program at each iteration (the amount of computation
needed to update pk and rk is negligible). Also, the reduction of the nonsmooth part
of the criterion might, even far from the optimum, improve the linesearch. The method
is presently being tested on some large-scale network problems; numerical results will
appear elsewhere.

Acknowledgments. The author thanks J. C. Dodu of Electricit6 de France and two
referees for valuable suggestions that greatly improved the paper.
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CONTROL OF MARKOV CHAINS WITH LONG-RUN AVERAGE COST
CRITERION: THE DYNAMIC PROGRAMMING EQUATIONS*

VIVEK S. BORKAR"

Abstract. The long-run average cost control problem for discrete time Markov chains on a countable state

space is studied in a very general framework. Necessary and sufficient conditions for optimality in terms of
the dynamic programming equations are given when an optimal stable stationary strategy is known to exist
(e.g., for the situations studied in [Stochastic Differential Systems, Stochastic Control Theory and Applications,
IMA Vol. Math. App. 10, Springer-Verlag, New York, Berlin, 1988, pp. 57-77]). A characterization of the
desired solution of the dynamic programming equations is given in a special case. Also included is a novel
convex analytic argument for deducing the existence of an optimal stable stationary.strategy when that of
a randomized one is known.

Key words. Markov chains, long-run average cost, optimal control, dynamic programming, stationary
strategy

AMS(MOS) subject classifications. 60J10, 93E20

1. Introduction. In [5], the long-run average cost control problem for a Markov
chain on a countable state space was studied under a very general setup. The two
theoretical issues in this problem are: (i) establishing the existence of an optimal stable
stationary strategy; and (ii) characterizing the same via the dynamic programming
equations. The main thrust of [5] was (i), whereas (ii) was only cursorily touched on.
The present paper has two objectives. One is to provide a more elegant alternative for
a part of the argument leading to (i) in [5]. This alternative approach unmasks the
underlying convex analytic structure not apparent in the lengthier argument of [5] and
reflects the spirit of [6], where other cost criteria have been considered in a similar
light. The principal objective of this paper, however, is to give a detailed treatment of
the dynamic programming equations, settling (ii) above. The class of cost functions
considered here is much more general than that of [5], where the cost functions have
been assumed to be bounded.

Although this paper is a sequel to [5] in principle, it can be read independently.
The long-run average cost control problem for Markov chains dates back to [10]

for the finite state space case and [7] for the countable state space. In most of its early
development, the problem was treated as the "vanishing discount limit" of the discoun-
ted cost control problem. This classical approach is by now standard textbook material
and the reader is referred to [2] and [13] (among others) for a succinct treatment. The
shortcoming of this approach is that it needs a strong uniform stability condition in
one of its various garbs [8]. This condition fails in many applications of interest such
as controlled queues, as is evidenced in [12]. Motivated by this, in [3] and [4] Borkar
has developed an alternative approach for Markov chains exhibiting a "nearest neighbor
motion." The latter feature requires that each state have only finitely many neighbors
and that the minimum path length from state to any prescribed finite subset of the
state space tend to infinity as does. The approach was based on a characterization
of the almost surely limit points of the empirical process of the joint state and control
process. It was this approach that was carried over to a much more general setup in
[5]. The present work complements [5] in the sense already described.
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The paper is organized as follows. Section 2 is devoted to a recapitulation of the
notation introduced in [3] and used throughout [3]-[6]. This notation is not standard,
but turns out to be extremely handy for the approach of [3]-[6] and the present paper.
Using this notation, 3 states the principal assumptions under which the dynamic
programming equations will be studied and discusses various ramifications thereof.
Section 4 treats the necessary conditions for optimality in terms of the dynamic
programming equations. The proofs here are very much along the lines of those of
[4, 5] except for the extra work needed to take care of a possibly unbounded cost
function and the absence of a "nearest neighbor motion" hypothesis. We include the
full details to make this account self-contained. The so-called "value function" appear-
ing in the dynamic programming equations is further studied in 5. Section 6 establishes
sufficient conditions for optimality using the dynamic programming equations. Section
7 concludes with a discussion of the problem of characterizing the desired solution of
the dynamic programming equations. The Appendix describes the convex analytic
argument mentioned at the beginning of this section.

Note that we develop the dynamic programming formalism given the existence
of an optimal stable stationary strategy by independent means, e.g., those of [4] and
[5]. This is the opposite of the conventional order of things.

2. Notation and preliminaries. Let Xn, n 1, 2, , be a controlled Markov chain
on state space S=[1,2,...] with transition matrix Pu =[[p(i,j, ui)]], i,j S indexed
by the control vector u=[u,u2,."]. Here, uiD(i), iS, for some prescribed
compact metric spaces D(i). The functions p(i,j,. are assumed to be continuous. By
replacing each D(i) by HD(k) and p(i,j,.) by its composition with the projection
HD(k)- D(i), we may assume that all D(i)’s are replicas of the same compact metric
space D. We do so and then let L denote the countable product of copies of D with
the product topology.

For any Polish space Y, M(Y) will denote the space of probability measures on
Y with the topology of weak convergence and for n 1, 2,. , , Yn will denote the
n-times product of Y with itself.

A control strategy (CS) is a sequence {,}, :n =[:n(1), n(2),"" "] of L-valued
random variables such that for S, n => 1,

(2.1) P(X,,+, i/X,, ,,,, rn <- n) p(Xn, i, ,,(X,)).

We say that {Xn} is governed by {:,} whenever (2.1) holds. If {n} are identically
distributed and n is independent of X,,, m =< n; :,,, rn < n, for each n, we call the
control strategy a stationary randomized strategy (SRS). We call it a stationary strategy
(SS) if in addition to the above, the law of :,, n >= 1, is assumed to be a Dirac measure.
The motivation for this nomenclature is self-evident.

We assume throughout that S is a single communicating class under any SRS. If
{Xn} is positive recurrent under an SRS, we call the latter a stable SRS or SSRS. A
stable SS (or SSS) is defined analogously.

Let {n} be an SRS. Let M(L) denote the common law of ,, n => 1. As we
shall be interested only in the law of the process (X,, (,(Xn)), n-> 1, it suffices to
consider of the form Hi, M(D) for S. We shall denote this SRS by y[]
and the corresponding transition matrix by P[]=[[p(i,j, u),(du)]]. If the SRS is
stable, it will have a unique invariant probability measure denoted by r[]=
[r[](1), r[](2),...] M(S). For f: S- R and measurable g: SxD R, define

Cf[] f(i)r[](i),
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gq,(i) g(i,

Cv[ Y g.(i) rr[](i)

whenever the quantity on the right is defined. If 8e (i.e., the Dirac measure at sc)
for some sc c L, y[] is an SS and will be denoted by y{sc}. Correspondingly, we replace
P[], rr[], Cf[], Cg[dO] by P{sC} Pc, rr{sc}, Cf{sc}, Cg{sC}, respectively.

For an SSRS y[], define []c M(Sx D) by 5fdr[] Cf[] for all bounded
continuous f: S x D-+ R. For an SSS y{sc}, define -k{sc} e M(S x D) analogously.

Let k: S x D-+ R+ be continuous. Define

(2.2) ’, =_1 k(Xm, g.(X,.)),
/m=!

(2.3) 0 lim inf On"

Our objective is to almost surely minimize 4’o over all CS. If this is achieved for
some CS, that CS will be said to be optimal.

Note that under an SSRS y[] or an SSS y{sc}, , Ck[] almost surely (qn
Ck{sc} almost surely, respectively) where +oo is a possible value for C[], C{sc}. Our
aim will be to show the existence of an optimal SSS and characterize the same. Thus
it is natural to impose the condition that for at least one SSS y{sc}, C{sc} < oo. Let

fi inf Ck[], c inf Ck{:}.
SSRS SSS

Then fl a.

Finally, let r(i)=min{n> lIXn--i}(=oo if Xn# i,n>=2), ieS.

3. Stability under local perturbation. Consider the following two sets of assump-
tions:

(3.1) (A1) lim inf min k(i, u) & r/> fi,

(3.2) (A2) sup E[r(1)2/X, =l]<oo.
all CS

Remarks. (a) It is not hard to see that in the absence of a blanket stability
assumption, something like assumption (A1) would be needed to ensure the existence
of an optimal SSS. Intuitively, (A) penalizes unstable behavior. For example, consider
the case k(i, u)= h(i) for some h" S(0, oo) satisfying h(i)-+O as i-+ oo. Then any SSS
(or SSRS) yields a strictly positive cost while an unstable SS (or SRS) yields zero cost,
making the latter optimal.

(b) More directly verifiable conditions that imply (3.2) are given in [5, IX].
These either are conditions on the graph of the chain or require the existence of a
suitable "Lyapunov function" (see [5] for details). An example appears in 6.

In [5], it was proved that under Assumption (A1) or (A2) and for bounded k"
(1) 0 ->/3 almost surely;
(2) There exists an SSRS y[] such that Cg[] =/3;
(3) /3 ce;
(4) There exists an SSS y{sc} such that C{sc} c.

In the Appendix, we provide an alternative argument to deduce (3) and (4) from (2).
In later sections we give necessary and sufficient conditions for an SSS y{sc} to

be optimal, using the "dynamic programming" equations. Some of these were stated
without detailed proofs for bounded k in [5]. We make the following two assumptions"
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(1) There exists an optimal SSS. (This would be implied, e.g., by Assumption
(A1) or (A2).)

(2) (Stability under local perturbation.) If ,{sc} is an SSS satisfying Ck{} <
then for any ’s L such that sc’(i)# so(i) for at most one is S, y{:’} is an SSS and
Ck{(}<.

In this section we make a few remarks about these conditions.
(i) If k is bounded, (2) is implied by the following condition. For any SSS

y{’} is an SSS whenever ’(i)= :(i) for all but one is S.
(ii) If all SS are SSS and k is bounded, (2) holds trivially.
(iii) Condition (2) holds whenever each state in S has only finitely many neighbors,

i.e., for each is S, there is a finite set Ri = S such that p(i,j,. )=-0 for j Ri. To see
this, pick i= 1, for example. If y{sc} is an SSS and Ck{} <,

> E[7"(1)/ X, 1] => P(’(j) < ’(1)/X, 1)E[’r(1)/X=j]

for each j # 1. Since P(’r(j)< ’(1)/X1 1)>0 for j # by positive recurrence and
single communicating class hypothesis, aJ E[7-(1)/X =j] < o for all j # 1, and hence
for all j. Thus under

E[’(1)/X,=I]=I+ E P(1,j,’(1))aj<o.
jGRI\{1}

A similar argument using the fact that

E m=l k(Xm, (Xm))/X < oO

under y{c} shows that under 3/{c’},

E k(X,,,, c’(Xm))/X, 1 <0.
=1

(iv) The following example describes a situation where (2) fails. Relabel S as
{aoo, ao, a, a2o, a2, a2z, a3o, a3, a3z, a33, a4o,"" "}. Let D [1.5, 3]. Let p(i,L u)= 1,
for all u s D, am,, j amn+), m 1, 2, , n =0, 1, , m- 1, and for Llmm
j= aoo, m 1, 2,.... Letf(a)=n n- for a s D andp(aoo, amo, a) =f(a)-’m-, m
1,2,....

Let {Xn} be a Markov chain governed by the SS that chooses the control
whenever the chain is in aoo. (The transition probabilities for all transitions except
those out of aoo are control-independent.) Letting -= inf {n > llX --aoo}, we have

E[’/X,=aoo]=f(o)- Z (m+Z)m-,
m=l

which is finite for c s (2, 31 and c for a s [1.5, 2]. Changing D to [2.5, 3], we get an
example where (2) holds, but aoo has infinitely many neighbors. Thus the condition
in (iii) above is sufficient but not necessary for (2) to be true.

(v) In what follows, we shall often construct a new SS from a given SSS by
changing finitely many of its components. By (2), it will be an SSS and by an assumption
already made, S will be a single communicating class under it.

As an immediate consequence of these assumptions, we have the following lemma.
LEMMA 3.1. Let y{} be an SSS for which Ck{} ( 00. Then for any s S, u s D,

(3.3) p(i,j, u)Ee k(Xm, (Xm))/X=j <
jS n=l
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(3.4) 2 p(i,j, u)Ee[’(1)/Xl=j]<,
jeS

where Ee[ denotes the expectation under y{(}.
Proof Note that

o> E (X, (Xll/X >=a (X, (X/Xl =j
n=l n=l

where

Thus

a= P({Xn, n-->--2} hits j before hitting 1/X= 1)>0.

[()(3.5) E E k(Xn, (Xn))/Xl =J < ee Vj S.
n=l

Similarly,

(3.6) E[r(1)/X,=j]<o VjS.

Let {(’} denote a CS such that ( for n 2 and (i)= u for some fixed S, u D.
Let {X}{X,} be the chains governed by {(}, y{(}, respectively, with X X i. Let
,’(i) =inf{n > 1]X= i}. Then

(1)

k(i, u)+ p(i,j, u)E E k(X., (X.))/X =j
jS

(x;, (x;

k(X’, (X)) I{r’(1)< ’(i)}
=1

When we define p L by (j)= (j) for Cj and p(i)= u, the above is

e 2 (x, (x/x + 2 (x, (x/x
n=l n=l

+ E
n-I

by virtue of (3.5). Condition (3.3) follows. Condition (3.4) follows from (3.6) by
analogous arguments.

4. Necessary eonflitions for optimality. This section proves necessary conditions
for the optimality of an SSS in terms of the dynamic programming equations (Theorem
4.1 below). Let 7{(} be an SSS with C{} <. Define V{} V{(}(1), V{(}(2), .]
by

v{,}(i)=, X ((x,,(x,))-c{})/x=i, is.

This is well defined by virtue of (3.5), (3.6). By Lemma 3.1,

X p(i,, u) v{}(j)
jS
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is also well defined for u D. Let lc [1, 1,. .]T, U =the infinite identity matrix [[6ij]]
and Q [k(1, s(1)), k(2, (2)),...]. The following lemma is recalled from [4].

LEMMA 4.1. V{s}(1) 0 and

(4.1) Ck{:}lc (P{}- U) V{:} + Q.

Proof The first claim follows from the fact that

Ck{} Y’. zr{se}(i)k(i, (i))
iS

i (x, (xll/x [(-/x ].

Since V{:}(1) O, we have

V{s}(i) k( i, (i)) Ck{s:} + E Z
n=2

k( i, s( i))- Ck{s:} + E[ V{}(X2)I{z(1) > 2}/X1 i]

k(i, ((i))- Ck{} + E[ V{}(Xz)/X1 i]

k(i, (i))- Ck{’}+ Z p(i,j, ((i))V{}(j)
jS

for i6 S. Equation (4.1) follows. F1
Let Ac S be a finite set containing 1 and s’ L such that ’(i)= ((i) for i

A. Let An, n 1, 2,... be an increasing family of finite subsets of S containing
A and increasing to S. Define O’m=min{n-->llXnAm},m=l,2,’’" and cr--

min {n => l[Xn a}.
Observe that by the assumptions of the previous section, y{s’} is an SSS with

c{(} <.
LEMMA 4.2. lim,_E[V{}(X,,,)I{z(1) > o,}/X1 1]=0.
Proof For A,

V{}(i) E E (k(X,,, ((Xn))-Ck{})/X,
n-----I

+ E ,2= (k(Xn, sc:(Xn)) Ck{(})/Xl

where we use the fact that V{s}(1)= 0. The first term on the right remains unchanged
if E[ is replaced by Ee,[ and k(X,, (X,)) by k(Xn, ’(Xn)). The second term is
bounded in absolute value by

-’r(1)--I
K max E

iA n=l
(k(Xn, (Xn))+ Ck{})/Xl 1.

Let c=max (Ck{}, Ck{s:’}). Then for it_A,

IV{}(i)l<--Ee E (k(X,,,sc’(X,,))+c)/X1 =i +g

(k(Xn, t(Xn))’3f- c)/X i] + K.
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Hence

IEe,[V{}(X,,)I{r(1)>=cr.}/X1 1][

-<E,

+ KE[I{’(1)>-r,}/X, 1]--> 0

THEOR.M 4.1. If y{} is an optimal SSS, then

as noo.

(4.2) /31c min ((P{}- U)V{s:} + Qv).

Remark. By (4.1), it follows that the minimum in (4.2) is attained at q s.
Proof Suppose not. Note that the ith component of(P{q}- U) V{} + Qv depends

only on the ith component of q. Thus there exist S, u D and A > 0 such that if
q L is defined by q(j) :(j) for j # and #(i) =/z, then

(4.3) /31c (P{}- U)V{}+Q+J,

J=[0,0,..., 0, A, 0,..., 0], with A in the ith place. Let {Xn} be the chain governed
by y{ q} with X1 i. We may take by relabeling S if necessary. By our assumptions
of the preceding section, y{q} is an SSS with Ck{q}<oO. Set A= {1} and {An} as
above. By (4.3),

j E[ V{}(Xm+l)/Xm] V{}(Xm) q-- k(X,,, ’q(Xm)) + AI{Xn 1}.

Thus for n _>-1,

(4.4)
/3 (’r(1) ^ rn 1)

-r(1) o-,,--

m=l
(E[ V{}(Xm+,)/X]- V{:}(X..))

()^,,,- (1)^ o-,,-
E k(X.,(Xnll+a E I{Xm=l}.

Since V{:}(X,)) V{:}(1)=0, we have

(E.[ V{}(X+,)/X]- V{}(X,.))]
-E V{}(Xn)- E.[ V{(}(Xm)/Xm_,])

=1

+ E[ V{}(X,,,,)I{-(1) _>- o-n}]

E[V{}(X,,,,)I{-(1)>-o-n}] (by the optional sampling theorem)

--->0 as n --> oo,

by Lemma 4.2. Taking expectations in (4.4), letting n-oo, and then dividing by
E;[’(1)]-1, we get

G{}+a{}() > G{},

contradicting the definition of/3. The claim follows.
The function i- V{(}(i) corresponding to an optimal SSS y{:} is called the value

function and (4.2) the dynamic programming equations.
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5. The value function. The definition of the value function in the preceding section
depends on our choice of the specific optimal SSS 7{} and the state "1." In this
section, we eliminate this dependence.

LEMMA 5.1. Suppose W=[W(1), W(2), .IT satisfies

1. inf ((P{q}- U) W+

sup W(i) V{}(i)l < oo

for some optimal SSS y{(}. Then W V{(} + constant x le. In particular, if W(1) O,
then W V{}.

Proof Since

/31. (P{sC} U) V{} + Q -<_ (P{sC} U) W+ Q,

we have

(P{} U)( W- V{}) _-> O.

It follows that under T{}, W(Xn)-- V{}(Xn), n _>-- 1, is a bounded submartingale with
respect to the natural filtration of {X,} and hence converges. Since {Xn} visits each

S infinitely often, this is possible only if W(Xn)-- V{}(X.), n --> 1, is almost surely
a constant sequence. [3

LEMMA 5.2. Let y{sc}, let V{t:} be as above and for some S, and define V’{}
V,{s}(1), V,{s}(2),...]T by

V’{:}(j) Ee (k(X,, (X,))-)/X1 =j
I..m=!

Then

V’{ :} V{ :} + constant x 1

Remark. Note that (4.2) remains unchanged if we change V{:} by a constant
multiple of l

Proof For any j S,

-r(1) -r(i) ]v{t:}(j)- V’{}(j)I<-E , (k(X,n, (Xm))+)/Xl=j
m=(1)A(i)

(5.1) E (k(Xm,(Xm))+)/Xl=i
=1

+ ((xm, (xm+/x,
=1

Since the choice of state 1" in the preceding section was arbitrary, it is clear that
(4.2) also holds with V’{} replacing V{}. The claim now follows from (5.1) and the
preceding lemma. S

LgMMA 5.3. For N {}, V{} as above,

V{(}(i)=minE (k(Xm, (X))-)/XI=
m=l

where the minimum is over all SSS
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Proof For i= 1, the claim follows from the fact that for any SSS

[7(,)-,E . (k(X,,q(X,))-fi)/X,=l =E,[z(1)-I](G{}-fl)0=V{}(1).
m=l

Take i# 1. Suppose the claim is false. Then for some SSS y{},

(5.2) E E (k(Xm, (Xm))--)/X, < V{}(i).
m=l

Consider the chain {Xn} with X 1 governed by a CS {,} such that between each
successive returns to state 1, n until {Xn} hits (if it does) and equals from then
on until it returns to 1. From (5.2) it follows that under {(,},

E , (k(Xm, (m(X))-fi)

(k(Xm, (X))-) I{r(i)> r(1)}
m=l

+ ((xm, (xm- {(i<
m=l

[ r(1)--I

+ 2 ((Xm, (Xm))-)l{(i)< (1)} <first two terms
m=(i)

where the strict inequality holds because, under the positive recurrence and single
communicating class conditions, Pe(r(i) < r(1)/X 1) > O.

Letting {r} denote the successive return times to 1, we can easily see that
--1i+

are independently and identically distributed. Thus by the strong law of large numbers,

m=l

((x,m(x-/x= [(-]<0.
=1

This contradicts the optimality of y{}, proving the claim.
COROLLARY 5.1. V{} above does not depend on our choice of a specific optimal

sss {}.

6. Sucient conditions for optimality. In this section, we develop sufficient condi-
tions for optimality in terms of the dynamic programming equations. Let Y{o} be an
optimal SSS and let V{o} be the value function. The traditional form of the sufficient
conditions is as follows.

THeOReM 6.1. Suppose an SSS y{} satisfies C{}< and

(6.1) 1 (P{}- U) V{o} + Qe.
Then y{} is optimal.
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_Proof We argue as in the proof of Theorem 4.1 to conclude that

flEe[-(1) ^ r, l/X, 1] Ee k(X,,, (X,))/X, 1
m=l

+ Eel V{o}(X,,)I{’(1) > cr,}lX, 1].

By Lemma 5.3, the last term is dominated by

Et Et ., (k(X,,,+m, (X,,,+m))--) X,,, I{(1)> O’nI/X= 1
0

=E (k(X,,+m,(X,,+m))-) I{7(1)>n}/Xl 1

-0 as

Thus

fl >= E k(Xm, (X,,))/X, 1 E[r(1)- l/X, 1] C{:}.
m-I

Since Ck{} in any case, Ck{} and the claim follows.
We shall consider another variant of this. Call an SSS y{} locally optimal if

C{} N C{’} for all ’ for which (i) ’(i) for at most finitely many i.

THEOREM 6.2. Suppose an SSS y{} satisfies
(6.2) C{} <, C{}I min ((P{}- U)V{}+Q).

Then y{} is locally optimal.
Proof Let s’ L be such that s’(i)# s:(i) for at most finitely many i. Then y{s:’}

is an SSS by our hypothesis (2) of 3. Let {Xn} be a chain governed by y{s:’} with
X 1. By (6.2),

Ck{} -<- E,[ V{}(Xn+,)/X,]- V{:}(Xn)+ k(Xn, ’(Xn))
for n _>-1. As in the proof of Theorem 4.1, we can prove that for n => 1,

Ck{}E,[r(1) ^ or, 1] E, "-<= k(Xm, ’m(Xm)) +E,[V{}(X,,)I{’r(1)>=O’n}].

The last term on the right tends to zero as n- oo by Lemma 4.2. Thus letting n- oo in
the above and then dividing through by Ee, ’(1)- 1 ], we get Ck{} Ck{’}. [’]

Remark. The converse can also be proved along the lines of Theorem 4.1.
COROLLARY 6.1. Suppose all locally optimal SSS are optimal. Then an SSS y{sc} is

optimal if and only if (6.2) holds.
COROLLARY 6.2. Suppose all SS are SSS and {r{}[sc L} is tight in M(S). In

addition, suppose that k is bounded. Then an SSS y{} is optimal ifand only if (6.2) holds.
Proof Let y{sCo} be an optimal SSS and -/{sc} a locally optimal SSS. Define sen L

by n(i)-- sCo(i) for iN n, so(i) for i> n. Then p{:n}. p{sCo} termwise. Let
M(S) along a subsequence. By Scheffe’s Theorem, this convergence is also in total
variation. Thus letting n-o along this subsequence in the equation rr{scn}P{sCn}
7r{scn}, we get 7rP{s%} r, i.e., 7r= 7r{o}. Thus 7{(n}- {:o} and hence

C{:} - C{:o} __-< C{:}.
But Ck{s} =< Ck{sn} by local optimality. Thus C{:} C{o} and y{s:} is optimal. The
claim follows from the preceding corollary.

Clearly, any example that satisfies the hypotheses of Corollary 6.2 will also be an
example for Corollary 6.1. One example where the hypotheses ofthe former are satisfied
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is a stable chain where each state has finitely many neighbors as in (iii) of 4, with
the control affecting the transitions out of at most finitely many states. A more serious
example can be constructed involving chains that show a strong uniform "drift" toward
a finite set when they are sufficiently away from it; the set must be uniform with respect
to all the controls. We do this next.

Let oo> K> e>0 be given. Let an, n -> 1, be a sequence in [2e, K]. Define
W: SR+ by W(1)=a, W(n)=a+...+a,,, n>-2. Consider a controlled Markov
chain {Xn} whose transition matrix Pu satisfies the following"

(i) p(i,j,.)=-O forj#i+l or i-l,

>0 otherwise foriS\{1},

p(1,j, )-= 0 for j > 2, > 0 otherwise.

(ii) p(i,i+l,.)<=(ai-e)/(ai++ai), i>-l.

Letting n tr(X,,, :m, m =< n), it is then easy to check that

El(W(X.+,) W(X.))I{X. >_- }/.] < -I{X. >- }.

As observed in [5, pp. 72-73], it then follows from the results of [9, 2] that the
hypotheses of Corollary 6.2 hold.

The proof of Corollary 6.2 indicates that the requirements can be relaxed to the
following. For any two SSS y{’} and y{:"}, the set {r{:}[n _-> 1 such that (i)= :’(i)
for =< n and equals :"(i) for > n} is tight. This would be true, e.g., if the map :- r{}
from the set {: e L[T{:} is an SSS} to M(S) were continuous. This seems an eminently
reasonable thing to expect in "typical" situations. Thus it is tempting to conjecture
that local optimality implies optimality, except possibly in some highly pathological
situations. Unfortunately, at the moment we are unable to capture the essence of
exactly what is involved.

Note that whenever local optimality implies optimality, (6.2) is a much better
condition for optimality than (6.1), because all the quantities involved depend only
on the SSS y{:} under scrutiny and no prior knowledge of/3 or V{o} is needed.

7. Characterizing the solution of the dynamic programming equations. By a solution
of the dynamic programming equations, we mean a pair (c, W), cR+, W=
W(1), W(2),...]" an infinite column vector, such that

(7.1) clc=min((P{}-U)W+Q).

Clearly, (/3, V{:0}) in the foregoing is one solution. Note that if (c, W) is a solution,
so is (c, W+ AI.) for any A e R.

In this section, we shall give a characterization that isolates the distinguished
solution (/3, V{:o}) from among the solution set for the special case when (A1) holds.

LEMA 7.1. Under (A1), V{(o}(i), S, is bounded from below.
Proof By (A1), A {i S]k(i, u) <fl for some u 6 D(i)} is a finite set. Let tr=

min {n => 1]Xn 6 A}. Then for S,

V{(o}(i) Ea, (k(Xm, (o(Xm))-fi)/X
m:l

Eo :, (k(Xm, (Xm))-fl)I{7"(1)> ’}/Xl=

>=-fl Y Ea,[’(1)/X,:j]. U
.j A
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Let G {f: S- Rlf(1) 0 and inf, f(i) >
LEMMA 7.2. Let (c, W) R+x G be a solution of (7.1). Then c>-.
Proof Let e > 0. Then there exists an SS ,/{} such that

(7.2) (e + c)l,. >- (P{}- U) W+ Qe.

Let {Xn} be a chain governed by y{(} with X 1. Summing up X, X2,’"", Xn rows
of (7.2), we have

(c+ e)n >= Ee[ W(X,+,)/X,]
(7.3)

(W(Xm)-

By familiar arguments, we obtain

(c+ e)n E[ W(X+,)/X,]+ E[ m=, k(Xm’ (Xm))/X’]

where K > - is a lower bound on W(i), S. Divide by n and let n . If {} is
not an SSS, then it is not hard to deduce from (A1) that

liinfl-n Ee[=, k(Xm,(Xm))/X 1].
Thus

c+e>->-.
If y{(} is an SSS, then

lim inf- Ee k(Xm, (Xm))/X, _-> Ck{} =>/3.
neo n m=l

Since e > 0 is arbitrary, the claim follows.
LEMMA 7.3. If (, W), We G, is a solution of (7.1), then W>= V{o} termwise.

Proof Let 0 < e < r/-ft. Then there exists an SS y{:} such that

(7.4) (/3 + e)lc -> (P{}- U) W+ Qe.

If y{} is not an SSS, we may argue as in the proof of the preceding lemma to conclude
that/3 + e ->_ r/, a contradiction. Hence y{sc} is an SSS. Let {n} be a chain governed by
y{:} with X- for some i S. For {tr,} as before, we can deduce from (7.4) that

-r(1) -1

W(i) e 2 (k(Xm, (Xm )) (/ "t- ))
m=l

(7.5)
,(1^,,
2 (w(xm)-e[w(xm)/x_])+
m=2

By Fatou’s Lemma,

lim inf Ee[ W(X,() ....)/X i]>_-lim inf Ee[ W(X,,)I{-(1) > rn}/X i]
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Thus taking expectations in (7.5) and letting n-+ oo,

W(i)>- Ee (k(Xm, (Xm))-([3 + e))/Xl
L m=l

Since e can be made arbitrarily close to zero,

W(i)>= E (k(Xm, (Xm))--)/X,=

__--> V{s:o}(i)

where the last inequality follows from Lemma 5.3.
LEMMA 7.4. For W as above, W V{:o}.
Proof Let K > 0 be a finite number such that W(i) >- -K for e S. Then for each

ieS,

2 p(i,j, u)W(j)+k(i, u)= Y p(i,j, u)(W(j)+K)+k(i, u)-K.
jcS jcS

The first term on the right is a monotone increasing limit of continuous functions in
the variable u, and hence is lower semicontinuous in u. Since k(i,. is continuous, the
left-hand side above is lower semicontinuous in u, and hence attains a minimum at
some ui e D. Let = [u, u2, "]e L. Then

/1 (P{}- u) w+ Qe.
By the arguments used in the proof of Lemma 7.2, y{s:} is an SSS. Since

/1 -<_ (P{:}- u) v{:o} + Qe,
we have

(P{:}- u)(w- v{:o})_<- 0.

Letting {Xn} be a chain governed by 7{s:} with X 1, this and Lemma 7.3 imply that
V= W-V{:o} satisfies

v(x.) >- o v(x,), [ v(x.+)/x.] <- v(x.),

n 1, 2,. .. This is possible only if V(Xn)= o almost surely for each n. Since y{:}
is an SSS, Xn infinitely often almost surely for each e S. Hence V(i) 0 for e S.
The claim follows.

The following theorem summarizes the above.
THEOREM 7.1. Among all solutions (c, W) of (7.1) in R+x G, (/3, V{s:o}), is the

unique solution corresponding to the least value of c.

Appendix A. Recall (1)-(4) in the beginning of 3. Here, we derive (3) and (4)
from (2) using a simple convex analytic argument.

LEMMA A.1. The set B {-k[]ly[ an SSRS} is convex and closed in M(S x D).
Proof Let y[], Y[2] be two SSRS with IIii, 2 Ili2i. Let 0-< a-<

and define =Hi by

+=(arr[](i)Spi+(1-a)rr[2](i)z)/(arr[l](i)+(1-a)rr[2](i)), ieS.

From this definition and the fact that

[,,]P[,,] =[,,1, i= 1, 2,

it is easily seen that

(a[,,] + (1 a) =[’23)P[] (a[,,] + (1 a) [,3).
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Thus

Hence

implying

7r[(I)] aTr[(I)l] + (1 a)r[2].

7r[q](i)(, aTr[dPl](i)Pli +(1 a)Tr[2](i)2i, S,

’[] a[,] + (1 a) ’[].
The convexity follows. Now let y[,,], n 1, 2, , be SSRS such that -[,] -for some M(SxD). Let 7r M(S), 7r [Tr(1), (2),...], be the image of under

the projection SxDS. Then 7r[,]- r in M(S). Disintegrate -k as .k({i}xA)=
7r(i)qi(A), S, A a Borel subset of D, where q M(D) for each i. Define q L by
q IIq. Since p(.,j,. ), j S, are continuous,

f p(’,j, d’’[aPn]-> f p(’,j, d, j S.

Thus

"n’[ P ,, - "n’P q

termwise. Since -[,]- r and 7r[di)n]P[tn]= "/’F[(IOn] for n>= 1, we have rP[q] rr,
i.e., 7r 7r[ q ]. Hence - -k[ q and we are done.

Let y[], IIi+i be an SSRS such that for some io S and 0< a < 1, there exist
(491, q9 in M(D) such that

Ip(io,’,u)*o(du)=afp(io,’,u)q,(du)+(1-a)fp(io,’,u)q(du),
(A1)

p(io, ", u)ql(dU) f p(io, ", u)q2(du)

as vectors, the integrations being termwise. Without loss of generality, we shall assume
that io 1.

LEMMA A.2. [] is not an extreme point of B.
Proof Define i M(L) by q x 1-Ij=z(Oj, i= 1, 2. Let 7", 7", 7"2 denote the first

return time to under y[], y[l], y[2], respectively, when the chain starts at 1. It
is easily seen that

E[r] + 2 p(1,j, U)l(du)E[T/X =j]
jl

-1

+(l-a) 1+

aE[7",] + (1 a)E[7"2].

Since E[7"] <, E[7"i] <oo for i= 1, 2, implying that y[i], i= 1, 2, are SSRS. If
rr[] r[] r[2], the equation

E r[cb,](k) p(k,j, u)dp,,(du)= -[cI),](j),
k

i=1,2,
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contradicts (A1) for some j. Hence any two of r[], r[], r[2] are distinct from
each other. Let b (0, 1) be such that

a b’[op,](1)/(bTr[ap,](1)+(1-b)-[ap2](1)).

We argue as in the proof of the preceding lemma to conclude that

6[] b-#[,] + (1 b)-#[2].

The claim follows.
COROLLARY A.1. The extreme points orB are of theform {:}, where L satisfies

the following"

(*) For each S, p(i,., (i)) is an extreme point of {p(i,., u)lu D}c M(S).

THEOREM A.1. Ifan optimal SSRS exists, an optimal SSS satisfying (,) exists. (In
particular, fl a.)

Proof Let y[] be an optimal SSRS. Let S SU{o} be the one-point compac-
tificatio of S. We may view B as a subset of M(S D) by identifying each element
of M(S D) with that element of M(S D) that coincides with it when restricted to
S D and has zero mass at {} D. Let B denote the closure of B in M(S D).
Viewing -[] as an element of B, Choquet’s Theorem [11] implies that -k[] is the
barycenter of a probability measure u supported on the set of extreme points of B.
Since [] has no mass at {} D, , is almost surely supported on the set of extreme
points of B itself. Letting E denote the latter set, we have

Thus if there is no E such that k dr= Ck[], there would necessarily exist a, E for which k d-k < Ck[]. By the preceding corollary, each - E is of the form
{:} for some SSS y{} satisfying (,). Thus we have a contradiction to the optimality
of y[] unless Ck[] Ck{} for some SSS y{} with {} E. [3

Remark. As in [5], we can prove that (A1) or (A2) imply (1) and (2) above.
(Although k is assumed to be bounded in [5], this part of the arguments of [5] goes
through without any difficulty for the more general k’s considered here.) The above
can then replace the arguments of [5] to deduce (3) and (4) from (1) and (2). This
alternative approach is both simpler and says more.
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RANK INVARIANTS OF NONLINEAR SYSTEMS*
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Abstract. A linear algebraic framework for the analysis of rank properties of nonlinear systems is
introduced. This framework gives a high-level interpretation of several existing algorithms built around the
recursive computation of certain algebraic ranks associated with right-invertibility, left-invertibility, and
dynamic decoupling. Furthermore, it can be used to establish links between these algorithms and the
differential algebraic approach, as well as to solve some static and dynamic noninteracting control problems.

Key words, invertibility, decoupling, zeros at infinity, differential algebra, nonlinear systems analysis

AMS(MOS) subject classifications, primary 93C10; secondary 93B25

1. Introduction. Consider a nonlinear control system of the following form:

(1.1a) :=f(x)+ g(x)u,
Z:

(1.1b) y=h(x)

where, for simplicity, x(t) n, u(t) ", y(t) [P, and f(. ), the columns of g(. and
the rows of h(.) are meromorphic functions of x (on all of n); that is, they are
elements of the fraction field if(x) of the ring of analytic functions of x. Our goal is
to associate to such a system a chain of (nonditterential) vector spaces and show that
it contains a rich amount of structural information about the system. More precisely,
the subspaces will recover in a unified way, the inversion algorithm of Singh [1], the
generic ranks of Nijmeijer [2], the dynamic decoupling algorithms of Descusse and
Moog [3] and Nijmeijer and Respondek [4], and the differential output rank of Fliess
[5], [6]. The approach adopted in the paper has been largely inspired by the differential
vector spaces considered in [7] by Fliess.

To proceed, suppose that the input function u(t) to the system (1.1) is N times
continuously differentiable. Then by Taylor’s Theorem,

N

u(t) L ut’ (t- to) k+RN(t-- to),
k:O

where to is some initial point in time, u := U(to), u+1 := d/dt u(t)l,=,o, and RN is
a remainder term. View x, u, , u-1 as variables and let Y denote the field consisting
of the set of rational functions of (u,. , u"-) with coefficients that are meromorphic
in x. Recall that given such a field, say in the variables v (v,..-, v./), we define
0/0v acting on a meromorphic function r(v) rr()/0(v), where rr( )and 0(. are
analytic, by the usual quotient rule of calculus,

0 ,rr(v) (O(v) 0 0 )()-() 0()
Ol) Ol)

(1.2)
01) O( ld) 02(
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Then we define the differential of r by

(1.3) d’q (,) := E d,s.
i---=1 OPi

Returning to the system (1.1), we define in a natural way,

Oh
(1.4a) )) ))(x, u) 0- [f(x) + g(x)u],

y(k+)= y(k+)(X U, ", bl (k))
(1.4b) oy(k) Oy (k)

Ox
[f(x) + g(x)u] + Obl(i)

U
i=0

(i+l)

Note that .9,""", y(n) so defined have components in the field
Let g denote the vector space (over Y{) spanned by {dx, du,..., du(n-l}. It is

essential to remark that this is an ordinary, nondifferential vector space as opposed to
the setting proposed in [7]. Now we introduce the chain of subspaces
of g by

(1.5) gk := span { dx, d29," ", dy)}
and define the associated list of dimensions po =<... _-< p by

(1.6) p := dim .
It is important to note that in (1.5) and (1.6) the span and dimension are both taken
with respect to the field Y{, and not the real numbers. Hence p is a well-defined integer
and is not a function of x, u,..., u(n-). Note also that we abuse notation slightly
because go:= span {dx, dy}, which is easily seen to be equal to span {dx} since the
output y only depends on x. Finally, in the above, as well as in all that follows, "d"
of a vector or vector valued function means "d" of each of its components; that is,
o span {dXl,’’" dx.}, etc.

In the sequel we argue that the chain of subspaces goC"" C g gives a linear
algebraic framework that clarifies many structural properties of nonlinear systems and
leads to a synthesis of many previous works on rank invariants of nonlinear systems
[1]-[9].

2. Four concepts becomes one. For a linear system, there are many equivalent
approaches to defining (or characterizing) its rank. More or less, all possible approaches
have been extended to nonlinear systems in an effort to understand such properties
as right-invertibility, left-invertibility, dynamic decoupling, etc. In general, these
extensions lead to distinct notions when broadened to the class of nonlinear systems
[1], [10]. However, we will show that the linear algebraic framework of can be
used to establish the equivalence of four of them. A first attempt at this, using cruder
tools, was made in 11 ].

2.1. Jaeobian matrices. In [2], Nijmeijer considers systems of the form (1.1) where
f(. ), the columns of g(.) and the rows of h(. are analytic functions of x. He defines
)),..., y(’) as before, and introduces

0(,...,
(2.1) J(x, u,’’’, u (-’)) :=

o(u,. ., u-)
Jk is an analytic function of its arguments; hence, we can define

(2.2) Rk := generic rank (over the real numbers) ofJk(x, u,. ., utk-).
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Nijmeijer shows that Rk+l-Rk is a nondecreasing sequence of integers and says that
(1.1) is right-invertible if Rn- Rn-1 p, the number of scalar output components. He
goes on to relate the integers R, for a restricted class of systems, to a set of integer
invariants coming from the A*-algorithm; that set, in analogy with results from linear
system theory, was termed the "structure at infinity."

We now relate the list of generic ranks {R} to the list of integers {p,} defined in
(1.6). The first step is to observe that R is equal to the dimension of the row span of
Jk, where the field is taken as Y{. That is, if we define

(2.3) % := span du, ", ou(ii=0

then R dim . It follows immediately that for k_->

(2.4) span {dx} %
hence, we have the following theorem.

THEOREM 2.1. p n + Rk, _--< k -< n.
This yields the following corollary.
COROLLARY 2.2. System (1.1) is right invertible in the sense of Nijmeijer ifand only

if dim qn-dim g,_ p, the number of scalar output components.
In closing this subsection, we note that the subspaces V give a linear algebraic

interpretation of the Jacobian matrices J. In the case considered in this section where
f, g, and h are analytic, both g and 1: can be viewed as analytic codistributions on
the manifold M x T(n-) U, where T("-) U is the (n 1)th order tangent bundle [12,
Chap. 1] of the input manifold U Nm. However, it is easy to see that gk is always
involutive, whereas V, the projection of g along span {dx}, does not in general enjoy
this property. This gives us some reason to believe that the g’s are more intrinsic,
and certainly indicates that they are more amenable to analysis.

2.2. The inversion algorithm. In [1], Singh introduces an algorithm for calculating
the left-inverse of a nonlinear system; his algorithm is in fact a generalization of
previous algorithms, due to Silverman [13] and Hirschorn [14], that are only applicable
under some restrictive conditions. This algorithm has since been taken up by different
authors and has been used to define a finite zero structure for nonlinear systems [15]
(important for certain stabilization problems), and a structure at infinity [9] (important
for noninteracting control problems and model matching).

In the following, it will be shown that the inversion algorithm actually constructs,
step by step, a basis for the chain of subspaces fo"" c f,. This shows that the
chain o ’’" C f, contains all of the above-cited structural information yielded by
the inversion algorithm, and also confirms the earlier claim that the chain o n
embodies important structural information on a high level, independently of any
particular algorithmic considerations.

The inversion algorithm as detailed in [15] is now given, with the exception that,
instead of allowing a large class of analytic transformations, we will use a particular
meromorphic transformation. This idea was first sketched in [9].

Step 1. Calculate

oh
(2.5) .9 ox If(x) + g(x)u]

and write it as

(2.6) .9 =: a,(x) + b,(x)u.
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Define

(2.7) s := rank b(x),
where the rank is taken over the field of meromorphic functions of x. Permute, if
necessary, the components of the output so that the first s rows of b(x) are linearly
independent. Decompose y as

(2.8) ))=

where ), consists of the first s, rows of )). Since the last rows of b,(x) are linearly
dependent upon the first s, rows, we can write

(2.9a) )7, a,(x)+ bl(X)U,
j,

(2.9b) y, )l (x,)),
where the last equation is affine in ). Finally, set/l(X) :=/l(x).

Step k + 1. Suppose that in Steps 1 through k, ),..., )7k), k) have been defined
so that

)7k)= ak(X, {)lJ) <- iN k- 1, i<-j <- k})
(2.10)

+ b(x, {)71J)[1 < iN k- 1, i<j<- k- 1})u,

k)= )3k)(X {)71j) 1 <. i<. k, i<’j <" k})
and so that they are rational functions of)71j) with coefficients in the field ofmeromorphic
functions of x. Suppose also that the matrix /k := [/(,""",/[]T has full rank equal
to sk. Then calculate

(2.1 1) k+l) =O k)[T(x)+.g(x)u]+
OX i=l j=i

and write it as

(2.12) k+l) ak+l(X, {fJ) I1 <= <" k, <=j=k+< 1})+ bk+l(X,
Define Bk+ := [/2, b2+], and

(2.13) sk+ := rank

where the rank is taken with respect to the field of rational functions of {)71) =< =< k-
1, i<.j <= k} with coefficients in the field of meromorphic functions of x. Permute, if
necessary, the components of k+) so that the first s+ rows of B+I are linearly
independent. Decompose +l) as

/ ,’’(k+ 1))(2 14) )+’ /+’
/ (k+l)
\Yk+l

,(k+,) consists of the first (sk+-Sk) rows. Since the last rows of Bk+(x,where
iN k, i<.j <. k}) are linearly dependent on the first Sk+l rows, we can write

;, + (,,(x)u,

)7+-’)-- c+,(x, {)71J) 1 <= <. k, <-j <- k + 1})
(2.15)

+ b’+,(x, {)71i) 1 <-_ i<= k, <.j <. kI)u,

+-’) )+-’)(x, {)71 1 <- i<. k + 1, i<-j <- k + 1}),
where once again everything is rational in )71. Finally, set/k+ :-[/[,/r+].

End of Step k + 1.
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It is now possible to state and prove the main result of this subsection.
THEOREM 2.3. For each <-_ k <- n"

(a) {dx, {dyl.Jl _-< i_-< k, i-<j -< k}} is a basis for ck

(b) dim gk n + Sl +" + Sk.

Proof Part (b) is an immediate consequence of (a), which will be proved by
induction. For k 1, the statement is obvious. Suppose that (a) holds at Step k; it will
now be shown that it also holds at Step k+ 1. By construction, Bk+ is a rational
function of {)71J) <_-- <-- k, <-j _-< k} with coefficients in the field of meromorphic func-
tions of x. As )71j is a rational function of (u,. , un-)) with coefficients in the field
of meromorphic functions of x, it therefore follows that Bk+l is also. Since from Step
k, {dx, {dfl)l <= <- k, <=j <- k}} is a linearly independent set over Y{, it follows easily
that /}k+l, when viewed as a rational function of (u,..., un-)), has rank Sk+l over
the field Y{. Using (2.15), we show readily that

dim span {dx, {djTl-J) <- <= k, <-j <= k}}
(2.16)

=dim span {dx, {duk+-e)ll <--{<-- k+ 1}}.

The dimension on the right-hand side of (2.16) is easily seen to be n + sl +"" + Sk+,

showing that, indeed, the vectors on the left-hand side of (2.16) are linearly independent
since there are precisely n + s +. + Sk+ elements; it only remains to show that they
span gk+l. By its definition,

(2.17) qk+, gk +span {dy(k+}.

Usilg (2.15) once again, we can write this as follows"

(2.18) ,+l=k+span{dflt’+l)]l<--i<--k+l},

which, coupled with the induction hypothesis, completes the proof.
COROLLARY 2.4. System (1.1) is left-invertible in the sense of Singh if and only if

dim g-dim gn- m, the number of scalar input components.

2.3. The lynamic extension algorithm. The relationship between dynamic input-
output decoupling and right invertibility has been clarified recently by Fliess [5], whose
work has inspired several authors to develop concrete algorithms for the explicit
construction of a dynamic compensator yielding a noninteractive system [3], [4]. Here
we will give a simplified version of these algorithms, separating clearly their basic
operations of differentiating the outputs, performing static-state feedback, and adding
integrators on selected components of the input. This simplified version will still yield
a decoupling compensator whenever one exists, but does introduce more integrators
than the algorithms previously cited. We will show that it explicitly produces a basis
for the chain of subspaces goC"" c fn. This shows yet another way in which the
chain ego c... c g, incorporates important structural information on a high levelnin
this case, that information pertraining to dynamic decoupling.

The dynamic extension algorithm is now presented.

Step 1. Let Zo denote the system (1.1). Calculate

oh(x)
(2.19) )) [f(x) + g(x)u]

Ox

and write it as

(2.20) )) a(x)+ b(x)u.
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Define

(2.21) cr rank b,(x),

where the rank is taken over the field of meromorphic functions of x. Permute, if
necessary, the components of the output so that the first o- rows of b(x) are linearly
independent. Decompose )) as

(2.22) "= l l(X) q-b,(x)u]"

Let

(2.23) u a(x) + (x)v

be any static state feedback such that
(i) 13(x) is invertible over the field of meromorphic functions in x;
(ii) y,

Such a feedback always exists.
For the resulting closed-loop system, we can write

(2.24) 391 ))l(x, 51),

since otherwise the rank of Oy/Ov would exceed r. Moreover, )9 is affine in 5. Now
introduce a dynamic extension by

(2.25a) 3 t/l

and rename the remaining components of v:
(2.25b) 3 1"
Finally, let E denote the system consisting of 5o, the static-state feedback (2.23), and
the dynamic extension (2.25). Its state is given by x (,), its input is Ul (a,), and
the output remains y h(x). We will denote it as

2, =fl(X,) + g,(x,)u,,
(2.26)

y h(x).

is a dynamic extension of o and has the property that 3 ))(xl) is affine in 5.
Step k + 1. Suppose that in Step k the system 5k has been constructed such that

=A(x) + g(x)u,
(2.27) E,:

y=h(x)

and y)= y’(x,) is a rational function of 5,. , G with coefficients in the field of
meromorphic functions of x. Then, calculate

(2.28) y’+) OY’)
[A(x) + (x)u]

and rewrite (2.28) as

(2.29)

Define

(k+l)
Y ak+,(Xk)+ bk+(Xk)Uk.

(2.30) r+ rank bk+l(X),
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where the rank is over the field of rational functions of ,. ., Sk with coefficients in
the field of meromorphic functions of x. Permute, if necessary, the last p-rk com-
ponents of the output so that the first o-+ rows of b+(x) are linearly independent.
Decompose y(k+) as

(2.31) y<+) =/, k+, a+(x) + b+i(x)uk

Let

(2.32) u Olk+l(Xk)-Jr k+l(Xk)Vk+l

be any static-state feedback such that
(i) /3+(xk) is invertible over the field of rational functions of ,..., with

coefficients in the field of meromorphic functions of x.
,-;(/+1)(ii) +l 5+1.

Such a feedback always exists.
For the resulting closed-loop system, we can always write

(k+l) (k+l)((2.33) k+ =k+ Xk, k+),

since otherwise the rank of Oy+l)/ov+ would exceed +. Moreover, y+l) is a
rational function of fi,. ., +. Now introduce a dynamic extension by

(2.34a) +
and rename the remaining components of v+"

(2.34b) + fi+l.

Finally, let + denote the system consisting of Z, the static state feedback (2.32)
and the dynamic extension (2.34). Its state is given by x+ =( " ), its input is+1
u+ (a), and the output remains y= h(x). Z+l is then a dynamic extension of Z,
has the property that y+)= y+)(x+), and is a rational function of ,. ., +.

End of Step k + 1.

We now have the following theorem.
THEOREM 2.5. For each 1 k n"

(a) {dx, d, d)} is a basis for .
(b) dim n+l+’"+.
Proof Part (b) is an immediate consequence of (a). From (2.33), one has that

(2.35) span {dx, d,,..., d)},

which by definition of fi gives

(2.36) span {dx, d, d:, d}.

Hence, it suffices to show that {dx, d,. ., d} is a linearly independent set for each
1 N k N n. This follows immediately from Lemma 2.6.

LEMMA 2.6. For each k n 1,

span {dx, du, , du"-)}
(2.37)

=span {dx, dl, d, du, du"--), d"-), dfi"-)},

where all spans are with respect to the field
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Proof Equations (2.23) and (2.25) yield

span { dx, du, , du"’1)}

span {dx, dl, {dl, dl},’", {d3"-2), d5"-1)}, d3"-1)}

span {dx, dl, dul, du"-2)1

which establishes (2.37) for k 1,

Now suppose that (2.37) holds at k. Then, in particular, {dx, dO1,’", dg} is a
linearly independent set. After we note that each component of xg (x r, r,..., [) T

is a rational function of (u,’’ ", u"-l)), this gives us that bg+l has full rank over
Hence, using (2.32) and (2.34), we have

span {dg, dug,..., dUk"--g)}

span {dg, dk+l, {dk+, dk+l},’’’, { dt(kn+k-2), d-l-k)}, d(kn+-l l-k)}

span {dY.k, dk+l, dUk+, ", dUn-k-2k+l ""k+l"--k)},

which establishes (2.37) at k + 1.

2.4. Convergence of the chain ’o c.. .c ,. in a completely analogous fashion
to the way the chain got"" gn is defined in (1.5), we could define an extended
chain go gn c gn+k, for any finite integer k >- 1. The underlying field
would then consist of the set of rational functions of (u, , un+k-1)) with coefficients
that are meromorphic in x. We will show, however, that no new structural information
is obtained by extending the original chain; hence, we are justified in terminating the
chain at n, the dimension of the state space of (1.1).

THEOREM 2.7. For all finite integers k >-_ 1"
(a) {dx, dr1 ayn’-n), dfi?+, d_9n+c)} is a basis for g+, < {<<-k.

(b) dim gn+e=dim gn+{" p*, l<-{<--k, where p* =dim gn-dim
The proof will be broken down into two lemmas. The functions (fir, f)=y

continue to denote the blocks of the output constructed in the ith step of the dynamic
extension algorithm; filJ), I) denote their jth-order derivatives along the dynamics of
the system.

LEMMA 2.8. There exists an integer <= N <-n such that

(2.38) d(nN) spanvc {dfin, dfi(nN-l), dfi, ,’’’, dfiN)}.

Proof From the dynamic extension algorithm, we have that fik)=
fk)(x, , ,’’’, fikk)). Hence, (2.38) holds if

(2.39)
O)

dxespan:e On dx,
0"N-1) }dX

Ox (Ox Ox

Since the right-hand side of (2.39) can be at most n-dimensional, there must exist
1 <-N <= n such that (2.39) holds. Hence, the result is proved.

For each integer j, N-<_j-<_ n + k, define the field Y(. to be the set of rational
functions of (u,. ., u-)) with coefficients that are meromorphic in x.

LEMMA 2.9. With N as in Lemma 2.8 and for all integers j, N <=j <= n + k,

(2.40) d)3*)e span::, {dfin dfi(nN-l), dill, yj )},

where, for j >= n, . fin.
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Proof Since all the functions appearing in (2.38) are rational functions of
(u, , u(-), (2.38) also holds with Y{ replaced by (. Hence there exist coefficients
ai, i ’/LN such that

N-1 N

(2.41) dfi(nN)-- Oli dfi(ni)+ fli dill i).
i=o i-1

Hence,
N-1 N

(2.42) d33N+’=
i=o i=1

Combining (2.41) with the fact that di, /i are in Y{’v+l, we easily see that (2.42)
establishes (2.40) for j N + 1. In a similar manner we complete the proof of Lemma
2.9.

To complete the proof of Theorem 2.7, note that Lemma 2.9 establishes that g,+e,
1 <_-t’<=k is indeed spanned by the vectors given in (a). We prove that they are
independent using the same reasoning employed in the proof of Theorem 2.3. Part (b)
follows from (a) by counting the number of basis elements.

Remark 2.10. If we introduce the finite chain of subspaces fro =’’" = o%, of g by
k=span{dy, d,...,dyk}, then we can show that p*=dimo-dimo_.
However, the inversion algorithm and the dynamic extension algorithm do not calculate
bases for this chain.

2.5. Differential output rank. In 1985, Fliess introduced a new approach, centered
around differential algebra, to the analysis of nonlinear systems, [5], [16], the proper
formalism being perhaps field theoretic [17]. He was the first to define clearly and
precisely the fundamental notion of the rank of a nonlinear system; he accomplished
this by considering the output components to be dependent if they satisfied a nontrivial
(nonlinear) differential equation. Fliess’ notion of rank generalized to nonlinear systems
the usual notion of the rank of a transfer matrix of a linear system, and played the
same important role in leading to basic definitions of right invertibility and left
invertibility, and important new results on dynamic feedback [5], [16]. All previous
attempts in this regard lacked the power and elegance of the differential algebraic
approach, being mainly based on algorithmic considerations.

Additional insights on the role of differential algebra in system theory have been
contributed by Pommaret [18].

In this section, we will show that the integer p*= dim g-dim g,_ of Theorem
2.7 is actually the differential output rank for those systems that meet the requirements
both of 1 and of the differential algebraic approach. More precisely, we suppose that
the system (1.1) satisfies the following assumptions"

(A1) f, g and h are meromorphic;
(A2) f, g and h are differentially algebraic (i.e., elementary transcendental)

functions of their arguments [5], [19], [20];
(A3) The set E(y) of all rational functions of ye, <= i<p,= {>0,= with

coefficients in the field is a differential field.

Here, the yl e) are defined as in (1.4). (It is apparently unknown whether (A1) implies
(A3).)

To aid the reader, a few notions from differential algebra are briefly recalled. A
finite set of elements ’,. , sr of (y) is differentially algebraically dependent if there
exists a nonzero differential polynomial P, with coefficients in [, such that
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P(’,""", "k)- 0; that is, a nonzero polynomial in ’,..., SZk and a finite number of
their time derivatives. The differential output rank, denoted d(E), is the maximum
number of differentially algebraically independent elements of E(y). This number is
well defined [21].

Our main result relating the d(E) to the chain o ’’’, c n will be an easy
consequence of the following properties of the differential rank.

LEMMA 2.11 [5]-[7], [16]. (a) d(E)<-_min{m,p}.
(b) If E’ is obtained from E by applying an invertible static state feedback, whose

components are differentially algebraic functions, then d(E’) d(E).
(c) If Ee is obtained by adding afinite number ki ofintegrators on each input channel

of E, then d(Ee)= d(Z).
(d) If for some l<-_i<-_m, Oy(k)/Oulg)=O for all k>-O, {>-0, then d(Z) <

min m- 1, p}.
(e) Iffor somefinite integer k, yk) yg)(x, u), and rank oy(k/oU r, then d(Z) >= r.

Proof All of these points are essentially contained in [5]-[7], [16]. Part (a) follows
from the definition ofthe differential output rank. Part (b) is true because d(E’) _-< d(Z)
for any static-state feedback. Thus invertibility gives equality, since the inverse, being
a well-defined (differentially algebraic) static-state feedback, yields d(Z)_<-d(E’). To
prove (c), first note that

(2.43) m=diff, tr. d
(u’ y)

diff. tr. d(u’Y--------)-)) +diff. tr. d
(y)

(y)

which yields

(2.44) d(Z) m-diff, tr. d o N(u, y)
(Y)

Similarly,

(2.45) d(Y_.e) m-diff, tr. d o (v, y)
(y)

This establishes the result because the right-hand sides of (2.44) and (2.45) are equal,
since v constitutes a differential transcendence basis for (u)/. Statement (d) follows
from (a) because y is differentially algebraic over (ul,’",ui-1, u+,.. ",Ur,).
Finally, (e) implies that

(2.46) dimx {df, , dy(k)} r,

which yields

(2.47) dimt {d3,""’, dyk)} >- r,

where [L is the field of rational functions in the indeterminates {y, 3,..., y(k)} with
coefficients in R; note that

_
YL Hence, by the results in [22], d(Z)-> r.

THEOREM 2.12. Suppose that system (1.1) satisfies Assumptions (A1)-(A3). Then

(2.48) d(E) dim ,-dim ,_.
Proof Consider the extended system E, constructed at the nth step of the dynamic

extension algorithm. From (2.33), E, has the property that rank Oy(")/Ov, tr,. Hence,
by (e) of Lemma 2.11, d(E,)->_ r,. By Theorem 2.7, r+e o’, for all g>_-0; therefore,
y satisfies oy(k)/o(ng)=0 for all k--0, g=>0. Thus, by (d) of Lemma 2.11,
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Hence, d(En)= rn. However, (b) and (c) of Lemma 2.11 then yield that d(E)
d(En) crn, because n is constructed from by successively applying invertible static
feedbacks and finite strings of integrators. Finally, Theorem 2.5 yields rn=
dim gn-dim g-l. [3

3. Structure at infinity and block decoupling. In this section, the framework of
1 and 2 will be used to give an intrinsic "algebraic" definition of some important

integer invariants associated with a nonlinear system, namely the so-called structure
at infinity. An alternate approach to defining a structure at infinity has already been
carried out in [8], using differential geometric techniques. When specialized to the
class of linear systems, the geometric definition and the algebraic approach below both
agree with the usual linear notion of the structure at infinity [23]. For general nonlinear
systems, both are invariant under regular static state feedbacks. However, in contrast
to the geometric approach, the algebraically based definition enjoys some additional
properties that make it seem closer to the linear situation.

DEFINXON 3.1 [9]. The number crk of zeros at infinity of order less than or equal
to k, k-> 1, is o’k =dim gk-dim gk-. The structure at infinity is given by the list
{r,,..., ,}.

Note that the total number of zeros at infinity er, corresponds precisely to the
rank p* of the system (1.1).

The notion of a regular dynamicfeedback is introduced next. Note that when q 0
in the following definition, we recover the usual definition of a regular static feedback.

DEFIN’rON 3.2 [24]. The compensator

(3.1) =F(x,z)+G(x,z)v, u=(x,z)+(x,z)v,

where F, G, a, and /3 are meromorphic, v E", and z [q for a given integer q, is
said to be regular if the composite system (1.1a) and (3.1), with v as the input and u
as the output, has rank equal to m.

The structure at infinity of Definition 3.1 enjoys the following properties.
LEMMA 3.3. (a) The rank p* of the system (1.1) is equal to cr,, the total number

of zeros at infinity.
(b) or, _-<rain {m, p}, the number of input and output components, respectively.
(c) The total number ofzeros at infinity is invariant under regular dynamicfeedback.
Proof Properties (a) and (b) are immediate from the results of 2. To prove (c),

first introduce the field Y{e consisting of the set of rational functions of (v, , v{"+q-)
with coefficients which are meromorphic in x and z. Assume that for a given l,
0_-< l-< n + q- 1, there exists i, 1 -< =< m, such that

dul l) spanx. {dx, du, du {l-), dut),j i}.

Then, following the calculations involved in the proof of Lemma 2.9, we see that

dulk) spanx,. {dx, du, ., du {k-’), duSk),j i} Vk >= l,

which contradicts the regularity assumption of the dynamic compensator. Hence, for
every l, {dx, du, ., du)} is a linearly independent set. Let y h(x) denote the output
of the composite system consisting of (1.1) and (3.1), and define

k spanx {dx, dye,..., dyk)}.
By the chain rule,

O(X, Ye, Y(ek)) O(X, y, y(k) O(X, I./," /../(k-l))
(3.2)

O(X, 2, ),’’’, V(k-l)) O(X, /./, /./(k-I)) O(X, Z, V,’’’, /.)(k-l))"



RANK INVARIANTS OF NONLINEAR SYSTEMS 669

Since {dx, du,..., duk-l} are independent, (3.2) yields that

dim 3k rank
o(x,y,. ,y()

o(x,u,. ..,u(-’)

so that

(3.3) dim % dim gk-

Finally, let p* denote the rank Ze. Then, following the reasoning employed in Lemma
2.8, we show that p* =dim q,+q-dim q3,+q_, which yields the result in view of
(3.3). [-1

Now consider a system whose outputs have been grouped into blocks:

(1.1a) =f(x)+g(x)u,

(3.4) y--h(x), 1_-< i_-</z,

where yi
p’ and hi is a meromorphic function of x. The system is said to be decoupled

with respect to a given partition u (ur, u)r of the input if u affects only y,
1 _-< _-</x; that is,

(3.5) dyl k) span { dx, dui, ", duln-)}
for 0_-< k-< n. The decoupling problem is to find, if possible, a regular dynamic
compensator and a partition of the new reference input such that the resulting closed-
loop system is decoupled. If the compensator has dimension zero, the solution is said
to be static; otherwise it is dynamic.

Using (3.5), we immediately obtain the following necessary condition for regular
static block decoupling.

PROPOSITION 3.4 (see also [8]). If the system (1.1a), (3.4) with block-partitioned
outputs can be decoupled with a regular static state variable feedback, then

(3.6)
i=1

where {o’,..., o"} is the structure at infinity of the ith subsystem consisting of the
dynamics (1. la) and the output Yi.

When the outputs yi are scalar-valued, it is known that (3.6) is also sufficient (see,
for example, [9], [25]). This condition is also known to be sufficient for general
vector-valued outputs if we restrict our attention to the class of linear systems [26].
Indeed, (3.6) implies that we can perform the inversion algorithm for the overall system
(1.1a), (3.4) by applying it to each of the individual subsystems y, for 1 -< =</x. Then,
specializing equation (2.10) to the nth step of the algorithm and invoking linearity,
we see that the b’s are constants, and the ’s are linear functions of x and various
derivatives of y. Decoupling is accomplished by cancelling the dependence on x, and
diagonalizing the matrix multiplying the inputs, via a static feedback.

The fact that condition (3.6) is not sufficient for general nonlinear systems is
illustrated by the following example.

Example 3.5. Consider the system

(Ul, X4-11- X5Ul U2, X3Ul, U3 T
Yl (Xl, X2) Y2 X3.
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try}=(1 2}We easily calculate that {o-1, cr2} {2, 3}, and for the two subsystems {or1,
and {cr2} {1}. Thus, (3.6) is fulfilled. Nevertheless, a straightforward application of
the results of Nijmeijer and Schumacher [8] shows that the system cannot be decoupled
by any regular static-state feedback.

This example underlines the importance of the differential geometric approach in
general, and the "geometric" structure at infinity in particular, for the study of static
state feedback control problems, since the equivalent of (3.6) for the geometric structure
at infinity constitutes a local necessary and sufficient condition (at regular points)
[8]. On the other hand, algebraic methods seem to be better when we are studying
dynamic feedback problems [3], [4], [27]. In this spirit, we have the following result
that does not hold with the geometric version of the structure at infinity because it
fails [10] the properties of Lemma 3.3.

THEOREM 3.6. The system (1.1a), (3.4) can be decoupled with regular dynamic state

feedback if and only if

(3.7) P Z P,,
i=1

where pi denotes the rank of the subsystem (1.1a) with output yi.

Proof Because the necessity is clear, only the sufficiency will be shown. For each
block of outputs Yi, permute if necessary the components in such a way that yi

(.gf, fir)r, dim )5 p, and on defining

gk span {dx, d29, ",

we have

span { dx, df,, dill k )}
for all k, 1-<_ k <-n. This can always be accomplished with the help of the inversion
algorithm of 2.2. Then,

span { dx, dfii, dill k )}
and the rank of the subsystem (1.1a) with output .9 is equal to p. Let Z denote the
subsystem whose output is given by (35,..., 35). We conclude that the rank of E is
p and the original system (1.1a), (3.4) can be decoupled if and only if Z can be. It
follows from (3.7) that the rank ofZ equals the number of its scalar output components;
thus, can be row-wise decoupled [25].

4. Conclusions. In the recent literature, there have been many attempts to extend
concepts and tools from the linear setting to the class of nonlinear systems. For example,
Nijmeijer extends a definition of right invertibility based on the consideration of the
sequence of Toeplitz matrices associated to a linear system. Singh extends the notion
of left invertibility based on the input elimination idea of Silverman’s algorithm.
Descusse and Moog and Nijmeijer and Respondek use the idea of delaying the inputs
via the addition of integrators, as does Wang [28], to achieve dynamic decoupling of
nonlinear systems. Fliess uses differential algebra to extend the notion of the rank of
a transfer matrix, so as to synthesize left invertibility, right invertibility, and dynamic
decoupling.

In this paper, we have shown that all of the above extensions can be unified by
the study of a particular chain of subspaces naturally associated to the output of a
system. As simple corollaries of our analysis, we obtain that right invertibility in the
sense of Nijmeijer is the same as in that of Fliess, which in turn is the same as p* p,
the number of scalar output components. Left invertibility in the sense of Singh is the
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same as in that of Fliess, which is the same as p*= m, the number of scalar input
components. Moreover, the inversion algorithm has a natural interpretation as a
procedure for constructing a basis adapted to the chain of subspaces
In a similar vein, the dynamic extension algorithm, which lies at the heart of dynamic
decoupling, also constructs a basis adapted to the chain o =... c n. The main
difficulty in comparing the various algorithms was that each was working over its own
unique field. This was overcome by relating each of the fields to a common larger field.
In this way, the equivalence of four topics, that previously had only been studied
separately, was established.

The search for a nonlinear version of the structure at infinity of a linear system
has incited much effort on the part of many researchers [2], [7]-[9], [29], with the
goal of finding an appropriate tool for solving such classical synthesis problems as
noninteracting control and model matching. One of the first efforts in this regard was
perceived to possess certain deficiencies [10], because a system could have more zeros
at infinity than input or output components, and also because the number of zeros at
infinity could be altered by the addition of integrators on the input channels.

Section 3 takes an algebraic approach to defining a nonlinear structure at infinity
[9]. Its number of zeros at infinity is always less than or equal to the number of inputs
or outputs, and is invariant under the action of regular dynamic feedback. However,
the deficiency of this generalization of the structure at infinity is that it cannot properly
address the static block noninteracting control problem. Hence the "right" approach,
if it exists [30], is yet to be discovered.
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ANALYSE ASYMPTOTIQUE ET PROBLEME
HOMOGENEISE EN CONTROLE OPTIMAL AVEC VIBRATIONS RAPIDES *

SHI -GE PENGt

Abstract . Le but de cet article est de discuter un problème de contrôle optimal avec vibrations rapides .
Le modèle mathématique est le suivant : pour E > 0, assez petit, on considère

E

(*)I

	

x
= g

	

, x £ ( t ), v(t)),

	

x€ (0) = xo
dt

	

E

où v( ) E L 2 (0, T ; D k ) est la fonction de contrôle. x £ ( •) E H ' (0, T ; W1 ) est la fonction d'état. g(-r, x, v) es t
1-périodique par rapport à TER . On cherche à minimiser la fonction coût

J
T

(*) 2

	

l t, x 8 (t), v(t) d t
E

où l(r, x, v) est aussi 1-périodique par rapport à T.

On s'intéresse tout d'abord au comportement du système quand e - 0 . On pourrait peut-être croire qu e
ce problème va tendre vers le problème "moyen "

dx

	

T

	

= g(x(t), v(t)),

	

min

	

l (x( t), v(t)) d t
dt 0

où

f
I

Mx, v) =

	

g(T, x, v) dT,

	

F (x, v) =

	

l(T, x, v) dr.
0

	

o

Mais c'est faux en général . En réalité, le problème de limite de (*) sera

ji

	

T 1

(**)

	

x=

	

g(T, x(t), v(t, T)) dT,

	

min

	

l(T, x(t), v(t, T)) dTdt
dt

	

o

	

v( '' .)

	

0

où

v(•,•)E L2([0, T]x[0, 1] ; R k ) .

C'est donc une sorte de généralisation du problème de contrôle optimal usuel . On va l ' appeler le problème
homogénéisé du problème H. Mais on va voir que l'on peut caractériser le problème (**) de façon parallèle
au problème classique. On aura le principe de Pontryagin et la méthode de programmation dynamique . On
va également établir le développement asymptotique et la convergence des problèmes H.

Key words . optimal control, homogenization, perturbations, periodi c

AMS(MOS) subject classifications . 49, 9 3

1 . Introduction . Soit

(1) g(T, x, v) :x

	

xlk -4 IR " , l(T, x, v) : IR x R n xRk -4 ER, h(x) :-4

trois fonctions mesurables . On suppose que

g et 1 sont 1-périodiques par rapport à T,

(2) g(T + 1, x, v) = g(T, x, v) ,

l(T+1,x, v)=l(T,x, v) VT, X, V .
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On suppose également que g est Lipschitzien par rapport à x. Pour e > 0 assez petit ,
on va chercher le contrôle optimal du problèm e

dxE

	

t

	

_

dt _
g

	

xE ( t ), v(t)

	

x e (0) --xo ,

T lt,
emin

	

Ë x(t), v(t) dt+ h(x s (t)) ,
0

Formellement on aura les conditions nécessaires d'optimalité (principe de Pontryagin
[9])

(Ix E

	

I t

dt
=

g E
–,x (t) f u ~( t ) 9

dE–

	

=

	

t
xE ( t ), u s ( t ), p ( t )dt

	

x £ ,

Hv t,xe(t),u5(t), p5(t) = 0

où II (r, x, v, p) = p*g(T, x, v) + I( ; x, v) est l'Hamiltonien ,
On va étudier le comportement du problème de contrôle optimal quand s --> 0 . On

va s'apercevoir que ce problème ne tend pas vers le "averaging problem "

dx
-- = g(x(t), v(t)),

	

min

	

i (x(t), v(t)) dt
dt

	

T

v(')

	

0

OÙ

1

	

1

"ex, v) =

	

g(T, x, v) dr,

	

l(x, v) =

	

l(T, x, v) dT.
o

	

o

Le problème de limite est en fait une sorte de généralisation du problème de contrôl e
optimal où l'équation d'état s'écrit :

dx_ j i
(6)

	

dt =

	

g( T, x( t ), v(t, T)) dT,

	

x(0) = x0
0

et le contrôle est une fonction de deux variable s

v : [0, Ti x [0, 1] -* Rk mesurable ,

Ici on souligne que la fonction d'état x(t) est seulement une fonction de t E [0, T] . De
la même façon, la fonctionnelle à minimiser es t

1

(7)

	

J°(v( •,• )) =

	

1(T, x(t), v(t, r)) dTdt+h(x(T)) .
0 J0T

Ce phénomène peut se comprendre par le développement asymptotique des condition s
de Pontryagin (4) . On peut écrire formellement les développements de x e (t ), u s

(t ) ,

p e (t) par la technique de changement de l'echelle du temps (voir [5], [6] )

x E (t) = x(t) + Ex 1 t,

p 6 ( t ) = p(t)+Ep 1 t, t + . . .
E

u £ (t) = u t, t + Eu t t, ~ +
E

(3)

(4 )

(5)

tl

E
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où u(t, r), xi (t, r), p i (t, r) sont 1-périodiques par rapport à r. La raison pour laquell e
le terme u(t, (Os) )s)) contient déjà les vibrations rapides est la suivante : le contrôle
réagit aux vibrations rapides du système beaucoup plus rapidement que la fonction
d'état . En remplaçant x E, u e , p E par leur développement dans (4), pour l'ordre e°, on
a (r= t/e)

ax i dx
ar ~ dt ~ g(r, x(t), u(t, r)) ,

api dp Hx(r, x ( t ), u ( t, r ), p( t )) ,ar dt

H,(r, x(t), u(t, r ), p(t)) = 0 .

On intègre les deux premières équations de (8) par rapport à r sur [0, 1] ; donc

dx _

dt

	

g ( r, x ( t ), u ( t, r )) dr,
0

dp
J

i
—

	

=

	

Hx( r, x ( t ), u ( t, r), p(t)) dT,dt

	

o

H„(r, x(t), u(t, r), p(t)) = 0 .

Mais on va montrer plus tard que les relations (9) ne sont rien d'autre que les condition s
nécessaires d 'optimalité du problème (6), (7) . On dit que le problème (6), (7) est un e
sorte de généralisation des problèmes de contrôle optimal, car si l'on fai t
ag/ar(r, x, v) 0, al/ar(r, x, v) = 0 (un cas particulier de la fonction périodique), i l
devient un problème de contrôle optimal classique . On va voir que les méthodes d e
perturbations singulières jouent un rôle très important dans cet article . Ceci veut dire
qu'on va souvent utiliser la technique de changement de l'échelle du temps et le s
techniques de développements asymptotiques . Pour démontrer le résultat de conver-
gence, l'auteur a beaucoup profité des techniques utilisées initialement par Bensoussan
[ 1 ], [2] . Le résultat de régularité d'ordre élevé de la fonction du coût (voir Peng [8] )
est aussi nécessaire pour traiter la convergence d'ordre élevé de l'équation de Bellma n
avec vibrations rapides .

Dans § 2, on va traiter le principe du maximum pour le problème homogénéisé .
Dans § 3 on va étudier la programmation dynamique du problème homogénéisé . Dan s
§§ 4 et 5, on va traiter, au point de vue du principe du maximum et de la programmatio n
dynamique, respectivement, le problème de convergence d'ordre élevé en contrôl e
optimal avec vibrations rapides . On donnera un exemple simple dans § 6 .

2 . Principe de Pontryagin du problème homogénéisé . On suppose que

(10)

	

g, 1, h sont continûment différentiables par rapport à x, v,

I g tT, x, ~)I Ç c(i+lxl+lvl) ,

(8)

(9)

ag
ax

a g
av

(x, v)I

	

c(1+ I x I 2 +IvI 2), C(1+ Ix I + I v I) ,
a l

al)

a l
ax

a h

ax (x )
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Un contrôle admissible du problème homogénéisé est une fonctio n

(12) v(•, • ) L2 ([O, T] x [0, 1] ; R kr) t .q . v(t, T) E Uad p .p . dans [0, T] x [0, 1 ]

où

Uad R
k ,

Dans ce chapitre on note qu e

EF(•,x,v(t,•))--

	

F(T, x, v(t, T)) dT.
o

Le problème de contrôle optimal homogénéisé es t

convexe non vide .

(13)

dx
= Eg ( • x(t), v( t(14)

	

dt

	

~

	

v(t, ))~
T

min E

	

l( •, x(t), v(t, • )) dt+ h(x(T)) .
0

On a le principe de Pontryagin (voir le théorème 1) .
THEOREME 1 . On fait les hypothèses (10), (11) . Alors une condition nécessaire pour

u(t, T) soit un contrôle optimal du problème (14) est qu'il existe une fonction p( •) E
H ' (0, T; R n ), telle que

dx_

	

dp
dt _ Eg(•, x( t), u(t, . )),

	

-- =
_

EH.,( . , x(t), u(t, • ), p(t)) ,

Hv (T, x(t), u(t, T), p(t))(v — u(t, T)) 0 V t, p.p . `dv E U ad .

La démonstration est similaire à la méthode classique (voir, par exemple ,
Bensoussan [1]) .

On aura besoin aussi des conditions du second ordre pour que u(t, T) soit un
contrôle optimal . On suppose en plus de (11), (12) qu e

(16)

	

g, 1, h E C 2 (R n x R k )

toutes les dérivées de g et les dérivées secondes de 1, h sont supposées bornées .
On a le Théorème 2 .
THEOREME 2 . On suppose (11), (12), (16) . Soit (x(t), u (t, T), p (t) ), un triplet

vérifiant (15) et

(17)

	

Hvv (T, x, v, p(t)) > p1, /3 > 0 Vx, T, t, Vv E U ad ,

(18)

	

(Hxx —HxvH vvHvx)(T, x, v, po( t )) 0

pour les mêmes arguments qu'en (17) ; alors u(t, T) est l'unique contrôle optimal du
problème (14) .

La démonstration est de nouveau similaire à la méthode classique (voir, pa r
exemple, Bensoussan [1]) .

3 . Programmation dynamique du problème homogénéisé . On commence par la
définition de la fonction de Bellman du problème homogénéisé . On considère pour
toE [0, T], xoE R n

dx_

dt
Eg(' , x( t ), v(t, • )),

	

x ( to) = xo .

La fonctionnelle à minimiser est donc paramétrée par la donnée initiale (xo, to) . La
fonction de Bellman est définie pa r

(20 )

	

cl )(xo, to) = min J°o,to(v(•, • )) ,

(15)

(19)
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.ou

J
T

J°o, to (v( • , • )) =

	

El(' , x(s), v(s, • )) ds + h(x(T)) .
0

On suppose

E Ig( •, x, v) l , E(1( . , x, v)I <+oo Vx E

	

v E[I~ k,
(21)

g, 1, h sont continûment differentiable par rapport a x,

(22a) Uad ~ Rk mesurable ,

(22b) ( gx(T, x, v)I C,

(22c) hx(x)I _5= h•(1+ IxI) ,

(22d) ilx (T,x, v)I

	

l(Il(T,O, ve 2 +IxI +1) ,
(22e) 1(r, x, v) >

loIg(T, x, v) — g(T, x, of- Co ,
.ou

5E R k est fixé,

(23)

	

h(x) > —Co .

Remarque. Quand ag/aT = 0, al/aT = 0, on revient au cas classique (voir [4], [1]) .
Même dans ce cas, les hypothèses (21)-(23) sont plus faibles que ce qu'on suppos e
souvent : on n'a plus besoin de la continuité par rapport à v, la condition d e
"quasilinéaire quadratique" de 1 par rapport à v est remplacée par (22e) .

Le lemme suivant donne la régularité de la fonction de Bellman 1(x, t) .
LEMME 3 . Sous les hypothèses (21)-(23), la fonction (D(x, t) vérifie

(24)

	

11(x, t)I

	

C(1 + Ix 1 2) ,

(25)

	

DO(x, t)I C(1 + Ix!) ,

C(1+IxI 2 ) .

Démonstration . On prend

v(s)=û, tsT, Z~EUad fixé

comme contrôle et on note 5c-(s), la fonction d'état correspondante .

d(s )
(27)

	

ds = Eg (• , x(s ),

	

x(t) = x.

(26 )

D'après (11) on a

(28 )

Donc

I

	

CO + I x I)

	

T.

t)
~ J.x,t( fi )

T

	

= E

	

l( . , x(s), û) ds + h(x( T))
t

T

	

1

	

= E

	

[1( . ,O, û) +

	

lx ( •, J~x(s), û) . x(s) d~. ds + h(x( T))
t

	

o

J T (Eil( . , o, ~)I ds +E

	

l( I l ( •, 0, 0I 1 / 2 +AIx(s)I +1) A • Ix(s)I) ds

	

t

	

o

+ h (x( T ) ) d'après (22d) .
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De (2$), (22), on a

(D(x, t) C(1 +

Mais d'après (22e) on sait que

P(x, t) – Co T.

Les deux dernières inégalités impliquent donc l'estimation (24) . Cela nous permet d e
limiter le contrôle admissible par

J
T

(29)

	

E

	

1( , x(s), v(s, )) ds C(1 + le) .
t

Ce qui avec l'hypothèse (22e) impliqu e
r

(30) 10 f Elg( .,x(s), v(s, .))---- g( . , x(s), 01 2 ds g- C(1+1x.1 2 )t

donc

(31)

où on note que

Iy(r)I

	

+1xl )

y(r) E f (g( . , x(s), v(s, .)) –g( , x(s), fi)) cis.t

Mais on sait que
r

x(r)–x, y(r)+E j g( , x(s), fi) ds ;
t

donc
r

i

	

l Ci(l + 1xl) + C2 ft lx(s)l ds.

Par conséquent

(32)

	

l

	

l

	

C(1+1xl) .

Ce qui avec (3Q) implique
T

(33)

	

E

	

'g(' , x(s), v( . , s))1 2 ds

	

C(1-+, IxI 2) .

On a aussi

J
T

(34)

	

E

	

Ig( , 0, v(s, .))1 2 ds C(1 +1)42) .t

On peut montrer également qu e

(35)

	

JtT
1E1( , x(s), v( .

, s))l

	

C(I+Ixf) .

(36)
J T

I v( . ,

t
s))l ds C(l +1xi 2 ) .

En effet, si on note

4 1- {s E [t, Ti, El(', x(s), v(s, ))

	

A- [t ,

On a d'après (29)

(36) 1

	

1E1 ( x(s), v(s, .))l ds –

	

1E4 . , x(s), v(s, .))l dsIC(l + I,+
A-
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Toujours grâce à (22e) on a

I v (• , s))I Co Vs E A ,

ce qui avec (36 ) 1 implique donc (35) . On peut déduire (36) de (35) et l'hypothèse (22d) .
Avec (32), (36), on peut montrer l'estimation (25) . Pour une donnée initiale i E R n ,

on note i(t) la solution de

di
— =dsEg( x(s), v ( s,')) ,

On peut donc limiter x(s), .X(s), v(s,'r), par

T

(36) 2

	

lx(s)1 2 , li(s)1 2 , j E0, v(s, ,

	

ds C(1 + 1x I 2 + 121 2 ) .
t

Par ailleurs on a

llv(r, .))—g(

	

R(r), v(r, . ))I drJt

lx—il+ C

	

lx(r)—g(r)l dr.
t

D'après l'inégalité de Gronwal l

(37)

On a donc

lJ,(v( ' ))—JL(v(')) l

T
Elx (r, i(s)+ A (x(s) — X(s)), v(s, .)) dA(x(s) R(s)) ds

t

	

o

I hx(i(T)+ A (x( T) — TM dA(x(T)—i(T))

De (37) et les hypothèses (22c), (22d), cela est majoré par f i() f tT T(IEI( . ,o, v(s, ' ))I 112 +

lA(x(s) —i(s))l + 1) dA ds. Ix -21 + 1i . 12(T) +A(x(T)—i'(T))l . I x( T) —i (

de (36) 2 , (37) on a finalement

IJ , (v( . )) - J,(v( . ))f

	

Cl x

	

, (1 +1xl +

On en déduit donc

(38) VP(x, t) —(i, t)l Clx — .Cl + lx{ +

Cela implique que cl) est presque partout difTérentiable et que la dérivée D(D(x, t) es t
majorée par (25) .

L'estimation (26) est une conséquence du principe d'optimalité de la programma -
tion dynamique homogénéisée .

t+ h
(39) t)

	

inf [

	

El( ., x(s), v(s, ,)) cls+(D(x(t + h), t+ h)] .
v( ., .) t

I x(s) -~ x( s )I = ~ilx -- x l•
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Si l'on choisit v(s, T) = û, t s t + h, et note z( t) la fonction d'état correspondante ,
on a d'après (39)

t+ h

(40)

	

t)

	

El(' , z(s), û) ds+(1)(x(t +h), t+h) .
t

De (28)

I .t-(t+h)–xl-

	

+Ixl) .

Compte tenu de l'estimation pour DO, on a

It+h)–cKx, t+h)lCIhi(1+lxi 2 ) ,

ce qui avec (40) implique

ÇD(x, t) OM(1+lxf)+(t•(x, t+ h )

donc

2–C(I+Ixl ) .
a t

Par ailleurs on a

I(t•(x(t+ h), t+h)–Cx, t+h),,lClx(t+h)–xi(l+1xl)

(41)

C(1+lxl)l
t + h

J

	

Eg( • , x(s), v(s, • )) ds
t

On déduit alors de (39) tenant compte de l'hypothèse (22e )
t+ h

(D (x, t)

	

inf

	

Elg(•, x(s), v(s, • )) – g(• , x(s), v)I 2 ds
v(,)

	

t

t+ h

– Col h l – C(1 +lx') f

	

Eig( •, x(s), v(s, • ))l ds+(D(x, t+ h )
t

t+ h

inf

	

E(lg( • , x(s), v(s, • ))1 2 – C(1 + (x,)'g( • , x(s), v(s, • ))i) ds
v (',')

	

t

– Col hi +(1)(x, t +h)

e:(1)(x, t+ h) – C,(1 + ( xr )4 h 4

ce qui avec (41) implique enfin (26) .

	

q
L'équation de la programmation dynamique homogénéisée s'écri t

(42) + inf E [D(D • g( • x>v(•))+ l(•, x, v( • ))] = 0,

	

~ ( x, T)= h(x>

	

)
at

	

u(' ) EU ad

où

(43) Uad – { v ( • ), v ( r ) E L2([0 , T] ; Uad)} .

Remarque. L'équation (42) est aussi une équation aux dérivées partielles d u
premier ordre . Elle peut s'écrire comm e

43

	

+EDF • xu xD +l xu • xD(D =0(DxT =h x
at
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où

(43) 2

	

u(T, x, D~) = arg infu(

	

E[D~ • g( • , x, u( • )) + l( • , x, u( • ))] ,
• ~ EU ad

la fonction û(r, x) = u(T, x, D(D(x)), s'appelle le contrôle feedback . Si û(T, x) est
Lipschitzien par rapport à x, on peut montrer que û (T, x( t )), 0 t r, est exactemen t
le contrôle optimal du problème (6), (7), où x(t) est l'état correspondan t

dx –_dt Eg( • , x(t), v( • , x(t)),

	

x(0) = xo .

Maintenant on peut énoncer le théorème 4 .
THEOREME 4 . Sous les hypothèses (21)-(23) . La fonction J(x, t) définie par (16 )

vérifie (42) . C'est de plus la fonction maximum . vérifiant (42) et le lemme 3 .
Démonstration . On peut se limiter aux contrôles vérifian t

J
t+h

E(g(• , 0, v(s, • )) I 2 ds Ch(1 + (xf 2 ) .
t

En effet on peut considérer seulement les contrôles vérifian t

t+ h

si

"

	

El(•,x(s), v(s, •)) ds+(1)(x(t+h), t+h )
t

t+ h

5-

	

El( •,ac(s), û) ds+(1)(54t +h), t+ h )el'
t

où (x(s), û) est le même couple dans (40) . D'après le lemme 3 on a

((D(x(t+h), t+h)—Cx, t)I5 C(x(t+h)--xl(1+IxI)+C(1+2)h,

I(l)(x(t+h), t+h) -1(x, t)I C(1 +1x1 2 )h .

Ce qui avec (46) implique donc

jt+h
El( . , x(s), v(s, • )) ds

t

~ Clx(t +h) —xl(1+lxi) +C(1 +1xl 2 ) h

t+ h

C 1 (1 + ( + C(1 + lxl)

	

Elg( ' , 0, v(s, • ))) ds
t

t + h
~ C 1 (1 + ~ xj 2)h + C(1 + (xj)h 1 /2

t

D'autre part d'après (22e) on a

loElg( • , x(s), v(s, • )) – g(' , x(s), i)-)I 2 ds

t+h

	

1/2
_5= C2(1+Ixl 2 )h +C(1 +lxl)h l/2

	

Elg(',O,v(s,'))1 2 ds

	

.
t

(44)

(45 )

(46)

1/ 2
Elg(~ ,0, v(s, •))I 2 ds

	

.

J
t+ h

t
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D'après (32) et l'hypothèse (22b)

t+h

loElg( , 0, v(s, .))1 2 ds

	

C3 (1 + (
t

t+h

	

) 1/ 2

+C(1+(xl)hl/2(

	

Elg( , 0, v(s, .))1 2 ds
t

cela implique donc (45) .
Pour les contrôles vérifiant (45), on a

(47)

	

lx(t+h)—xiCh(l+lxi )

C ne dépend pas du contrôle dans la classe (45) .
Soit maintenant x, t est un point où (D est différentiable, on a

(D(x(t + h), t+ h) -- (t•(x, t) —h

	

ED4)at

	

t

	

g( , x, v(s, .)) ds

0(h) tend vers zéro avec h et ne dépend pas du contrôle . Par conséquent de (16 )
il résulte

t+h

	

a(t,
v (
inf

)
[—

h

	

. g( . , x, v(s, )) + 1( ., x, v(s, .))) ds]

	

0(h )
.,-

	

a tt

inf E[DOg( ., x, v( . ))+l( . , x, v(s))]+

	

0(h) .
vEua,

	

at

En faisant h-40

	

inf

	

• ) ) +

	

• ) ) ] +
VEUad

	

a t

Comme par ailleurs, toujours d'après (39) on a

t+ h

40,

	

El(' , x(s), v( . )) ds + (D(x(t + h), t + h )
t

(t.
=

	

x, v( . )) . h + a— h + D(DEg( , x, v( ))h +(D(x, t) +0(h) .
at

+E[D(Dg( . , x, v( . ))+ 1( . , x, v(

	

0
at

0(h)• h

donc

(48)

On a

d'où

inf E[D(Dg( , x, v( )) + 1( .
,,( . ) eu a,j , x, v( . ))]+-- o

a t

ce qui avec (48) implique (42) .
On peut montrer l'affirmation "solution maximum" de façon similair e

Bensoussan [1] .

	

0
a
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On peut traiter la régularité de (x, t) pour les ordres plus élevés de la même
façon qu'en Peng [8, Chap. I] (l'étude de la régularité de l'équation de Bellman par
la méthode de perturbation) . On énonce ici seulement le résultat .

THEOREME 5 . On fait les hypothèses

(49)

	

(i) g, 1, h sont 2p +2 fois continûment différentiables ;

a(i)g
(ii )

où on note

~ ~- (x, v ) ,

(iii )(i~i)
ax2

0,

	

h (x ) —C,

al l(iv) 790 2 ayoI(T, )

où yo est assez grand par rapport à C2 ,

(v) Uad = (Fk.

On a alors

(ao)
; (T, p)

	

C;(1 +

am i

(aa)

	

a ( ' ) h
; ( T, P)

	

i (x)

	

C(1+lxl) 2-' t10~j C2p + 2
(ax)

(50)

	

( i ) '1) (x, t) ~
C2p+ 1 et

Dx
(~) a(

`tl

)
(1)(x, t)

	

C(1 + lx 1) 2--j ,
a

(ii) le contrôle feedback optimal u(x, t, r) existe ; il est caractérisé par

D4g z,(r, x, u(x, t, T)) + h,(T, x, u(x, t ; r)) = 0 ,
a(i+; )

(iii) attax
;u(x,t,T)

	

C(1+i+j 2p .

4. Méthode asymptotique du point de vue du principe maximum .
4 .1 . Développement asymptotique. On va étudier dans ce paragraphe la méthod e

des perturbations pour le système d'optimalité, du point de vue du principe de
Pontryagin . On va prendre le cas saris contrainte ; Uad C 8 K . Dans ce cas, les conditions
nécessaires pour le problème (3) seront

dxe

	

_

	

t

dt = g
e, x E , uE

,

	

xs (0 ) = xo ,

	

dp'_

	

t
(51)

	

_ dt
=Hx £, x' , us ,

	

p£(T)_h(x'(T)) ,

t
Hv --, x £, u e = O .

On va voir que, quand L -* 0, ce système tend vers le système d'homogénéisation (6) ,
(7) . Pour les développements d'ordre élevé, on utilise naturellement la méthode de
changement de l'échelle du temps, T t/ E. Mais on va rencontrer à ce niveau là un
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problème. Premièrement, à la différence des perturbations singulières, les vibration s
rapides ne disparaissent pas avec le déroulement du temps . De plus, il est évident que
T = t/ E ne vérifie pas la condition au bord t = T, tandis que T = (T— t)/ e ne la vérifie
pas pour t = 0 . Pour résoudre cette difficulté, on va essayer de développer f, p E , u E

sous la forme suivante

x E (t) = xo(t)+ Exl t, t + • .

pE( t ) = po(t)+Epi t, t + . .

u E (t) = u ° t, rt +EU 1 t, —t +
E

	

E

On considère ao = T/ E comme un paramètre . En remplaçant x E , p E , u E par (52) dan s
(51) et en général les termes du même ordre, on a

dxo dx i _

dt + dT `
g ( T, xo( t ), u 0( t, T )) ,

dpo r axi

= Hx(T, xo( t ), u o( t, T ), po( t )) ,
dt a T

HV( T, xo(t), uo( t, T ), po( t )) = 0

avec les conditions au bord

(54)

	

xo(0 ) = xo,

	

po( T) = hx(xo( T)) ,

(55)

	

x1(0 , 0 ) = 0 ,

	

pi( T, ao) = hxx(xo( T))x1( T, ao) .

Pour les relations du deuxième ordre on a

ax i ax2+

at

	

aT ~
gx(T, xo( t), uo( t, T ))x1 +gv(T, xo, u0)u 1 ,

_api
ap2= gx(' )p1+ Hxx( ' ) x 1 +Hxv(' ) u 1 ,

at

	

a T

gv(')pl`F-Hvx(' )x1+ Hvv(' )u i = 0

avec les conditions au bord

(57) x2(0 , 0 ) = 0,

	

p2( T, ao) = Ih .(x3) ( xo( T))(x1( T, a0))2 + hxx( . )x2( T, a0) .

Généralement, si on note

ai = ( xi, vi),

	

Gri = (xi, vi, Pi )

pour un nombre entier l 1, on a

axl ax1 + 1

	

1
+

	

g(
pa l + . . . +a l ) p a t . . .

at

	

aT

	

(a .l) ai !
. . al t

aplap1+1 =

	

1

	

D(al+
. . .+a,)H T o- ora l

(58)

_

at

	

(a•1 )_aT

	

~a 1 ! ••«,

	

x(, 0) 1
1

(52 )

(53 )

(56)

( a • 1 ) «1
t .
•

D(al+
. . .+al)H

v (T, cr0) 1
~a 'I

	

Q
. al
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On peut aussi écrire (58) sous la forme suivante :
axl+ axl+ 1

at

	

ar =
gx( ' )xl + gv(' )ul

l

	

1

	

(a1 + . . .+a !-1) a . . .

	

a I- 1+ E

	

1

(a,l-1) al! .

	

al-l !

apl apl+1
= gx( ' )pl + Hxx ( ' )x l + Hxv ( ' ) u l

at

	

aT

1+ E

	

D(a1+
	 f-at-1)Hx(

	

. . .
(a,1-1) al! .

	

a l - l!

0 =gv() 111 +Hvx( ' )xl+ Hvv() Ui

(59)

l

+ E
(a,1 -1)r al !

avec les conditions au bord

x i (0, 0) = 0,

1

	

D(a1+
. . .+ai -1)Hx ( )(ri ' .~

	

a~. . . al-1 .

l
MT,T, ao) _

(1)
,

	•	 ' Dzl+ a1+ . .
.+a')h(xo( T))xi 1( T, a o )a l .

. . xl at (T, ao )
(60) 1

.
ou

: désigne la somme
(a,l)

	

a 1 +2a 2 +•••+la i =j,
a 1 , — ,a t > o

Remarque 6 . Soit F(T) une fonction de 1-périodique. On suppose qu e
f o I

	

dT C. Alors, pour que l'équation suivante ait une solutio n

dy(T)
= F(r), Y(T) : 1-périodique, y( ro) = Yo E [fi n

la condition nécessaire et suffisante est

(61 )

(62)
dT

(63)
o

F(r) dT =0 .

De plus sous (63), la solution de (62) est unique .

	

q

4 .2 . Résolution et estimation des termes du développement. On va résoudre progress -
ivement xi , u ;, pi , i = 0, 1, • • . par (53), (56), (58)-(60) . On considère tout d'abord xo ,
uo , po

D'après la remarque 6 pour que x i (t, r), p, (t, r, ao) soient périodiques par rapport
à r, on doit avoir nécessairemen t

dxo

	

l

dt

	

g(r, x(t), uo(t, T)) dT,

0

1

— dpo —

	

H T x t 14 0 (t, T

	

dT

	

Hv( T, xo( t ), uo( t, T ), po( t )) = 0

dt

	

x(

	

o( )~

	

)~ po(t) )

0

avec les conditions au bord

(65 )

	

xo(0 ) = xo,

	

po( T) = hx(xo( T)) •

(64)
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D'après le théorème 1, on sait que (64), (65) sont des conditions nécessaires pour qu e
uo(t, r) soit un contrôle optimal du problème (14) avec Uad = IR k . Sous les hypothèse s
du théorème 2, uo(t, r) est l'unique contrôle optimal du problème . Pour l'obtention d e
l'existence et de la régularité des termes d'ordre plus élevé, on suppose qu e

(66)

	

g(T, x, v), £ (r, x, v), h(x) sont
C"2(1 x R I') par rapport à x, v .

On peut vérifier aisément le lemme 7 .
LEMME 7 . On suppose les hypothèses du théorème 2 satisfaites et également (66) .

Alors (dxo/dt)(t), (dpo/dt)(t), uo(t, r) sont de classe C K+1 par rapport à t.
Pour trouver x 1 , p 1 , on les décompose sous la form e

(67)

	

x1( t, r) = Y1( t, T)+ y l( t ),

	

p1( t, r) = Q1(t, r)+ q1( t )

où, ayant satisfait les conditions au bord (60), on pose

(68)

	

Yi (t, 0) = 0,

	

y1(0) = 0 ,

(69)

	

Q1( t, ao) = 0,

	

q1( T, ao) = hxx(xo( T ))(y1(T) + Y1(T, ao)) .

Maintenant, on peut résoudre (53) avec les décompositions (67) et les conditions a u
bord (68), (69) . On a

dxo

	

T

Yl (t, r) = ~
dt

T+

	

g ( s~ao(t~ s)) ds ,
0

T

(71) Q1( t, r, ao) = — Po (r ao) –

	

Hx ( s, (ro(t, s ) ) ds .
dt

	

ao

De plus, du lemme 7, on déduit que

(72)

	

Y1( t, T Q1(t, r), `
a Yi aQ1 sont de classe C K + 1

par rapport à t.~ar ar

Maintenant on peut trouver y1( t ), q 1 (t) et u 1 ( t, r) . En appliquant la remarque 6 à
(56), on sait que nécessairement on a

_dy 1

	

'

	

~

	

.
dt _

	

gx( T, xo( t), uo( t, r)) dtyl(t)+

	

xo,

	

. . . .
d

0

f
a

+

	

--
a

gx(?, xo, u 0) Y1(t, T )

y 1 (0) = 0 ,

(70)

dr,

r 1
dq l

–dt=

j i

o
(73)

o

+

	

l,lv( • ) u 1 (t, r) d T
0

1
P-21 +gt(+

	

• )Q1( t, T ) +Hxx( •
0

	

t

q t( T) = hxx(xo( T))(y1( T)+ Yi( T, 00)) ,

gv( T, P0(t?. T))q1( t ) +Hvx( T, o-0( t, T ))y1( t )

+Hvv(')ul(t, T) + gv( .)Q(t, T)+ Hvx(')Yi(t, T)= 0

) Y1 ( t, T) dT,
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OU

dyl j i
=

	

At OO+Btrutr+ Ctrdr
dt

	

((,

	

M(, ) i(, )

	

(, ) )

	

,
0

(A*(t, r)q,(t) + Hn(t, r)y 1 (t) H12 (t, 7)14 1 (4 r)+D(t,

	

dr,dq 1(74)
dt io

B*(t, r)q i(t) + H21 (t, r)y i (t)+ H22 (t, '014 1 ( 4 r) + E(t, r) =0,

Y1(0 ) 0,

	

'MT) = h,,(xo(T))( T) + Y1 (T, ao) )

où l'on note

A( t, r) = &(r, Po( t,

	

B(t, r) = &Ar, Po( t,

(
H11

H12) (t, T) (Hvx H (t, (ro(t, 7)) ,
H21 H2 2

a
C(t) -

YI
-+A(t, r)Yl(t, r) ,
a t

D(t)=+A*(t, r)Qi (t, r)+H 11 (t,T)YI(t,T) ,
at

E(t, T) B*(t, T)Qi ( t, r)+ H21 ( t, T) Yl(t, T) .

On peut relier (73) à un problème linéaire quadratique

dy, 1
=

	

(A(t, T)y1(t)+ B(t, T)V(t, T)) dT
dt

	

0

(75) min [1

	

( Hn H12)( Y1( t ) )
+D(t, r)y,(t )

2

	

,D H21 H22 \ v i ( t, r )

+ (E(t, r)v l(t, r)) dr dt +
1
- hx,(xo(t))(yi(T) +Y T, ao)) 2 ]
2

De la même façon, on peut résoudre x 2 ( t, T, a0 ), p 2( t, T, a0 ), u 2 ( t, r, a0) . . . , x, (t, r, a0 ) ,
PK (t, T, a0),

	

(t, T, a0) successivement et on a le lemme 8 .
LEMME 8. Sous les mêmes hypothèses que le lemme 7, on peut résoudre xi , u i , p i ,

i -=~- 0, 1, . . . 9 K solution de (59) . De plus on a

2

	

2
(76)

axi api a xi api
u . ( t r) sont de classe C K-f-1- i

at'at'arat'arat'

! Dl-f . . ."KHx(s, oro)aTi

	

el< ) ds,K

par rapport à t.
On peut également définir YK+1(t, T), QK+1p(t, T) par

T axK K
YK+1( t, T ) .1' (-+ E

	

/30)KI . . . paKK ) ds ,
	 1	

o

	

dt

	

(a , K) a l ! . . . aK !

I
r ( apK K 	 1

QK+1(t, T)

	

+ E
o

	

Ut

	

(«,K) al! . . . aK

a YK+l aQK+ l
dr ' dr

(76 ') sont C 1 par rapport à t.YK+l QK+ l

et
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4 .3. Résultats de convergence. Maintenant on va se demander si on peut approche r
le problème périodique par la solution du développement asymptotique . On utilisera
la méthode de Bensoussan [1] .

On note

K

z( t) =
i= o

K

u( t} - Lu l t, -

t=o

	

£

	

K

	

t
p( t ) = E p~ t, – El,

	

x(t) = x' ( t ) –x( t ) ,

	

t=o

	

E

û(t) = v(t) — û(t),

	

f3(t) = ((t), û(t)) ,

a( t ) = (z(t), a(t)),

	

&(t) = (x( t ), a(t), p(t) )

où v(t) est un contrôle admissible et x 6 (t) est l'état correspondant .

	

dx' _

	

t
(77) dt – g E'

x E (t), v(t) ,

	

x' (0) = xo .

On a le lemme 9 .
LEMME 9 . On fait les hypothèses du théorème 2 et (66) . Alors on a

T
Js (v (' )) =

	

[H(±, °'(t) -p(t)ac(t) dt+h(x(T))
o

	

E

	

T 1 1

	

_

(78) +

	

AH,~a
s
–, f3(t)+Aµf3(t), p-(t) f3 2 (t) dA dµ dt

	

0 0 o

	

E

+ E K+1 O(Ix( T )I )+ E
K +l O(I fi I L2 (O,T)) •

Démonstration . On a
T

JE( v(' )) _

0

l t , x s(t), v(t) dt+h E (x s (T))
E

J
T

	

t
e

	

T

	

dx£

	

EH ~, x (t), v(t), p(t) dt—

	

p(t)
dt

dt+h(x (T))
0

	

0

T

	

t--

	

[H(1, â-(t) + Hp (±, u(t) Ia ( t )
p

	

E

	

E

1

	

1

+

	

AH00 –
t

,f3 (t)+ Aµf3(t)p(t)f3 2(t) dA dµ dt
Jo o

	

E

T

	

dxf

	

~(79)

	

--

	

p(t)
dt

dt+h(x (T) )
0

T
(H(—E , 0

	

& ( t )
)

)

)T

	

1

	

1
+ AH00 ( •) 2(t) dA dµ dt

0 0 0
T

	

t

	

T

	

dx
+ H~

E
, ~(t) f3(t) dt – p(t) dt dt

0

	

0
1

+ h,,(z(T))x(T) +

	

Ahxx(z( T)+ Aµx(T))z2 ( T) dµ dA .
o o
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Pour la 3 ème intégrale à droite on a

[H,( T, a(t))](1)=0,

	

1=0, 1 , ., K,

apt
(80 )

	

[Hx( T, &(t))](l) = —

	

apt+ 1

[Hx(T, &(t ))] ( k) = — apk _ aQK+1

at

	

aT '

K
E bt£i+O(£K+1)

	

=b 1 ,

	

1=1, . . .,k.
i=1

	

(1 )

J T

t

	

^

	

_ ap K	 a QK +I

	

t
£

, &(t) p (t) dt >_

	

dt — £
dT
	 (t,(t) dt

at

	

aT

	

1= 0,1, . . .,K—1,

T

— c£ K+1 0(0 dt
0

T

	

di'
p( t) dtdt -- p( T)z( T) — C£ K + 1

(82)
T

o
ldt

K
T

aQK + 1
£

	

t dt.
p dr £

Pour le dernier terme on a

aQK +l t t ~ £ dQK +1 t t — a QK +1 t _t)) .

ar

	

'£

	

dt

	

'£

	

at

donc
T

aQK +1
(t)A(t)

	

K +
dT

	

t, — x dt =£

	

ITQK±l(t,
T) dt dt,

0

	

0

K+1
JTaQK±1

(±(t)

	

K+1

	

T

	

'

	

i£

	

dT

	

E

	

dt = £

	

O

	

1,6(0 dt

	

(d après (3 .76} ) .
o

De (79), (82), (83), tenant compte de l'hypothèse (18), on a

1T(H(a t
t

	

dzr ( v (' )) =

	

£

	

) —p(t) dt dt+ h (z( T ) )
0

1
+

	

AH( • ) fi 2 (t) da. d dt+ O(£K+1 )

	

(t) l
JOT 0 0

	

J0T
+ hx (a"c( T)) • z( T) — p( T)x( T) .

Mais on sait que

(8 5 )

	

[hx(x(T))](1) = p,( T, ao )

ce qui avec (84) implique (78) .

	

D
On a aussi le lemme 10 .
LEMME 10 . On a

I

	

— x( t )) C(0,T) C£ K+ 1

K
-- E

(83 )

(84)

(86)
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où x E (t) est la solution de

dE I t

dt

	

g £,x",(t),u(t) ,

	

5c' (0 ) xo •

Démonstration. On a

d ( zE (s ) -i(s)) =

	

xE(s ) s ) -- s

	

s ) s )+G E (s )ds

	

g(- ,
E

	

, û(~
E

, z (, ii (

,ou

Avec la condition initiale

i-E (0) --z(0) = 0

on peut déduire aisément (36) .

	

q
Maintenant on peut énoncer le théorème 11 .
THEOREME 11 . On a

inf JE (v(' )) –JE ( ü(' ) )v(-)
CE 2K +2 .(87)

De plus si u . ) est un contrôle meilleur que û, i.e., s i

(88)

Alors on a

(89)

J E (u E ( ' )) r (ü( ' ) ) •

l ue __ ü i L2(o,T), Ix E -- xl c(p , T) C CE'.

Démonstration . On peut appliquer (78) avec v( .) = û(• ) . D'après (86), on a
r

(90)

	

F(û( . )) _

	

(14t, d(t) -- p(t)x(t) dt -- h(z(T))

	

CE
2K+1 .

o

	

E

Soit maintenant v un contrôle meilleur que u, en tenant compte (78), (90) on a
r

	

1

	

1
CE2k+2

�

	

AHPP s f( t)+~

	

p ( t ) '1 2 ( t) d dµ dt
o

	

o o

T

-
CE K+IIx(t)I CE

K+1

J I p (t)I dt.
0

Mais d'après (3 .17), (3 .18) on a

(92)

	

Hpp (1- , a(t)+Aµla,p(t) la 2 ( t)aIZ(À., µ, 01 2

où'

(93)

	

Z(A, lu , t ) = 4(t) + Hvv Hvx ti:3 + Aµfi, p x( t) •

Donc
T 1 1

	

T
CE2k

+2

	

~ .IZ(A, ,u,, t)I 2 d dµ dt -r CEK+112(t)I -
- Ce"

	

I(t)I dt.
0

	

0 0

	

0

D'autre part, on peut vérifier qu e

(94) ma x I
o_r _

(91)
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En effet on a

dx

	

I t t

t = g ~, f(t), v( t) – g
~,

x( t ), ~( t) + G(t), z(0) = 0

I

	

dt
I T

0

.ou

dz
--=Ax(t)+Bû(s)+G(t )
dt

= A(t) + BZ(A, µ, t) + G(t )

Â = A – BH Ûv H„x (–t , S. ( t) + ~, µ~~
est borné ,

E

ce qui avec (95) implique (94) . D'après la définition (93) on a

	

T

	

T

(96)

	

I

	

dt C

	

It)I dt+ CBK+
l

Jo

	

0

ce qui avec (91), (92) impliqu e

(97)
T

	

i

	

~

0

	

0 0

Encore de (93), (95) on a

(98)

A I Z( A, µ, 01 2 A, d,u, dt Ce".

I 54 )I c(o,T), Cs + %

T

J 0
(99) I

	

dt ~ C£ K +1 •

On a donc (89), ce qui avec (78) implique (87) .

	

q

5. Résolution asymptotique de l'équation de Hellman . On va étudier dans ce para-
graphe la méthode des perturbations pour l'équation de Bellman

(100) V+inf [ Dg (T 	 t
x, v +1( T - t , x v =0

	

(I? e xT =hx .

De cette équation on peut déduire le feedback optimal u' (x, t), solution d e

a cl) g

	

T – t

	

T – t
dt + D,If +l £ ,x,u E =0,

(101)
D(DE gvTt, x, u E +lv

T–t
, x, u- =0,

	

(D E (T, x) --h(x) .

On va montrer que ce contrôle feedback peut être approché par le contrôle feedback
du problème homogénéisé . On s'intéresse aussi à l'approximation de contrôle feedback
d'ordre plus élevé .
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5 .1 . Développement asymptotique de l'équation de Bellman . On va essayer de
trouver un développement de (D', u' de la form e

(D E xt =Dxt+ED xt -
T—t

+ •(, )

	

o(, )

	

1

	

> >

	

E

u E (x, t) = u0 x> t> T—t +EU 1 x> t, T
—
t+ • •

E

	

E

où (D i (x, t, T), ui(x, t, T) sont 1-périodiques par rapport à T. D'après (100), (101) on a

a(D l a(D o

	

(103) --+

	

+ D(Dog(T, x, uo(x, t, T)) +1(T, x, uo(x, t, T)) = 0,

	

(Do(x, T)
aT

	

at

D(Dogz, ( T, x, u o(x, t, T)) + lv ( ' ) = 0,

a(D I

	

—

	

+—+ D(D i g(T x, uo(x t, T)) =

	

~ i x, T9 0) =
aT

	

at

	

,

	

,

	

))

	

(D i ( x,

Généralement si on note .

Ho = D'og(T, x, v) +1(T, x, v) ,

Hi = D3ig(T, x, v),

	

i = 1, 2, • • •

de façon similaire à ce qui a été fait dans § 4, on peut développer (100) comm e

a021— (91) 21+1 + E21	 1

at

	

aT

	

tai!a2!Dval+

. . .+at)Ha
( )

a(D 21+1 a(D21 +2 21+1

	

1
	 _	 +	 	 D(a,+ . . .+at)H

	

u a l . . . uat
=0 ,

T

	

(I,~a )at

	

a

	

«i! . . .«!

	

v

	

ao ( ' ) 1

	

l
l

ao+a i +a 2 +•••+ 1at=j,
al, . . .,an? 0

5.2 . Résolution et estimation de (D i et ui . On va montrer comment résoudre (D i ,
u i , i = 0, 1, • • • , de façon récursive . On va résoudre et estimer spécifiquement (Do, (x, t) ,
uo(x, t, x), t 1 (x, t, T), les autres peuvent se traiter de façon analogue.

On considère tout d'abord (103) . D'après la remarque 6 pour que (1 1 (x, t, T) soi t
périodique par rapport à T, on a nécessairemen t

	

a~o

	

E+

	

g(T, x, u0 (t, T, x)) dT +

	

1(T, x, uo(t, T, x)) dT = 0 ,
(110)

	

at

	

0

(D o( T, x) = h (x ) ;

on peut relier (103) et (104) à un problème d'optimalit é

dx

	

'=
d

	

g(T, x(s), u(s, T)) dT, v(s, T) E L2 ([t, T] X [0, 1] ; R
K

), x(t) = x,
s

	

o

I I

T
~o(x, t) = inf

	

l(T, x(s), v(s, T)) ds dT+ h(x(T)) .
v()

	

t`

	

o

(102)

u l. .

	

ta = ,a, .

(106 )

(107)

(108)

où E '(I,a> désigne

(109)

O 1 (x, T,0)=0,

	

1=1,2, • • • , K,

1
D v

(1 +a1+ . .
.+at)Hao( )u1 . . .ul 1

~

	

at

	

= 0
(1,a> al! . . . «1 I
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Mais on sait que sous les hypothèses du théorème 5, avec p = 2K, on a

	

(112)

	

ID (2 ) (D o(x, t)IC(1+Ix1)2-',

	

O4K+1 ,
a (i )

	

(113)

	

Dx') i (D o(x, t)

	

C(1+1x1)2-',

	

i+j74K+1 ,
a t

	

(114)

	

D(xi ) a
a t `

uo(t, T , x)

	

C (1 + I x I) 1 -',

	

O i + ' 4K.~

On va montrer comment on peut trouver 1 1 (x, t, T), (D 2 (x, t, T), et u1(x, t, T), les autres
peuvent se déduire de la même manière, de façon récursive .

Ayant résolu (Do, uo, on peut résoudre (D1 de la façon suivante . On définit

(
T

	

115)

	

1(x t,

	

=

	

[80
+Dog(s,x,uo(xts)) +l( sxuo) ds.~

	

7)

	

at

	

t,

	

~ ~
0

D'après la remarque 6, (fo l est 1-périodique, c'est également une solution de (103) .
Mais toujours, d'après la remarque 6, (DI et (DI peuvent différer d'une constante .

On peut donc écrire

(116)

	

T 1(x, t, r) _ 1(x, t, T) + i 1 (x, t )

où 0 1 (x, t) peut se résoudre par (105) . En effet, on a

a~
(117)

	

1 + Dx i/f i

	

g(T, x, uo(x, t, r)) dT
at

	

o

'+ (Dxig+ 1)

at
dr = 0,

	

1(x, x) =0 .
0

C'est un type de l'équation de Hamilton-Jacobi (linéaire) .
Grâce au (112)-(114) on sait qu e

a( i )

	

(118)

	

D(2) i (D 1 (x, t, r) < C(1 + IxI)2-',

	

0 i + j < 4K -1 .
at

Maintenant on peut trouver u 1 (x, t, r) . Si on considère (108) en cas où 1=1, on a

(119)

	

D 11gv(T, x, uo(x, t, T))+(Dx (D ogvv+lvv)u1 = 0 .

On a donc

(120)

	

D (,! ) --:- u 1 = C(1 +jxl) 1 ',

	

O~ i+j .4K 2 .
at

De la même façon on peut note r

1 2(x, t, T ) = (1' 2(x, t, T ) + ç1i2( x, t )

où 2(x, t, T) peut se résoudre par (105) :

2 (x, t, r) =

	

(a1+Dg(T
x u o( t, x)))

at

	

~

	

~
0

et 02 (x, t) peut se résoudre par (106) en cas où 1=1 .
Généralement on peut résoudre (D 1,. u l par (106)-(108), de façon analogue .
De plus on a

a( i )
DV ) (; (D 1 (t, T, x) � C(1+ Ixl)2-i , 0 i+j+2l~4K+1 ,

(121)
a( i )

D (,' ) 1 u 1 (t,T,x)

	

C(1+Ixl)1-i ,

	

p i +j +2l - 4K,
at

(i)
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5.3 . Résultat de convergence . On note que

43' xss) (D xs +

	

xsT--s
+

E

	

~

	

T~-- s

	

T— s
ü(x, s) uo x, s,

	

) +•••+ E

	

x, s,

	

.
E

	

E

D'après (106)-(108) et les estimations (121), on a

	

[(A, '

	

- e T— s

	

-E

	

T_s

	

.- £
as

+D~
g

	

e
, x, u +l

	

c
, x,

	

=0 ,

	

l=0, 1, . . ., 2K + 1 .
(1 )

Donc

a~E — e(T -- s _,

	

T-- s
+Dx() (x,$)•g

	

x,u +l

	

,x, u
as

	

e

	

e

.-}`E 2K+1
2K+1 (X9 s,

k

	

2K+ 1
~

CE2K+2
1 +

E Iui I2+
E

i =--1

	

i-- 1

ce2K +2 ( 1 + 1 )0 .
(122) (IDx (1) ;I 2 +lx lZ>

)

On a le théorème 12 .
THEOREME 12 . On fait les hypothèses du théorème 5 avec p 2K. Alors on a

	

(123)

	

II6 (x, t ) — (D £ ( x, t)l cs
2K+2 (1 + 1x1 2 ) .

Démonstration. On note x £ (t ), v (t ), solution de

dx'

	

s

ds g £ xe ( s), v(s)), x £ (t) = x .

On peut limiter les contrôles admissibles par

	

(125)

	

I U(s)I 2 ds C(1 + 1x1 2 ) .
ftT

Par conséquent

(126 )

On considère

s

—+

	

e
s

xE (s)v(s)+l
s

x E s v(s) )
as

	

x~g e ~

	

,

	

e'

	

() ,

-

	

_ (
E

--

a (D
+ D~ 'g

s
xe(s)û' ( x£(s) s)+ l

s
x' s û-E •

	

as

	

x

	

E'

	

~

	

~

	

e'

	

( )~

	

( )

+ Dx15egv s, x£(s), ur + 4(1-, x £ , u e v ( S )
E

1

	

1

	

—

	

L E
+

	

~. (Dx~egvv s —, x E (s), u + ~ µu
0 o

+ lvv s , x'(s)*, û~ +~µû (v(s))2 dA dµ .
e

(124)

I C( 1 + l x l)•
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D'après (126) et (121) on a

0118 + D,c oLD
E •

	

s
, xE (s), v(s)~ –C'£ 2K+2(

1 + Ix e (s )I z + I v(s )I 2 )as g E

(127) s
–1 -- , e (s), v(s) ,e

$ E ( xE ( T), T) = h(x ' (T)) •

En intégrant des deux côtés de (127), on a

(D

	

T

	

r
' (x, t) ~

	

l S , x E (s), v(s)) ds+ h(x'(T)) -- CE2K+2

	

(1 + IIv(s)I2) ds
t

	

t

d'après (125), (126 )
T
l-

s
- , x E (s), v(s)) ds+ h(x E (T)) -- CE 2K

+
2 (1 +Ixl 2 ) .

E

En particulier, on a

(128) (D E
(x, t) —(Ï)

E (x, t) CE2K +
2 (1 + I)4 2 ) .

L'inégalité contraire peut être démontrée de la façon suivante . On introduit un système
de contrôle feedback

dx £

	

T -r- s

	

T -~- s
(129) ---= g

	

, x E (s), û e x e (s), s,

	

,

	

f(t)= x.
ds

	

E

	

E

D'après (121), on a

_

	

T-- s

uE xE (s ), s,
.

	

1,5= C(1 + IxI 2 ) .

E

	

L2 ( t, T )

D'autre part, de (100) on a

a~ E

	

T – s

	

T-- s
+ D(D

E
• g

	

x E (s), u E +1(

	

, x e(s), fi e ) 0 .
at

	

E

	

E

Ce qui avec (122) implique
(~E

	

É )
131)

	

a
+D(

~E
~

E
) •

g s

(

	

x E û~

	

CE 2K +z
( 1+ I Ix 2+ I IûE

z

s

	

,

	

,

	

,_

	

) •
a

	

E

De (107)

(132) (x, T) --

	

(x, T) = 0 .

On intègre des deux côtés de (131), avec (130), (132) .
On a finalement

(133) E(t, x) -- ,E (t, x)

	

Cs
2K+z(1 +lxl z ) .

Ce qui avec (128) complète la démonstration .

	

0

6. Exemple . On suppose 0 < O < 1, e t

1g 1 (x,v),

	

0 T<O,

g2 ( x, v),

	

,

Çl i (x,v),

	

0< 8,
1(r, x, v)=

12 (x, v),

	

0 r < 1 .

(130)

	

I

	

E(t,T) ,
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On cherche le problème limité du problèm

e (134)

	

013E + inf [Dcg(, x, v + 1(—t , x, v = 0,

	

~ E (x, T) = h(x) .
at

	

v

	

e

C'est donc l'équation de Bellman homogénéisé e

a(l) ,
(135)

at +
inf

	

(D~ • g(T, x, v(r)) +1(r, x, v(T))) dT = 0,

	

~(x, T) = h(x) .
0

Donc

a~

	

e
+ inf

	

(D~ • g1 (x, v(T)) + 11 (x, v(r))) dr
at

	

v(T)

	

0

+

	

(D~ • g2 (x, v(T)) + 12 (x, v(r))) dT = 0 .
e

Cela est équivalent à

+ inf D~ • (0 . g1(x v1)+ ( 1 —8 ) g2( x, v 2)) +8l 1(x v 1) + ( 1—e ) 1 2(x v2)] =0.
at

	

vl,v2
[

	

~

	

~

	

~

Mais on sait que c'est l'équation de Bellman du problème d'optimisation

dx
—
_

dt
(8g1 (x, t), v 1 (t)) +(1— 9)g2(x(t), v 2 (t) )

T

. min

	

(011 (x(t), v 1 (t))+ (1— 8)l2(x(t), v2(t)) dt+h(x(t))
•v l( t ), v2( t ) 0
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Abstract. A model of controlling the temperature in heat conduction is considered; the control mechan-
ism is accomplished by means of a hysteresis operator that depends on some parameters. A cost functional
is introduced that depends on these parameters and then properties for the optimal parameters are derived.
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0. Introduction. In this paper we consider optimal design of a thermostat-like
feedback mechanism in order to regulate heat flux. Assume that the temperature
u u (x, t) satisfies

ut(x,t)=U,x(X,t) in (0, a) x (0, T),

u(x, O)= Uo(X) in (0, a),
(0.1)

-ux(O, t) k(t) in (0, T),

Ux(a, t)+u(a, t)- 1-f(t) in (0, T).

Here Uo and k are known functions with values in [0, 1], and f is determined by a
feedback from the temperature u(0, .) at the left end. For this feedback, let us
momentarily consider the standard thermostat described graphically in Fig. 1.

Figure 1 means that the "output"f switches from 0to I if the "input" t(t)- u(0, t)
takes on the threshold value/92, and from 1 to 0 at the threshold value pl. Assume

u(0,.)

Pl /9 p

FiG.
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698 M. BROKATE AND A. FRIEDMAN

for the moment that any choice p (Pl,/92) of threshold values pl </92 defines an
operator Wp such that the feedback

(0.2) f(t)=[Wo(u(O ))](t)

together with (0.1) uniquely determine the temperature evolution u u(x, t). Feedback
(0.2) means that there is a heat inflow at x a if temperature at x =0 is low and a
heat outflow at x a if temperature at x 0 is high. We now can pose the question:
How should we choose the threshold p (pl, p2) to achieve some prescribed goal?
For example, we might want to minimize the expression

(0.3) (u(O, t)-g(t))2 dt,

given the function g. This is an optimal design problem. (Note that the choice of the
initial condition Uo should not matter very much if T is large.) As a second question
we may ask whether thermostat control is optimal within a larger class of feedback
mechanisms

(0.4) f(t) W(u(O, )), e,

where W now stands for a suitable family of input-output-operators parametrized by
some design parameter e.

The present paper contributes to these questions from the viewpoint of first-order
necessary optimality conditions. Its main line of reasoning is the following: For the
thermostat feedback (0.2), the map (Pl, P2) ’> U U(X, t) is discontinuous. We therefore
replace the single thermostat by a family of thermostats, i.e., we use (0.4) with W being
the Preisach operator, defined by

(0.5) W(t,/z)(t) fa W)(t) dtx(p)

where A= {(p, P2): 0_--__pl <p2=< 1} and/z is a finite Borel measure on A. If/x is the
Dirac measure concentrated in p A, we get back to the thermostat, so looking for an
optimal design x can be viewed as a relaxation of the thermostat design problem. On
the other hand, if the measure /z has a bounded density e, the map t-- W(t,/x) is
Lipschitz continuous on C[0, T], but not differentiable. Such measures thus regularize
the problem while retaining the hysteresis, which is the main feature of the thermostat,
but still we cannot apply first.order optimality conditions directly. Therefore, we
approximate W by smooth operators We so as to get a smooth approximating optimal
design problem for which first-order optimality conditions can be readily developed.
We next restrict the set of admissible measures /x to a set parametrized by v=
(,?.], /91, /92) 3 such that/zv is a smooth approximation of the Dirac measure at (pl, P2)
with support in the r/-ball around (p, Pz). For this restricted optimal design problem,
we are finally able to conclude some properties of the optimal parameters (r/*, p*, p*)
in the limit e -0, i,e., with the feedback (0.4) and (0.5); unfortunately, we can only
handle the case where the boundary condition in (0.1) at x a is replaced by

(0.6) u,(a, t)+u(a, t)=f(t) in (0, T).

Having presented the main steps of this paper, some historical comments are in
order. The Preisach operator W was introduced in Preisach [9] to model hysteresis
phenomena in ferromagnetism. Mathematical treatment was given in Krasnosel’skii
and Pokrovskii [8] (see also [7]) and by Visintin [10], and was recently extended in
Brokate and Visintin [3]. So far, first-order conditions in optimization problems
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involving the Preisach operator have not been discussed in the literature. For the
standard optimal control problem for an ODE system, coupled with a hysteresis
operator W being less general than the Preisach operator, a smooth approximation
W has been given in Brokate [1] (see also [2]), and the limit procedure e-0 has
been carried out successfully in the first-order necessary conditions. The approximation
We adopted in the present paper is, in fact, a generalization of the one in [1], based
on the description of the Preisach operator in [3].

Since the optimal design problem treated here is smooth except for the Lipschitz
continuous operator W, we are tempted to apply nonsmooth optimization theory
directly, thereby avoiding the e-problem and the limit procedure. However, the feed-
back equation (0.4) is a major obstacle for this approach, as it represents a nonsmooth
equality constraint with infinite dimensional range.

The structure of the paper is as follows. In 1 we introduce the control problem
for heat conduction. The cost functional represents the objective of achieving "comfort-
able temperatures" at "low cost." We shall also derive necessary conditions for the
optimal control v. which, however, are merely formal (since W is not differentiable).
In 2 we develop some aspects of the theory of Preisach operators that are needed in
the sequel; this is based on ideas and facts from Brokate and Visintin [3]. In 3 we
introduce the smooth approximations W to the Preisach operator W. In 4 the
corresponding optimal control problem (P) is introduced, and its solutions v are
shown to converge to v. as e 0. In 5 we derive necessary optimality conditions for
v and in 6 we establish some estimates (uniformly in e); these are translated, in 7,
into specific properties of v and, subsequently, also of v.. Some generalizations are
mentioned in 8.

1. The optimal design problem. Consider the heat equation

(1.1) Ut’-’Uxx in QT.={(x,t);O<x<a,O<t<T}

with initial condition

(1.2) u(x, O) Uo(X), 0 < x < a

and boundary conditions

(1.3) -ux(0, t)= k(t), 0< < T,

(1.4) Ux(a,t)+u(a,t)= W(u(O,.),Bv)(t), 0< t< T.

Here Uo C[0, a] and k C[0, T] are given functions, W= W(u, e) is the Preisach
hysteresis operator to be defined in detail in 2, and e represents the density of the
measure/x in (0.5). The variable v denotes the design parameter to be chosen,

vKcV

represents its admissible range, V being a Banach space (later on to be taken as R3);
B V- L(A)

is a continuously (Fr6chet-)differentiable map where

a= {(p,, p): 0_-< p, < p_-< }.

It is easy to prove that for any v e K there exists a unique solution u u(v) of
(1.1)-(1.4) (see 4). We introduce the cost functional

(1.5) J(v)= *(u(O, t), t) dt+h(v)
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where u u(v); and h are given continuously differentiable functions. For example,
as in (0.3) we may set

@(u,t):(u-g(t))2,
where g is a given continuous function.

Consider the problem"

Problem (P). Find v, K such that

J(v,)=minJ(v).

This problem represents a heat conduction model with a boundary feedback (1.4),
chosen so as to be a relaxation of the standard thermostat feeedback for reasons
explained in the Introduction. (If we set the right-hand side of (1.4) equal to 1- W
in order to conform to the thermostat (compare (0.1) and (0.3)), all the results of this
paper except Lemma 6.2 and Theorem 7.1 remain true with obvious modifications.)
The feedback can be adjusted with the control variable v K. The expense of heating
(or cooling) at x= a is measured by h(v) and the goal of achieving desirable tem-
peratures is measured by ap(u(O, t), t) dt. Various other functionals, expressing the
goal of "desirable temperatures," can also be chosen; see 8.

It is easy to prove (see 4; cf. also [6]) that this problem has at least one solution
v,. Set u, u(v,) and introduce the sets

K+(v) {we L(A): v+hw K for all sufficiently small A, h >0}.

Then

(1.6) J(v,+Aw)>=J(v,) wK+(v,)
for any small A, A > 0. Assuming

u(v, + ,w) u, + ,z + o(,

we get from (1.6), after letting A --> 0,

(1.7) (u.(0, t), t)z(0,

Here and in the following, D denotes (Frchet-) derivative and D, D,,, etc., denote
partial derivatives ,, D,,. The function z in (1.7) satisfies (formally only, since W
is not ditterentiable)

zx(O,t)=O, 0<t< T,

(1.8) z,(a,t)+z(a,t)=[DuW(u,(O,.),Bv,)z(O,.)](t)
+ OeW(u,(O," ), Bv,)DB(v,)" W](t), 0< < T,

z(x, 0) =0, 0<x<a.

We shall use the abbreviation

D,W= D.W(u,(O, ), By,), DEW’- DeW(u,(O, ), Bv,)DBv,
and introduce the adjoint operator D.W* by

(1.9) p(t)(D,Wz)(t) dr= z(t)(DW*p)(t) dt Vp, z e C[0, T].
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Let p be the solution of the "adjoint problem":

P,+Pxx=0 in Qr,

(1.10)
p(x, T)=0, 0<x<a,

-px(O, t)=[D,W*p(a, .)](t)+,(u.(0, t), t),

p(a, t)+p(a, t)=0, 0< < T.

We easily compute, using (1.8),

O=fl p(z,-z.x)+ f f z(p,+px.)
QT Or

T

(-pz, + zp,) dt
o x=O

p(z + z) dt + pz dt + p,z dt

T

z(O, t)[(DuW*p(a, ))(t)+p(0, t)] dt
o

0<t< T,

x=0

+ z(a, t)[p(a, t)+px(a, t)] dt- p(a, t)(DeW" w)(t) dt

and therefore, by the last two conditions in (1.10),

(1.11) z(O, t),(u.(O, t), t) dt= p(a, t)(DW, w)(t) dt.
o

Substituting this into (1.7), we obtain the optimality conditions:

(1.12) p(a, t)(DeW" w)(t)+Dh(v.)w>=O /w K+(v.).

Similarly we get the reverse inequality for all w K-(v.).
Since W is not differentiable, these conditions do not actually make any sense;

what we will do later is approximate W by smooth operators We and problem (P) by
problems (P) corresponding to We, and then derive, by the above method, rigorous
optimality conditions.

2. The Preisach operator The standard thermostat as depicted in Fig. 1 can be
formalized as an operator Wp C[0, T]- L(0, T) mapping any continuous function
u u(t) to a function yp y,(t) that takes on the values 0 and 1 only, according to
the switching rule indicated by the arrows in the figure. Since we will not use this
approach, we refer to [10] and [3] for definition and basic properties of W,. We
remark, however, that Wo is discontinuous, no matter how the norms are chosen.

The Preisach operator W is usually defined as

(2.1) W(u, e)(t) Ia (W,u)(t)e(p) dp

with e L(A), A being some subset of {pl < Pz} that we specify here as

A={p =(p,,p): O-<_p,<p2-<_ 1},
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so that W represents an average over a continuous family of thermostats with respect
to the measure d/z e dp. Let us fix e e L(A). To study the time evolution of W(u, e)
for any u e C[0, T] means to study the time evolution of the sets (whose disjoint union
is A)

(2.2) A+(t)={p: peA, (Wou)(t) 0}, A-(t)={p: peA, (Wou)(t)= 1)

for some initial configurations A/(0), A-(0) of the values of the thermostats that we
assume to be given (later we will always set A-(0) ). It turns out that the boundary

(2.3) B(t)=.OA+(t)fqOA(t), t>0,

is either empty (in case one of the sets is empty) or defines a line in the (pl, p2)-plane
that separates A and consists of horizontal and vertical segments, the number of corner
points being either finite or infinite with a limit point on the main diagonal [8], [10],
if B(0) already has that property; see Fig. 2. (The fastest way to believe this is to draw
pictures for simple piecewise linear functions u.)

A-(t)

P:

fp --0 /92

(u(t), u(t))

Pl
FIG. 2

Also, knowledge of B(t) is all that is needed to determine W(u, e) on [t, T] from
u on t, T], since it fixes the values of all thermostats except on the set B(t) itself that
has/z-measure zero. We may therefore interpret B(t) as the internal state of a system
whose input-output behavior is described by the Preisach operator (2.1) with fixed
density e. Actuallyit is much more convenient for analysis to use such boundary curves
as a basic description of the Preisach operator W, instead of the individual thermostats
Wp. We only have to change coordinates to

P:z + Pl P2-- Pl(2.4) r s
2 2

representing average and separation of the switching thresholds; then for any > 0 the
boundary curve B(t) can be written as the graph of a Lipschitz function with slope
+ 1, henceforth denoted by 0(t),

B(t) {(r, s)e z: s d/(t)r, r=>0},
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where A is the image of A under the mapping (2.4), so that the internal state is now
described by a function

q [0, T] - Lip [0, o),

the values q(t)r for r-> 1 being irrelevant for our specific choice of A. It is clear from
(2.1)-(2.4) and Fig. 2 that, once the function O is known for a given u C[0, T], we
immediately obtain

W(u, e)( t) Te)(r, s) ds dr,

where represents the transformation according to (2.4), extended by setting e(r, s)
0 for (r, s) T(A).

This approach, investigated at length in [3], is of interest here mainly because we
can readily obtain a smooth approximation W of W from it. To make the present
paper reasonably self-contained, we repeat some material from [3] as far as it is
essential for the definition of W.

From a rather informal discussion, we now switch to a formal one.
The spaces that will be used to define the internal states are the following:
o {4" b C[O, ), th has compact support},
o is provided with sup-norm and its closure will be denoted by o;
1 {4 o, 4’ is Lipschitz continuous with Lipschitz constant _-< 1}.

We want to define a map

F: C[O, T] x /’1 --> C([O, T]; ’kI)’l)

such that

d(t) F(u, ffo)(t)
is the internal state at time with respect to the (r, s)-coordinates, given an input u
and an initial internal state qo. The initial state 0o fixes the values of the thermostats
at time =0; here qo=0 corresponds to A-(0)= so that all thermostats are off,
whereas q’o-- 1 corresponds to A-(O)= A.

LEMMA 2.1. Define g 3 ._> by

(2.5) g(x, p, r) min {x + r, max {x- r, p}}

and G:xo-o by

(2.6) G(x, b)(r): g(x, qb(r), r).

Then for all arguments we have

(2.7)

(2.8) G x xI)’l --- XIl,(2.9) G(Xl, 1) G(x2, 2) if X1 <- X2, 1 <= 2.
Proof Indeed (2.7) follows from

(2.10) [g(xl, Pl, rl) g(x2, P2, r2)l -< max {[Pl-P2[, [xl- x2[ + Jr1- r2[},
(2.8) follows from (2.7), and (2.9) follows immediately from (2.6) and the appropriate
monotonic behavior of g.

We may easily verify that, for monotone inputs u e C[0, T],

d(t) G(u(t), qo)

gives the correct boundary curve B(t), if we choose Po corresponding to B(0).
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Denote by Cp,[0, T] the set of functions u C[0, T] that are piecewise monotone.
We define

by

F" Cp,[O, T] x ,--> C([0, T]; ,)

F(u, bo)(0) G(u(0), fro),
(2.11)

F(u, qo)(t)=G(u(t),F(u, o)(t,)) if t[ti, ti+l],

where Itj, tj/] are the intervals in which u is monotone.
LEMMA 2.2. The function F satisfies

(2.12) liE(u,, ,Ol)- F(u2, ,o2)11 c(to, r;.,) =< max {llu,-u=ll, II’o,-yo2ll).

Indeed this can be seen by induction on the monotonicity intervals of Ul, u2.
From (2.12) with qol o2 it follows that F can be extended into a Lipschitz

continuous map with Lipschitz coefficient 1,

F: C[0, T] x,I,1 -, C([0, T]; ’1).

From (2.9), (2.11) we also deduce that

(2.13) F(u,, Po) =< F(u, o) if u, =< u2.

Given any input u e C[0, T], we now define the internal state :[0, T]-> 1 as

(2.14) if(t) = F(u, Po)(t).

For any b e o we define the state-output map

(2.15) E(b, e)= e(r, s) ds dr

where

e L(R+ x R), supp e c

where is the p-set A in the (r, s)-coordinates. Then

f bl(r)

IE 1, e) E (b2, e)l-< le(r, s)l ds
4,2(r)

<--114,1- =llllell
and

dr

E(b, .)’ L(R+ xR) R

is linear continuous with

IE(4,, e)l -< [Jell L’() -< [lell meas (,).
We can verify that the Preisach operator as defined in (2.1) for the measure

with dtt e dp dp: is precisely the operator

W(u, e)(t)= E(C,(t), e)
(2.16)

E(Z(u, fio)(t), re)

where " L(A)-> L(,) is defined by

’e)(r, s) e(s r, s + r).

Combining properties of F and (2.16) we get Lemma 2.3.
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LEMMA 2.3. The operator W satisfies
(2.17) W: C[0, T] L(A) C[0, T],

(2.18) W(u,. ): L(A) C[0, T] is a linear continuous operator,

(2.19)

(2.20) W(u, e)- W(u=, e)ll Ilu- u=llllell.
If the input u is Lipschitz continuous then

(2.21) IIF(u, 6o)(t)-F(u, o)(t’)I[[lalllt-t’l Vt, t’[0, T],

fi denoting time derivative of u, as seen by considering first the case of piecewise
monotone u’s. Consequently,

(2.22) IW(u, e)(t)- W(u,

Remark 2.1. In the sequel we shall continue to consider only the typical case of
initial state o 0. However all the definitions and propeies easily extend to the case
of any initial state.

3. Regularization of the Preisach operator. In 1 ], a regularization of the so-called
hysteresis operator of first kind has been developed. In this section, we extend this
approach to the Preisach operator. Let j C(3), j 0 with support in the unit ball
{Ixl 1}, j(X) dX 1. For any small e > 0 set

and define the mollifier of the function g introduced in (2.5) by

g(X)=(j g)(X) f.j(X- Y)g( Y) dY, X

Analogously to (2.6) we define G : xo o by

(x, 6)(r)= g(x, 6(r), r).

Then

g

LEMMA 3.1. efunction G satisfies, for every xi, x in and Oi, in o,
(3.1) llG(x,, )-G(x2, 2)1[ max {lxa-x21, I- 211},
(3.2) (x, 6) G(x,

(3.3) G(x, )-G(x, )l e.

Proof The inequalities (3.1), (3.2) follow easily from (2.7), (2.9), respectively. Next

l(x, 6)(r)-(x,

fuj(, q,s)[g(x-, (r)-q,r-s)-g(x, (r),s)]d(dqds

and (3.3) follows.
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To define F we divide the interval [0, T] by equidistant points ti ih and then
choose e by h. We then define

F" C[0, T] x qto I-[ (C[ t,, t,+,]" o) L([0, T]; o)

by

(3.4)
F(u, qo)(0)= G(u(O), o), 6 [0,

F(u, qt)(t)= G(u(t), F(u, o)(t, -0)), ti, ti+a].

LEMMA 3.2. The function F satisfies the following"

(3.5)

(3.6)

Indeed, this follows easily from (3.1) (with 0ol 002 Po) and (3.2).
LEMMA 3.3. There exists a positive constant C such that for any u Ca[0, T],

0o1,

(3.7) liFe(u, o)-F(u, o) O,T;.o) Cx/-+ 211tille.

Proof Denote by I-I u the piecewise linear function of that coincides with u(t)
at each of the points t. Then

IIF(u, d/o)(t)-F(u, o)(t)llllF(u, o)(t)-F(l-I u, o)(t)]l

(3.8)
+ F(1-I u, q,o)(t)- F(1-I u, q,o)(t)ll

+ IIF(1-[ u, 0o)(t)-F(u, @o)(t)[[

by (2.12) and (3.5). The last term on the right-hand side can be estimated in [ti, /i+1],
by

[IG(]-I u(t), @(t,))-G(I-I u(t),

+ IIG(1-I u(t), (ti))-G(l-I u(t),

by (3.2), (2.5), where

@e(ti)-- Fe(1-I U, to)(ti) t( ti) F(I-I u, d/o)( ti).
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Summing over we conclude that the last term on the right-hand side of (3.8) is
bounded by (T/h)e, i.e., by Cv/--. Finally, when we use the estimate

II -H  11oo--< I1 11oo 
in (3.8), the assertion (3.7) follows.

From the definition of F in (3.4) it is clear that

F’C[O, T]Xo 1-I C([ti, ti+l], 0) is continuously differentiable.

Now consider the state-output map E defined in (2.15). If e is not continuous,
then we can regularize E by

(3.9) E(b, e)= E(ch,j * e).

The regularization W of the Preisach operator W is then defined by

W(u, e)(t) E(F(u, 0o)(t), e).
for the initial state 6o= 0. Since in the rest of this paper we deal exclusively with
densities e that are continuous, we shall replace E by E, i.e., we shall work with the
simpler operators

(3.10) W(u, e)(t) E(F(u, 0o)(t), Te).

We introduce the mapping

" C([a, b]; o) x L(R+ x R)- C[a, b]

by

(0, e)(t)= E(O(t), e).

For e C(+ ) with compact support,

(-, e): C([a, b]; o)- C[a, b]

is continuously differentiable with derivative

(3.11) (Og(O, e)x)(t) e(r, (t)r)X(t)rdr

where O(t)r is the value of the function O(t) at the point r, and similarly for X(t)r.
Indeed,

(+X, e)(t)- (0, e)(t)- e(r, O(t)r)x(t)rdr

(b(t)r+x(t)r<= le(r, s)-e(r, (t)r)l ds dr
d q( t)r

and if ]]A’II - 0 then the integrand converges to zero uniformly, and thus the integral
is o(llXl]).

From (3.11) it follows that

(D+(O,, e)x)(t)-(D+(O, e)x)(t) uniformly in t,
(3.12)

if 0, - 0 in C ([ a, b]; o).

Hence W(u, e) is continuously differentiable in u.
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LEMMA 3.4. The operator We satisfies

(3.13) 11W(u,, e)- W(u:, e)ll<_-Ilellllu-

(3.14) W(u, e) <- W(u2, ee) if u <- u2, el e2;

furthermore, .for any e C(+ x with compact support and N> 0 there exists a positive
constant Co such that

(3.15) We(u, e)- W(u, e)l]<_- Cov/- Vu W’(0, T), I1 11 _-< N.

_Proof. The estimates (3.13), (3.14) follow from (3.5), (3.6) respectively, and (3.15)
follows by Lemma 3.3.

We emphasize that, in contrast to W(u, e), We (u, e) is discontinuous as a function
of time with discontinuities of order e at the points {ti}. (However, it is continuously
ditterentiable in u.)

We conclude this section with some monotonicity properties with respect to
translation of the measure e.

For e C(A), h R, set

(Tle)(pl,P2)=e(pl-A, p2), (T2e)(p,,p2)=e(p,,p2-A).

LEMMA 3.5. If e >-- O, >= O, c then

(3.16) E(c, re)<-_E(4,, ’e),
(3.17) E(c, re)<-E(c, ’e).

Proof. We have

E(6, fTe)= (’Te)(r,s) dsdr

e(s r- , s + r) ds dr

;t/2)

Se(s’-r, +r’)ds dr’

<- 3(r’, s’) ds’ dr’= F(,

where the inequality follows from the fact that d(r’-A/2)<=ch(r’)+A/2. The proof of
(3.17) is similar, provided we recall that supp Te is contained in R+x.

4. The problems (P), (P). Denote by G(x, t; , t) (0 <- x, <- a, 0 <= " <-<_ T) the
Green function for the heat equation in Q with the boundary conditions

(4.1) G(0, t; , ’) 0, G(a, t; , -)+ G(a, t; , -) 0.

G can be constructed by the parametrix method ([4] or [5, Chap. 1]) that involves
the solution of a Volterra type integral equation; it can also be constructed by using
existence and regularity theory of parabolic equations [5]. The function G(x, t; , ’)
satisfies in (g -) the backward heat equation and the boundary conditions (4.1), it has
the same singularity as the fundamental solution

/4’(t-’r)
exp -4(t_ ’)
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and it is a positive value function. The solution of (1.1)-(1.4) can be represented in
terms of G:

(4.2)

u(x, t)= G(x, t; a, ’) W(u(O, ), Bv)(’) dr

+ G(x, t; O, ’) dr+ G(x, t; , 0)Uo() de.

THEOREM 4.1. For any bounded measurable densityfunction Bv there exists a unique
solution of (1.1)-(1.4).

Proof Taking x 0 in (4.2) we obtain for u(0, t) an integral equation of Volterra
type:

(4.3)

u(O, t)= G(O, t; a, ’) W(u(O, ), Bv)(’) dr

+ G(0, t; 0, ’)k(r) dr+ G(0, t; , 0)Uo(:) dsc.

The integrand in the first integral is a nonanticipative Lipschitz continuous func-
tional in u(0,.). By a standard method it follows that this integral equation has a
unique solution u(0, t), and then a solution u(x, t) is obtained by solving (1.1)-(1.4)
(since the right-hand side of (1.4) is now well defined). Uniqueness follows from the
uniqueness of the solution u(0,. of the integral equation (4.3).

We now specify the choice of admissible densities e= By in problem (P). Let
O’(/9)--O’(pl,/92) be a specific spherically symmetric continuously differentiable func-
tion such that

(4.4)

and set

r(p)=0 iflpll, o-(p)>O iflpl<l,

I I or(p,, P2) dp, dp 1,

0o"
>0 (<0) ifpi>0 (<0), Ipl<l, i=1,2,
Opi

(4.5) c%(p) =--5 o" r>0.

We define the control set K V for problem (P) setting

V =3,
(4.6)

K { v rl, a, fl rlo <= rl <= l, rl <- a,

where 7o>0 is a given number, r/o<< 1. We define B:+[2 L(A) by

(Bv)(p.. P2)= o’.(p. o, 02-/3).

Then the admissible densities e Bv form a three parameter family, approximating
Dira measures that represent the thermostats.

THEOREM 4.2. There exists an optimal control , K ofproblem (P), that is,

J(v,)=minJ(v).
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Proof Let vn be a minimizing sequence and set u, u(v,). By parabolic estimates

u,(0,. )11 ,o,_-< Co.
Using the representation (4.2) it is easy to see that a subsequence is convergent to a
solution of problem (P).

Remark 4.1. Theorem 4.2 can be extended to the case where v varies in an
infinite-dimensional space; the proof is similar to that of Theorem 3.1 in [5].

We now turn to the approximating problems (Pe) whereby W in (1.4) is replaced
by We, and J(v) is replaced by

(4.7) Je(v) dP(ue(O, t), t) dt+h(v)+]v-v,]2;

here u u(v) is the solution of (1.1)-(1.4) with W replaced by We; the existence
and uniqueness of ue(v) is proved as in Theorem 4.1.

Problem (Pe). Find ve in K such that

J(ve)=minJe(v).
K

The proof of Theorem 4.1 applies also to problem (Pe), showing that a solution
ve exists.

THEOREM 4.3. As e O, ]v v,]- 0 and

u()- , L(O)- 0.

Proof. For convenience we write J() also as J(v, u(v)) if u() is the solution of
(1.1)-(1.4)and as J(v, u(v)) if u(v) is the solution of (1.1)-(1.4) with W replaced
by We, and set

L(v, u)=J(v, u)/lv- v,I 2,

Then, by the optimality of v,

L(v, u(v))<=L(v,, u(v,))
(4.8)

Analogously to (4.3),

where

J(v,, u,)+ Re

Re J(v,, ue(v,))-J(v,, u,).

ue(O, t)= G(O, t; a, ’) W(u(O,. )Bv)(z) dz

(4.9)

+ G(0, t; 0, z)k(z) dr+ G(0, t; :, 0)Uo() d:.

Subtracting this from (4.3) and using (3.15), we get

II(w)(o,.)-u(v)(o,.)lloo<-_c+ IW(u(o,.),Bv)- W(u(O,.),Bv)l dz.

Using (2.20) and Gronwall’s inequality we deduce that

, (,))(o,.)- , (,)(o,.)11- 0

as e-* 0. It follows that Re->0, and (4.8) yields

(4.10) lim J(v, u(ve))+lim [ve -v,l<-J(v,, u,).
e-0 e0
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On the other hand, for a subsequence,

v3 and u(v)a in C(QT-);

comparing (4.9) with (4.3) when v= 3, u=u(3), and applying (3.15), we find that
u(3) a. It follows that

J(v, u(v))-J(v, u())>-J(v,, u,)
by the optimality of v.. Substituting this into (4.10) we find that Iv-v.I 0, and the
theorem follows.

5. Optimality conditions for (P). Since W is differentiable, the optimality condi-
tions (1.12) can be rigorously derived for any solution (v, u(v)) of problem (P),
with a minor change due to the term Iv v.I 2 in J; it will suffice to write the conclusion.

We begin by setting

(5.1) D,W DuW(u, Bv), u u(v)(O, ),

(5.2) DeW DW(u, Bv)DB(v)

and introducing D,W by

(5.3) p(t)(D,Wz)(t) at= z(t)(D,Wp)(t) dt Vp, z C[0, T].
o

LEMMA 5.1. For any n, set h 1In and e h2. en there exist nonnegative
functions w(t), wT(t), continuous on every [t, t+] where t=jh, such that, for every
p L2[0, T],

(5.4) DWp(t)= w(t)p(t)+ p(s)w(s) ds

where ,(t) is the Dirac measure at

Proo From (3.4) we get, for t N N t+,

(O(u,o( oa(u(, F(u,

+ [Oa(u(, (u, o(-0l((u, olz( -0.
Defining the linear continuous operators A(t), A o o and B(t), B :R o by

a(= oa(u(, (u, o(-0,

( Dxa(u(), F(u, o( 0,

A+I A(t+-0), B,+, B(t+-0),

we get, taking

It follows that for t N N

(DF(u, oz( ((+((+(-l-z(-

+" + ()a-i z().

Note that by (2.9)
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Now since

we have

DuW C[O, T-I--> I-I C[ti, ti+l],

( )*D.W*" H C[t,, ti+l] --> C[O, T]*;

in particular, DuW maps C[0, T] into L2[0, T] and DuW* maps L2[0, T] into
C[0, T]*. Next, by (3.10), (5.5), with ff =f(u, d/o),

(D.Wz)(t)= e(r, d/(t)r)((D.F, z)(t))(r) dr

e(r, 4,(t)r)[B()z(t)+A(t)B(t)+...](r) dr

so that

(D.W(u, )z)(t)= w(t)z(t)+ ’. wT(t)z(ti)
o<ti<t

where we(t) _-> 0, wT(t) => 0 by (5.6) and we, w7 are continuous on b, b+l]. Finally,

p(t)(DW(u, bo)Z)(t) dt= p(t)w(t)z(t)+p(t) wT(t)z(ti) dt

p(t)w(t)z(t) dt+ p(t)wT(t) dt" z(t)
t

which is precisely the asseion (5,4).
Denote by p p the solution of

p+p=0 in

p(x, T)=0, 0<x<a,
(5.7)

-&(O, t)=(DuWp(a,’))(t)+(u(O, t), t), 0<t< T,

&(a, t)+p(a, t) =0, 0< < T.

Representing p(x, t) by means of Green’s function G (cf. (4.2)) we obtain for p(a, t)
an integral equation of Volterra type (eL (4.3)). Its solution yields a unique solution
for (5.7).

The optimality conditions for (v, u), whose derivation is the same as tr (1.12),
are

(5.8)

To derive propeies for v (and v,) from (5.8), we need to establish some auxiliary
properties for DeW, DW and p; this is done in the next section.

LMMA 6.1. For any p e C[0, T],

(6.1) (OW(u, e)p(.

Indeed, this follows from Lemma 5.1.
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LEMMA 6.2. If O u, s) > O, then

(6.2) pe(x, t)>O for O<=x<=a, 0<-t<T.

Proof We can recast the proof of existence of the solution p p in the following
way. Given po(t)>=O solve (5.7) with p(a, t)=po(t) and denote the solution by fi(x, t).
Since DuW*po>= 0 (by Lemma 6.1), the maximum principle gives/(x, t) 0 if0 -< x <- a,
0<t< T and, in particular, pl(t)=(a, t)>=O. Consider the mapping S: pl=Spo.
Representing S (by means of Green’s function G) as an integral operator of Volterra
type, we deduce that S must have a fixed point/(t), which then corresponds to a
solution p(x, t) of (5.7) with p(a, t) (t) >- O. The conclusion (6.2) now readily follows.

LEMMA 6.3. Write v (r/e, gee,/3e), Wl (0, 1, 0), w2 (0, 0, 1). Then

(6.3)

where ue ue (0,.),

DeWe(ue, Bve)DBv wi We(ue, e’i)

(6.4)
0O

(T(S1, $2) D2W(Sl, $2)
0S2

T(Sl, S2)DlO’(Sl, $2)
Os

The proof follows directly from the definition of De
LEMMA 6.4. W(ue, e) < 0, We (ue, e’i) -< 0.
indeed, this follows from Lemma 3.5.
LEMMA 6.5. For any 6 > O, N > O, there exists a positive constant eo Co(6, N) such

that for any (rl, a,)K (K as in (4.6)) and uCI[O,T] with 0<=u(0)=</3-r/,
I1 <- N, either

(6.5) W(u, e)(t)<-8 VO<=t<= T,

or

(6.6)

where

(6.7)

r-

W(u, e)(t) dt<=-Co,

12 (p,-a p2-fl)e( pl, P2) cr

and e is defined by (6.4).
Proof We may assume that 8 < 1/2. Suppose (6.5) is not true. Since the initial state

is qo 0so that W(u, e)(0) =0, there must exist a first time t. such that W(u, e)(t.) >=
8. The internal state q(t.) (at t,) in the Preisach plane (pl, p2) is a horizontal
segment; see Fig. 3. Since

t,)
rl- -(t,) "0

fA o’( p, oz, p fl dp, dp 8 A:=
1 A+(t,)),

meas A- 0 meas Aft where 0 0(8) (0, 1);

it follows that

(6.8)

0 is independent of r/, a,/3.
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(a,#)

FIG. 3

A*(t,)

P2 u( t,)

Recalling that

(6.9) o-( Pl, P2) < 0 (>0) ifp+p<l andp>O (p2<O),

and using (6.8), we can then estimate

(6.10)
W( u, e’)( t,) fa-<t, e( p,, p) dp, dp

C_1 D2o’( p, ce, p2- dp, dp2<-_ (c> 0),

where c is independent of r/, a,/3.
From (2.21) we see that the internal states q(t) and q(t,) satisfy

II (t)- (t,)ll < clt-
Therefore

(6.11) IW(u, e)(t)- W(u, e)(t,)l < IYel

where An is the intersection of a disc with radius r/ with a polygonal strip of width
fit-t,I in the (r, s)-plane. Substituting r rr/, s st/we can estimate the right-hand
side of (6.11) by fit-t,I/W 2, and then, by (6.10),

C
(6.12) W(u, (.), e)(t)<

2,/ iflt-t*l<=--r/"
The assertion (6.6) now follows from Lemma 6.4 and (6.12).

We finally state an extension of Lemma 6.5 to W.
LEMMA 6.6. For any > O, N > 0 there exist Co Co(, N) > 0 and eo e(,, N, rl) >

0 such that for any (rl, a, fl)K u CI[0, T] with O<-_u(O)<-fl-rl, IIII_-<N, either

(6.13) W(u(.), e)(t)<- /O<=t<= T,

or

(6.14) j’T-
o

W(u(" ), e)(t) tit<--Co,

provided e < eo.
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Proof We apply Lemma 6.5 with 6 replaced by 6/2 and then use (3.15) to deduce
that if Cox/- < 6/2 then either (6.13) holds or else (6.6) holds. Next, by (3.15) and (3.7),

[W,(u(. e.)- W(u(. e)l <--IIf.(u, 4’o)- f(u, q,o)ll < 2
o r/ r/

From this inequality and (6.6) we deduce the inequality (6.14).

7. Properties of the optimal control. The results of 5 and 6 can be used to derive
properties for the optimal control v,. For simplicity we illustrate this in the case where
r/and a are fixed, whereas/3 is the only control variable, and -a + rt -</3 <-1- r/. We
assume that

(7.1)

where

J(v)= I)(u(O, t), t) dt+lho(fl)

u(u,g(t)) >-y>O if u->0,
(7.2)

h(/3) > 0 if0=</3 -<-

O<_t<-T,

and/x is a positive constant. As before we fix qo -= 0. We also assume that u(O, O)<= a.
Denote by/3,, u, the solution to problem (P) with J given by (7.1), and by/3,

u the corresponding solution of problem (P). The optimality conditions (5.8) become

io(7.3) p(a,t)W(u(O,.),e)(t)dt+lh’o()+2(-,)>=O if < 1- r.

THEOREM 7.1. For any small 6 there exists a (small) /Zo> 0 depending only on 6,
% a, T and hgl] such that if/ < IZo then

(7.4) W(u,(O,.),e,)(t)<6 VO<-t<=T,

provided fl, < 1- q.
Taking @(u,g)=]u-g(t)l2, Theorem 7.1 can be interpreted as follows. If the

desired temperature g(t) is lower than any achievable temperature u and if the cost
/h0 of cooling is small (/z </Zo) then, in the optimal situation, the thermostat is either
set at/3 1-r/ so as to cool the rod at x a as much as possible, or it is set at such
value of/3 so, that essentially no heating will occur at x a (i.e., (7.4) holds).

Proof Representing p(x, t) by Green’s function and using the estimate u >= 3’ > 0
and Lemmas 6.1, 6.2, we find that

p(a, t) - G(a, t; O, -r)t(u(O, -), "r) dr>-_ clt,

with cl > 0. If (6.14) holds, then upon using Lemma 6.4 we derive the inequality
r

W(u(0, ), e)(t)p(a, t) dt<=-c<O,

which is a contradiction to (7.3) if/3 < 1-r/ and/x < tZo, tZo small. Thus by Lemma
6.6 (here we use the assumptions that u(0, 0)-< a <_-/3-r/) it follows that (6.13) must
be satisfied if/3 < 1-r/ and, consequently, (7.4) must hold if/3. < 1-

Remark 7.1. As r/decreases (7.4) continues to hold provided/3,
However, we cannot deal directly with the case r/=0 (i.e., with the case where the
Preisach measure is a Dirac measure).



716 M. BROKATE AND A. FRIEDMAN

(8.1)

or

8. Generalizations. The results of 4-7 extend to other functionals such as

J(v) II (u(x,t),x,t)dxdt+h(v)
Qw

(8.2) J(v)= (u(x, T),x) dx+h(v).

Thus in case (8.1) we formally replace (1.10) by

p,+p=,(u.(x, t),x, t) in

(8.3)
p(x, T)=0, 0<x <a,

-px(x,O)=[DuW*p(a,.)](t), 0<t< T,

px(a, t)+p(a, t)=0, 0< t< T

and p(x, t) > 0 ifu < 0; the optimality conditions (1.12) remain valid and the assertion
of Theorem 7.1 continues to hold.

The results of 4-7 extend to models whereby (1.4) is replaced by

(8.4) u,(a, t)+ u(a, t) m(t)+ W(u(xo, ), Bv)(t)

with m(t) a given function and Xo 0 or Xo a. The case Xo a may be interpreted as
a generalized cooling law with hysteresis.

In the above problems we may also take By =-e fixed and consider the function
k(t) (in (1.3)) as the control variable, say in the class

K= 0_-<k(t)-<l, k(t) dt= N

where T> N. Assuming u < 0 we find, for the solution p of the corresponding adjoint
problem of (P), that

pl<-_2 (k-k,)l ifk,+AleK V1>O, Ismall.

Since Ik k,I- 0 as e -, O, it follows that except for a subset of[O, T] of measure

k=l on{p>y+7},
(8.5)

k.=O on{p<,-rt}

for some number y, and r/ 0 if e 0. If we can show that the sets {a <p < b} have
uniformly small measures as b-a becomes small, then (8.5) would yield a bang-bang
principle.

Consider finally a model where the last condition in (0.1) is replaced not by (1.4)
but by

(8.6) ux(a, t)+u(a, t)= 1- W(u(O, .),Bv)(t)

(W appears here with negative coefficient). This represents the standard thermostat
control. For this case we can still solve the adjoint problem for p; however, the
boundary condition

(8.7) p(0, t)= W*(u(O,. ), e)p(a, t)+dPu(u(O, t), t)

is such that we cannot establish that p has a fixed sign, no matter what u is. Therefore
we are unable to derive specific properties of the optimal control for this model.
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CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS
TO STATE CONSTRAINED CONVEX PARABOLIC

BOUNDARY CONTROL PROBLEMS*

WALTER ALT? AND UWE MACKENROTH"

Abstract. This paper is concerned with the numerical solution of state constrained parabolic boundary
control problems by finite element approximations. Error estimates for the optimal values, and in the coercive
case for the optimal solutions, are derived. These estimates are used to prove convergence results under
rather weak assumptions. In the noncoercive case a bang-bang principle is shown to obtain convergence
results for the discrete controls also. A discussion of several numerical examples concludes the paper.

Key words, optimal control, state constraints, numerical solution, finite element method
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1. Introduction. In this paper we are concerned with optimal control problems
governed by a parabolic differential equation of the following kind"

(1.1)
Oy
--+Ay =0,
Ot

Oy
(1.2) cylx +/30---a u,

(1.3) y(0) =0.

Here, A denotes the second order elliptic operator

A:=- +ao
i,j= 10Xi

with smooth coefficients a0, ao, which are assumed to be defined on the closure of a
bounded open domain f c " with smooth boundary F. In addition we suppose that

ai ai, i, j 1,. ., n,

i,j=l i=1

Let a 0, 0 be such that + 0 and define := ]0, T] x F with fixed T> 0. It
is well known that under these conditions, (1.1)-(1.3) have for each u e L(E) a unique
solution y= y(u) in C([0, T]; L2()) depending continuously on u.

Moreover, let v 0, p < p, Yr L2(), and for all [0, T], let a closed convex
set C(t) L2() be given. Independent of the considered space, we denote the LZ-norm
on this space by . . We are now in a position to introduce the following parabolic
optimal control problem.

(P) Minimize lly(T)-  l[2+  llull 2

subject to

u L(E), y e C([0, T]; L)) such that (1.1)-(1.3) hold and

p, Nu(t)Npz V’t6[0, T],

y(t)e c(t) vt e [0,

* Received by the editors April 6, 1987; accepted for publication (in revised form) November 21, 1988.
? Mathematisches Institut, Universitit Bayreuth, Postfach 101251, D-8580 Bayreuth, West Germany.
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A typical example for C(t) is given by

C(t)--{vL:()l(v,g)<-(t), ,: 1,...,1}

with gl," ", g L2() and real-valued functions c ((.,.) denotes the scalar product
of an LZ-space).

The main feature of problem (P) is the presence of a state constraint. There is
already a rather long list of investigations on parabolic optimal control problems with
a state constraint. We mention here only Barbu and Precupanu [2], Lasiecka [6],
Mackenroth [9], [10], [12], and Tr/51tzsch [18]. These papers are mainly concerned
with theoretical aspects such as characterization and qualitatiye behaviour of optimal
controls. In contrast to this, we are concerned with numerical approximations of the
optimal values and the optimal solutions.

Parabolic optimal control problems without state constraints are analyzed with
respect to numerical solutions in great detail. In the coercive case (u > 0), the optimal
control is in a certain sense regular, and therefore it is possible to derive rates of
convergence for numerical approximations (cf. Lasiecka [7], Malanowski [14]).
However, no general regularity conditions are known for the bang-bang case (, 0),
and as a consequence, only convergence in the LP-norm without convergence rates
can be shown (cf. Lasiecka [8], Knowles [5]). Thus, since for the state constrained
problem (P) no regularity results are available, we cannot expect to get more than
mere convergence. For different, but in some sense related, aspects of the theory,
compare also Fattorini [4] and Tr61tzsch [19].

The plan of the paper is as follows. In 2 we put the problem into a more general
framework and introduce discretizations in a rather abstract setting. Without requiring
additional effort, this leads to a more transparent argumentation and, of course, to
more generality; the general results could, for instance, also be applied to. hyperbolic
control problems. The main result of this section is Theorem 2, where error estimates
for the optimal values and the optimal controls are given.

In 3 we introduce a semidiscretization of (P). More precisely, only the space
variable will be discretized while the time variable remains continuous. The finite
element method is used to approximate both the controls and the states. An application
of Theorem 2 then shows that under reasonable assumptions we obtain convergence
for the optimal values and also in the coercive case for the optimal solutions. It is
quite obvious that these results depend on the convergence properties of the finite
element method for the partial differential equation (1.1)-(1.3). In this context we shall
make use of convergence results given by Lasiecka 8] for Dirichlet boundary conditions
and by Knowles [5] for Neumann and mixed boundary conditions.

In the noncoercive case, the general theory of 2 only gives convergence of the
optimal values. In 4 we therefore use a more refined analysis to prove a bang-bang
principle for the state constraint problem (P). Then it can be shown that, roughly
speaking, the discrete optimal controls converge to the optimal control Uo of (P) on
the set M F, where M is the set of all [0, T] where the state constraint is not active.

The last section is entirely devoted to the discussion of numerical examples. The
numerical results show that the described method leads within a reasonable computing
time to a good approximation of the optimal value and the optimal control.

2. Error estimates for discretizations of an abstract control problem. Let U, Z be
Banach spaces, E, W Hilbert spaces, Uaa c U, K Z closed convex sets, and let S be
a linear continuous operator from U into Z x E (i.e., S ( U, Z x E)). Moreover,
suppose that U W holds with continuous injection and assume that U is the dual



720 WALTER ALT AND UWE MACKENROTH

space of a separable Banach space /) such that S*(Z* E*) = . Then, with t,->_ 0,
yr E we consider the following abstract optimal control problem.

() Minimize p2S, yr + v u 2w
subject to

u Ud, pS K.

By p (respectively, p2) we denote the canonical projection of Z xE onto Z
(respectively, E). The proof of the following lemma is standard.

LEMMA 2.1. Suppose Uod is bounded or >0, U= W, and the feasible set is

nonempty. Then (P) has an optimal solution Uo which is unique for u > O.
The Slater condition will be needed for the optimality conditions as well as for

the error estimates.

(SL) There is an a Uoa such that pSO int K.

For xX, X* (X a Banach space) let (x, h):= h(x) and

f(u) := [[pzSu -Yr[[ + llullw Vu U.

The next lemma is also well known.
LEMMA 2.2. Suppose that (SL) is fulfilled. Then Uo U is optimal for (P) if and

only if uo is feasible and there is a Z* such that

(2.1) (U-Uo,f’(uo)+(plS)*)>=O qU Uad

(2.2) (p,Suo- z, ) >= 0 Vz K.

This lemma will be needed for the error estimates. By calculating the derivative
f’, it is possible to characterize u0 more explicitly. We have

(2.3) (u,f’(uo)) 2(u, (pzS)*(p2Suo-yr))+ 2v(u, Uo)w Vu U.

This implies

(2.4) f"(Uo)(U, u) >= 2v(u, U)w Vu U.

Hence Lemma 2.2 can also be formulated in the following way.
LEMMA 2.3. Suppose that (SL) is fulfilled. Then Uo U is optimal for (P) if and

only if Uo is feasible and there is a 6Z* such that for w:-S*(’, 2(pzSuo-yw)) the
inequalities (2.2) and

(2.5) (u Uo, w + 2 VUo) >= 0 Vu Ud

are fulfilled.
We now introduce abstract discretizations for (P). To this end, let for every

closed convex sets U,a U, K Z and an operator Si ( U, Z E) with the property
S*i(Z* E*) I) be given. Then we define

(f) Minimize

subject to

uUad,

For every i N let

pSiu K.

Di :-- { u U Jpl Siu Ki},
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and

D:= {u UlP,Su K}.

The proof of the following lemma is based on the proof of Theorem 2 in Robinson 15].
LEMMA 2.4. Suppose that the following conditions are fulfilled.
(i) For the element of (SL) there exists a sequence {tii}i such that Uiad for

all iN, limi_.o [[tii- ti[[u =0 and limi_.o
(ii) K c Ki for all i N.

Let now Uo Uad f’l D and a sequence u}, with lim,_ u,- i 0 and u, Uo. for
all N be given. Then there are ioN, c >O such that for all >-io there exists a

vi Ui,d (3 D with

Proof. Let := plS, , := pl. By assumption (i) there are/x > 0, ioN with
/zB c K and

g,a, ;a z < V > io
2

(B denotes the unit ball of Z). This implies

Sil --- B c S IxB K V >- io.

Thus, from (ii) we get for rt .=-2

Sifti rib Ki V >= io.

Now let Uoe U,,a fl D and a sequence {ui} such that ue Uaa for all iN and
lim_.oo II,u- Uoll t 0 be given. Let i-> io. If gui e K define v := u. if gui K,define
d := d (&ui, K). Then for arbitrary 3 > 0 there is a k K such that for z := &u k
the inequalities

hold. For e ]0, 6[ fl ]0, rt[ we define z := -(r/- )llz II’z, it follows Ilz IIz , <
r/, thus zB. Hence there is a kK such that z=a-k. With :=
[/(-)[Izll’]-’ we obtain 0<A <1 and

(1 a)z +,z 0.

For vi=(1-1)u+1fti, k=(1-1)k+,k, this implies v U,a, &vi=kKi and
therefore v Ua VI D. Further, we have

Since the sequences {u}, {i}, are bounded, there is a c > 0 with

u, c V => io.

Because of A _-< r/- e)-’ll z II, z de + we get

(d(&u,, K,)+

Since Uo e K c K the proof is completed by letting 6 and e approach zero.
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LEMMA 2.5. Suppose that (SL) holds. Then there exists c > 0 such thatfor all u Uad
there is a t Uad D with

u- llu <- cllu fftllu d(pSu, K).

Proof. Define the multivalued function F’U-,, Z by

F(u):={pSu-K if u Uaa,
if u r4 Uad.

Then F is a closed convex function, and by the assumptions of the lemma there exists

ri > 0 with rib F(/). The assertion of the lemma is therefore a special case ofTheorem
2 in Robinson [15].

The following Proposition is an immediate consequence of Lemma 2.1 and
Lemma 2.4.

PROPOSITION 2.1. Let the assumptions of Lemma 2.1 and Lemma 2.4 be fulfilled.
Then there is an io N such that for all >-io the discrete problem (Pi) has an optimal
solution.

In the following we denote by c a generic constant. Let

f/(u) := IIp2S,u-yll + llull, Vu, u.
THF.ORM 2.1. In addition to the assumptions ofLemma 2.1 and Lemma 2.4, suppose

that the following assertions hold.

(ii) IfM c Uod is bounded then {Siu u M} is also bounded.
Now let { w,},n be a sequence with wi Uiod for all N and limi_oo wi- uoll 0. Then

Sivi gi for allthere are ioN, c>0, and a bounded sequence {v}i>_o with v U,,d, p
>- io such that the following error estimates hold for the optimal solutions uo of (P) and

u, of (Pi) (i ->_ io)"
(a) f/(ui)-f(uo)<= cllp2Sivi -p=Sv, ll / clip,S,w,-plSWillz q- cllwi uoll ,
(b) f(uo)-f(ui) <- cllSgui- Su, llx / c d(pS,u,, K),
(c) llu,- uoll <-f,(u)-f(uo)/ cllSiug Su, llx / c d(pSui, g).
Proof Suppose ul, u2 U and define

o-:= max {llu, ll,
Then it can be easily seen that

(2.6) [f,(u,)-f(u2)l<-cllp2S,u,-pzSu211
From Lemma 2.4 we deduce the existence of an io N such that for all i_>-io there is
a v Ua with piSivi Ki and

I1,- nolle-< IIw,- uollu / cllp,S,w,-p,Suoll.
This implies in particular that the sequence vi}i>=o is bounded. Thus, from (2.6) we get

[f(Di)-f(uo)[ <- cllp=S,v, -p2Suol[ / oily,- uoll .
Hence we obtain

f(ui)-f(uo) fi(vi)-f(uo)

<- cllp2a,v,-pzS, / cllp,S,w,-pSuoll / clIw,- Uoll
<-

This shows inequality (a).
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Lemma 2.5 shows that for every N there is a tii U,a with plSt K and

u a --< c u, a d (p, Sui, g ).

Thus, since U,a is bounded, the sequence {u}e is bounded, and we get

(2.7) Ilu,-a, llcd(p,Su,,g)cllP,S,u,-p,Su, ll+cd(p,S,u,,g).
In particular {ffi}o is bounded. Hence (2.6) shows

I(ui)-f(a,)] c[[p2Siui-p2Saill + cllu,- a, .
Thus we get the estimates

f(uo)-N(u) f(a,)-N(u)

cllp2Siu-p2Saillu + c[[ui- ffll
cllp2S,u,-p2Su, ll + cllu,- a, ll

It remains to show (c). Let ff be as in Lemma 2.2. Then we get from (2.1) and (2.4)

f(u,)+ Cp, S(u)-(f(uo)+ CplS(Uo))

if.(=(f’(uo)+(p,S)*C)(u,-uo)+ UO)(Ui Uo, U,--Uo)llU, U011.
Because of pS K, the inequalities (2.2), (2.6), (2.7) imply

f(u)+ p,S(u,)-(f(uo)+ p,S(uo))

=f(u,) f( uo) + p,S( u,) p,S( a,) (p,Suo-p,sa,)

f(u) f(uo) + p,S(u )

f(u) f(u) +f(u) f(uo) + c][u [

We just mention the special case that () contains no state constraint.
COROLLARY 2.1. Suppose that K Z and let the assumptions of Lemma 2.1 and

assumptions (i) and (ii) of eorem 2.1 be fulfilled. Let the sequence {w}v be as in
eorem 2.1. en the following estimates hold"

(b) f(uo)-f(u,) cl]p2Su,-pSu, ll,
(c) llu,- Uol (u,)-f(uo)+ cllP2S,u,-p2Su, ll.
Remark. If (P) has neither a state nor a control constraint, then estimate (a) of

Corollary 2.1 can be sharpened. We get

(2.s) .(,)-f(uo) llpS,w,-pSw, l[ + [[w,- Uoll.
The proof of (2.8) is an application of Lemma 2.2 and (2.6); we get

(u,)-f(uo) (w)-f(w,) +f(w,)-f(uo)

f(wi)-f(wi)+f’(uo)(Wi- Uo)+f"(Uo)(Wi- Uo, wi- Uo)

c p2Swi- p2Sw, + c w,- Uo[I .
Together with (c) of Corollary 2.1 this implies

(2.9) Ilui Uoll cllp2S,u,-p2Su, ll + cllp2Sw-p2Sw, ll + cllw, Uoll .
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The square in the last term of (2.9) can also be obtained if a control constraint is
present (cf. Malanowski [14]), but obviously an estimate of this kind is limited to the
coercive case without state constraints.

Remark. From Theorem 2.1 we easily obtain an abstract convergence theorem for
the discrete optimal values and optimal solutions; but instead of applying such a result
in a concrete situation, it is more convenient to use the estimates of Theorem 2.1
directly (compare, e.g., the proof of Theorem 3.1).

3. Error estimates for discretizations of the parabolic optimal control problem. In
the first part of this section we define discretizations for the problem (P). We start
with the partial differential equation for /3 0. In this case the variational form of
(1.1)-(1.3) may be used in the usual way. To this end define

a(v, w):= ao, /(aov, w)/-’(vl,., wl,.) vu, we H’().
i,j: OXi

Equations (1.1), (1.2) are then equivalent to

d
(3.1) d---(v,y(t))+a(v,y(t)):(vl,.,u(t)) VvH(f), V’t[0, T].

Let for all h ]0, ho], (ho>0) a finite dimensional subspace Vh of HI(f), be given.
Then there is a unique function Yh such that yh(t) Vn for all [0, T], yh(0)= 0, and

d
(3.2)

t ’d--7(v’y(t))+a(v’y"(t))=(v]" u(t)) Vv Vh, V’t[0, T].

For the subspaces V we make the following assumptions (ll" I1 denotes the norm of
H(fl), respectively, H(F)):

(3.3) inf {11 v w + h v w Ill } ,h v I1 V H (a), V , 21;
W

(3.4) Ilwll, =< ch-’llwll Vw v;
(3.5) the family { V}hE]0,o] is dense in L2(f).
An example for such spaces is given by the usual piecewise linear finite element spaces.

For problem (P) the operator S of 2 is given by

Su :: (y(u), y(u)( r)) Vu u,
where y(u) solves (1.1)-(1.3). For the space U we may choose

(3..6) U := U’(O, T; L2(F))
with p 2 if/3 0 and p > 4 if/3 0 (cf. Washburn 16], e.g.). As we have seen above,
for/3 0 an approximation S of S can be defined by

piSlh(u) := yh(u) for all u U.

Now let /3 =0. Then an application of the finite element method is much more
complicated since the variational form cannot be used and since the controls are
irregular. It is possible to overcome these difficulties by applying the input formula

(3.7) y(u)(t)= AS(t-’)Du() dr

as it is shown in Lasiecka [8]. We can only give a short sketch of this method and
refer the reader to Lasiecka [8] for all further details.
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In (3.7) S(t) denotes the semigroup generated by A and D denotes the Dirichlet
map

Dv := w, where Aw O, wl,. v.

The operators A, S(t), D are now approximated separately. To this end, let { Vh}hO. hol
be a family of subspaces of HI(f) with the following properties:

(3.8) { Vh} is an S,’2(f)-system;

(3.9) V,l,.c H’(F);

W

(3.10)
chllv,ll Vv H’(a), Vs [2, 4];

<- ch- =11 vii,

(3.12) ’qv Vh;

(3.13) Vv Va.
Define (with suitable y > 0) Ah" Va- Va by

(nhv, w):= a(v, w)- vlv w]. + h-’(vl,., wlv) U, We Wh.

Let {/,’}]O.ho] be a family of spaces of piecewise constant functions on F and define

D" " V by

(-ADv, aw)+h-3(vl,.-(D,v)lv, wlv)=0 Vw6 Vh.

Then, for u LP(0, T; ) with

Sh(t): e -a’’’ Vt>0

an approximation of y(Uh) can be introduced by

yh(u)(t)= AhS(t-r)Ohu,(,) dr.

Denote by h the orthogonal projection of L2(F) onto ’. Then, for 0 we define
an approximation S of S by

p,Su =yh(fihU) VU U.

In the case of n 1 and a 0, fl 0, the Fourier series of y(u), can be used to
derive a practically useful approximation of S. We have for all u Lq (0, T) with q > 2

(3.14) y(u)(t)= 2 v(1) e-(’-’u(r) drv.
=1

Here, I (respectively, v) denote the eigenvalues (respectively, eigenfunctions) of the
corresponding elliptic eigenvalue problem. We define y(u) by replacing" in (3.14)
by m" and

p,Su ym(U) U G gq(o, r).

We remark that ym(U) may be viewed as a discretization in and x since, at least for
simple functions u, the integrals in (3.14) can be evaluated explicitly.
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It is a well-known fact that in the above situation the functions Vk are uniformly
bounded with respect to the maximum norm and that the eigenvalues Ak behave
asymptotically as k2. Thus we have for u L(O, T)

Ily,,(u)(t)-y(u)(t)l[<- y e-k(’-)u(r) dr llull 2 e-’,’-)dr
k=m+l k=m+l

E cllull dx cllull m
k=m+l m+l

and finally

(3.15) y.,(u)(t)- y(u)(t)l[ cm-3/2llullo.
In the following Proposition, e denotes an arbitrary small positive number.

PROPOSiTiON 3.1. (a) If SO and assumptions (3.3)-(3.5) are satisfied then for
all u L(O, T; Lz(F)), the following estimate holds:

]]pSu(t)--pSu(t)[lch3/2-llU[IL(O,T;L(.r)) Vt[0, T].

(b) Iffl 0 and assumptions (3.8)-(3.13) are satisfied, thenfor all u L(O, T; l)
the following estimate holds:

I[p,Su(t)-p,S2hu(t)ll<=ch’/-[[u[[(o,-;r Vt[O, T].

(c) In the case of a O, t O, n 1 we have for every u L(O, T)

I]plSU(t)-pS3mu(t)ll <-- crn-3/IlUIIL(O.T Vt [0, T].

Proof Assumption (a) is only a slight modification of Proposition in Knowles [5].
Assumption (b) follows from Theorem 2.2.1 of Lasiecka [8].
Assumption (c) was shown in (3.15).
We can now apply Theorem 2.1. Let U be as given in (3.6). The choice of the

sets Z, E, W, l, U,d is obvious. Let K be defined by K := {z Z Iz(t) C (t) V [0, T]}.
Let { U}h0, hol be a family of subspaces of L2(F) with the following properties:

(3.16) For every h ]0, ho] the set U is a space of piecewise constant
functions on F. The family { U}h is dense in L2(F) and hi > h
implies Uhv, = U:.

Let p be as in the definition of U and define Uaa :-- Un f’) Uad with U := Lp (0, T; U’).
In the case of b =0, we choose ’= U. Further, let an approximation Ch(t) of C(t)
be given such that

(3.17) C(t)Ch(t) Vh]0, ho], Vt[0, T].

Kh is defined analogously to K. Denote by P, the projection of L2(12) onto C(t), and
suppose that for j 1, 2 and X := {piSJh u(t)lu Ud, [0, T], h ]0, ho]}

(3.18) lim sup sup IIv-P,v]] =0.
h-’-0 t[0, T] vXf’lCh(t)

In this way we have obtained discretizations (Ph) of (P). Herein, S is approximated
as in (a), respectively, (b) of Proposition 2.1. We still mention that (P) has an optimal
solution u0.

THEOREM 3.1. Suppose that for (P) the Slater condition (SL) is fulfilled and that
(3.3)-(3.5), respectively, (3.8)-(3.13) holds. In addition let (3.16)-(3.18) be satisfied.
Then the following assertions are valid.
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(a) There is hi ]0,.ho] such that problem (Ph) has an optimal solution Uh for every
h ]0, h].

(b) lim min (Ph) min (P).
ho0

(c) li Uh Uo 0 gf > 0.

Proof. By (3.16) there is a sequence {Vh}h>O in U with h Uh for every h
and limh_.O II,-uoll-0. Let O be the projection of L2(F) onto U,d and define
Wh := Qh. Since Q is Lipschitz continuous and Uo U,a, we have Wh Uaa and
limh-.O IIw- ol1-0. In the same way, it follows that there is a sequence {h}h>O with
fth Uh,d for every h > 0 and limh_O Ila- all-0. Thus, by Proposition 3.1 and the fact
that a, ()-<- max { p,, p2} for all h > 0, we see that assumption (i) of Lemma 2.4 is
fulfilled. Hence (3.17) and Proposition 2.1 imply (a).

Assumption (i) of Theorem 2.1 is satisfied by the definition of hUad, and assumption
(ii) of Theorem 2.1 follows from Proposition 3.1. Thus we can apply the estimates
(a)-(c) of Theorem 2.1. The terms containing S and S (j= 1,2) converge to zero
again by Proposition 3.1 and the uniform boundedness of the sequences {Vh}, {Wh},
{Uh} with respect to the norm of L(Z). Hence assertions (b) and (c) are shown if
limh_.O d(pSUh, K)=0, but this is an immediate consequence of (3.18).

We briefly discuss assumption (3.18) for a typical example. Let

(3.19) C:={vL(f)l(v,g,)<=ce,u=l, .,l}

with g LZ(f), a e , , 1, ,/. Under the assumptions of Proposition 3.1, the set
X is bounded by r> 0. With g,h L2(f) and

(3.20) eh :- rllg-

we define

(3.21) Ch :: {v Lz(f)[ (v, gh)-< c+ eh, ,: 1,..., l}.

LFMMA 3.1. Suppose that g gl[ <= ch r, , 1,. ., l, with y > O. Let the sets
C, C be defined by (3.19), (3.20), and assume there exists we C with (w, g) < c for
all , { 1, , l}. Then X f’l C = X 71 Ch and

sup
X f-I

where P denotes the projection of L2(-) onto C.
Proof The relation X fq C X f’l Ch is an immediate consequence of the definition

of eh and the fact that

(v, g,,h)<= I1 11 Ilg-gll +( v, g)-

Now let v X (q Ch be given with v C. Then I { v l(v, g) > a} . For v I define

and

; ((v, g)-)((v, g)-(w, g))-’,

A=maxA, /x=min{c-(w,g)}, z=v+,(w-v).

This implies 0 < A < 1,/x > 0,

(z, g) (v, g)+ A((w, g)-(v, g)) <- (v, g)+ A((w, g)-(v, g)) a
for all , /, and

(z, g) (v, g)+ A((w, g)-(v, g))<= (v, g)<= o
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for all u L Hence z C and therefore

Pv <- v z w v 2 rA.

Let v I such that )t )t. Then

A _-< ((v, g)- a)/z-’ ((v, gh)- cry + (V, g)--(V, gh)tZ -1

<= (e + rllg

which completes the proof.
Remark. In Lemma 3.1 we have only shown X 71 C X f-) Ch. Since we can replace

C by X f’l C, respectively, Ch by X f3 Ch without changing (P) respectively, (Ph), we
get C Ch. Furthermore, it is obvious that this lemma can be easily extended to the
more general situation where the functions g and a are time dependent.

We conclude this section by paying some attention to the case n where we
obtain convergence rates due to the fact that only semidiscretizations are considered.

Let ce 0, /3 0, let S be approximated by $3,,,, and let C, Ch be defined by
(3.19)-(3.21) (where we write g,,,, e,, instead of gh, euh). This leads to a semidiscret-
ized version (Pro) of (P), since the set of feasible controls requires no approximation
here.. The next theorem follows directly from Theorem 2.1 and Lemma 3.1.

THEOREM 3.2. Let (P), (Pm) be as described above. Suppose that in addition to the
Slater condition (SL) the following condition holds"

Ilg,,-gll <= cm -1, u 1,..., I.

Then for sufficiently large m the problem (Pm) has an optimal solution u,,. Furthermore,
the following estimate holds"

(a) I]min (Pm)-min (P)ll--<
(b) Ilu,, Uoll <- cm-1/2 if u > o.
Remark. 1. It is clear that Theorem 3.2 also holds for the situations described in

Proposition 3.1(a), (b) (and n 1).
2. As we have already mentioned, S3m can be viewed as a discretization of S in

and x. This fact can be easily used to formulate a convergence theorem for a fully
discretized problem in the case of one-space dimension.

4. The bang-bang case. The results ofthe preceding section contain no information
about the convergence of the discrete optimal controls if t, 0. As we shall see, results
in this direction require some knowledge about the qualitative behaviour of the optimal
controls of the continuous problem (P). This is obtained by analyzing the optimality
conditions. For simplicity we assume in this section that p =-pl =p > 0.

Let NBV(O, T; L2(-)) be the space of all functions v" [0, T] LZ(f) vanishing
at T which are of bounded variation and right continuous. It is well known that each
functional ’C([0, T]; L(f))* can be uniquely represented by a function vc
NBV(O, T; L(l))). Using this fact, the following lemma is a direct consequence of
Lemma 2.3.

LEMMA 4.1. Suppose u =0 and,let (SL) hold. Then Uo U is optimalfor (P) if and
only if Uo is feasible and there is a functional C([0, T]; L2(I)))* such that for
w := S*(’, 2(pzSUo-yT-)) the following equations are fulfilled"
(4.1)  ow/ lwl--0,

(4.2) sup z( t) dvc plSuo( t) dvc.
zK 0
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In order to get results on the structure of Uo, the equations of Lemma 4.1 must
be analyzed in detail. This requires at first a precise description of S*. To this end we
quote some results of Mackenroth [9].

Each z* Z*(Z C([0, T]; L2(D))) can be written in the form

(4.3) (z,z*)=(z(O),o)+(z(T),-)+(z,() VzZ

with ro, srT- L2(") and a functional Z* such that v( is continuous at zero and T
(el. Mackenroth [9, Satz 5.1]). Moreover, ( can be viewed as an element of
@*(]0, T[; V*) (the space of distributions on ]0, T[ with values in V*) where

Ov =0}v:- v g’(c)lvl,./on---
Let the bilinear form a be defined as in 3, but without the boundary term, and define
the operator by

(w,v)=a(v, w) Vv, w V.

Then the following equation is well defined (in the sense of distributions on
*(]0, T[; V*)):

(4.4) _dp+ ’-p ?,,.
dt

Moreover, it can be shown that (4.4) and

(4.5) p( T) 2(p=Suo-Yr)+

has a unique solution p with

(4.6) p L=(O, T; V) (q NBV(O, T; V*) f-) L(O, T; L2(D))

(cf. Mackenroth [9, Satz 5.2, Satz 4.2], and Mackenroth [12, Thm. 5]).
LEMMA 4.2. Let Uo, , w, p be given as in Lemma 4.1 (respectively, as in (4.3)-(4.5)).

Then we have

op
w=-, ifoz=l, /3=0.

Ona

Proof Set S := pS and U := L(0, T; L2([’)). We shall use the input formula

S,u(t)= AS(t-’)Gu(’) dr Vt[0, T], Vue U,

where S denotes the semigroup associated with A. The map G is defined by Gu := w,
where u L=(F) and Aw=O, awlr/(Ow/Ona)---u. Let v:= v(. Then we get

(S,u, ’)= AS(t--)Gu(r) d’dv= AS(t-r)Gu(r) dvd"

(u(’), (AS(t-r)G)* dr)dr.
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Here we have applied a vector-valued version of the Fubinis Theorem (cf. Dinculeanu
[3]). This is possible since we have with 0=1/4-e for/3 #0 and 0 =-]- e for/3 =0 (and
arbitrary small e > 0)

Io Io Io ioIIas(t-’)Gu(’)ll d’dl[v(t)ll <-_ llullt,

<-[lU[[u - dllv(t)ll <

(cf. Washburn [16]). Thus
T

(4.7) S* (t) (AS(r-t)G)* dr.

Now let be defined by w := (y, y(T)) where w L2(0, T; L2(-)) with y satisfying
1.3) and

OyO__y Ay w, Y[+n o.

Then 1 := Pl can be written as

Sw(= s(-,w(, .
From Mackenroth [9, Satz 5.3], we obtain *()= q, where q is the solution of (4.4)
and ql(T)=0. A computation quite similar to that made above shows

(4.8) g[(t) S*(r- t) dr.

Let Rw:= wli-. for = 1 and Rw:=--(Ow/Ona) for = 1, =0. Then we have (cf.
Washburn [16, p. 664]) (AS(r- t)G)* RS*(r- t). Thus, using (4.7) and (4.8) we see

Let q2 be the solution of

dq2
dt

T

S* f R S*(" t) dv Rql.

-+sq O, q2(T) 2(pzSuo Yr +

It is well known that Rq2 (p2S)*(2(pzSuo-yr) + srr). Thus, since p q + q2 the lemma
is shown.

To make the arguments in the following lemma somewhat simpler, we suppose
from now on that C(t) is time independent, i.e., C(t) C, but this is in no way essential.
For u Uaa define

Mu := {t [0, T]ly(u)(t)int C}.
LEMMA 4.3. Let the situation be as in Lemma 4.1. Then
Proof Set y := y(uo), v := v, and let ]a, b[ c Muo be given such that [a, b] c .M,o.

Since M, is open, there is 6o> 0 such that 18o := [a- 6o, b + 6o] c M,o. Let z Z be
arbitrary and choose w e Z such that (with 6 e ]0, 6o] and 18 := [a 6, b + 3])

w(t) Vt6[a,b],
w(t)

0 V [0, T]\18,
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and IIw ll IIw[l , Denote by B the unit ball of L2(f). There is a function e(t) on
with the property

y(t)+e(t)BcC VtI
and e can be chosen such that

eo := inf e(t) > 0.
t I

For z:--y/ollwllw, we have IIz(t)-y(t)ll<-eo if tI and z(t)=y(t)C if t
[0, T]\I, hence z(t) C for all [0, T]. Thus (4.2) implies

z dv y dv + (y z) dv <- y dv + eo (J)

with J := I\[a, b]. tx denotes the regular Borel measure on [0, T] associated with
the function II (/)ll, Hence we have

Thus, since lim_o/x(J) 0, we get w dv <= O. Since w is arbitrary, we conclude that
V[t,,b 0. Using the fact that M, can be written as the union of such intervals, the
result follows.

For each u U,a, the set M, can be written in the form

(4.9) M, := (_J ]a, b[,
il

(4.10) ]a, b[ f-) ]ai, b.i[ Vi, j I, :j,

where I is a finite or countable index set. By p(, 2(p2Suo-yr)+ r) we denote the
solution of (4.4), (4.5). For an optimal control no, a functional sr Z* is called a

multiplier if Uo and " fulfill the equations of Lemma 4.1. With these notations the
following assumption can be formulated.
(A) For each optimal control Uo there exists a multiplier ff such that

p(, 2(pzSuo-yr)+ T)(bi--) 0 Vi I.

Here, M, is decomposed as in (4.9), (4.10). Finally we introduce the set

M {Mlu is optimal}.

THEOREM 4.1. Let v =0 and suppose that (SL) and (A) are fulfilled. Then each
optimal control is bang-bang on M x F, and

lUo(t, )1 P V’(t, :) e M x F.

Moreover, if u is a further optimal control, then u and Uo coincide almost everywhere
on MxF.

Proof Let " be a multiplier of Uo. Then Lemma 4.3 shows that v ,,o 0 for v

hen,ce, in particular, Vlo,.b,[=O for all eN. Thus (4.4) implies (with p=
p(, 2(p2Suo--YT)+

_Op+ Ap 0 on ]ai, bi[ x
Ot

ap]x + fl
Op

0 on ]a,, b,[ x r.
OnA
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Suppose now that for an I the control Uo is not bang-bang on ]ai, bi[ x F. Then by
(4.1) there is an open interval ]c, d[ c ]a, hi[ such that

Rp( t, ) 0

(with R as in the proof of Lemma 4.2). Thus by Schmidt and Weck [17, Cor. 2.3] we
conclude p(t, x)=0 for all (t, x) ]a, b[ i). This implies p(bi-)=0, which is a
contradiction to assumption (A). Hence Uo is bang-bang on M F.

Now let Ul be a further optimal control. Then we have

1/2y(uo)(t)+1/2y(ul)(t)int C VtM.oU M.,.
This implies M.oLJM.,c M. if we set u2:=1/2Uo+1/2ul Suppose that there is a set
Eo M., F of positive measure such that lUo(t, :)1 < p almost everywhere on o. Then

-p < u2(t, :) 1/2Uo(t, ) "-1/2Ul(t, :) < p a.e. on Eo,
which is a contradiction. Hence Uo is bang-bang on Mu, F.

We assume that Uo is not bang-bang on M F. Then there is an interval ]a, b[ M
such that lUo(t, )1 < P almost everywhere on ]a, b[ F. Let d := 1/2(a + b). There must
be an optimal control and an interval ]ai, b[ with d ]a, b[ Ma. Hence, as we
have seen above, Uo is bang-bang on Ma F and in particular on ]d- 6, d + 6[ F
(with sufficiently small 6 > 0) which is a contradiction. Thus Uo is bang-bang on M F.

If ul is a further optimal control, it must coincide with Uo almost everywhere on
M F, since both controls are bang-bang on this set. Otherwise, u2 := 1/2Uo+1/2Ul would
be an optimal control not bang-bang on M F.

Remark. If (P) has no state constraint, then (A) is fulfilled if Yr cannot be reached
by a feasible control. This is the usual condition needed for the standard bang-bang
case (cf. Schmidt and Weck [17]). In the general case, (A) has no such simple
interpretation. In some special situations, it is possible to reduce (A) to a condition
which is less complicated. Compare in this connection the generalized bang-bang
principles in TrSltzsch [18] (see also Mackenroth [10]).

We now turn back to the question of whether a sequence {Uh } of discrete optimal
controls converges to an optimal control Uo of (P). Let N := [0, T]\M.

TrtEOREM 4.2. Let u=0 and suppose that the assumptions of Theorem 2.1 are

fulfilled. Then the following assertions hold with j 1, 2 as in 3.
(a) We have

lim p2SJh Uh p2SJtlo
hO

If Ul is a further optimal control, then pzSul--pzSuo.
(b) There is a subsequence {Wh} of {Uh} which converges weakly in Lz(z) to Uo. For

each such subsequenee we have

limplShWh=plSUo, and limplSWh(t)OC ItN.
h-O hO

(c) If in addition (A) is true, then

Proof. Assertions (a) and (b) follow by standard arguments and the compactness
of S from Theorem 2.1. Assertion (c) is an immediate consequence of Theorem 4.1
and Mackenroth [11, Lemma 2].

Remark. A similar result can be formulated for the one-dimensional case and S3m.
The question of the behaviour of {Uh} on N F is not answered by the preceding

theorem. For N we have plSuo(t) OC which often leads to an additional equation
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for Uo. Then the second assertion of Theorem 4.2(b) can be interpreted as a result of
the defects of the discrete optimal controls on N.

5. Numerical examples. In this section we consider some numerical examples for
the case of space dimension n--1. A numerical example for n 2 can be found in
Mackenroth 13].

We set T 1,
are given by

1, ao 0 and suppose that the boundary conditions

OY(t,O)=O,
Ox

Oy
cey(t, 1)+--(t, 1) u(t)

OX

with a 0.1. Let yT(x)=0.7, assume that the control constraint is given by

0=<u(t)<-I V’t[0, T],

and define

C(t)-{zZ](z(t), 1)=<r/(t) Vt[0, T]}

with r/ C[0, T]. We approximate y(u) by y,,,(u) as described in (3.14). This can be
easily implemented since for k, vk well-known explicit formulas are available.
Experience has shown that for rn 20, the Fourier series gives a very good approxima-
tion of y(u) and the computational effort remains within reasonable limits.

For the numerical solution, it is of course necessary to discretize also the time t.
We do this by using piecewise constant controls and by imposing the state constraint
only at finitely many discrete points. Then it is an easy task to convert the discrete
problems into a quadratic programming problem with inequality constraints. For the
numerical solution of these problems we have used the program SOL/QPSOL by Gill
et al. which worked very well. This program is available in the NAG-Library.

In our first example we consider the bang-bang case. If no state constraint is
present, the optimal control is given by

u0(t)=l ift[0, t.]
if t ]ts, 1]

with ts =0.767. The integrated state, i.e., the function (y(u)(.), 1) is shown in Fig. 1.
This picture shows that a state constraint with

-t+l if [0, 0.6],
r/(t)=

2.5t-1.1 if [0.6,1],

must affect the solution. The corresponding optimal control and integrated state
(obtained by numerical computations) are depicted in Figs. 2 and 3.

We see that in this case, N consists only of a single point tv. The optimal control
Uo is bang-bang on the whole interval [0, 1] and has a jump at tN. Thus Uo behaves
as predicted by the theory.

If we choose a differentiable function for r/ the situation becomes different. For

r/(t)=0.1e3’-6+0.15 /t[0, 1]

the results are shown in Figs. 4 and 5. In this case, N consists of an interval with
nonempty interior. On this set, Uo seems to be smooth.
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Now let , 0.01 and all other data as in the previous example. The corresponding
optimal control is shown in Fig. 6. Here piecewise linear functions are chosen for the
approximation of the controls. Further numerical examples with some additional
theoretical results can be found in Alt and Mackenroth [1].

All computations have been performed on a VAX 11/780 in double precision. A
typical computation time was about 15 seconds.

Acknowledgment. The authors thank one of the referees for a helpful hint
concerning the proof of Proposition 3.1.

REFERENCES

[1] W. ALT AND U. MACKENROTH, On the numerical solution ofstate constrained coercive optimal control
problems, in Optimal Control of Partial Differential Equations, K. H. Hoffmann and W. Krabs,
eds., Proceedings of a conference held at Oberwolfach, December 1982, BirkhSuser-Verlag, 1984.

[2] V. BAR3U and T. PRECUPANU, Convexity and optimization in Banach spaces, D. Reidel Publishing
Company, Dordrecht-Boston-Lancaster, 1986.

[3] N. DINCULEANU, Vector Measures, Pergamon Press, Oxford, VEB Deutscher Verlag der Wissen-
schaften, Berlin, 1967.

[4] H. O. FATTORINI, Optimal control of nonlinear systems: convergence of suboptimal controls I, in
Proceedings of the Special Session on Operator Methods in Optimal Control Problems, Annual
AMS Meeting, New Orleans, January 1986.

[5] G. KNOWLES, Finite element approximations ofparabolic time optimal control problems, SIAM J. Control
Optim., 30 (1982), pp. 414-427.

[6] I. LASIECKA, State constraint control problems for parabolic systems: regularity of optimal solutions,
Appl. Math. Optim., 6 (1980), pp. 1-29.

[7], Boundary control of parabolic systems: finite element approximation, Appl. Math. Optim., 6
(1980), pp. 31-62.

[8] , Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems
with Dirichlet boundary conditions, SIAM J. Control Optim., 22 (1984), pp. 477-500.

[9] U. MACKENROTH, Optimalitiitsbedingungen und Dualitiit bei zustandsrestringierten parabolischen
Kontrollproblemen, Math. Operationsforsch. Statist. S6r. Optim., 12 (1981), pp. 65-89.

[10] Bang-bang controls for time optimal parabolic boundary control problems with integral state

constraints, in Optimization: Theory and Algorithms, J. B. Hiriart-Urruty, W. Oettli, and J. Stoer,
eds., Proceedings of a conference held at Confolant (France), March 1981, Lecture Notes in Pure
and Applied Mathematics, 86 (1983), pp. 213-223.

[11] ., Some remarks on the numerical solution of bang-bang type optimal control problems, Numer.
Funct. Anal. Optim., 5 (1983), pp. 467-484.

[12] On parabolic distributed control problems with restrictions on the gradient, Appl. Math. Optim.,
12 (1983), pp. 69-95.

[13] Numerical solution of some parabolic boundary control problems by finite elements, in Control
Problems for Systems Described by Partial Differential Equations and Applications, I. Lasiecka
and R. Triggiani, eds., Proceedings of the IFIP-WG 7.2 Working Conference held at the University
of Florida, Gainesville, 1986, Lecture Notes in Control and Information Sciences 97, 1987,
pp. 325-335.

14] K. MALANOWSKI, Convergence ofapproximations vs. regularity ofsolutionsfor convex, control constraint

optimal control problems, Appl. Math. Optim., 8 (1981), pp. 69-85.
[15] S. M. ROBINSON, Regularity and stability for convex multivalued functions, Math. of Oper. Res.,

(1976), pp. 130-143.

[16] D. WASHBURN, A bound on the boundary input map for parabolic equations with applications to time

optimal control, SIAM J. Control Optim., 17 (1979), pp. 652-671.
[17] E. P. J. G. SCHMDT AND N. WECK, On the boundary behaviour of solutions to elliptic and parabolic

equations with applications to boundary controlfor parabolic equations, SIAM J. Control Optim., 16
(1978), pp. 593-598.

18] F. TRtSLTZSCH, Optimality conditions for parabolic control problems and applications, Teubner, Leipzig,
1984.

19] , Semidiscrete finite element approximation ofparabolic boundary control problems--convergence
of switching points, ISNM, 78 (1987), pp. 219-232.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 27, No. 4, pp. 737-757, July 1989

(C) 1989 Society for Industry and Applied Mathematics

004

AN ELLIPSOID TRUST REGION BUNDLE METHOD
FOR NONSMOOTH CONVEX MINIMIZATION*

KRZYSZTOF C. KIWIEL

Abstract. This paper presents a bundle method of descent for minimizing a convex (possibly nonsmooth)
function f of several variables. At each iteration the algorithm finds a trial point by minimizing a polyhedral
model of f subject to an ellipsoid trust region constraint. The quadratic matrix of the constraint, which is
updated as in the ellipsoid method, is intended to serve as a generalized "Hessian" to account for
"second-order" effects, thus enabling faster convergence. The interpretation of generalized Hessians is
largely heuristic, since so far this notion has been made precise by J. L. Goffin only in the solution of linear
inequalities. Global convergence of the method is established and numerical results are given.

Key words, nonsmooth optimization, nondifferentiable programming, convex programming, descent
methods, ellipsoid algorithm
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1. Introduction. This paper presents a readily implementable algorithm for
minimizing a convex (possibly nonsmooth) real-valued function f defined on R N. We
suppose that the set of minimum points of f:

X* Arg minf= {x* RN f(x*) <-f(x)lx R }

is nonempty, and that we know center Xc R and radius r> 0 of some ball E--
{x R" Ix xcl =< r} that intersects X*. The algorithm requires only the computation
off(x) and one arbitrary subgradient gs(x)Of(x) off at each x RN.

The performance of the several existing methods for minimizing f depends on
the shape of the level sets off The bundle methods of descent (see, e.g., [K2] for their
survey), which can be derived by introducing a regularizing quadratic term in the
cutting plane method [K1], seem to perform best when f is close to being piecewise
linear (polyhedral) and the Haar condition [H1] holds at the minimum point. These
methods are sensitive to objective scaling (multiplication of f by a positive number),
since so far no scale-invariant rules are known for choosing the weights of their
quadratic terms. On the other hand, the ellipsoid method (see IS1] and [Y1]), which
can be described as a variable metric subgradient optimization method [G5], seems
to work well whenf has very elongated level sets, whereas its performance deteriorates
for polyhedral functions with "fat" level sets (see [Y2, 9.5] and [G5]). This method
is insensitive to objective scaling.

The algorithm of this paper attempts to combine the best features of the ellipsoid
and bundle methods. At each iteration it finds a trial point by minimizing a polyhedral
model of f subject to an ellipsoid trust region constraint. The quadratic matrix of the
constraint, which is updated as in the ellipsoid method, is intended to serve as a
generalized "Hessian" to account for "second-order" effects, with the purpose of
enabling faster convergence when the Haar condition does not hold. The subproblem
of finding the trial point is solved approximately by estimating the Lagrange multiplier
of its constraint and solving the resulting quadratic programming subproblem. In effect,
the algorithm may also be viewed as a bundle method with an automatic choice of
the quadratic term and its weight, which is, in principle, insensitive to objective scaling.

Received by the editors July 15, 1987; accepted for publication (in revised form) May 25, 1988. This

research was supported by The Polish Academy of Sciences, Project CPBP.02.15.
t Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland.
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Our algorithm is intended for complex functions of relatively few variables, for
which one function and subgradient evaluation dominates the effort per iteration
involved in variable metric updates and quadratic programming subproblems. Hence
it tries to minimize the number of function evaluations required to achieve a given
accuracy. In particular, it evaluates f not at the center of the current ellipsoid, as do
the existing ellipsoid methods (see [$2], [El], [E2]), but at a point that should have
a lower objective value according to the accumulated model of f

Our interpretation of the generated ellipsoids as generalized "Hessians" is largely
heuristic, since so far this notion has been made precise by Goffin [G4], [G7] only in
the solution of linear inequalities. Alternative approaches to incorporating "second-
order" models in the bundle methods are given in [L3], [L4], and [M1]. So far, they
have not produced implementable algorithms.

We prove that the sequence of points generated by the method minimizes f
Rate-of-convergence results are still missing, but we report some encouraging numerical
experience. Also, we will show that there is much freedom in implementing the
algorithm, and we have only begun to explore some of the possibilities. In particular,
we have been using simple ellipsoid cuts, whereas more refined ellipsoid updates would
probably be more efficient.

We refer the reader to [A1] and [B1] for surveys and bibliographies of the
ellipsoid method, and to [$3] for some of its modifications.

The paper is organized as follows. In 2 we derive the algorithm, which is stated
in detail in 3. Its convergence is established in 4. Various more efficient ellipsoid
updating strategies are discussed in 5. Section 6 describes an implementation of the
method. Subgradient aggregation is introduced in 7. Numerical results are reported
in 8. Section 9 concludes the paper.

We use the following notation. We denote by (.,.) and l" I, respectively, the usual
inner product and norm in finite-dimensional, real Euclidean space RN. We use xi to

denote the ith component of the vector x. Superscripts are used to denote different
vectors, e.g., x and x2. All vectors are column vectors. However, for convenience we
sometimes write (x, y) for (x r, yr)r, where T denotes transposition. For an N N
symmetric positive definite matrix A, we let A
(x, Y)A (Ax, y) xrAy, IXIA (Ax, x)/-. The volume Vol (S) of a bounded measurable
set S in R N is its N-dimensional Lebesgue measure.

For any x R N,
Of(x) {g

denotes the subdifferential of f at x. The mapping Of(. is locally bounded and f is
continuous (see, e.g., [D1, 1.7.1 and Thm. 1.4.1]). T(a)= {x RU’f(x) <- a} is the
a-level set of f.

2. Derivation of the method. The algorithm to be described will generate two
sequences of points {xk}k= and {y}= in R, where x yl is a given starting point.
The sequence {x} will satisfy f(x’+)<f(x’) if x’+x’, and f(x’)$minf The
auxiliary trial points y will be used for computing f(y’) and gk= gs(y’) for all k
(with y+= x+ if xk+ x k’, see below). Also a sequence of ellipsoids

<_-1}E, {x R v. ix XclAt(
with centers x e R" and symmetric positive definite matrices A will be generated
such that Ek fq X*# for all k, where E is a given starting ellipsoid.

At the kth iteration, the algorithm will try to find a point y+l such that f(y’+) <
f(x). Ideally, yg+ should minimizef Since E f’l X* # , we may restrict the minimiz-
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ation to Ek, i.e., we may consider the subproblem

(2.1) minimize f(y) over all y

The trial point yk+l will solve an approximate but manageable version of subproblem
(2.1), which is derived as follows.

The algorithm will use the following polyhedral approximation to f:
fk(x) max {f(x):j jk} for all x,

where jk is a subset of {1,.-., k} and

fj(x) =f(yJ)+(gf(yJ), x-yi) for all x

is the jth linearization off satisfying f(x) >=fj(x) for all x. Replacing f by fk in (2.1),
we obtain the subproblem

minimize fk(y) over all y

minimize u over all (y, u) R N x R

(2.2) satisfyingfj(y) <_- u for allj

’2"

Let r} k denote the optimal Lagrange multiplier for the quadratic constraint of
(2.2). It is not easyand apparently not advisableto solve (2.2) too accurately; the
algorithm will find (yk+, uk) to

minimize 1/2rlkly Xfl 2
a/ t_ U over all (y, u) R v+l

(2.3)
satisfyingfj(y) =< u for allj jk

for some rt
k _--> k, so that yk+l Ek. The search for rt k, which will test increasing values

of r/k, will be similar to that employed in the trust region methods (see [M2] for a
survey). Section 6 will suggest another argument in favor of larger values of r/k.

Another motivation for subproblem (2.3) stems from the fact that, in a suitably
transformed space, it reduces to the subproblems of the bundle methods of [K2,
Chap. 2], thus inheriting their useful theoretical and computational properties. More
specifically, the direction fir k yk+ -xe and the predicted objective decrease

(2.4) v k f(y+)-f(xk) u k f(xk)
can be found by solving the subproblem

minimizesrkl[+v overall (d, v)e Rr+
(.5)

satisfying -c+ (gJ, J) =< v for j

where

(2.6) c =f(xk) -f(x) for j

Let us represent the symmetric and positive definite matrices Ak and Bk A{ as

ak=fi.[fi.k and Bk=
where /k l is a nonsingular N x N matrix (e.g., /2 is the Cholesky factor
Consider the space transformation

x - x,

and its equivalent form
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which maps x k, Xc, yJ, y and into e, )71, and k, respectively. In the
transformed space (Y-space), 9=/}g9 are the subgradients of the function f(:)=
f(/{l) at )7i, for j jk, whereas (aJ k, v k) solves the transformed subproblem

(2.7)
minimize1 k 2

5r/ 1[ + v over all (, v) R s+l

satisfying -c+ (i, ) _<_ v for j jk.

The bundle methods of [K2, Chap. 2] use subproblem (2.7) for generating a
~k )k k kdescent direction for f at )ke. (In fact, they use Xc and q 1 in (2.7), but r/ can

be suppressed in (2.7) by replacing/k with ()k)/2k in the transformation.) Therefore,
by transforming "back" the results of [K2, pp. 49, 64], we can establish the following
properties of subproblem (2.5). Let h,j 6 jk, denote the (possibly nonunique) Lagrange
multipliers of (2.5), and let

(2.8)

and ilk=’pk Then k --k/rlk,--vk=lgkl/rlk+5 p,

(2.9a) k Bkpk,k

(2.9b)

Moreover,

Bk -" g.
p

(2.10) wk= 1__ pk 2 k27k[ IBk +Sp

is the optimal value of the dual subproblem

1
minimize-- ; Ag +;k A95;,2/k

(2.11)
subject to A9=1, A9>_-0 forjjk,

jeJ

whose solution set coincides with the set of Lagrange multipliers of (2.5). In particular,

(2.12) .;A;=I’ A=>0 forjjk.

In general, we would like the ellipsoid E Ek to be a tight approximation to (a
portion of) X*, since then the point yk+l Ek would be close to optimal. Whenever
we identify a redundant poaion E- of E such that E- X*=, we may reduce E
by replacing it with a smaller ellipsoid E+ that contains the remaining portion EE-
as in the ellipsoid methods (see, e.g., [$2]). The ellipsoid methods update E as follows.
Using one or more cutting planes, they choose a poaion of E that contains E X*
and no more than half of E, and let E+ be the smallest-volume ellipsoid containing
this portion. To ensure that at least half of E is cut off, so that Vol (E+)N q Vol (E)
with q < e-1/(2N+2) < 1 (see [T1]), they use the hyperplane {x R N" (gf(x), x-x) =0},

kor its translation (if gy(x)=.0, they terminate with xk X*). Our algorithm will use
the bounding hyperplane of

(2.13)
k NHp {x R (pk, x-- xk) <= Skp}
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kdefined via (2.8). This will save the computation of gs(Xc), but will provide a significant
volume reduction only when c kc < 0. More specifically, if we let E+ be the least volume

k < 0 and p 0, whereasellipsoid containing E f-I Hv, then Vol (E+)-< q Vol (E) if CTp=
E+ ["1 X* if (E f’l Hv) X* , which will hold if

k(2.4) r(f(x)) c g,,
because E (3 X*. Now, multiplying by the relations

(2.15)
f(x) >- f(y.) + (g(y.), x y) f(x)

=f(x’)+(gJ, x-Xc)-d for all x

and summing over j e Jk, we deduce from (2.8) and (2.12) that

for all x,(2.16) f(x)>-f(x’)+(p’,x-x)-dp
which establishes (2.14). Moreover, by (2.16), the algorithm may stop with x X* if
-k kap <-0 and p =0. Thus we may replace E with E/ to obtain the desired volume
reduction if kap<_-0.

In geometric terms, the aggregate cut discussed above is provided by the aggregate
linearization

f(x) =j;k af(x)=f(Xc)+(p, x-x) for all x

" relation (2.16) means thatf(x) _->jTk(x) for all x, and we havewith f(x) =/(x) p,
Hp={xRN.f(X)<=f(xk)}. A deep cut with xcHpc is obtained if jT(x)>

< 0). On the other hand, relation (2.15) shows that the "ordinary" lineariz-f(xk)(ap
ations f define cuts (called supercuts in [$2]) based on the relations

(2.17) H.., {x 6 R"" (gJ, x x) < c} {x" f(x) =</(x)}, T(f(x’)) = H.
Thus our aggregate cut is a convex combination of "ordinary" cuts (cf. (2.8) and
(2.12)); it reduces to the surrogate cut of [G8] when f is polyhedral and f(x) minf.
More will be said about cuts in 5.

A useful stopping criterion can be derived from (2.16) as follows. Since B A
and the Cauchy-Schwarz inequality yields

k kI(p, x Xc)l I(Bp, x Xc)a[ -< IBplalx XclAt(
k=]pllx-x.l,

we may set x- x* E f’l X* in (2.16) to obtain
k(2.18) f(x)<-minf+[P] +v"

kThus the algorithm may stop if [p[ + cTv(>-0) is sufficiently small.
k > 0 and p 0, thenIf neither an ellipsoid update nor termination occur, i.e., c7 v

the predicted objective decrease v is negative (cf. (2.4) and (2.9b)). To ensure a
significant objective reduction, the algorithm will take a serious step from x to
x+ =yk+ only if

(2.19) f(y+) <-f(x) + my,
where m (0, 1) is a parameter. Otherwise, a null step with x+= xk will occur, but
the new linearization f/l off at y/ will contribute to our finding a better next trial
point y+.

3. The methol. We shall now state the simplest version of the method, postponing
more efficient modifications until 5 and 6.
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ALGORITHM 3.1.
NStep 0 (Initialization). Choose a point Xc R and a symmetric positive definite

N N matrix A1 such that the ellipsoid E1 {x R N Ix Xc]A, 1 } satisfies E VI X*. Select a starting point x RN, a final accuracy tolerance e >-0, a line search
parameter rn (0, 1) and weight updating parameters r/, > 0 and X (1,100]. Set y= x
and jl__ {1}. Compute f(y), g gy(yl) and f(x) =f(yl)+(g, xl y 1). Choose r/

(0, r/,]. Set the iteration counter k 1 and the counter of serious steps L=0. Set
k(O) 1 (k(L) will denote the iteration number of the Lth (latest) serious step).

Step 1 (Direction finding). Find the solution (k, Vk) and Lagrange multipliers
kA., jjk, of subproblem (2.5), with a, jjk, given by (2.6). Compute pk and

by (2.8).
k > 0, go to Step 4;Step 2 (Stopping criterion). If Ipkls + kp <__ e, terminate. If

otherwise, continue.
+ NStep 3 (Ellipsoid updating). Find x R and a symmetric positive definite N N

matrix A+ such that E+ {x RN’lx-X+IA+----< 1} is the smallest-volume ellipsoid
k k k +containing Ek (q Hp, where Hp is given by (2.13). Replace x and Ak by x and A+,

respectively, choose r/+ (0, r/,], replace ,/k by r/+, and go to Step 1.
Step 4 (Weight updating). If IklA_--< 1, go to Step 5. Otherwise, choose

[,,T] k, 100r/k], set T] k= T]
+ and go to Step 1

Step 5 (Line search). Set yk+= xk+ k and compute f(yk+) and gk+= gy(yk+).
Iff(yk+)<--f(xk)+mv k, set xk+=yk+, k(L+l)=k+l and increase the counter of
serious steps L by 1. Otherwise, set xk+= xk.

Step 6 (Subgradient selection). Set .k= {jjk. A 0} and choose a set jk+

satisfying kU{k+ 1} jk+ jkt.j{k+ 1}.
Step 7. If xk+ X k, set T/k+l T/k otherwise, choose T/k+l (0, T/u ]. Set X+1 __Xck

and Ak/l--Ak. Increase k by 1 and go to Step 1.

A few comments on the algorithm are in order.
Guidelines for choosing an initial ellipsoid can be found, for instance, in [G8]

Xand [E2]. The obvious choice is to let x= and A (I/r)/, where I is the identity
matrix and r > 0 estimates the Euclidean distance from x to X*. It is reassuring to
know that even if we had E f’)X*= , the algorithm would still minimize f on E,
as will be proved in 4.

Step can be implemented with the quadratic programming routine of [K3]
(see 6).

Termination at Step 2 implies that f(xg)<-minf+e (cf. (2.18)). (This estimate
would be weakened to f(xk) <-- min {f(x): x El} + e,. if we had E X* ; see 4.)

The ellipsoid update at Step 3 is well defined, since the algebraic distance (in the
k kmetric defined by[. IA,) from x to Hp

(3.1) wpk -/Ip.l,.
k -k k k> 0 after Step 2; note that in the Y-spacesatisfieS Wp e [0,1) whenap=<0and] ]+Cp

Ek--AkEk is the unit ball, whereas top
k is the distance from )kc to Hp--AkHp

{. (fig, _k)_< Cpk}. Hence we can compute x+ and B+ A as in [G8]; see 6. At
the kth iteration, an infinite number of returns to Step 1 from Steps 3 and 4 is possible
only when xk X* (see 4), an unlikely situation when f is not polyhedral.

The restrictions on the choice of the weighting coefficient T
k attempt to limit its

growth. Specific choices of 7
k will be discussed in 6. Here we may observe that if

+ kthere is a cycle between Steps 1 and 4 without ellipsoid updates and we choose 7
at Step 4, then the cycle will terminate (see 4) with rlk/x < k
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Observe that X
k
E Ek for all k if x1E El, since X

k is never cut off at Step 3 due to
(2.14), whereas yk+E Ek by construction, for all k.

The quadratic programming routine of [K3] will compute at most N+ 1 nonzero
multipliers A. Hence at Step 6 we can choose a set jk+ with at most N+2
elements. This number of stored subgradients may be reduced by using subgradient
aggregation ( 7).

4. Convergence. In this section we show that the algorithm minimizes f. Naturally,
we assume that the final accuracy tolerance e. is set to zero (and that El f3 X* at
Step 0).

We start with the ellipsoid updates.
LEMMA 4.1. If Algorithm 3.1 did not stop before the kth iteration, then at Step 1

we have

(4.1) T(f(xk)) f] El c Ek.

Proof If Ek El, the inclusion is obvious. Hence, suppose that for some j < k
we have E T(f(xJ)) E. at Step 1 and a new ellipsoid E+ is constructed at Step 3.
Then E1 ["] T(f(x)) c__ E f’) T(f(x)) c E.i f’) Hp c E+ (cf. (2.14)). Since f(x+’) <-f(xi),
the desired conclusion follows by induction.

Since E1 f’l X* by assumption, relation (4.1) implies that Ek CI X* (g. Hence
we may use (2.18) to obtain Lemma 4.2.

LEMMA 4.2. If Algorithm 3.1 terminates at the kth iteration, then x k X*.
From now on we suppose that the algorithm does not terminate.
Due to Lemma 4.1, the case of an infinite number of ellipsoid updates may be

analyzed as in [G6].
LEMMA 4.3. If Algorithm 3.1 executes Step 3 infinitely many times, then either k

stays bounded and X
k X, or f(xk) $ minf as k - o.

Proof. By construction, when Step 3 is entered with topk[0, 1) (see (3.1)), E/
satisfies Vol (E+)< e-/2N+2) Vo1 (Ek) (see [T1]), and E+ becomes Ek until the next
update. Hence infinitely many updates lead to Vol (Ek)O. NOW, to derive a contra-
diction, suppose that there are infinitely many iterations withf(xk) >-_ where f>f(x*)
for some x*E E f)X*. Then Vol (T(f)fq El)> 0 from the continuity of f, whereas
(4.1) yields T(f)fqE c Ek. Thus, 0<Vol (T(f)fq El)-< Vol (Ek) for all k, a contradic-
tion to Vol (Ek)$O. Since {f(xk)} is nonincreasing, we deduce that f(xg)$f(x*) if
k- oo. If Step 3 is executed infinitely many times for some fixed k, the same arguments
show that x k X*.

From now on we suppose that only a finite number of ellipsoid updates occur.
Then there exist k.>-I and an ellipsoid E ={x" ]x-)c[,-<l} with center )c and a

symmetric positive definite matrix A such that after the last return from Step 3 to Step
1 that occurred at iteration kE, if any, Step 1 is entered with

k(4.2) Ek E, x ., Ak A ifk->kE.

Let y > 0 denote the square root of the minimum eigenvalue of A, so that

(4.3) lxl Ixl for all x.

We may now show that the algorithm cannot cycle infinitely between Steps 1 and
4 when its ellipsoid stays constant.

LEMMA 4.4. Under the preceding assumptions, Algorithm 3.1 executes Step 5 at

each iteration and there exists l > 0 such that qk <_ for all k.
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Proof In view of the algorithm’s rules, it suffices to show that there exists
such that if (4.2) holds, k->_ kz, and r/->_ , then [ak(r/)l/x<= 1, where (ffrk(r), uk(r))

minimize 1/2r/lrl+ u over all (d, u) R u+l

satisfyingf/(ffc)+(g, d)<_- u forjJk.

Since d 0 and u =f(c) ->f() for all j jk are feasible above,

(4.4) 1/2r/I dk(r/)l + uk(r/) _<-f(ff).

The definition of f and the Cauchy-Schwarz inequality give

uk(r/)=max {fj(,c)+(gj, k(rl))’j jk}

>_- min {f(y) + (g, y): j jk} ]k( q )l max

Hence there exist constants C1 <f(ff) and C2> 0 such that

(4.5) uk(rt)>=C--[k(rt)lC2 forall >0 and k>=k,

because yJ E =/ if j> k, / is bounded, f is continuous, gJ Of(y), and Of is
locally bounded. Combining (4.3)-(4.5), we get

f() C, ( )(()l C2/y).

Therefore, if ]()> 1 then /2-C2/Tf()-C, and the existence of is clear.
By the rules of Step 5,

x=x) ifk(L)k<k(L+l),

where for theoretical purposes we may let k(L+ 1)=+ if the number L of serious
steps stays bounded, i.e., if x= x) for some fixed L and all k k(L). First we
consider the case of unbounded L.

LEMMA 4.5. Suppose that Algorithm 3.1 executes infinitely many serious steps. en
x and X*.

Proof Let K {k(L+ 1)- 1" L= 1,2,. }, so that at Step 5f(x+)f(x)+ mv
for all k K. Since -v ]p]/+6>0 for k k and m (0, 1) is fixed, whereas
f(x)f(x+)minf for all k, passing to the limit with kK in the inequality
f(x)-f(x+) > mv yields - 0 and Ip[n/ O. Letting k K approach
infinity in (2.18), we get f(x)minf By (4.3), (4.2), and (2.9a),
xk+l-c] ]yk+l clak ]klak ]Pkl"k/k for large k K, so pkl./k r 0 implies
xk. Hence f(xk)+f() due to the continuity off and f(ff) minf as desired.

It remains to consider the case of infinitely many successive null steps.
LEMMA 4.6. Suppose that xk= xk()= for some fixed L and all k k(L). en
X* and X*.
Proof In view of Lemma 4.4, the algorithm’s rules imply the existence of > 0

and > max {k(L), k} such that k for all k ; otherwise, successive increases
of k with X > 1 at Step 4 would make it unbounded, a contradiction.

k-1 ’k-1 X
k xk-1 k k- ykLet k k be fixed. Since yk X + , x x and f( >

f(xk--)+ myk-, we obtain from (2.6)

(4.6) =f()_f(yk)_(gk,c_yk), _+(gk, k-1)> mok--.

Suppose the matrix is factorized as =r, where is N xN and
nonsingular, and consider the space transformation

XX X
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which maps xk, , yJ, and dk into 5k, , 33j, and a k, respectively. Also let
k 6:k+(p,,x,_x,)k_xk) foralljJk,fik A-rpk and ffp= pand af af + (gS, x

>0 (k>kz), d=-ff and -v=Thus for kk we have A=T, 6
by (2.10) + + (with * ) and, byIl=+ by (2.9), w 1l=/2 + x=

(4.6), -a+(, k-)> mv- with 0< m < 1. Hence we may use the various relations
of 2 to deduce that for all k k, Algorithm 3.1 is essentially equivalent to the method
of [K2, 2.5] applied to the convex function f(. =f(-. in the space transformed
via (4.7). Then the results in [K2, 2.4, 2.5] imply that w Ipl/2 + 0 (see
(2.10)). Therefore, pkln 0 and - k > 0 and kapO, since ffp for all k> , and
(2.18) yields X*.

It remains to show that X*. Since w 0 and -> 0 for large k, (2.9b) andp
(2.10) imply that v 0. Hence u =f(x) + vk f(). On the other hand, by (2.4),

(4.8) u k >f(yk+l)=f(yk)+(gy(yk), yk+l yk)

because kJk for all k. Since ly+-l,-Ipl,./ for large k, and Ip[,-0, (4.3)
implies that yk__> c. Passing to the limit in (4.8), we get f(:)=>f(c), since u k -->f(),
yk __> , f is continuous and gy(. is locally bounded. Thus : X* and f() ---f(:c),
so X* as desired.

We conclude from Lemmas 4.5 and 4.6 that the case of a finite number of ellipsoid
updates is rather unlikely, since then the center of the last ellipsoid must be optimal.

Combining Lemmas 4.2-4.6, we deduce our principal result.
THEOREM 4.7. Either the sequence {xk} generated by Algorithm 3.1 is finite and its

last element minimizes f, or {Xk} is infinite and f(xk) minf as k .
The key condition needed to ensure convergence is E CI X*= . Even if it fails,

we still have the following theorem.
THEOREM 4.8. IfAlgorithm 2 is applied to a general convex function f, which does

not necessarily attain its infimum on R N, then either of the following holds"
(i) The sequence (xk} is finite and its last element Xk minimizesfort the set Uj= Ej;
(ii) {xk} is infinite and limk_,f(xk) <=inf {f(x) X Uj=I Ej} (e.g., limk_f(xk)

Proof. Extend Lemma 4.1 by showing that

k

(4.9) T(f(xk)) Fl U Ej Ek
j=l

and use the proof of Lemma 4.3 with f >f(x) and an arbitrary x [_J Ej to deduce that
either (i) or (ii) holds if Step 3 is executed infinitely often. In the remaining case,
suppose that {f(xk)} is bounded from below and obtain (ii) from the proofs of
Lemmas 4.5 and 4.6.

Note that relations (2.16) and (4.9) imply that

f(x) <- min f(x)" x Ej + Ip[ +

which justifies the stopping criterion of Step 2 in the general case.

5. Ellipsoid updating strategies. Proceeding as in [G6], we can establish an upper
bound on the rate of convergence in objective values in terms of the rate of volume
reduction of successive ellipsoids of the method. To obtain a faster volume reduction,
the following modification will use more ellipsoid cuts.
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Suppose that at Step 0 we choose a fixed 03 (-1/N, 0]. Steps 2 and 3 are replaced
by the following:

< e or [gl + c. < e. for some j jk,Step 2’ (Stopping criterion). If Ip"l / p-
terminate; otherwise, continue.

Step 3’ (Ellipsoid updating). (i) Set the ellipsoid update indicator ie 0.
(ii) Compute the algebraic distances

k -koo,=-,llpl, ifiz =0 and wy= o-a’/Igl, forjJk
kfrom X/c to Up and H, respectively (cf. (2.13), (2.17)). Let j* maximize w..1 over j J.

" w.. and H H*.If iz 0 and w-> w., set w w and H Up, otherwise, set w
(iii) If w < 03, go to (v); otherwise, continue.

+(iv) Let E+ {x R N" IX--XcIA+<--_ 1} be the smallest-volume ellipsoid containing
k +E f’i H. Set iz 1, replace xe and B by xc and A and go to (ii).

+ k +(v) If iz 0, go to Step 4; otherwise, choose r/ (0, %], replace r/ by r/ and
go to Step 1.

The modification above uses "ordinary" cuts based on relations (2.17), which
provide the following analogue of (2.18)

(5.1) f(xk)<-_minf+lgl +

for the stopping criterion. Step 3’(ii) chooses the (possibly nonunique) deepest cut if
w > 0, or the least shallow cut if o) =< 0. The condition w 03 > 1 /N ensures a significant
volume reduction, since at Step 3’(iv) we have Vol (E/)= q(o)) Vol (E) with

N ) (N-1)/2q(w) N221

N
N+I

(1 -w2)-’)/2(1 -w),

q(o)) --< q(03) ---< := e -N(’+I/N)2/3 % 1

for N> 1 (see [T1], [G7]). On the other hand, w < 03 implies that

(5.2) [031E T = E,
where Tk= Ek jjk H is an outer approximation to Ekf-I T(f(xk)). If we had
03 =-1IN and Tk= T(f(xk)), relation (5.2) would mean that the matrix Ak of Ek is
a generalized "Hessian" of [G7]. (This terminology comes from the fact that for a
smooth convex f with a minimizer x* the classical Hessian at x* is associated with
the limit of the smallest ellipsoid containing (or the largest ellipsoid contained in)
T(f(x*)+ ez/2)-x*]/e as e $0; see [G7] for details). Wanting Ek to be close to Tk,
and hence to T(f(xk)), we would like to have a large value of 103] in (5.2). Since such
a value cannot, in general, be greater than 1/N (see [G7]), whereas 03 close to -1/N
may result in exceedingly many updates, in practice we use 03 =-1/2N.

kThe deepest aggregate (or surrogate) cut is defined if xe is cut off by at least one
half-space H with c. > 0. This cut is given by the half-space containing fqjjk H

kthat is furthest from x in the metric of[. Ink. can be found by projecting x on
fq H. Thus we may find for d"

rninimize 1/21dl,
subject to -c. + (g, d) < 0 forj J,
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since k= {X" (-Akd, x-x))<--Id12a}. Equivalently, we may find the Lagrange
multipliers A k

Hj of (5.3) that

minimize
Bk

subject to Aj >- 0 forj jk,

and let

since then d --Bkpkn and

(5.4) I2Ik (x R N" (p, x--x) <-- a}.

Of course, finding the deepest aggregate cut involves additional work in quadratic
programming. Therefore, it is worthwhile to observe that the usual aggregate cut may
be close to the deepest one. For instance, k= Hpk if v k =0. indeed, in this case
subproblems (2.5) and (5.3) produce ak dkH, pk =pkH, and -k akH, SO that relationsOp
(2.13) and (5.4) imply that Hpk k. This suggests that Hp approximates k whenever
Ivkl is small relative to IgJl for j e

Note that at Step 3’ we could go from (iv) to (v) directly.
There exists an additional possibility for updating the ellipsoid after a serious

k+l / k ...step. When xk+lxk at Step 7, we may compute
f(xk+l)--f(xk), increase k by 1, and, before going to Step 1, execute Steps 2’ and 3’.

So far we have restricted our discussion to single cuts. To obtain a greater reduction
in volume, at Step 3’(iv) we may choose a subset Jkn of jk such that to->_ o3 for some
jJ, and then let E+ be the smallest-volume ellipsoid containing the set Sk=

Ek Njjk H. In practice the construction of E+ may be too complicated if Jkn has
more than two elements (see [$3]); for two elements explicit formulae are given in
[G1], [El]. In fact, it is not absolutely necessary to use minimum volume ellipsoids,
and we may let E+ be any ellipsoid containing Sk such that Vol (E+)=< q(o3) Vol (Ek).
This extra freedom may facilitate the construction of E+.

It is straightforward to verify that all the modifications discussed in this section
are covered by the convergence analysis of 4.

We conclude that the algorithm can use a variety of techniques for updating its
ellipsoids. Naturally, the best strategy is open to question.

6. Implementation. In this section we discuss our implementation of the algorithm.
As in [G8], at the kth iteration we use the factorization

Bk LDLT

with L a lower triangular N N matrix with unit diagonal and D diag (dl, , dN)
a diagonal matrix with positive diagonal. Let /k--LD1/2, so that Bk "-Jk. We do
not store the subgradients gJ, but update the vectors

(6.1) J [gJ D/LTg forj jk.
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Step 1 is implemented with the quadratic programming routine of [K3]. This
routine solves the following version of the dual subproblem (2.11)"

(6.2)

1
minimize jk
subject to ,j 1 h->0 forjJ’.

It also computes, as byproducts, the quantities

(6.3) (/k, 5p)= h(, 5),
k-kIp[2=[/[, and /%=-{[fl:+r/ ap} (cf.(2.9b)). Hence we can calculate

A=[ [2/(V and

(6.4) -( 1 / V)fi -( 1/)LD/Zfi.
The algorithm terminates at Step 2’ if

g g j x(6.5) min{lfl+av, I+a:j }e(l+lf()[),
where e> 0 is the desired relative final accuracy in the objective value, i.e., f(xg)
minf e(1 +[f(x)) at termination; see (2.18), (5.1). (This stopping criterion is less
sensitive to problem scaling than that of Algorithm 3.1.) Hence we compute the norms
Iff[, which are also needed by the quadratic programming routine.

For simplicity, we use the single cuts described at Step 3’ in 5.
The ellipsoid updating at Step 3’(iv) is trivial if N 1. Hence, suppose that N > 1

k k -kand Hp is used to cut E. As in [GS], we compute Wp

w min {wv, 1-e},

t ( + No)/(X + 1)Pl,
+ tLD/2,(6.6) x =x-

6 N2(1 02)/(N 1),

=2(1+ N)/(N+ 1)(1+),

where the use of the relative machine precision e ensures that the updated matrix

B+ AT given by

B+= 6[B Bp(Bp)/[pglZn]
can be factorized as B+ L+D+L with L+ lower triangular and D+ diagonal with
positive diagonal. More specifically, we compute

so that B+ L[6(D qyy)]L and then find a diagonal matrix diag (,. , d)
and a unit lower triangular matrix () such that D- qyyv=v by using the
following recurrence relations"

(i) Set tu+=(N-1)/(N+I)(1-o)/(I+o);
(ii) Forj=N-1,...,1 set

t t+ +/a,
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and by setting lj y,flj forj < (see [G3]). Then D+ 6/ and the product L+= (l) V--
L can be computed from the recurrence relations (see [G2])"

(i) Set q yN;

(ii) Forj=N-1,...,1 set

q= Yj,

l o + flq
for i=j+l,...,N.

q{ q{+’ + yjlo
To update the quantities 6=f(x)-(x) we use the relations

(x:)-(x) (g, x:- x)= (gJ, ;l(x:- X))= -t(g,
which follow from (6.1) and (6.6). Next, to update the transformed subgradients (6.1),
we note that

/2rr"j D/2%rgj D/2rD-/2j,
so that gJ l/2fTj

+ +s can be computed from the backward recurrence (see [G2])"
(i) Set g%= d%g%;
(ii) Fori=N,N-1,...,2set

s s +

1/2 i fli(d) 1/2 are computed before-where the quantities d (d/d)/, y/d
/ and (d)’/hand, using the stored values of d

The convergence analysis of 4 imposes only weak restrictions on the choice of
{k}. Relation (5.2) with [ =N suggests that it may be useful to restrict the trial
point finding to the smaller ellipsoid l[Ek which, being an inner approximation to
Tk, should be almost contained in T(f(xk)). Hence our strategy for selecting k aims
for yk+ to

minimize f k (y)

subject to y reEk
or equivalently for k= yk+_X to

minimize f k
X + if)

(6.7)
subject to l[a r,

where re (0, 1] is a trust region radius. We use the fixed value r 1/2N (corresponding
to =-1/2N), which seems to work better than re 1, although an adaptive choice
of re at each iteration could be more efficient.

We relate subproblems (6.2) and (6.7) through the following choice of k. At
Steps 3’(v) and 7 we set + and k+ (if Xk+ Xk) to the value of mn 10-, since
smaller values may lead to inaccuracies at quadratic programming (cf. (6.4)). At Step
4, if [k[a > 1.2re, k is increased to

+(6.8) =max {1.2lffla/r, x}w ,
where X > 1 is a parameter. When + replaces k in (6.2), the corresponding fi+ and
+ given by (6.3) and (6.4) satisfy lfi+] Ifikl, I+IA Ifi+l/+ and

ld+[a lklAk/+min {1/1.2, 1.2/X}re.
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Hence, eventually we get

(6.9) min {1/1.2, 1.2/X}re -<-[dk[A <---- 1.2re,
which implies satisfaction of the trust region constraint of (6.7) with the relative
accuracy of 20 percent if )(’ 1.5. It might appear that, since r/k is not decreased after
null steps with no ellipsoid updates, we could have ]dklAk much smaller than re at
Step 4. Yet in our calculations the bound (6.9) was (slightly) violated in negligibly
few cases.

We could, of course, consider other ways of selecting r/k, e.g., safeguarded
interpolation using parametric analysis of subproblem (6.2) with respect to r/k. We
note that when the change of r/k is small enough, our quadratic programming routine
[K3] can solve the new subproblem very quickly by exploiting the information gathered
so far.

We use the following subgradient selection strategy. At Step 0 we choose the
maximum number Mg >-N+2 of stored subgradients. At Step 6 we initially set
Jt’+l=jk(.J{k+ 1} and then, if necessary, drop from jk+l an index j.k with the
largest value of f(xk+l) fi(Xk jk+lc), so that has at most Ms elements.

It is worth adding that, in theory, the algorithm can be made invariant with respect
to the objective scaling. To this end, consider the following version. At Step 0 we
choose re(O, 1] and set r/1 =]fil/r At Step 2’ we delete the "1" from the stopping
criterion (6.5). At Steps 3’(v) and 7 we set r/+ and r/+ (if x+ x) equal to r/,r/.
At Step 4 r/ is not changed if Idk]ak 1.2r; otherwise, r/+ is calculated from (6.8).
Moreover, suppose that the arbitrary decisions of Steps 3’(ii) and 6, concerning the
selection of cuts and subgradients, are made according to some fixed rules that account
for the possible ties. Note that the proof of Lemma 4.4 can be extended to cover this
version.

The described version above is scale invariant in the following sense. Applying
the algorithm to f, we get sequences {xk}, {dk}, {Ak}, {r/k}, etc. Next, suppose we use
the same parameters at Step 0 and apply the algorithm to sf, where s > 0 is fixed, with

.}, {}, {ak}, {r/}. Then x. x k,the subgradient mapping sgj. to get sequences {x k k

d k, A Ak, and r/k=.7 Sr/k for all k such that termination does not occur before
iteration k. To save space, we omit an inductive proof of this fact. (Some hints for the
proof: multiply the objective of (6.2) by s2 and relations (6.3), (6.8), (2.4), and (2.19)
by s, observe that the division in (6.4) cancels s, and use the uniqueness of (/k,
and relations (2.13) and (2.17) for ellipsoid updates.)

7. Subgratlient aggregation. The algorithm described so far will typically use N + 2
past subgradients at each iteration. We now show how the subgradient aggregation
strategy of [K2] can be used to trade off storage and work per iteration for speed of
convergence.

At Step 0 we choose the maximum number Mg >_-1 of stored "ordinary" sub-
gradients. The aggregate subgradient is a convex combination of "ordinary" sub-
gradients, which is generated recursively as follows. At Step 0 we define pO=g and
f(x)=f(y)+(p,x-x) for all x. At Step 1 we append to subproblem (2.5) the
aggregate constraint

(7.1) _akp-, + (pk-,, )=< V,

where -k- k "k- .), and use the Lagrange multiplier Ap(p =f(x )-fp (x’ k of (7.1) to define
k k-l k-I(pk, Cpk)=. A.(g.i, C)+Ap(p 6:p ).
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As before, we define fk(x) =f(xk) --Opq"(p-k k, X-- X) to close the recursion. Then at
Step 6 we may let jk+ contain k+ 1 as well as any other Mg-1 past indices, e.g.,
indices j with the largest values of o.

Reasoning as in [K2, 2.4], we may verify that the convergence results of 4
remain valid for the version with subgradient aggregation.

8. Numerical examples. We shall now report on computational testing of the
algorithm using a double precision Fortran code on an IBM PC/XT clone microcom-
puter with relative accuracy e, 2.2 x 10-16 2.2E 16).

The parameters of the algorithm had the values m =0.1, % 1E-5, X--2, 03---

-1/2N (cf. (5.2)), and re 1/2N (cf. (6.7)).
Table 8.1 summarizes results for several standard test problems taken from the

literature, which are reviewed below. The following notation is used. N is the number
of variables, Mg is the maximum number of stored past subgradients, x* is the known
solution of a problem, x is the standard starting point, V Vol (El), k is the iteration
number at termination, Vk= Vol (Ek) is the volume of the final ellipsoid, and me is
the total number of ellipsoid updates. The stopping criterion (6.5) was used with a
value of G chosen for each problem so as to facilitate comparison with results reported
in the literature. For each run of the algorithm, an initial ellipsoid was specified by
choosing positive tolerances 6 such that Ix-x*l <- , and setting d N2 for i=

1,..., N in the initial matrix B=diag(d,..., du). Typically, three runs with
increasing 6 (denoted by 6 a, 6 b, and 6) are reported for each problem.

Example 8.1. The Shor problem has N 5,

f(x)=max {b (aq--xj)2: i=1,..-,10},
j=

X*= (1.12434, 0.97945, 1.47770, 0.92023, 1.12429),

l’a=[x--X*il for all i, 3’b=2 for all i, 6’’=10 for all (seex 0, 0, 0, 0, 1),
IS1, p. 137] for the data ao and bi).

Example 8.2. The first Colville problem has N 5,

f(x) Y d.x + cox,x + ex + 50 max {F(x), 0},
.j=l i-----1 j=l .j=l

F(x) max { bi aijx i=1,-.., 10},
j-----

1__ x/l 2,bx* (0.3, 0.3335, 0.4, 0.4285, 0.224), x= (0, 0, 0, 0, 1), 6’"= Ix 1 and
6’’= 10 for all (see, e.g., [K2, p. 350] for the problem data).

Example 8.3. The Rosen-Suzuki problem has N 4,

f(x)=x + x22 + 2X32 + X24 5X- 5X2- 21x3 + 7X4 + F(x),

F(x) 5 max {G(x), Fz(x), F3(x), 0},

G(x)=x "q- X"- X’q- X]’31- Xl X2-11- X5-- X4 8,

F2(x)-- x + 2xZ2 +x+ 2x24- x, x4 10,

F3(X) X
2 "Jr- X2 -1 X + 2x x2 x4 5,

x*=(0, 1,2,-1), x (0,0,0,0), 63’" (1E-4, 1,2, 1), 63’b=2 and 6,3.’c= 10 for all i.
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Example 8.4. Lemar6chal’s MAXQUAD problem has N 10,

f(x) max {(ALx, x)-(b L, x): L= 1,. ", 5},

a A exp (i/j) cos (i. j) sin (L), i# j,

ji

b exp (i/L) sin (i. L).

(This problem is difficult to quote: misprints abound in [K2, pp. 346-347], [L2, p. 151],
[Z1, Ex. 7.2], etc.). In [L2, p. 152] the optimum value f()=-0.8414 is quoted for a
point which in fact has f()=-0.8411. The best point known to us is

x* (-0.126257, -3.43783E -2, -6.85716E -3, 2.63606E -2, 6.72949E -2,

-0.278400, 7.42187E-2, 0.138524, 8.4031E- 2, 3.85804E-2)

with f(x*) =-0.841408. We used xl=0, 4’a Ix* I, 4’b=0.3162i. (corresponding to
di 1) and 6,4.’c= 2 for all i.

Example 8.5. This academic problem MXHILB with

/(x):max{] x,/(i+j-1)"i:I,...,N}, x*=0,
j=l

corresponds to solving the equation Ax- b, where b- 0 and A is an N x N section
of the Hilbert matrix. We used x= (1,..., 1) and 6’a= 5 for all with N-30 and
N=50.

Example 8.6. Problem L1HILB with

/f(x)= 2 xi (i+j-1) x*=O,
j=l i=1

is a more difficult version of MXHILB, since it has 2N linear pieces, whereas MXHILB
6,ahas2N. Weusedxi=l, 3i =5fori=l,..., N=30,50.

Example 8.7. Lemar6chal’s SHELL DUAL problem [L2, p. 154] has a highly
nonconvex objective function f of 15 variables, with f(x*)= 32.3488 for

x* (0.3, 0.3335, 0.4, 0.4283, 0.224, 0, 0, 5.1741, 0, 3.0611, 11.8396, 0, 0, 0.i039, 0).

This problem seems to be very difficult for general-purpose descent methods (see [L1 ]).
To tackle nonconvexity, we have incorporated in the algorithm the two-point line
search of [K2, p. 103] (with parameters =0.01, so=0.1, y= 10). To this end, we

k
X
k kcomputed the search direction d k dk Af. X from x and the line search procedure

found two stepsizes t and t, 0_-< t_-< t_-< 1, the next iterate xk+= xk+ td k, and
the next trial point yk+= xk+ td k that provided the next linearization fk+ of f Of
course, the algorithm is not guaranteed to minimize a nonconvex f Nevertheless, for
xi 1E-4, i 12, x12=60 and

6 (0.3, 0.3335, 0.4, 0.4283, 0.224, 0.1, 0.1, 10, 0.1, 5, 15,100, 0.1, 1, 0.1)

(f(xl)=2400, [X--X*IA=0.66, V=7.3E+5), the algorithm did converge to an
approximate solution, although the usual stopping criterion (6.5) did not work with
es 1E-4 and termination occurred due to exceeding the function evaluation limit
of 600. Table 8.2 illustrates the algorithm’s progress, with NFEV denoting the total
number of function and subgradient evaluations.
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TABLE 8.2
SHELL DUAL problem.

k f(x k) NFEV V me

70 32.6369 153 2.0E -2 582
78 32.5482 178 5.7E -3 606
97 32.4408 237 2.3E -4 654
107 32.4045 268 9.8E -5 669
110 32.3929 277 7.4E 5 677
112 32.3843 283 6.4E 5 679
118 32.3748 306 3.7E 5 690
127 32.3648 345 8.1E -6 709
165 32.3548 496 5.9E -9 793
191 32.3538 600 8.0E -11 845

Our results for Examples 8.1-8.4 and 8.7 may be compared with those in [S1,
p. 139], ILl], [Z1], and [K2, pp. 346-349]. Additionally, Table 8.3 gives results for f
scaled by s =0.01, 1, and 100. They were produced by the usual bundle method of
[K2, Chap. 2], the present method and the shifted ellipsoid method suggested by a
referee. This third method is obtained from Algorithm 3.1 by setting x=c x at Step 0,

TABLE 8.3
Comparative results for scaled problems.

Problem

Shor

Colville

Rosen-Susuki

MAXQUAD

MXHILB
N =30

MXHILB
N 50

L1HILB
N =30

L1HILB
N =50

Usual bundle Ellipsoid bundle Shifted ellipsoid

Scaling method method method

s k f(x k f(x k f(x

53 22.60016 45 22.60017 51 22.60018

100 90 22.60016 44 22.60017 57 22.60016

0.01 71 22.60016 41 22.60017 52 22.60017
60 -32.3487 46 -32.3485 43 -32.3484

100 54 -32.3487 42 -32.3484 44 -32.3486
0.01 29 -32.3486 54 -32.3487 44 -32.3486

44 -44.0000 20 -43.9998 30 -44.0000
100 48 -43.9998 20 -43.9997 30 -44.0000
0.01 76 -43.9999 19 -43.9994 32 -44.0000

95 -0.84133 58 -0.84135 94 -0.84140

100 318 -0.84138 65 -0.84138 98 -0.84140

0.01 59 -0.84138 78 -0.84140 96 -0.84140
590 5.1E -6 15 1.3E -8 65 4.5E -10

100 20001 1.8E -5 18 5.4E -7 72 1.1E -7

0.01 10001 4.0E -3 15 2.1E -7 65 3.8E -7
5001 1.6E -4 19 1.2E -7 220 2.4E -9

100 46 1.2E -7 19 2.5E 10 221 7.9E -9

0.01 5000 2.8E -3 19 2.2E -7 223 1.BE -7
132 1.6E -6 16 7.7E -9 66 1.1E 8

100 38 1.2E-7 16 5.1E-7 151 1.5E-7

0.01 5001 2.3E -2 15 3.8E -7 67 9.8E -8
199 8.4E -7 23 3.6E -7 184 1.1E -9

100 46 1.2E -7 25 2.9E -9 276 5.1E -7

0.01 5001 5.8E -4 26 7.8E -8 187 2.9E -8

Termination due to the iterations limit.
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deleting Step 3 and setting xk+l--c xk/l and Ak+l--Ak at Step 7; in effect, the initial
ellipsoid trust region only shifts with its center xk, but does not shrink. Using the same
line search procedure for handling nonconvexity, the three methods were applied to
scaled versions of the Shell Dual; see Tables 8.4-8.6. (For Examples 8.1-8.4 we quote
results only for the smallest a. With 6 b or c both our method and the shifted
ellipsoid method converge more slowly; cf. Table 8.1.)

A comment on the variation in r/k is in order. Usually the final r/k (at Step 5)
decreases "smoothly" as k grows, e.g., from 1300 to 6E-4, 1000 to 0.02, 660 to 0.013,
80 to 0.015, 1200 to 1.5E 5, 4500 to 1.3E 5, 8200 to 1E 5, and from 3900 to 1E 5

TABLE 8.4
Shell Dual--the usual bundle method.

NFEV

100
200
300
400
5OO
600

Scaling

s- 100 s =0.01
k f(x k f(x k f(x

34 87.97 26 1028 43 2084
64 38.84 56 378 85 173
94 34.51 84 118 121 158
125 33.03 114 43.95 155 145
157 32.90 148 35.92 191 133
191 32.72 186 33.50 219 128

TABLE 8.5
Shell Dual--the ellipsoid bundle method.

NFEV

100
200
300
400
5OO
600

Scaling

s- 100 =0.01
k f(x k f(x k f(x

52 33.146 47 32.942 44 34.527
85 32.496 78 32.490 77 32.845
116 32.378 104 32.410 110 32.563
141 32.358 128 32.392 141 32.431
166 32.355 152 32.383 171 32.392
191 32.354 177 32.371 200 32.372

TABLE 8.6
Shell Dualmthe shifted ellipsoid method.

NFEV

100
200
300
400
5OO
600

Scaling

s s 100 s 0.01
k f(x k f(x k f(x

47 37.888 54 33.396 33 812
78 34.507 93 33.132 59 493
112 33.284 130 32.871 88 308
140 33.033 170 32.835 117 149
173 32.870 211 32.591 147 50.2
198 32.844 243 32.583 177 37.4



756 KRZYSZTOF C. KIWIEL

for the problems with s 1 reported in Table 8.3 for our method, respectively (and
from 5.3E + 5 to 70 for the Shell Dual). A similar variation in r/k is observed for the
shifted ellipsoid method. Naturally, r/k increases (decreases) for larger (smaller) s.

Of course, no firm conclusions should be drawn from such limited computational
experience, but the test results indicate that our method is promising.

9. Conclusions. We have shown how to incorporate an ellipsoid variable metric
in a bundle method for convex minimization. The method seems to be promising. We
hope to increase its efficiency by using more refined ellipsoid updates.

Acknowledgment. I would like to thank Claude Lemar6chal and two anonymous
referees for several helpful suggestions.

REFERENCES

[A1] M. AKGJL, Topics in Relaxation and Ellipsoidal Methods, Research Notes in Mathematics 97, Pitman,
Boston, 1984.

[B1] R.B. BLAND, D. GOLDFARB, AND M. J. TODD, The ellipsoid method: a survey, Oper. Res., 29

(1981), pp. 1039-1091.
[D1] V.F. DEMYANOVAND L. V. VASILEV, Nondifferentiable Optimization, Nauka, Moscow, 1981. (English

translation, Optimization Software, Springer-Verlag, Berlin, New York, 1985.)
[Eli A. ECH-CHERIF AND J. G. ECKER, A class of rank-two algorithms for convex programming, Math.

Programming, 29 (1984), pp. 187-202.
’[E2] J.G. ECKER AND M. KUPFERSCHMID, An ellipsoid algorithm for nonlinear programming, Math.

Programming, 27 (1983), pp. 1-15.

[G1] V. I. GERSHOWCH, On a cut-off method using linear space transformations, in Theory of Optimal
Solution, Institute of Cybernetics, Kiev, 1979, pp. 15-23. (In Russian.)

[G2] P. E. GILL, Go M. GOLUB, W. MURRAY, AND M. A. SAUNDERS, Methods for modifying matrix

factorizations, Math. Comput., 28 (1974), pp. 505-535.

[G3] P.E. GILL, W. MURRAY, AND M. A. SAUNDERS, Methods for computing and modifying the LDV

factors of a matrix, Math. Comput., 29 (1975), pp. 1051-1077.
[G4] J. L. GOFFIN, Variable metric relaxation methods, Part I: A conceptual algorithm, Tech. Report

SOL 81-16, Systems Optimization Laboratory, Stanford University, Stanford, CA, 1981.

[GS] ,Convergence results in a class ofvariable metric subgradient methods, in Nonlinear Programming
4, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press, New York, 1981,
pp. 283-326.

[G6] ------, Convergence rates of the ellipsoid method on general convex functions, Math. Oper. Res., 8

(1983), pp. 135-150.
[G7] Variable metric relaxation methods, Part II: the ellipsoid method, Math. Programming, 30

(1984), pp. 147-162.
[G8] D. GOLDFARB AND M. J. TODD, Modifications and implementation ofthe ellipsoid algorithm for linear

programming, Math. Programming, 23 (1982), pp. 1-19,
[H1] J. HALD AND K. MADSEN, Combined LP and quasi-Newton methodsfor minimax optimization, Math.

Programming, 20 (1981), pp. 49-62.

[K1] J.E. KELLEY, The cutting plane method for solving convex programs, J. Soc. Appl. Math., 8 (1960),
pp. 703-712.

[K2] K.C. KIWIEL, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics

1133, Springer-Verlag, Berlin, New York, 1985.
[K3] --------, A methodfor solving certain quadratic programming problems arising in nonsmooth optimization,

IMA J. Numer. Anal., 6 (1986), pp. 137-152.
[L1] C. LEMARICHAL, Numerical experiments in nonsmooth optimization, in Progress in Nondifferentiable

Optimization, E. A. Nurminski, ed., Report CP-82-$8, International Institute for Applied Systems
Analysis, Laxenberg, Austria, 1981, pp. 61-84.

[L2] C. LEMARICHAL AND R. MIFFLIN, eds., Nonsmooth Optimization, Pergamon Press, Oxford, 1978.

[L3] C. LEMARICHAL AND J. J. STRODIOT, Bundle methods, cutting plane algorithms and o-Newton
directions, in Nonditterentiable Optimization: Motivations and Applications, V. F. Demyanov
and D. Pallschke, eds., Lecture Notes in Economics and Mathematical Systems 255, Springer-
Verlag, Berlin, New York, 1985, pp. 25-33.



ELLIPSOID BUNDLE METHOD 757

[L4] C. LEMARICHAL AND J. ZOWE, Some remarks on the construction of higher order algorithms for
convex optimization, J. Appl. Math. Optim., 10 (1983), pp. 51-68.

[M1] R. MIFFLIN, Better than linear convergence and safeguarding in nonsmooth minimization, in System
Modelling and Optimization, P. Thoft-Christensen, ed., Lecture Notes in Control and Information
Sciences 59, Springer-Verlag, Berlin, 1984, pp. 321-230.

[M2] J.J. MORI, Recent developments in algorithms and software for trust region methods, in Mathematical
Programming, The State of the Art, Bonn 1982, A. Bachem, M. Gr6tschel, and B. Korte, eds.,
Springer-Verlag, Berlin, 1983, pp. 258-287.

IS1] N.Z. SHOR, Minimization Methods for Non-Differentiable Functions, Springer-Verlag, Berlin, 1985.
[$2] N.Z. SHOR AND V. I. GERSHOVICH, Family ofalgorithms for solving convex programming problems,

Kibernetika, 4 (1979), pp. 62-67. (In Russian.) Cybernetics, 15 (1980), pp. 502-508. (In English.)
[$3] G. SONNEVEND, A modified ellipsoid methodfor the minimization ofconvexfunctions with superlinear

convergence (or finite termination) for well-conditioned C smooth (or piecewise linear) functions,
in Nondifferentiable Optimization: Motivations and Applications, V. F. Demyanov and D.
Pallaschke, eds., Lecture Notes in Economics and Mathematical Systems 255, Springer-Verlag,
Berlin, New York, 1985, pp. 264-277.

[T1] M.J. ToID, On minimum volume ellipsoids containing part of a given ellipsoid, Math. Oper. Res., 7
(1982), pp. 253-261.

[Y1] D.B. YUDIN AND A. S. NEMIROVSKII, Informational complexity and effective methodsfor the solution

of convex extremal problems, Ekonom. Mat. Metody, 12 (1976), pp. 357-369. (In Russian.)
MATEKON, 13 (1977), pp. 3-25. (In English.)

[Y2] D.I. YUDIN, A. P. GORIASHKO, AND A. S. NEMIROVSKII, Mathematical Optimization Methods

for Devices and Algorithms of Automatic Control Systems, Radio Sviaz, Moscow, 1982. (In
Russian.)

[Z1] J. ZOWE, Nondifferentiable optimization, in Computational Mathematical Programming, K.
Schittkowski, ed., Springer-Verlag, Berlin, New York, 1985, pp. 323-356.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 27, No. 4, pp. 758-775, July 1989 005

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF THE ONE-DIMENSIONAL
WAVE EQUATION WITH A NONLINEAR BOUNDARY STABILIZER*

HAN-KUN WANG- AND GOONG CHEN:I:

Abstract. The modeling of nonlinear passive damping devices or boundary frictions of an otherwise
linear vibrating system often results in nonlinear elastic dissipative boundary conditions. Such systems occur
increasingly often in engineering applications, whose control and stability analysis appear much more
complex than the classical linear distributed parameter systems.

This paper uses the method of characteristics and nonlinear semigroup theory to study the effect of
nonlinear boundary stabilization and analyze the asymptotic behavior of solutions of such systems. The
authors are able to determine the to-limit set of the dynamical system and the asymptotic rates of various
solutions to the to-limit set.

Key words, wave equation, nonlinear dissipative boundary condition, to-limit set

AMS(MOS) subject classifications. 93D15, 93D20, 73D35

1. Introduction. The study of vibration control and suppression has always been
an important research area in mechanical and aerospace engineering. Traditionally,
as far as passive damping devices are concerned, the most commonly seen ones are
probably the viscous dashpots, whose action is to cause a frictional force opposite to
the direction of velocity. This frictional force versus velocity relationship is approxi-
mately linear, at least within a certain designed operating range. This makes the analysis,
design, and control of such linear mechanical systems simple and easily understandable.
Nevertheless, such classical linear dashpots are bulky, expensive, and inconvenient to
replace and repair.

The advance of modern material science and technology has provided us with
useful alternatives such as elastomeric and other viscoelastic damping materials which
are generally light weight, durable, and convenient to service. Their utilization in
high-performance helicopters, combat aircraft, and vessels in aerospace and naval
engineering have sharply increased in the past decade. However, such visco-thermo-
elastic materials have highly nonlinear characteristics that cause significant nonlinear
response in the entire system. The questions of analysis, design, and control appear
more difficult. To the best of our knowledge, research work on such nonlinear energy
dissipating devices or materials in a distributed parameter system is rather incomplete.

In this paper, we wish to undertake some research in the above direction. As a
modest model, we study a distributed parameter system whose governing equation is
linear, viz., a simple one-dimensional wave equation, but the boundary condition is
nonlinear dissipative as exemplified by the use of the aforementioned elastomeric
material. We will study the effects of vibration and questions involving nonlinear
friction. Let us describe our problem below.

Let a vibrating cable or string with mass density rn and tension T satisfy the
one-dimensional wave equation

O2y(x, t) O2y(x, t)
(1.1) m-T--=O, 0<x<l t>0.

Ot Ox
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In the equation, y(x, t) denotes the vertical displacement at x at time t, and the length
has been normalized to 1. Assume that the string is fixed at the right end"

(1.2) y(1, t) 0 for all > 0.

At the left end, either some frictional force is present, or a damping device such as a
dashpot is installed, as illustrated in Fig. 1. The function of the dashpot is to cause
friction, thereby suppressing undesirable vibrations. For an idealized dashpot, the force
is assumed to be negatively proportional to velocity at x 0:

oy(O,t) oy(O,t)
(1.3) T =k, k>0,

Ox Ot

where it is known that the left-hand side represents the (negative of) vertical force
component at point x =0. If we choose the elastic constant k to be T/c, where
c --(T/m) 1/2 is the wave velocity, then (1.3) becomes

(1.4)
Oy(O, t) Oy(O, t)

Ot Ox

which is the characteristic impedance boundary condition. It is known to cause
maximum energy loss to the string; the vibration is completely suppressed at time
t=2/c.

FIG. 1. A vibrating string with a damping device at left end.

Now, assume instead that a nonlinear damping device is used whose velocity-
frictional force relationship as determined by material testing is as shown in Fig. 2,
where a frictional force of magnitude Fo, called the Coulomb friction, is often found
present in the nonlinear dashpot (e.g., due to the roughness of the dashpot wall, or
due to the aforementioned elastomeric material). The left end point x 0 can be set
in motion only after this threshold of frictional force Fo is overcome by the force
exerted by the string at x 0. The velocity range under testing is [-Vo, Vo] for some
Vo>0. Past Vo, plasticity sets in and the string does not behave elastically any more.

We must remark that the response curve as indicated in Fig. 2 has not incorporated
the possible effects of hysteresis, i.e., the velocity may trace a different curve when it
reverses its direction. We wish to address this in a future paper as we know that the
hysteresis is an important, commonly observable phenomenon which needs to be
carefully studied.
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magnitude of
frictional force

F

yield point

velocity

FIG. 2. Velocity-force relation in a nonlinear dashpot.

Therefore, we propose the following nonlinear elastic boundary condition as our
model.

(1 5) T
0y(0, t)=fFOy(O, t)]Ox k Ot

where f(x) is a multivalued function defined by

f-Fo+g(rl), -Vo< r/<0,
(1.6) f(r/) [-Fo, Fo], r/=0,

(Fo+g(q), 0< r/< Vo,

where [-Fo, Fo] denotes the closed interval from -Fo to Fo, and g(rt)=f(r/)- Fo for
r > 0, f(r/) is the function as shown in Fig. 2, g(r/) satisfies

g(rt) is continuous and nondecreasing on [-Vo, Vo],

(1.7)
g(rt) > 0 if r/> 0,
g(0) 0,
g(-r/) -g(rt) for r/=> 0.

The restriction that the domain of definition of f is [-Vo, Vo] is inconvenient. Let us
enlarge it by extending g to be an arbitrary function outside [-Vo, Vo] that still satisfies
(1.7). Thus,

I-Fo+g(rl), r/<O,
(1.8) f(r/)= [-Fo, Fo], r/=0,

Fo+g(n), n>0.
Different extensions of g will not affect the solution provided that the initial data
satisfies certain bounds (see the appendix). We also note that the function g may be
nondifferentiable. Indeed, except for 4, we do not need the differentiability of g in
our treatment.

We wish to study the asymptotic behavior of the solution of (1.1), (1.2), and (1.5),
with certain given initial conditions. Our main tools will be the method of characteristics
and the nonlinear semigroup theory.
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In 2, we first transform the equation into a hyperbolic system. We show that
there is a nonlinear semigroup corresponding to the evolution of the system.

In 3, we determine the to-limit set of the dynamical system. A solution may
either enter the to-limit set within finite time, or may circle around the to-limit set
indefinitely without entering it.

The asymptotic rates of convergence to the to-limit set are determined for several
cases in 4.

2. A nonlinear semigroup of evolution. Define

(2.1)
l[Oy(x,t)a(X, t) - Ot

1 JOy(x, t) +c(x, =-
Oy(x, t)

Oy(x, t) ]
Then the wave equation (1.1) implies

(2.2)

0
(., t)](,t)

=0, t>O.

with initial condition (ao("),/30(" )) obtained by using
transformation (2.1).

The right boundary condition (1.2) becomes

(2.3) fl(1, t)=-ce(1, t), t>O.

Consider the left boundary condition (1.5). Since in (1.6), g satisfies g(0)= 0, for the
ease of treatment later on, we define h(r/) by

(2.4) h rt g rl / rt, tieR, rl # O.

Note that h may be discontinuous at r/= 0. From (1.6), using the newly defined h, we
derive the following implicit boundary condition:

(2.5) ce(O, t)=

’cFo+[T-ch((a+)(O, t))]/3(O, t)
T+ch((a+)(O, t))

-fl(O, t),

-cFo+[T-ch((ce+fl)(O, t))]fl(O, t)
T+ch((a+)(O, t))

cFofl(0, t)<
2T

cFo cFo---<fl(O, t) <
2r- =

cFofl(0, t)>-
2T

For the evolution equation (2.2), the underlying Hilbert space is

a: {[] 0, ,=a2(O, 1)} 2(0, 1)X 2,2(0, 1),

whose 2x2 product norm is equivalent to the energy of the wave equation. From
now on, we will write [] and (a,/3) interchangeably, depending on which is convenient.
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Let A denote the operator

o
c 0

(2.6) A
Ox

0
0 -Ox

with domain

{[a] H1 a, fl satisfy (2.3)and (2.5) }(2.7) D(A)=
_/3

(0, 1) H (0, 1)
(with dropped) at x 0 and x 1.

In (2.7), H(0, 1) is the standard Sobolev space of order one.
To show that a solution of the problem under consideration exists, we prove that

there exists a nonlinear contraction semigroup S(t) corresponding to the dissipative
set -A, whose minimal section -A is the infinitesimal generator. It is known that if
(ao, flo) D(-A), and if we regard

fl( t) flo
as our solution obtained from the semigroup, then (a(., t), fl(., t)) has the following
smoothness properties"

(i) (a(., t),(., t))D(A) for all tO, and the function t
-A(a( ., t), fl(., t)) is continuous from the right on [0, ).

(ii) (a, (., t), fl(., t)) has a right derivative with respect to at every 0 and

dt ( ) (,t)
for alltN0.

(iii) d/dt((., t), (., t))= -A(( ), (., t)) exists and is continuous except
at a countable number of points 0.

We refer the reader to [1], [2] for the above and other relevant propeies of
nonlinear semigroups.

By [1], [2], -A generates a nonlinear contraction semigroup if and only if A is
maximal monotone. We want to verify this below. As much of the work is rather
routine, we will be concise.

LEMMA 1. A is monotone if and only if g is nondecreasing.
Proof For any given (a, fla), (a:, fiE) D(A), consider

where {, is the inner product in . Using (2.2) and integrating by pas, we get

C
(.a [((0 (0 ((0 (0].

We wish to show that I 0. We divide the real axis into three intervals. Because of
the symmetry in (2.8) we need only consider the following cases:

(i l(0) > (cFo/r), -(Co/r) (0 (co/r;
(ii) (0) < -(cFo/2T), -(cFo/2T) (0) (cFo/2T);
(iii) (0) > (cFo/2T), (0) < -(cFo/2T);
(iv) (0), (0) belong to the same interval, (0)> (0).
Case (i). (0) > (cFo/2T), -(cFo/2T) (0) (cFo/2T).
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Write/3,,/32 for/3,(0),/32(0). From (2.8),

2. i (2_ fl,)2_ [_2_ (-cFo) + T- ch( ))fll ]c T+ch(.)

(2T cFo]

2 T,8,- cFo [2(/31- 2) ( 2--T--1" : CFO
2T, cFo [2ch( )(1- 2) + (cFo- 2zT) ]r+ hf: 

Case (ii). < -(cFo/ZT), -(CFo/2T) 2 (cFo/ZT).
The verification is similar to Case (i).
Case (iii). a > (cFo/ZT), 2< -(cFo/2T).

-cFo+ T- oh(. )) 2Ta cFo11= T+ch(’) T+ch(’)

(h(.)= h((, +/3,)(0)))

CFo+ T- ch(" ))2
T+ch(.)

2T2+ CFo
r+ch(.)

2
I (/3, -/32)2 (a, a2)2 ([/3,[ + [/32[) 2 ([Oll--I 021)2 >-- 0.

So far we have not utilized the assumption that g is nondecreasing. It is crucial for
the verification of Case (iv) below.

Case (iv). /3,(0)>/32(0) belong to the same interval.
It is easy to see that I=0 if/3, and/32 lie in the interval [-(cFo/2T), (CFo/2T)].

So let Us consider/3, _->/32> (Fo/2T). We have

2
I (/3, -/32)2 --{(/1-/2) [(/1 -]" 1) (/2 "4- 2)]}2.

Hence I => 0 if and only if

cFo(2.9) O<=(,8,+a,)-(,82+a2)<=2(fl,-f12) for all
Z1

We also have

2 T/3, cFo 2(/3, (cFo/2 T))
i4-gi--

T--eh(,) 1-4-(c/T)h(.)
i=1,2,

c
(2.10) (fl, + a,) +- g(/3, + a,) 2 fl,

cFo
1 2,

2T]

C
(2.11) (/31 -k al) (/2 q- a2) q-- [g(/31q- c1) g(/2-+- 2)] 2(/1 --/2).

Sufficiency. Assume that g is nondecreasing. For fixed 1, 1 +a (hence a) is
determined by (2.10). Note that now the function

C
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is strictly increasing because g is nondecreasing. This gives

cFo(/31 + al) (/32 + a2) > 0 for all/31 >/32 >.
2T

From (2.11) we get

(/31 + al) (/32 + c2) <-- 2(/31-/32),
so (2.9) is satisfied.

Necessity. Assume that A is monotone. Then (2.9) holds. Assume the contrary,
i.e., that g is not nondecreasing. Then there exist r/1 > r/2 > 0 such that g(r/1) < g(r/2).
Let 1 -" Ofl ’1, 2 "" O2 ’12" The values of ai, fli, 1, 2 are determined by (2.5). By
(2.9), we have

From (2.10), we have

2(/31-/32) (/3 + o1)- (2
T
[g(/3 + c)- g(/3,2 + c2)]

< (t + ,)- (t2 + ), for some/3 >/32 >
cFo
2T’

as the term in the bracket is negative. This contradicts (2.9). Therefore, g must be
nondecreasing.

The case when/31 </32 <-(cFo/2T) can be treated similarly.
LEMMA 2. Let fl R be given. Then the implicit equation

’cFo+ T- ch(a + [3 )]
T+ch(a+)

-cFo+[ r- ch( + O)]
r+ch(a+#)

has a unique solution a for any fl R (cf. (2.5)).

cFo
if/3 <-2T’

CFo cFo
if-- --_< =<--,

cFo
if/3>2T’

Proof. If/3 e [-(cFo/2 T), (cFo/2 T)], then a -/3, so ce is unique. Consider the
case/3 > (cF0/2 T). satisfies

-cFo+ T- ch(c + )]t
T+ch(a+)

[- T- ch a +/3)]/3 + 2T/3 cFo
T+ ch (o + l

-cFo+ 2 T8
T+ ch(oz + )"

So

c ] cFo(a+/3) l+-h(c+/3) =2/3----,



WAVE EQUATION WITH A NONLINEAR BOUNDARY STABILIZER 765

c CFo(a / fl)/: g(a 4- fl) 2fl

As noted in the proof of Lemma 1 (cf. the arguments after (2.11)), the left-hand side
above is equal to G(a +/3), where G is strictly increasing (as g is nondecreasing) and
the range of G(?) for 7 >= 0 is [0, +c). Therefore the equation

c ((n) n+g(n)=2 [3-2]

has a unique solution a?- a +/3 because fl-(cFo/2T) > 0. Hence the solution a is
unique for given/3 > (cFo/2 T).

If/3 satisfies/3 <-cFo/2T, then we have instead that a satisfies

c cFo(a + fl) +- g(a +fl)= 2fl +--< O.

Again, we note that G is strictly increasing and the range of G(r/) for r/_ 0 is (-c, 0].
Therefore a is uniquely solvable for the similar reason as-above.

Remarks.
(i) From the physical point of view, it is completely natural that g be nondecreas-

ing, because the magnitude of frictional force increases with respect to velocity.
(ii) From Lemma 2 we can see that a is uniquely determined once/3 is given

in (2.5). Hence, the solution of the wave equation as constructed by the method of
characteristics is unique. This solution coincides with the unique solution constructed
from the nonlinear semigroup approach.

(iii) Let (a, fl)D(A). Then/3 is continuous on [0, 1] so/3(0) is defined. Then
a(0) as determined from the multivalued equation

T
(/3(0)- a(O))e f(a(O)+ fl(O))

C
(cf. (1.5) or (2.5))

is unique (cf. (ii) above). This implies that the operator -A is single valued and
coincides with -A, its minimal section.

(iv) The above discussion also shows that the solution obtained by the method
of characteristics is unique as long as the function

C

is strictly increasing, i.e., g need not be nondecreasing if we are only concerned with
the uniqueness of solutions by the method of characteristics.

LEMMA 3. A is maximal monotone.

Proof. We want to show that for any (, )H, there exists an (a, fl) D(A)
such that

(2.12)
l+c

(I/A)
fl 0

0

Ox
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We integrate (2.12) directly and obtain

(2.13) if(X) ’1 exp ((x- 1)/c)+
1

exp (-(x-r)/c)rb(r) dr,
C

(2.14) fl(x)- / exp ((x- 1)/c) -1 exp ((x-r)/c)(r) dr.
C

Condition (2.3) yields

(2.5)

Thus

1 fo b /a(.O) =’y e/+- e’/ (7") dr= ’y e +’O,

(0) -, e_/c 1 fo e-/$(r) dr -71 e-l/c + 2"
C 1

The constant T remains to be determined. We have three possibilities:
(i) -(cFo/2T) (0) (cFo/2T),
(ii) fl(0) > (cFo/2T),
(iii) B(0) <-(cFo/2T).
Assume (i), Then a(0)=-fl(0), so

(2.16)
1 el/c + 1 --(--1 e-1/c 2).

T1 -(1 + B2)/(el/C e-1/c)
For (i) to happen, we must have

cFo 1 + 2 _/ cFo-(0)= el/_ e_/ e +2T 2T’

(2.17) \2T+r/2 (ee/C-1)-r/2=<r/l=\---r/2 (e2/C-1)-r/2.

Next, assume (ii). Then by (2.5),

(2.18) a(0) ’}/1 el/ + r/1
-cFo+ T- ch((oe + )(0))](-’y e-1/ + r/e)

T+ ch((a + fl)(O))

By (2.4), r/h(r/)- g(r/). We substitute g and h and rewrite the above relation as

(2.19)
T

{’)’l(e l/c nu e-l/c)+ "q- r2} no-4r g(’I,,(e/- e-’/) + r/1 + r2),
C

or

(2.20) GI(’Yl) G2(3/1),

where G1 and G2 are defined, respectively, by the left- and right-hand sides of (2.19).
If g :R -+ R is a bounded function, then (2.20) has a solution ’)/1 " This is an immediate
consequence of the Brouwer fixed point theorem. If g is not bounded, then by (1.7),
g satisfies

g(r/) -+ +oo as r/-+ +/-oo.
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Thus G1 and G2 are continuous functions satisfying

GI(’r/) - -t-cx3 as

G2(7) --> as 7 - +,
SO

Therefore (2.20), and hence (2.19), has a real solution 7.
In order for case (ii) to happen, r/ and r/2 must satisfy

cFo- T+ ch((B + a)(0)) r/, +[ T- ch((a + fl)(0))]n2
(0)

T+ ch((a + )(O))]e 1/c d-[ T- ch((a + )(O))]e-1/c
cFo
2T’

implying

(2.21) (c o )nl > \---- n2 (e2/C 1) n2.

Finally, we note that case (iii) can be treated in the same way as case (ii).. Case
(iii) happens when

(2.22) nl< \+7 (e2/C-1)-r/2

Therefore we see that depending on (2.17), (2.21), or (2.22), we have, respectively,
(i), (ii), or (iii). In each case, 3’1 and 3’2 are solvable and (a,/3) are given by (2.13),
(2.14), which solves (2.9).

3. The co-limit set of the dynamical system. For a given solution y of a dynamical
system

(3.1)
y(’’ t) =f(y(., t)), > 0,

y(’,0)=yo

in an infinite dimensional space, the to-limit set of the solution is the intersection over
t->0 of the closure of the orbit {y(x, t)lx [0, 13). The to-limit set of the dynamical
system (3.1) is the union of the to-limit sets of all the solutions of (3.1).

In this section, we will attempt to determine the to-limit set ofthe system considered
in 1 and 2. Here by a "solution" we mean a solution S(t)(ao,o) with (ao, flo)
D(A).

Let

P= { (o, fl D(A) cFo cFo forf= c orf=/3}.
It is easy to see that the conservation of energy

13(,t) o
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is satisfied for any initial state (ao, flo) P. Indeed, each solution (a(., t),/3(., t)) is
periodic with period ro 2/c, and (c(., t),/3(., t)) P for any >-_0. S(t) is also linear
on P. P is a closed convex set with empty interior in invariant under S(t).

What happens if the initial state (ao,/30) D(A) is not in P? We have two cases.
Case ).

(3.2) There exists B> 0 such that h(x)<= T/c for all x: Ixl < B.

We will show that there exists To> 0 depending on (ao,/30) such that S(t)(ao, flo)
P for all => To.

For any x (0, 1), t_>-0, by the method of characteristics, we have

fl(X, + ro) fl (1, + -t 1, + to=
c

cFo(3.3) [-cFo+ T- ch(. )]fl (x, t)}/[ T+ ch(. )] if fl(x, t) <
2T’

fl(x, t),

[cFo- T-ch(" )]fl(x, t)}/[T+ ch(. )],

if
cFo cFo-<fl(x, t) <2r= =’

if/3(x, t) > CFo
2T’

where h(.) h((ce+fl)(O, t+x/c)).
As we are primarily interested in the asymptotic behavior of solutions, we limit

our discussion to those solutions (a(., t),/3(., t)) satisfying

(3.4) I(a +fl)(0, t)l < B, t_->0.

This is a very mild restriction as we expect that all solutions will lose the bulk of their
energy and eventually satisfy (3.4), if B is not too small. See also the appendix.

We wish to prove that there exists To> 0 such that

Ifl(x, To)lcFo/2T, forallx(O, 1).

Assume that there is some x [0, 1] such that/3(x, 0) > cFo/(2T). Then,

/3(x, o)= CFo
T+ ch((a +,8)(0, x/c))

T- ch((a + )(0, x/ c))
T+ch((a+fl)(O,x/c))

fl(x, O)

cFo T-ch(’)cFo CFo
T+ch(’) T+ch(’) 2T 2T’

where in the above, we use the shorthand h(. in an obvious way from the previous
expression. If (-cFo/(2T))<-_fl(x, ro)<(cFo/(2T)), then this x is all right. Otherwise
this x satisfies

(3.5) /3(x, to) < -cFo/(2T).
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Therefore

I(x, 0)1- I(x, o)1

0)
T- ch((o + fl)(O, x/c))

[(x,
(3.6)

T+ ch((a + )(0, x c))

2h cFo
T+ch(.)

[3(x, 0)+
T+ch(.)

cFo-> by (3.2), (3.4).
2T’

Also, by (3.3)

)fl(x, 0)-
T+ ch((a + )(0, x/c))

cFo(x, 27.o)
T+ ch((o + )(O, 7.o+ X/C))

cFo T-ch(. cFo cFo
T+ch(.) T+ch(.) 2T 2T

If (-cFo/(2T)) < (x, 27.0) -< (cFo/(2T)) for this x, then we are done. Otherwise

cFo/3(x, 2to) >-, for this x,

7.o+X/C))
I(x, o)l-I/3(x,2o)l-I(x, o)1-

T+ch((a+)(O, ro+X/C))
I(x’

T+ch((+)(O, to+X/C))

cFo
2T

T-ch((o +)(O, 7.o+X/C))
T+ch((a+)(O, 7.o+X/C))

(x, 7"0)

If this process can be continued indefinitely, then

13(x, 0)l- I/3(x, 2kro)l > 2k. CFo
2T’

for k= 1, 2, 3, ,
implying

cFo1/3 (x, 0)l > 1/3 (x, 2k7"o)1 + 2k.-2T
which is impossible Therefore for each x [0, 1], there is a positive integer k(x) such
that

-cFo/ (2 r) <= [fl (x, k(x)7"o)[ <= cFo/ (2 r).
As the interval [0, 1] is compact and/3(x, O) is continuous, we see that there exists an
integer n > 0 such that

-CFo/(2T)<-[(x, nT"o)]<-cFo/(ZT), forallx[O, 1].

Similarly,

-eF/(ZT)<=]a(x, nT"o)]<=cFo/(ZT), forallx[O, 1],
if n is chosen large enough.

Hence the dynamical system enters the set P at some time to. Once it enters
P, energy no longer decay and the solution becomes periodic.
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Case ii).

(3.7) There exists B> 0 such that h(x)> Tic for all x: Ixl < B.

Again, for the simplicity of presentation, we assume that (3.4) is in force.
For Case (ii), we will show that if the initial state (no,/30) doesn’t lie in P, then

(3.8) S(t)
/3o
P frallt-->O’

and

lim d ( S( t) [a] P)=0,t-o 30
(3.9)

where d denotes the distance metric.
Assume that fl(x, t)> (cFo/(2T)) for some x [0, 1]. Then by (3.3)

cFo
fl x, + "to) +

T+ch((ce+fl)(O, t+x/c))

Therefore

ch((a +fl)(0, t+x/c))- T
ch((a+ fl)(O, t+x/c))+ T fltx’ t)

cFo
T+ch(.)

ch(’)-TcFo CFo
ch(. )+ T 2T 2T

(x, + Zo) > cFo
2T

for this x, and

t(x, (k+ )o) CFo

That is,

T+ ch((c + fl)(O, k’o+ t+ x/c))

ch((a + fl)(O, k’o+ + x/c))- T+ 3(x, ko)
ch((ce +/3)(0, k’o+ t+x/c))+ T

cFo ch(. )- T[ cFo1 ch(" )- T Fo
=r+ch(.)+ch( )+ r (x’kr)-2r_l+ch(.)+ r 2--
cFo ch (") T f cFo]-+ L3(x’ kro)- k=O, 1, 2,...
2T ch( )+ T --.1’

cFo ch (.) T [ cFo](3.10) O<fl(x, (k+ l)ro)-2--=ch )+ T ,fl(x’ kr)---J"
If x e [0, 1] satisfies/3(x, t)< (-cFo/2r), then we can do similarly and obtain

cFo ch(.)-r[ cFo](3 11) O>/3(x, (k+ 1)’o) 4-= fl(x, kro)+
2T ch( )+ T 2TJ

Identical relations (3.10) and (3.11) hold when fl is replaced by a in (3.10) and
(3.11). Hence the conclusion (3.8) and (3.9) follows.

From the above analysis, we can easily see that the w-limit set of all solutions
satisfying (3.4), (3.2), and (3.7) is P.

4. Rate of convergence to the -limit set. For Case (ii) considered in the previous
section, we can actually determine the rate of convergence of (3.9) if more information
on the function h(x) is available.
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In engineering, the function g in (1.6), (1.7) is often approximated by a single
polynomial function

f r/x, X 0
(4.1) g(x) i -lxl, x < 0

for some r/,/z e , r/,/x > 0. Then

h(x) rl[xl-1, x , x O.

If/x > 1, then Case (i) in 3 holds and

d(La],/3)=0S(t)o frt>--T forsome To>-0.

If/x 1, and r/<-T c, again Case (i) in 3 is valid and (4.2) holds.
Therefore we need only consider
(a) /x=l and r/>T/c;and
(b) 0</x <1.
Our estimates are based on the relationships

CFo
2T

(4.2)
ch((a +fl)(O, t+kT"o+X/C))- T[ cFo]

-ch((a+)(O, t+kzo+X/C))+ T
[a(x, t+kzo)[-2T j

cFoI(x, t+(g+)’o)l-
2T

(4.3)
ch((a + )(O, + kro + X/ C)) T[ cFo]

-ch((a+)(O, t+kzo+X/C))- T
Ifl(x, t+kro)l-2T 1,

which are consequences of (3.3).
Consider (a) first. From (4.2), (4.3) we have

cFo --tIa(x, t)l----<- T e

cFoI(x, t)l---<- ,/ e

where x [0, 1] satisfies

CFola(x, O)l
2T

CFo[fl(x, 0)
2T

and

(-In
7 exp(6ro), sup

O=<t
Oyl

cFo
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Now define a truncated generalized solution (d,/3) by

(x, t)

Co cFo6(x, t)<-
2T 2T

(x,t) if
cFo cFo
2---

< (x, t) --<

CFo cFo
2"- oh(x, t)>

2T’
for b a and b =/3. This solution is actually some S(t)(do,/3-0) with (do, fl-o) D(A),
thus it is indeed a generalized solution (d(., t),/3(., t)) lying in P for all 0.

d(t)d S(t)
flo flo fi(.,t)

(4.4)
{[a(x, t)-6(x, t)]2+[(x, t)-fi(x, t)]2} dx

For each >= 0, let

E’--{x [0, 1]l(x, t)<-cFo/(2T)}

E= {x 6 [0, 1]l a(x t) > cFo/(2T)}

E- {x [0, 1] I/3(x, t) < -cFo/(2T)}

El= {x 6 [0, 1] Ifl(x t) > cFo/(ZT)}.
Then

Therefore the rate of convergence is exponential.
When Fo 0 in (1.6), P reduces to a single point {(0, 0)}. The above exponential

decay result for the linear equation is well-known. Thus the result is rather sharp.
Next, consider (b)"

h(x) [xl-1 rl > O, 0 < < 1

Assume that/3(x, 0)> (cFo/(2T)) for some x[0, 1]. Then by (3.3)

cFofl(x, (k + 1)Zo)--2:-
Z1

fl x, k’ro -j

(4.5)
1-ch(:-+ T fl(x,k’ro)-j

l-h(: fl(x, k’ro)
2TJ

1--’ (fl+a) O, kzo+ ][fl(x,k’ro)
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Also from (3.3)

ch ( (fl

SO

-cFo+2T" O, kro+

ch(.)+ T

2T /3 O, k’o+ --J" Oh( 1- ch(’)+c2h2(----)
provided that ch((fl + a)(O, k’o+X/C))>> T. Continuing from the above:

>= chi O, k’o+ --j

Hence

(/3 + a)O, kro+ _->- (fl + a)(0, kro +)
(+ )(0, kro+) >-- + a) O, kro+- -.]

(4.6)
crl

’8(x’ kr)
2T J

(fl + a (O, k’o+) (x, kro)_cFo ((l-/.)//z)

2rJ

Using (4.6) in (4.5), we get

0 </3 (x, (k + 1) ’o) --<= /3 (x, kro) -’f_] ,8(x,k’o)-2T j

Similarly, if fl(x, O) < -(cFo/2T) for some x [0, 1], then

0<-fl(x, (k+ 1)’o)--< -fl(x, kro)--

-(x, kro)-2T j

By mathematical induction, we easily prove the convergence rate

CFo13(x, k-)l -- d
for some D > 0,

(1 + k)-/--)’ fork=l,2,. ..
The same estimate also holds for [[a(x, kr)l-(cFo/2T)l. Thus we have the convergence
rate ((1 + t) -/1-) for (3.9).
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Appendix. Different extensions of g.
Let g be a mapping from [-Vo, Vo] into . Let gl, g2 be extensions of g:

gi’[ , 1, 2,
g,(r/) g(r/) for 7 [-Vo, vo]
gi satisfies (1.7), i= 1, 2

gi is nondecreasing.

As in (2.4), let

h,(rl)=g,(rl)/rl, i= 1,2, x#0.

Let A1, A2 be (maximal) monotone operators in defined similarly as A in 2, except
that the left end boundary condition (2.5) is now replaced by

(A.1) ,(o)

cFo+ T- ch((ai + fli)(0))]/3 (0)
T+ch,((ai+fl)(O))

-t,(0),
-cFo+[ T- chi((a + fli)(0))]/3 (0)

T+ ch((ai +/3)(0))

/,(0) < -Co/(2 r),

-CFo/(2 T) =< fli(0) -<_ cFo/(2 T),

,(O) > cFo/ (2 T),

with i= 1, 2 for A and A2, respectively.
Assume that a given initial condition (ao(’), flo(" )) H(0, 1) H(0, 1) satisfies

(A.2)
[o(X)l Vo CFo

<_---4-
2 2T

I/3o(X)l Vo cFo___--+
2 2T

on [0, 1], and that (Co,/30) D(A). (The "0" superscript in -Aa denotes the minimal
section of -A1.) Let (al(’, t), ill(., t))= S(t)(ao,/30) be the solution, where S(t) is
the nonlinear contraction semigroup generated by -A. We will show that (ao,/30)
D(A) and that

(A.3) (c2(’, t),fl2(’, t))= (a,(’, t),/31(’, t)), t>=0,

where (a2(’, t), f12(’, t))= S(t)(ao, flo) and S2(t) is the nonlinear contraction semi-
group generated by -A2.

First, due to (2.3), (A.1), (A.2), by the method of characteristics (cf. remarks after
Lemma 2) it is easy to see that

cFola’(x’ t)l=< q
2T

Vo cFol3,(x, t)l <----+
2 2T

for all t_>-0. If/1(0, t) satisfies

1/31(0, t)l < cFo/(2T),

thenby (A.1),

(A.4) (or, + fl,)(0, t) 0.
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If

CFo Vo CFo</3,(0, t) --<---i
2T 2 2T’

then

(A.5)

-cF+2TI(O, t)
O< (a, + fll)(O, t)=

T+ ch,((a, + fl,)(O, t))

-cF0 + 2 TI(0 f)
T

Similarly, if

Vo cFo cFo
2 2T 2t

(A.6) CFo+ 2Tl(O, t)
0> (O q-{1)(0, t)=

T+ ch,((ce +/3,)(0, t))

cFo+ 2T,8,(O, t) >= _Vo.
T

Combining (A.4), (A.5), and (A.6), we see that for all t-> 0,

1(1 -" 1)(O, t)l <-- Vo.

Since hi(x)= h2(x) for O<lxl=< Vo, we see that (ao,/3o) D(A), and that (A.3) holds
as a consequence of the method of characteristics.

Acknowledgments. The correct form of Lemma 1 was pointed out by the referees.
We thank them for helpful comments.
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A BOUNDARY VALUE PROBLEM FOR THE MINIMUM-TIME FUNCTION*
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Abstract. A natural boundary value problem for the dynamic programming partial differential equation
associated with the minimum time problem is proposed. The minimum time function is shown to be the
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1. Introduction. Given the control system

(1.1) y(s)+b(y(s),z(s))=O, s>=O, y, zZM,
the minimum time function T(x) associates to a point x N the infimum of the times
that the trajectories of (1.1) satisfying y(0)= x take to reach the origin. The problem
of determining T and the optimal controls realizing the minimum is one of the most
extensively studied in the control-theoretic literature, especially in the linear case 1 ],
[5], [6], [8], [15], [16], [20], [22]-[26].

It is well known that Bellman’s Dynamic Programming Principle implies that at
points of differentiability T satisfies the following first-order fully nonlinear partial
differential equation (PDE) of Hamilton-Jacobi type"

(1.2) sup b(x, z) DT(x)= 1.
zZ

It is also known that in general T is not differentiable everywhere, but it satisfies
(1,2) in some generalized sense [8], [24]. In the last five years the new concept of
viscosity solution for Hamilton-Jacobi equations has been introduced by Crandall and
Lions [11] and the theory of such solutions has developed quickly (see, e.g., [9]-[12],
17], [21] and the references therein) and has been applied to many problems in control

theory and differential games (see, e.g., [3], [4], [7], [13], [21], the survey paper of
Fleming [14], and its long list of references). Following Lions [21] it is not hard to
show that T satisfies (1.2) in the viscosity sense as soon as it is continuous. The goal
of this paper is to complement (1.2) with a natural boundary condition and prove a
uniqueness result for viscosity solutions of such a boundary value problem (BVP).
Ishii 17] has proved the uniqueness of viscosity solutions of the Dirichlet problem in
a bounded open set for a class of equations that includes (1.2). However the Dirichlet
problem does not seem to be the most natural one for the minimum time function
because in general we do not know a priori the value of T on the boundary of some
given bounded set. Instead we consider (1.2) in the set \{0} where is the set of
points x such that there is a trajectory of (1.1) starting at x and reaching the origin in
finite time, i.e., the largest set where T is defined (and finite); we propose the following
boundary condition:

(1.3) T(0) 0 and T(x) -> +o uniformly as x O.

In 2 we will prove that under quite general assumptions T satisfies (1.2) in \{0}
in the viscosity sense and (1.3). In 3 we will show that for any open set Y having

* Received by the editors December 9, 1987; accepted for publication (in revised form) July 7, 1988.
t Dipartimento di Matematica Pura e Applicata, Universitt di Padova, 1-35131 Padova, Italy.
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zero in its interior there is at most one viscosity solution of (1.2) in \{0} satisfying
(1.3) and bounded below.

The main result is the uniqueness theorem in 3. it presents three difficulties with
respect to standard uniqueness results in the Hamilton-Jacobi theory: (i) the Hamil-
tonian depends on the gradient of the unknown function but does not depend explicitly
on the unknown function itself, while it is usually required that it be strictly monotone
in such a variable; (ii) the infinite boundary condition (1.3) if N; and (iii) the
lack of regularity of the solutions to be compared and of the Hamiltonian if b is not
globally bounded and is unbounded.

To overcome the first difficulty we introduce a change of the unknown variable
first used for this goal by Kruzkov [18]. It turns out that this transforms the infinite
boundary condition into a finite one, therefore automatically taking care of the second
difficulty.

The third difficulty can be solved using the new approach to uniqueness presented
in the paper of Crandall, Ishii, and Lions [10]. Indeed our uniqueness theorem has
to be considered as a corollary of the methods developed in 10]. As one of the referees
pointed out to us, this difficulty had already been overcome for different problems in
an earlier paper by Ishii [28], whose methods could be applied effectively to our
problem as well.

We remark that the proof of the uniqueness theorem does not make use of the
convexity of the Hamiltonian. Therefore the methods of this paper can be employed
to study the minimum time problem in games of pursuit and evasion (see Bardi and
Soravia [27]).

After the completion of this work we have learned that Kruzkov’s change of
variables has been used recently by Lasry and Lions [19] to study the minimum time
function of a differential game with state constraints in a bounded domain, and by
Barles [2] for unbounded control problems. Moreover, one of the referees pointed out
that a uniqueness theorem for discontinuous solutions of (1.2), (1.3) can be proved
by combining the Kruzkov transform and the results by Barles and Perthame [3],
provided the target to be reached is a smooth set instead of a single point.

In the last decade the use of the theory of subanalytic sets has led to very strong
results on the regularity of the minimum time function and of feedback controls (see
Brunovsky [6] and Sussmann [26] and the references therein). However it is also
known that certain quite smooth systems exhibit very irregular behaviors that fail to
fall within the theory of subanalyticity (see Lojasiewicz and Sussmann [22] or the
classical Fuller’s example in [23]). It is our hope that the PDE setting of the minimum
time problem proposed in this paper could be of some help in the study of these
problems.

2. The BVP of the minimum time function. We begin listing the assumptions to
be used in the following.

(H1) b "vxZ-, where Z c__ 4, is continuous and there exist L, K such
that Ib(x, z) b(y, z)[ =< L[x y[ and Ib(y, z)[ =< K(1 + [y[), for all x, y N,
and for all z Z.

Let be the set of measurable functions z:[0, c)-, Z, and let y(s)= y(s; x, z)
be the solution of

(2.0) y(s) x b(y( t), z( t)) dt

for s ==_ 0, x u, and z . Let 3-c_. RN be a given closed set, the terminal set (e.g.,
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3-= {0}), and define

:= {x 6 [N: ::lz J//, >- 0 such that y( t; x, z) 3-}.

Clearly,
_

3-. Now define the minimum time function

T: -> [0, oo), T(x) := inf { t: y( t; x, z) 3- for some

We will assume the following.

(H2) is open.

(H3) T is continuous in .
(H4) For every Xo 0, limx_o T(x) +oo.

Conditions under which (H2)-(H4) are satisfied are well known in the literature,
especially in the linear case. See, for instance, [1], [15], [20] for (H2), [25], [15], [1],
[5], [8] for (H3), [8], [15] for (H4), and the references therein. Essentially (H2)-(H4)
follow from some controllability around 3-.

Next we define a suitable boundary condition for functions u C(\3-):

(BC) u converges uniformly to 0 as x 03- and to +oo as x 0Y2, i.e., for every e,
M > 0 there exists 6 > 0 such that dist (x, 03-) < implies ]u(x)] < e and
dist (x, 0) < 6 implies u(x) > M.

Before proving that T satisfies (BC) we need a technical lemma.
LEMMA 1. Assume (HI) is true. If y(t; x, z)=xl, then

1 (>_---- log 1 +
K l+min (Ix[ IXl[)

Proof Hypothesis (H 1) implies

ly(s)-xl<- gs(1 +lxl)+ KIy(,)-xI d,

and then, using Gronwall’s inequality, we get

Ix1 xl-<- (1 + [x[)(e Kt 1),

which gives

( Ix,,-x.l t>=-log 1+
l+lxI]"

The same calculation for 37(s):= y(t-s) leads to

1 ( + Ix, X,[t->log 1
l+lXll]"

Remark 1. It follows easily from Lemma 1, choosing Xl 3-, that T(x) > 0 for all
x \3- (since 3- is closed) and that 3- bounded implies limlxl_.o T(x)

LEMMA 2. Assume (H1)-(H4) and 3- bounded. Then T satisfies (BC).
Proof Since T is continuous, null on 03-, and 3- is bounded, the first part of (BC)

is clearly satisfied.
To prove the second part we fix M > 0. From Lemma 1 and Remark 1 the existence

of R > 0 such that T(x)> M for Ix > R follows. Now we use (H4) to get a covering
of the compact set 0 (q {x: Ixl <= R} made of a finite number of open balls B centered
on0 and having small radius so that T(x) > M for x f’) B. We conclude observing
that there exists > 0 such that Ix[ <- R and dist (x, 0) < 6 imply x Bi for some i.
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We recall that a continuous function u defined in an open set

_
EN is defined

to be a viscosity solution of

H(x, u, Du)= 0 in ,
if for every b C1() and Xo local maximum point of u-b we have

H(xo, U(Xo), D6(xo)) -< 0,

while for xo, local minimum point of u-b we have

H(xo, U(Xo), Dqb(xo)) >- O.

We will now prove that T is a viscosity solution of

(HJ) sup b(x, z). Du-1 =0 in \-.
zZ

This fact is certainly known to experts, since it follows from arguments of Lions [21,
Chap. 1]. We include a full proof for the sake of completeness.

Define for zeM, xeNu, tx(Z):=inf{t: y(t; x,z)e -} and denote by X{t<tx(z) the
function defined on [0, oo) which is one if < tx(z) and zero if the opposite inequality
holds.

LEMMA 3 (Dynamic Programming Principle). Assume (HI). Then for all x
and >= 0

T(x) inf {min (t, tx(z))+X{,<,x(z)iT(y(t" x, z))}.

Proof. Fix x and and let A be the right-hand side of the above equality. To
prove T(x)>= A we fix an arbitrary e > 0 and show that

(2.1) T(x)>=A-e.

Let zl M be such that

(2.2) T(x)>=t(Zl)-e.

If t>= t,(zl), then (2.1) holds. Now suppose t<t(zl) and let z(s)=zl(t+s). Then

tx(Zl) t+ ty(t;x,z,)(z2) t+ T(y(t; X, Zl))>=a,

and so by (2.2) we have (2.1).
Now we want to prove

(2.3) T(x)<=A+e,

and for this we choose zl such that

(2.4) A+2-=>min (t, tx(gl))+X{t<t(Zl)}T(y(t; x, Z1) ).

If >_-t(zl) then (2.3) holds. If < t(zl) let z M be such that

(2.5) T(y(t; x, z1)) ty(t;X,Zl)(Z2)-_..z

Now define the control

ifs< t,
z3(s):=

z2(s-t) if s>=t.



780 M. BARDI

Clearly

tx(z3) t+

and therefore we get from (2.4) and (2.5)

E E E
->= t+ T(y( t; xl, zl)) >- /x(Z3)-e Z(x)-’,A+
2

which proves (2.3). By the arbitrariness of e the proof is complete.
THEOREM 1. Assume (H1)-(H3). Then the minimum time function T is a positive

viscosity solution of (HJ). If moreover (H4) holds and the terminal set 3- is bounded,
then T satisfies the boundary condition (BC) as well.

Proof The second statement is just Lemma 2. To prove the first statement we
begin by considering Xo \ 3- and b Cl(y \ 3-) such that for all x sufficiently close
to Xo,

(2.6) T(xo)- 49(Xo) >= T(x)- oh(x).

Let Zl be any constant control, Zl(S) 6Z. By Lemma 3 we have for all O<s < T(xo)

r(xo)- r(y(s; Xo, z,)) <- s,

and so by (2.6) we have for sufficiently small positive s,

T(xo)- r(y(s" Xo, z,))
5 1.

6(Xo) b(y(s; Xo, z,))=<
S S

Now letting s % 0 and using (2.0), we get

Dch(Xo)" b(xo, e)=< 1,

and by the arbitrariness of ,
sup b(xo, z) D4)(Xo)- 1 <= O.
zZ

Let us now consider new xo and b as above but such that

T(xo)- qb(xo) <= T(x) qb(x)

for all x in a given neighborhood of xo. By Lemma 1 there exists s such that

b(xo)- b(y(s; xo, zl)) >= T(xo)- T(y(s; Xo, z)) Vs =< s, /z

Fix e > 0. By Lemma 3 for every s <= T(xo) there is z* such that

T(xo) >_ s + T(y(s; Xo, z*)) es,

and thus for 0 < s =< s2

(2.7)
6(Xo)- 6(y(s; Xo, z*))

> 1 e.
S

Using (2.0) and the expansion

oh(x) 6(Xo) + D6(xo) (x Xo) + m(x)]x xo]

we can write the left-hand side of (2.7) as follows:

_1 Dqb(xo) b(y( Xo z*), z*( t)) dt m(y(s; Xo z*)) _1
S S

with lim m(x) 0,

z*) z*( t))b(y(t;Xo, dt
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The second term in this expression can be made smaller than e for small s by (H1)
and Lemma 1; by using (H1) again, the first term can be written as

1Is o Dc(Xo) b(xo, z*(t)) dt plus a correction term smaller than e for small s. Then
by (2.7),

sup Dd(xo) b(Xo, z) >=- Dd(xo) b(xo, z*( t)) dt >= 1 3e,
zeZ S

which provides the desired inequality by the arbitrariness of e.

3. Uniqueness. In this section we will prove the following theorem.
THEOREM 2. Assume (H1), let be an open subset of R1, and let

_
be a

closed set. Iful, u2 C(\) are viscosity solutions of (HJ) satisfying (BC) and bounded
from below, then U u2.

The main tool of the proof is a lemma of Crandall, Ishii, and Lions [10, Lemma
1], which we report below in a version simplified for the present purpose. We say that
H "Rnx n - It satisfies condition (H) if the following holds"

(H) H is continuous; there exist a Lipschitz continuous, everywhere differentiable
function/x - [0, oo) and a continuous, nondecreasing function
[0, oe) satisfying tr(0) 0, such that H(x, p) H(x, p + AD/x(x)) =< tr(A), for
all x, p N", h [0, 1 and liml,l_ /x (x) /.

LEMMA 4. Let H satisfy condition (H) and let f be an open subset of Nn. Let
z C() be a viscosity solution of z + H(x, Dz) 0 in f, and let w C1(() satisfy

w(x)+ H(x, Dw(x)) >-0 and IDw(x)l <= C Vx

Assume that

sup (z w) < sup (z w) < c.

Then z <-w in

Proof See 10] for the proof of this lemma.
The other key tool in the proof of Theorem 2 is a change of the unknown variable

in (HJ). For this we need a slight extension of Corollary 1.8 in [11].
LEMMA 5, Let u be a viscosity solution of H(x, u, Du)= 0 in , open subset of

let P CI(), dP’(r) >O for all r; and let ’() be the inversefunction of . Then
v u is a viscosity solution of

H(x, (v), ’(v)Dv)=0 in .
Proof Let Xo 6 and ’ Cl(t) be such that v-ff has a local maximum in Xo.

Define sO(x)= ’(x)-r(Xo)+ V(Xo). We have

D:= Dsr, :(Xo) V(Xo)= (U(Xo)),

v(x) <= (x) in a neighborhood of Xo.

Since (E) is open, is defined in a neighborhood of Xo and we extend it to
r/ C1(6). By the monotonicity of we have

U(Xo) q(Xo), u(x) <-_ rl(x) in a neighborhood ofxo.

Then

H(xo, U(Xo), Dq(Xo)) <-- O,
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and so

H(xo, (V(Xo)), ’(V(Xo))O(xo)) <- O.

If Xo is a minimum point we get the desired inequality in the same way. [3

Proof of Theorem 2. Define P(t) := 1- e-’, Vl :--- (I) Ul V2:= (I) U2, if:= \3-. By
Lemma 5, vl and v2 are viscosity solutions of

sup { b(x’ z) ( 1-vDV)}-l=0 in,

and since vl, v2 < 1, they are also viscosity solutions of

(3.0) v+sup{b(x, z). Dv}-I =0 in ,
zGZ

as is easy to verify from the definition. They can be extended in a unique way to va,
v2 C() by setting

vi=0 on03-, vi=l on0R, i=1,2.

Now define

H(x, p):= sup {b(x, z) p- 1}.
zGZ

We claim that H satisfies condition (H). Fix e>O and choose zeZ such that
H(x, p) <- b(x, z) p- 1 + e. Then by (H1)

H(x, p) H(y, q) <- b(x, z1). p b(y, z) q + e

<= L[x Yl IP[ + K(1 + [Yl)IP ql + e,

and thus

(3.1) [H(x,p)-H(y,q)l<-Llx-YllPl+K(l+lyl)[p-ql,

which implies the continuity of H. Now let h cl(N) be such that h(0)= h’(0)=0,
h(e)= 1, h’(e)= I/e, and define

h(lx[) iflxl<e,
(x) :=

log (Ix I) if Ixl--> e.

Clearly, z C1(u) and it is Lipschitz continuous since Dt.(x)= (1/[xlZ)x for Ixl _-> e.
Moreover, by (3.1),

H(x, p) H(x, p/ tD(x)) <-_ K a / lxl)tlO(x)l <-C -:

for > 0, where C := max (2K, K (1 + e) sup Ih’l), which proves the claim.
Next we define, following Crandall, Ishii, and Lions [10],

/(x, y, p, q):= H(x, p)- H(y, -q),

z(x, y):= vl(x)- v2(y),

and note that z is a viscosity solution of

z + I21(x, y, Dxz, Dyz) 0 in x .
Our goal is to prove that z(x, x)<-0, because by interchanging the roles of v and v2
we get vl v_ and then u u2. To reach our goal we are going to apply Lemma 4 to
z defined above, f := A f)(G x ) where

Z:= {(x, y) N-rq" [x-yl < 1},



A BVP FOR THE ’MINIMUM-TIME FUNCTION 783

and w we for suitable e where

we(x, y):= (e4L+lx- yl2)’/zI/e.
We have to show that there exists Co>0 such that for all 0< e <-Co, we satisfies the
hypotheses of Lemma 4. Once this is done we have z(x, x)<= we(x, x)= e, and letting
e 0 we conclude.

Since

1
D,w(x,y)=--(e4I+lx-y (x-y)=-Oyw,(x,y),

we is Lipschitz continuous in A and, moreover, by (3.1),

we(x, y)+ I2I(x, y, D.w, Dyw) >= we Llx yl2(e4+ Ix yl)/)-a/eL
g (1 + lyl)lDxw + Dyw

>-- we we O.

Since ul and u2 are bounded from below, vl and v2 are bounded, and

(3.2) a:=sup(z-w)<-_A<c foralle>O.

If

lim inf at =< O,
eO

we immediately obtain z(x, x)<-O. Thus it remains to prove that a>-_a>O and
0 < e _-< eo imply

sup (z- we) < ce sup (z-

Suppose that (:, 37)O is such that

(3.3) z(, 37) w (if, 37)
2

Fix 0<3<1 such that xO and Ix-yl<, implies Iv,(x)-v,(y)l<o/2, i- 1, 2. This
can be done because v and v take up their boundary values uniformly as a consequence
of (BC). Suppose first that I-1 < so that either or , say , belongs to 0. Then
z(, ) 0 and w 0 imply

z(, y)- w,(, y) v,()- v(y)- v()+ v() <-2’

a contradiction to (3.3). On the other hand, if I-1 , (3.2) and (3.3) imply

z(, y) w(, y) sup (z w) z(, ) w(x, ) A,

from which we obtain

v:() v(y) w(, ) A.

The right-hand side of the last inequality can be made arbitrarily large choosing e

small because

lim inf {w(x, y): x- y] 6} +,
e0

and we get a contradiction because the left-hand side is bounded.
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Remark 2. Under the stronger assumption that [b(y, z)[ =< K for all y \ -, z Z
(which excludes the linear case if is unbounded), and strengthening the boundary
conditions, we can give a weaker uniqueness theorem with a much shorter proof based
on the earliest uniqueness result for viscosity solutions, that is, Theorem III.1 of
Crandall and Lions [11]. In fact, under such an assumption on b, (3.1) implies that
the Hamiltonian H(x, p) is uniformly continuous in ENx {p" Ip]_-< R} for all R >0.
The additional boundary condition is

lim u(x)= +o,(ABC)

which is satisfied by the minimum time function T if - is bounded (see Remark 1).
The proof of the weaker theorem begins with the same change of variables as the proof
of Theorem 2. Next, we note that if u, u2 satisfy (BC) and (ABC) then v, v26 BUC()
and that (3.0) satisfies the hypotheses ofTheorem III.l(ii) in 11], which implies va v.

Remark 3. If is bounded, ua and u satisfy (ABC), they are zero on 0-, and
they tend to + as x -* Xo 6 0R, then the hypotheses of Theorem 2 are satisfied. In fact,
ua and u2 are clearly bounded from below, and they satisfy (BC) by the proof of
Lemma 2.

Remark 4. If we drop the assumption that Ul and u2 are bounded below, then
the conclusion of the theorem is false. In fact, if we take b(x, z)= z, Z the unit ball
in N, 0-= {0}, then we get the BVP

IDu[- 1 0 in

u(0) =0,

which has the classical solutions u(x)= Ix] and u(x)=

Acknowledgment. The author thanks Alberto Bressan for some interesting con-
versations which stimulated this research.
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OPTIMAL SENSOR SCHEDULING IN NONLINEAR
FILTERING OF DIFFUSION PROCESSES*

JOHN S. BARAS’ AND ALAIN BENSOUSSAN

Abstract. The nonlinear filtering problem of a vector diffusion process is considered when several noisy
vector observations with possibly different dimension of their range space are available. At each time any
number of these observations (or sensors) can be used in the signal processing performed by the nonlinear
filter. The problem considered is the optimal selection of a schedule of these sensors from the available set,
so as to optimally estimate a function of the state at the final time. Optimality is measured by a combined
performance measure that allocates penalties for errors in estimation, for switching between sensor schedules,
and for running a sensor. The solution is obtained in the form of a system of quasi-variational inequalities
in the space of solutions of certain Zakai equations.

Key words, nonlinear filtering, sensor scheduling, quasi-variational inequalities

AMS(MOS) subject classifications. 35, 49, 60

1. Introduction.
1.1. Motivation and preliminaries. The problem of nonlinear filtering of diffusion

processes has received considerable attention in recent years; see the anthologies
[1]-[3] for a review of important developments. In current studies, as well as in related
analyses of the partially observed stochastic control problem with such models [4],
[5], a key role is played by the linear stochastic partial differential equation describing
the evolution of the unnormalized conditional probability measure of the state process
given the past of the observations, the so-called Zakai equation.

A significant byproduct of these advances is the feasibility of analyzing complex
signal processing problems, including adaptive and sensitivity studies, in an integrated,
systematic manner, without heuristic or ad hoc assumptions. A problem of interest in
this area is the so-called sensor scheduling problem. Roughly speaking, this problem is
concerned with the simultaneous selection (according to some performance measure)
of a signal processing scheme together with the sensors that collect the data to be
processed. Particular applications include multiple sensor platforms, distributed sensor
networks, and large-scale systems. For example, in a multiple sensor platform, there
is definite need for coordinating the data obtained from the various sensors, which
may include radar, infrared, or sonar. The data obtained from different sensors are of
varying quality and a systematic way is needed for allocating confidence or basing
decisions on data collected from different types of sensors. For example, radar sensors
are more accurate than infrared sensors for long-range tracking while the opposite is
true for short-range tracking. In sensor networks we need to coordinate data collected
from a large number of sensors distributed over a large geographical area. Conflicts
should be resolve and a preferred set of sensors must be selected over finite (short)
time intervals, and used in detection, estimation, or control decisions. Similarly,
large-scale systems typically involve an attached information network with the objective
of collecting data, processing it, and making the results available to the many control
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agents for their decisions (actions). Again the need for coordinating this information
in a systematic way is critical.

In such sensor scheduling problems, the systematic utilization of sensors should
be the result of optimizing reasonably defined performance measures. Clearly these
performance measures will include terms allocating penalties for errors in detection
and/or estimation. But more importantly, they must include terms for costs associated
with turning sensors on or off, and for switching from one sensor to another. Examples
of such costs arising in practice abound. Turning on a radar sensor increases the
detectability ofthe platform (since radars are active sensors) and this should be reflected
as a switching cost. Deciding to use a more accurate, albeit more complex, sensor will
require higher bandwidth communications and often more computational power allo-
cated to that sensor. In distributed sensor networks it may mean the physical movement
of a sensor carrying platform (such as a helicopter or airplane) to a particular
geographical location. In large-scale systems the use of several sensors (often hundreds)
for decision making may provide better average performance, but it certainly reduces
the response speed of the system to changing conditions and increases computational
and communication costs both in terms of hardware and software. The latter are
obviously evident in large computer/communication networks. These running and
switching costs will depend often on the part of the state space occupied by the state
vector, i.e., they will be functions of the state as well. For example, sensors have
different accuracy or noise characteristics when the state process takes values in different
areas of the state space. There is additional cost associated with handling the transfer
of information, or tracking record, when there are changes in the set of sensors used;
these costs often depend on the state process.

It is not our intent to provide an extensive description of applications here. Detailed
descriptions of some of these problems can be found elsewhere; see for example [6],
[7]. The underlying thread in all these problem areas is the existence of a variety of
sensors, which provide data (for processing), including information of widely varying
quality about parameters or variables of interest, for control, detection, estimation,
etc. Due to the complexity of these problems it is important to develop systematic
conceptual, analytical, and numerical methods for their study and to reduce reliance
on ad hoc, heuristic methods as much as possible. The present paper is offered as a
contribution in this direction. It provides a general methodology to this problem by
reducing it to the analysis of a system of quasi-variational inequalities (see 3 for
details). Numerical methods will be described elsewhere [13].

The sensor scheduling problem is considered here in the context of nonlinear
filtering of diffusion processes, and is therefore applicable to detection problems with
the same signal models. Modifications of the results apply to other situations including
control. In the next section we present a somewhat heuristic definition of the problem,
intended to describe the problem clearly, at an intuitive level. The intricacies of
establishing this model in a rigorous mathematical fashion are given in 2 and constitute
one of the main contributions of the paper.

1.2. Preliminary description of the problem. The problem considered is as follows.
A signal (or state) process x(. is given, modeled by the diffusion

dx( t) :f(x(t)) dt + g(x( t)) dw( t),
(1.1)

x(O) sc

in ". We further consider M noisy observations of x(. ), described by
1/2 dv

(1.2)
dy’(t)=h’(x(t)) dt+Ri (t),

yi(0) =0
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with values in a,. Here w(.), vi(.) are independent, standard, Wiener processes in
n, a,, respectively, and Ri Rf > 0 are di d matrices. Further mathematical details
on the system (1.1), (1.2) will be given in 2. Let us consider a finite time horizon
O, T]. To formulate the problem of determining an optimal utilization schedule for

the available sensors, so as to simultaneously minimize the cost of errors in estimating
a function of x(.) and the costs of using as well as of switching between various
sensors, we need to specify these costs. To this end, let c(x) denote the cost per unit
time when usingsensor i, and the state of the system is x; ko(X), koi(X) denote the
cost for turning off,. respectively on, the ith sensor when the state of the system is x.
The objective of theperformed signal processing is to compute, at time T, an estimate
(T) of a given function b(x(T)) of the state. Penalties for errors in estimation are
assessed according to the cost function

(1.3) E{Ce(6(x(T))-(T))} := E{16(x(T))-(T)]2}.
We shall comment briefly on more general estimation problems in 4 of this

paper. In particular, the consideration of a quadratic Ce(" is not a serious restriction.
Next we consider the set of all possible sensor activation configurations, denoted

here by Ar. An element u ; is a word of length M from the alphabet {0, 1}. If the
/th position is occupied by a 1, the/th sensor is activated (used); if by a zero, the/th
sensor is off. There are N 24 elements in ;. A schedule ofsensors is then a piecewise
constant function u(. ):[ O, T]-* V. We let rj O, T] denote the instants of changing
schedule; i.e., the moments when at least one sensor is turned on or off. At such a
switching moment, suppose the schedule before is characterized by u Ar, and after
by u’ c. Then the switching cost associated with such a scheduling change is

(1.4) k,(x) := E kio(X)+ E koj(X).
{i u} {i u’} {j u} {j u’}

The total running cost, associated with schedule u is

(1.5) c(x):= E cj(x).
(je

In (1.4), (1.5), the symbol {i v} denotes the set ofall indices (from the set {1, 2,... ,.M})
that are occupied by a 1 in v (i.e., the indices corresponding to the sensors that are
on); similarly, the symbol {i v} denotes the set of indices corresponding to sensors
that are off.

Using the above notation, the available observations, under sensor schedule u(. ),
are described by

(1.6) dy(t, u(t)) := h(x(t), u(t)) dt + r(u(t)) dr(t),
where it is apparent that the available observations depend explicitly on the sensor
schedule u(. ). In (1.6), for x En, u

(1.7) h(x, v) :=

h l(x).X{,}(1)

hi(x)x.(l(i)
,hg(x)x(I(M)

a block column vector, where in standard notation

(1.8) X(i) := { if the ith position in the word u is occupied by a 1
otherwise.
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Similarly, for v ,
(1.9) i 1/2..r(v) := block diagonal {1 //v)(i)},

where Ri are the symmetric, positive matrices defined above. Finally

is a higher-dimensional standard Wiener process. In view of (1.7), for all v

(1.11) h(.,v)’"R,
while

(1.12) r(/)" RD D

where

(1.13) D d nt" d2 +" + dl.

To make the notation clearer, consider the case M =2, N=4. Then
{00, 01, 10, 11} and

(1.14)
h(x, 00)= h(x, 01)= h2(x

0 h(x)J

while

(1.15)
r(00)

0

r(01)=
0 R/2

r(lO)= [R]/2 0]0 0

r(ll)=[R]/2 0 ]0 R/2

Clearly the dimension of the range space of y(., u) is

M

(1.16) D,:= E d,x4(i)
i=1

Of course for all v, y(t, u) D.
Following established terminology (cf. [9]), we see that a sensor scheduling strategy

is defined by an increasing sequence of switching times rj O, T] and the correspond-
ing sequence vj W of sensor activation configurations. We shall denote such a strategy
by u(.), where

(1.17) u(t) vj, [r, "/’j+l), j 1, 2,. ..
As stated earlier we are interested in the simultaneous minimization of costs due

to estimation errors as well as sensor scheduling. We shall therefore consider joint
estimation and sensor scheduling strategies. Such a strategy consists of two parts: the
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sensor scheduling strategy u (see (1.17)) and the estimator 4. The set of admissible
strategies Uad is the customary set of strategies adapted to the sequence of or-algebras

(1.18) Yt(""(’: cr{y(s, u(" )), s < t}.

That is, we consider strict sense admissible controls in the sense of [4]. For the problem
under investigation, this last statement must be interpreted very carefully. First, we
have indicated in (1.18) that the available past observation data or-algebra depends
(as is evident from (1.6)-(1.9)) very strongly on the sensor schedule u(.). This
dependence is nonstandard, as here the dimension of the observation vector and the
noise covariance change drastically at each switching time ’i. In standard stochastic
control formulations [4], [5], the dependence of y on u(. is much more implicit. This
is a difficult part of the formulation here, since it prevents us from using Girsanov
transformations in a straightforward manner. Second, (1.18) means that the switching
times ’/’i and the variables ui, which define u(.), must be adapted to the filtration
Yt’’, which depends essentially on the values of - and v[ Finally (1.18) also means
that (T) must be measurable with respect to f(")). We describe a rigorous
mathematical construction of such a model in 2.

Given such a strategy, the corresponding cost is

(1.19) J(u(.), 4):: E{I4(x(T))-(T)]
(1.20) + c(x(t), u(t)) at

(1.21) +_, k(x(t), U(Tj_I)

Here for x

(1.22)

(cf. 1.5) ), and

(1.23)

(cf. (1.4)).

c(x,,,):=c(x),

k(x, u, u’)= k,,(x),

The optimal sensor scheduling in nonlinear filtering is thus formulated as the
determination of a strategy achieving

(1.24) inf^ J(u(. p)
u(.),4,

among all admissible strategies.
To somewhat simplify the notation, let us order the elements of W according to

the numbers they represent in binary form. For example in the case M 2, N 4 we
replace At={00, 01, 10, 11} by the set of integers {1,2,3, 4}. That is, the one-to-one
correspondence between W and {1, 2,..., N} is described by

v (integer represented by v) + 1,
(1.25)

k -> binary representation of (k 1).

So in the sequel of the paper we replace all the v, v’ in (1.4)-(1.23) by the
corresponding integers from {1, 2,. ., N}.

The structure of the paper is as follows. In 2 a precise mathematical formulation
is given and the corresponding stochastic control problem is precisely defined. In 3
the set of quasi-variational inequalities solving the problem is derived. In 4 we offer
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some comments and discussion for extensions, further developments, and computa-
tional methods.

2. The stochastic control formulation.
2.1. Setting of the model. Let (II, , P) be a complete probability space, on which

a .filtration oft is given, ff. Let w(.) and z(.) be two independent, standard
fit-Wiener processes with values in R and Ro, respectively, carried by this probability
space. On the same space we consider also an n-valued random variable :, independent
of w(. ), z(. ), and with probability distribution function 7to.

We consider the It6 equation (1.1), where f(.) is n-valued, bounded, and
Lipschitz, while g(.) is nn-valued, bounded, and Lipschitz. Letting a =1/2ggr, we
assume a > aln, where a > 0 and In is the n n identity matrix. The Lipschitz property
is unnecessary and can be easily removed using Girsanov’s transformation (i.e., consider
weak solutions of (1.1)) [8]. It is assumed here to simplify the technicalities not related
with the main issues of the paper. Under these assumptions (1.1) has a strong solution
with well-known properties [8]. Note that under P, z(. is independent of x(. ).

Next consider functions hi( ), 1, , M, from n into R a, that are bounded
and H/lder continuous. We shall denote by L the infinitesimal generator of the Markov
process x(.

Oz
_

O
(2.1) L:: 2 ao(x) + 2 f(x)

i,j= OX OXj i= OXi

or in divergence form

(2.1a)

where

0 0 0
L:= ai(x)- ai(x),

i,j= 10Xi OXj i= OXi

Oaij(x
(2.1b) ai(x) := -fi(x) +

=1 Ox
Let us next consider an impulsive control defined as follows. There is a sequence

rl < ’2"’" < rk <’’" of increasing t-stopping times. To each time ’i we attach an

,-measurable random variable ui with values in the set of integers {1, 2,..., N}.
We define

(2.2) u(t)=ui, ’i <-t<7"i+l, i=0,1,2,...

and set ’o O. We require that

(2.3) 7" ]’ T as i’oe,

while rk T is possible for some finite k.
Let vi be the element of , corresponding to ui via (1.25).
Then define

(2.4) h(x, u( t)) := h(x, vi), -, <-_ < ri+

where h(x, ,) is defined by (1.7), in terms ofthe given functions hi( ). Clearly h(., u(t))

Recall that N-24 and the binary representation of each integer 1, 2,..., N determines a sensor
activation configuration by (1.25).
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maps R" into RD for all sensor schedules u(. and is obviously bounded and H/ilder

continuous in x. Define also

r(u(t)):=r(,i), "ri<=t<7"i+,

where r(. is defined by (1.9), in terms of the given matrices Ri, 1, 2, , M. Clearly
r(u(t)) maps o into D for all sensor schedules u(. but is singular. Next we define
/(x, v) to be the vector-valued function

(2.6) h(x, ,) :=

with X(i) defined as in (1.8). Let

RTi/hi(.x. )X,4(1)

R71/2h’(.x)XlI(i)
R/2hM (’x)x(,4(M

(2.7) h(x, u( t)) := h(x, vi), ’i <-<- < ri+l.

Clearly/(., u(t)) maps N" into ND for all sensor schedules u(. and is obviously
bounded and H61der continuous in x. We shall refer to u(.) as the impulsive control
As we shall see, it describes essentially the decision to select at a sequence of decision
times one of the functions h(., k), k e {1, 2, , N}. This is the precise mathematical
implementation of the sensor selection decision described in the Introduction.

To see that indeed this is the case, we can, with the above preparation, use
Girsanov’s measure transformation method. Let us then consider the process

(2.8) if(t) =exp (x(s), u(s)) r dz(s)- h(x(s), u(s))ll 2 ds

where r denotes transpose and II’ll is the o norm. Note that the process u(t)
is adapted to ff. Then since x(.) is ad2pted to 7c if, and u(.) is cadlag [8],
(2.8) is well defined. Moreover, since h is bounded, by Girsanov’s theorem [8],
[14], (. is an ,-martingale. We can thus define a change of probability measure

(2.9)
dP"()

=(t)
dP ,

and consider the process

(.o) v( t) z( t) h(x(s), u(s)) as.

By Girsanov’s theorem [8], [14], under the probability measure P( on (, d), v(.
is a standard fit-Wiener process with values in No. Fuhermore, by the independence
of w(.) and z(.), w(.) remains a standard N"-valued, fit-Wiener process that is
independent of v(. ). Finally, remains independent of w(. ), v(. while keeping its
probability law, denoted by o. Thus x(. also retains its probability law under P(’.

To relate this construction, i.e., (2.2)-(2.10), to the M noisy observations (sensors)
loosely described in the Introduction (cf. in particular (1.6)), observe that (2.10) can
be written as

(2.11) r(u(t)) dz(t)= h(x(t), u(t)) dt+ r(u(t)) dr(t)



OPTIMAL SENSOR SCHEDULING IN NONLINEAR FILTERING 793

in view of (1.7), (1.9), (2.4), (2.5), (2.6), and (2.7). Indeed,

ll/2X{ v,.}(1 0 0

r(u(t))(x, (u(t))) 0 RIIX,( 0

o
1/:20 0 Rt/t,(M)

(2.1)

;/h((

LR/h ()X,(M)
h(x, v), r <

To give a precise meaning to (1.2), or (1.6), let us introduce the continuous path
process in o.
(2.13) y(t, u(t)):= y,(t), ri < r,+l

where

(2.14) dyi( t) := r(vi) dz( t) h(x( t), vi) dt + r(ui) dv( t).

In other words, in the integration from (2.14) to (2.13), we use the left limits of
y( u(. )) to initialize. As a consequence, when a sensor is not used, the corresponding
components of y(t, u(t)) will remain constant, a convention without any consequences.
It is clear that if we select u(t)= u for all t, where u has zero everywhere except for
one 1 in the ith location, then (1.2) results. It is also rather evident that dy(t)l
and that in this case the Wiener process r(u)v(.) is also D-dimensional (see (1.16)
for the definition of D). The process dy(t) represents exactly the observation available
in ’/’i, "/’i + )"

The next issue we wish to clarify relates to the measurability question we discussed
in 1.2, after (1.18). For any u(. ), given the construction of y(., u(. )) above, we can
now consider Y"")) as defined by (1.18). We shall say that u(. is admissible, denoted
u Ua, if u(t) is ,Y"")) measurable, > 0, where ,Y"")) is constructed as above.
More precisely, this means that the r are ’""))-stopping times or that

(2.15)

and that

(2 16) v ff""’))

Note that since ,Y""))= , for any sensor schedule u(. adapted to ,Y"")), if r
are ;,Y""))-stopping times they are also ,-stopping times, and the above construction
(2.8)-(2.14) is still valid. The implication of (2.15), (2.16) is that we should check that
an optimizing strategy, obtained by some procedure, must satisfy the admissibility condi-
tions. Clearly Uaa is nonempty as strategies u(t) v, O, T], obviously are admissible.
Also strategies with fixed switchings are admissible. Note that for an admissible control
o%,y,")) = 3{. This can be shown in a straightforward manner by proving by induction
that y.,e)),v,^,+,) z.,,^,+,) using (2.14) and the convention employed in constructing
(2.13) from (2.14).
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We have thus established in this section the precise mathematical models of
nonlinear filtering problems where selection of sensors is possible. In particular we
have succeeded in circumventing the subtleties associated with the definition of
admissible sensor schedules discussed in 1.2.2

2.2. The optimization problem. For the, dynamical system described in 2.1, we
consider now the cost functional (1.19) where the underlying probability measure is
pu(.). As indicated in the Introduction, the general problem where the function & will
be in a nice class, e.g., bounded C2, or polynomial, or C can be treated along identical
lines. To simplify the notation we have chosen to formulate the problem for th(x) x.
The technical difficulties for this case are identical to the ones in the more general
cases discussed above, particularly since this b (.) is unbounded on . For this choice
the selection of the optimal estimator (T) is the conditionalmean

(2.11) (T) E"{x( T)I’"}
where E "(’) denotes expectation with respect to P(). Let (u, l) denote the conditional
probability measure of x(/), given ""(’)), on . It is convenient to express (2.11)
as a vector valued functional of (u, l)"

(2.18) (T) =((u, T))= f.xd(u, T).

We shall fuher assume that the running and switching cost functions e(. ),
k)(. ), i, j {1,. , N}, introduced in (1.4) and (1.5) have the following regularity:

(2.19) c(. ), k(. are in C(") (i.e., bounded and continuous).

As a result of this simple transformation we can rewrite the cost as a function of
the impulsive control u(. only (i.e., the selection of (.) has been eliminated)"

J(u(’))=E "(’) IIx(T)-((u, T))II+ c(x(t), u(t)) dt

(.o)

j=l

where ,<r is the characteristic function ofthe -set {; ()< T}. We further assume
that the switching costs are uniformly bounded below

(2.21) k(x,i,j)ko, xN, i, je{1,...,N}

with ko a positive constant. Note that as a consequence of (2.20) if for some admissible
u(.) with positive probability, the number of times r < T is infinite, then the cost
J(u(. )) will be infinite. Therefore for T finite the optimal policy will exhibit a finite
number of sensor switchings.

The optimal sensor selection problem can now be stated precisely as the
optimization problem:

" Find an admissible impulsive control u*(.) such that

(2.22) J(u*(.)) inf J(u(.))
U(’)e Sad

Since r(u(t)) is a singular matrix, this stage is more delicate than in standard stochastic controltheory,
where would suffice.
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where Uad are all impulsive control strategies adapted to ,y(.,u(-)), or equivalently,
satisfying (2.15), (2.16). Problem is a nonstandard Jstochastic control problem of a
partially observed diffusion.

2.3. The equivalent fully-observed lroblem. In this section we transform the prob-
lem of 2.2 into a fully-observed stochastic control problem by introducing appropriate
Zakai equations. As is customary in the theory of nonlinear filtering [1]-[4], we
introduce the operator

(2.23) p(u(.), t)(b)=E{(t)p(x(t))[Yt (’’u(’))}
for each impulsive control u(.). The notation is chosen so as to emphasize the
dependence on u(. ), which is due to the dependence of st( on u(. as introduced
in (2.8). The operator (2.23) maps the set of Borel bounded functions on n, into the
set of real-valued stochastic processes adapted to ty(’u()). Note that p(u(.), t) can
be viewed as a positive finite measure on Nn. It is the unnormalized conditionalprobability
measure of x(t) given ty(’’(’) [1], [2].

With the help of these measures we can rewrite the various cost terms in (2.20)
as follows"

E"({llx(T)-((u, T))[[} E{(T)llx(T)-(z(u, T))[[ }
(2.24)

where

E{p(u(. ), T)(O)}

(2.25) O(x) := [[x-P(U( i T)(x)]]2p(u(: T)(])

with X representing the function X(x):=x and ] the function ](x):= 1, x.
A straightforward computation implies that

(2.26) EU(’{llx T)-,I,((u, T))I[ 2} E{(p(u(. ), T))}

where is the functional on finite measures of " defined by

(2.27) () (X2) [[(X)[]2
g()

where X2(x)= Ilxl] , x , and is any finite measure on such that the quantities
(X2) and (g) make sense.

Next, we have

E u(’) c(x(t), u(t)) dt E (T) c(x, (t), u(t)) dt

E E{(T)c(x(t), u(t)) ,} dt

(e.8)
E E{(T)lt}c(x(t), u(t)) dt

But the expectation is with respect to P and not pu(.).
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because x(t), u(t) are measurable with respect to t and st(.) is an t-martingale.
Now define a map C with values in Cb(Rn) via

(2.29) C(ui)*’--Ctli(), ui{1,2,’’ .,N}.

Then in view of (2.29), (2.23), we can rewrite (2.28) as

(2.30)

E "(’) c(x(t), u(t)) dt E E{(t)c(x(t), u(t))lffty(’’ue))} at

p(u(. , (c(u( d

Finally,

E’e)(k(x(7i), u(’ri_l), u(’i))X,<7-} E{(’ri)k(x(’r,), u(’i_l),

(2.31)
E{E{(’ri)k(x(’ri), u(’ri-a), u(’ri))X,<TIY<"u<’>>}} i
E{p(u(. ), ’ri)(K(u(’ri_l), U(’ri)))X.,<T}.

Here we have introduced the function K with values in Cb(R") via

(2.32) K(ui, ,j)=ktli, lgj(), Utl uj (1, 2,... ,N},

and we have used the admissibility of u(.). Note that in the simpler case, where
ci(" ), k0(" ), i,j {1, 2, , N} are constant independent of x, (2.30) simplifies to

(2.33) E ue) c(x(t), u(t)) dt E p(u(" ), t)()c,t) dt

and (2.31) simplifies to

(2.34) E"(){k(x(ri), u(r,_,), U(r,))X,<T} E{k,,_,,u,X,<Tp(u(" ), ’i)(ll)}.

Utilizing (2.26), (2.30), (2.31), we can rewrite the cost corresponding to policy
u(.), given in (2.20), as follows:

(2.35)
J(u(" ))= E (p(u(" ), T))+ p(u(. ), t)(C(u(t))) at

"31- E p(u(" ), "l"i)(K(lgi_l, Ui)))(.ri<T
i=1

In (2.35) we have succeeded in displaying the cost as a functional of the unnormalized
conditional measure p(u(.),.), which is the "information" state of the equivalent
fully-observed stochastic control problem. To complete this transformation we need
to derive the evolution equation for p(u(. ),. ), i.e., the Zakai equation. We turn this
problem next and derive a weak form of the Zakai equation for p(u(.),.) in the
following lemma. Here C’1 denotes the space of all functions q(x, t) on E" x E that
are bounded, continuous together with their first and second derivatives with respect
to x, and first derivatives with respect to t.

LEMMA 2.1. For any q C’ we have the relation

p(u(" ), t)(6(t))= "n’o(6(O))+ p(u(" ), s) --s + L6 ds

(2.36)
+ 2 p(u(.), s)(I-I,(u(s))6(s)) cl,(s)

i=1
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where

[IYI(u(s))ch](x) := h(x, u(s))6(x), i= l, 2, D, 6 C,
(2.37)

O(s)(x) := q(x, s),

and i is the ith component of (see (2.6)).
Proof Let (.)L(0, T;) given and consider the -maingale p(t),

defined by

(2.38) dp(t) p(t)fl(t) r dz(t), p(O) 1.

Recall that by definition of if(t) (cf. eq. (2.8))

(2.39) dff(t) C(t)(z(t), u(t)) dz(t), C(O) 1.

Therefore by It6’s rule [8]

d (if(t) p(t)) if(t) p( t)[((x(t), u(t)) + (t)) dz(t) + gr(x(t), u( t))(t) dt]
(2.40)

(0) p(O) 1.

and since @ C’1

(2.41) d@(x(t),) (O@(x(t),t) +L@(x(t) t) dt+[V@(x(t)t)]rg(x(t))dw(t)
Ot

where L is given in (2.1). Therefore, with some arguments suppressed for ease of
notation

(2.42)

d[(x(t),t)(t)p(t)]=(t)p(t) +L+rfl dt+Vrgdw(t)+(+)rdz(t)

In (2.41), (2.42) we use the notation V=(O/Ox,..., O/Ox,) Integrating (2.42),
and taking expectations, we deduce

(2.43) E{O(x(t),t)(t)p(t)I=o((O))+E (s)p(s) O+L+ ds
LOs

We can then write

s +L ds
LOs

(2.44) O(s)p(u(" ), s) +L ds

Os

by viue of the -maingale propey of p(. ). Similarly,

(so(s(x(s, u((s(x(s,s s

(.45 = o( (s(x(s, s(x(, u(s (s

i=1



798 J. S. BARAS AND A. BENSOUSSAN

where in the first equality we have used the representation p(t) 1 + o p(s)(s) T dz(s),
and the well-known isomorphism between It6 stochastic integrals and L2 [8]. Finally,

(2.46) E{(x(t), t)(t)p(t)}= E{p(t)p(u(. ), t)((t))}.

Using (2.44), (2.45), (2.46) in (2.43), we obtain

E o(t) p(u(.), t)(g(t))-Tro(q(0))- p(u(.), s) --s +Ld/ as
(2.47)

2 p(u(.,s((u(s(s(s =o.
i=1

We can replace p(t) in (2.47) by a linear combination of such variables, with different
/3. The set of corresponding variables is dense in L2(12, {, P). However, the random
variable in the brackets in the right-hand side of (2.47) is clearly in L2(f, o%,y<’’u<)), P)
and therefore in L2(fl, o%, P), since tY"u))c . Then (2.47) implies the result of
the lemma (2.36).

Remark. Note that the assumed nondegeneracy of x(. implies that the solution
of (2.36) is unique. In general this can be proved under our working hypotheses for
solutions that are measure-valued processes. Here we outline such a proof for the case
when these conditional measures are absolutely continuous with respect to Lebesgue
measure on R", i.e., in the case unnormalized conditional densities exist. For this we
need to assume in addition that

(2.48) 7to has a density Po with respect to Lebesgue measure; poe L2(Rn).

We denote by L* the formal adjoint of L (see (2.1), (2.1a), (2.1b)):

(2.49)
0 ___+ 0

L*: -ixiai(x) --ai,
i,j: OXj i= OXi

and consider the Hilbert space form of the Zakai equation [10]

(2.50)
dp= L*pdt+p(., u(t)) T dz(t),

p(0) =po.

The function space in which the solution is sought is

(2.51) L(f, sO, P; C(0, T; L2(R")))f-I L2y,,’)(O, T; Hl(n)).

Here H is the usual Sobolev space on n [11], and the subindex y(.,u(.)) in the
second L2 space denotes that the solution is adapted to the filtration ty<’u<)), t_-> 0.
It follows from the results of Pardoux [11] that a unique solution of (2.49) exists in
the function space (2.50) under the assumptions made here. We can then establish the
following.

LEMMA 2.2. The following property holds:

(2.52) p(u(" ), t)(p) (p(u(" ), t), d/)

for all tO in L2(n) and bounded, where (.,.) denotes inner product in L(R").
Proof By slight abuse ofnotation we use the same symbol to denote the conditional

unnormalized measure and density (whenever the latter exists). Let us prove inductively
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that

p(/,/(" ), T V (t A 7"i+l))(I]t)"--(p(/,/(" ), "/’i V (t A Ti+I)),

where the left-hand notation refers to the measure appearing in (2.36) and the right-hand
notation to the solution of (2.50), which is uniquely defined. The induction is necessary
because the right-hand side of (2.55) is discontinuous and so we can only examine
(2.55) on the intervals (ri, ’i v (t ^ ri/l)). Suppose then that (2.53) holds for i- 1, and
therefore, in particular,

(2.54) p(u(. ), i)(a/) (p(u( ), ), q) v.
Now consider the solution r/ of

O ?ll -- t’r] "r] fi U s T s
Os

(2.55)
n(x, , v ^ ,+))= q,(x)

where q C(") and/3 is a smooth deterministic function with values in o. From
the assumptions on f, g and h (it is here that we use the assumed H61der continuity
of hi), we can assert that the solution of (2.55) belongs to
for any sample o2 [11]. Therefore (2.36) implies (using (2.55))

p(U(" ), T V (t A Ti+l))(lfi)--p(u(" ), Ti)((Ti)
D

(2.56) , p(u(" ), s)(H(u(s))(s))fi2(s) as

D

+ Z p(u(" ), s)(Hj(u(s))l(s)) dz2(s)
ri j=

where is as defined in Lemma 2.1, and (l(s)(x):= r/(x, s). Therefore, by It6’s rule
and recalling that p(t) is the martingale associated with/3(t), we have

(2.57)

p(u(. ), r, v (t ^ ’ri+,))(d/)p(’ri v (t ^ Ti+I)

=p(u(. ), ’l’i)( ("l’i))p(’ri) + ITIiv(tATi+l) D

p(s) Y p(u(" ), s)(IYlj(u(s))(l(s)) dzj(s)
j=l

riv(t^’ri+) D

+ O(s) E p(u(’), s)(IYtj(u(s))(l(s))2(s) dz2(s).
j=

Hence

(2.58) E{p(u(" ), ri v (t ^ Ti+I))(./)p(T V (t ^ ’i+1))} E{p(u(" ), ’)((l(i))p(’i)}.

On the other hand, from (2.50) and (2.55) we obtain

(p(u(’), r, v (t ^ r,+l)), q)= (p(u(’), ’l’i) (T,))

(2.59) + E (p(u(" ), s)(., u(s)), (l(s)) dzj(s)
j=l

D

Y (p(u("), s), I-I(u(s))(s))j(s) ds,
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and thus also

(2.60) E{(p(u("

But from the inductive hypothesis (2.54), the right-hand sides of (2.58) and (2.60) are
equal. Hence the left-hand sides coincide. Varying /3, we easily deduce that (2.53)
holds, at least for @ C("), which is sucient to conclude the proof of the lemma.

With this result we can rewrite the cost (2.35) as follows:

J(u(. ))= ,(p(u(. ), r))+ (p(u(. ), t), c((t))) at

(2.61)

i=1

where (see (2.27))

(2.62) ,(p(u( ), T)) (p(u( ), T), g2) -II(P(U(" )’ r),
(p(u(. ), ), )

Since (2.62) involves unbounded functions we must show that it makes sense.
At this point it is useful to introduce a weighted Hilbe space to express

(p(u(. ), T)) in a more convenient form. To this end let

(2.63) (x) 1 + Ilxll 4

and L2(E; ) denote the space of functions such that L(E). Define in a
similar way the space L(E"; g). From the discussion of existence and uniqueness of
solutions of (2.50) in the functional space (2.51) and if

po :(; ) (; ),

it is easy to check that (2.50), under the assumptions made in 2.1, has a unique
solution in the space

(2.64) L2(, M, P; C(0, T; L2(E; ) LI(E; ))) L:(0, T; HI(E; ))

where Hl(n; ) is the obvious modification of HI(E). This justifies that the quantities
arising in (2.62) have a meaning.

We note that J(u(. )) is indexed implicitly (we do not include this in our notation)
by o (or Po) and u(0)=j, j{1,...,N}, which is deterministic since it is
ff-measurable, by construction.

We close this section by rewriting the dynamics (2.50), in terms of the originally
given observation nonlinearities h , and with forcing inputs the processes y(.)
introduced in (2.13), (2.14). In view of (2.5), (2.6), (2.7), (2.13), (2.14), we have

M

h( u(t)) dz(t) E h (" )x"(J) dz(t), < ri+l
j=l

(where we have written z [z, z:,. z]r)
M

E h(" )X,(J)Rf11/"’j A{ui}(J) dzj( t), T < i+1
j=l

=: ( u( t)) dy( t, u( t))
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where

[R-lhi(x..)X{v}(1) ]
(2.65) 3(x, e)= ] RT, lh(x.)x(u) ]
Therefore the system dynamics (2.50) can be written equivalently"

dp(u(" ), t)= L*p(u(" ), t) dt+p(u(" ), t)6(’, u(t)) r dy(t, u(" )),
(2.66)

p(u(’),O)=po,

where y(t, u(t)) is defined in (2.13), (2.14). This makes precise the construction of a
Zakai equation driven by "controlled" observations alluded to in the Introduction. It
also now becomes clear that the spaces described by (2.51), (2.64) are the appropriate
ones as far as solutions of (2.50) or (2.66) are concerned.

3. The solution of the optimization problem.
3.1. Setting up system of quasi-variational inequalities. Let us consider the

Banach space H L2(n; pt) (’] L( ;/.t) and the metric space H+ of positive elements
of H. Let

Y3 := space of Borel measurable, bounded functions on H+,
(3.1)

c :_ space of uniformly continuous, bounded functions on H/.

Let us now define semigroups (t) on or c as follows. Consider (2.50) with
fixed schedule u(t)-j, and let p denote the corresponding density p(.,j). Then for
j{1,2,...,N}

(3.2) dp2 L*p2 dt + p2h dz(t), p2(O) r

where

(3.3) h := h(.,j).

We set

(3.4) 2(t)(F)(r) E{F(p2,=(t))}, F or c,
where pj, indicates the solution of (3.2) with initial value r. It is easy to see that j
is a semigroup since p2(t) is a Markov process with values in H+. It is also useful to
introduce the subspaces Y31 and 1 of functions such that

IF( )I
(3.5) [JEll1 sup --<oe

where ]lr]l . The spaces 1 and (1 are also Banach spaces. They are
needed because we shall encounter functionals with linear growth in the cost function
(2.61). To simplify the statement and analysis of the quasi-variational inequalities that
solve the optimization problem considered here, we give the details for the case N 2
only in the sequel. We shall insert remarks to indicate how the results should be
modified for the general case. Let us introduce the notation

C/:= C(i, .), i=1,2,
(3.6)

KI:= K(1, 2), K: := K(2, 1).
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Since C1, C2, K1, K2 are bounded functions, we can use them to define elements of
c1 via (for example)

(3.7) Ca(zr) (C, r)

where a slight abuse of notation, in denoting the functional and the function by the
same symbol, has been allowed. Similarly the functional on H+"

(3.8) W(Tr) (Tr, X)
(Tr’ X)II:
(,)

belongs to c1 .since it is positive and

(3.9) (Tr) =< (m g2) -< 7r[[.
Consider now the set of functionals Ul(W, t), U2(w, t) such that

U,, U C(O, T; (1),

UI(" t) 0, U2( t) 0,

U(Tr, T)= U(Tr, T)= (Tr),

(3.10) U(Tr, t)dPl(S-t)Ul(Tr,$)+ dPl(A-t)Cl("a’) dA

u.(,<-_(s-u(ms+ (a-)c(a s_->,

u(, (+ u(, ,
u.(, _-< K(+ U(, .

In what follows we occasionally use the notation U(s)(r)= U(m s), i= 1, 2.

3.2. Existence f x element. We shall refer to (3.10) as the system of
quasi-variational inequalities (QVI). Our first objective is to prove the following.

THEOREM 3.1. We assume tha the conditions on the data f, g, h introduced in 2.1
hold. Then the set offunctionals U, U satisfying (3.10) is nonempty and has a maximum
element, in the sense that if U, U denotes this maximum element and U, U satisfies
(3.10), then

The proof will be carried out in several steps. In fact there is some difficulty due
to the functional (Tr). We shall modify it to assume that

(3.11) 0_-< (r)-<_ (r, 1)

where is a constant. We shall prove the theorem with the additional assumption
(3.11) and prove the probabilistic interpretation, i.e., the connection with the infimum
of (2.61). The probabilistic formula will be used next in an approximation procedure.
We can approximate, for instance, the functional defined by (3.8) in the following
way. Set

llxl[= dx-IlY(x/((l/llxl[/n)l/-)) dxll(3.12) *,,(’rr)
1 + ii[-:ii) n) .rrdx

which clearly satisfies (3.11) with --n.
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Proof of Theorem 3.1 under assumption (3.11). The set of functionals satisfying
(3.10) is a subset of 1 or c1 defined in (3.5). However for this subset the norm (3.5)
is unnecessarily restrictive. For those functionals it is sufficient to set

L() fq LI("),
(3.13)

/+= set of positive elements of/

and to consider 1, c1 the space of Borel or continuous functionals on + such that

(3.14) IIFII, su+<.. l+(m )

We shall then study the system (3.10) with replaced by . Let us note that

H+ +,
and if we consider a functional F in 1 or , its restriction to H+ belongs to 1 or
; the injection

F restriction of F to H+

is continuous from 1 or 1 to 1 or 1. Therefore replacing 1 by 1 in (3.10) gives
a stronger result.

In the proof we shall omit the symbol and write , 1 instead of 1, 1, H+

instead of +; the norm 1[1 is then given by (3.14).
The proof is then an adaptation of the methods of Bensoussan and Lions [9] to

the present case to take into account the fact that we use instead of .
First note that

(3.15) II(t)il(,;, 1

where (1; 1) is the space of linear continuous operators from 1 into itself. Indeed
we have

IE{F(pI,(t))}]
1 + (’rr, ]) 1 + (’n’, 11)

(l + E(pl,(t), ]))
1 + (’rr, 1)

since from (3.2)

(3.16)

Therefore

(3.17)

which implies (3.15).
Note also that a solution of (3.10) will satisfy

(3.18) Ul(Tr t)<=dPl(T- t)Ul(Tr T)+ f T

d

and due to positivity, we also have

(3.19)

E (pl,( t), q]) Tr, ]).

IIl(t)(F)ll, [IFII1,

(I)l(, t)Cl(Tr) dA

Ul(t)lll < Ul( T)II1 + Cll] 1(T-t)-< xr + Gill(T-t)
where C1 SUpx C1 (x).
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As it is customary in the study of QVI, we begin with the corresponding
obstacle problem:

U,, U C(O, T;

U(’, t)>0, U2(’, t)-->0,

Ul(Tr, T)= U2(Tr, T) =xIt(Tr),

(3.20)
Ul(Tr, t)<=dP(s-t)U(Tr’s)+ (I)l(A-t)Cl(qr) dA

U(m t)-(s-t)U(ms)+ a( t)C(r) d

u(m K(+’(,

U(, -<_ g(r + ’(,
where we assume that

Vs > t,

’1, 2 C(O, T; (91)

(3.21) 1(’7/’, t)>=0, ’2(7r, t)>0,

1( q]’, T), ’2(r, T) -> (r).

We then have the following.
PROPOSITION 3.1. For , as in (3.21), the set of U1, U2 satisfying (3.20) is not

empty and has a maximum element.
It is clear that for sr, sr given, the system of inequalities (3.20) can be decoupled

and U, U can be considered separately. Let us then omit indices momentarily and
consider

U C(O, T;

U(’,t)>=O,

U(Tr, T) xp’(,n-),
(3.22)

IU(r,t)<-dp(s-t)U(ar, s)+ (A-t)C(’)dA Us>=t,

U(’,t)<=(t)

where ff stands, for instance, for Kl(Tr)+ ff2(r, t). To prove Proposition 3.1, it suffices
to show that (3.22) has a maximum element. This can be done by the penalty method.
So we look for U solving

(3.23)

U(t)=(s-t)U(s)+ (A-t) C(r)-I(u(1)-’(1))+ dA for t_<s_<-T,

u(rl( =.(,

u e c(o, 7"; ,
U(.,t)>=O.

We can then assert the following lemma.
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LEMMA 3.1. There is a unique solution of (3.23).
Proof Note that (3.23) is equivalent to

(3.24) U(t)--Op(T-t)U(T)+ *(A-t) C()-I(u(A)-(A))+ dA
E

and also to

(3.25)
U( t) e-1/e(T-t)dP( T- t)(Tr) + I T

e-1/(x-,)(h_t)

[ 1 1
C(r)+-u(x)--(u(;)-(x))+ at.

E E

Let us define the transformation T of C(0, T; 1) into itself using the right-hand side
of (3.25). Then the latter can be written as a fixed-point equation:

(3.26) U TU.
Using (3.11) and (3.15), we can show precisely, as in Bensoussan and Lions [9, p.
488], that some power of T is a contraction. Hence the result of the lemma follows.

We then can also prove, as in [9, pp. 489-490], that if e <= e’, ull--< K, then
0-< U =< U,. As in [9, pp. 494-495] we then show that as e $ 0, U $ U, which is the
maximum element of (3.22). The convergence takes place in C(0, T; %1). This
establishes Proposition 3.1.

We can then proceed with the proof of Theorem 3.1.
Proof of Theorem 3.1 (continuation). Let us consider the map H mapping

C(O, T; (1)X C(O, T; (1) into itself defined by

(3.27) H(st,, st2) UI, U2)

where the right-hand side represents the maximum element of (3.20). Now let

(3.28)

T

Ul(Tr, t)=O(T- t)xI(Tr) + Ox(A t)C(er) dA,

Consider sri(t), :i(t), i= 1, 2 such that

(3.29) 0 -< ’(t) =< :(t) =< U’(t),

(3.30) :(t) r(t) -<_ 3’:i (t),

Then we have

(3.31)

where

(3.32)

Indeed, setting

(3.33)

we have to prove that

(3.34)

i= 1,2,

y[O, 1].

0 =< H 71, 2) H 1, 2) ’)/( 1 3")H(1, :2),

koY’ -<-
ko + + max (11 c, II, c=ll) T"

1 3’(1 y’),

H(bl, 2) --< H(1, ).
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Let us set

(3.35) (U1, U2)= H(’I, ’2),

We need then to show that

(3.36) KU1 -< U1,

If we can establish that

(3.37)

UI, U:) H(:1,

KKI(Tr) + :2(’a’, t)--<_ K,(Tr) + G.(Tr, t),

Ku(Tr) +/1( 7/’, t) -< K(0r) + 1( 7/’ t),

then (3.36) is implied by the monotonicity properties of variational inequalities. But

(3.38) :2(m t)(1-Y)=< ’2(7r, t);

hence, it is enough to establish that

Kl(’tr) + K:2(Tr, t) =< Kl(Tr)+ (1- T):2(Tr, t),
(3.39)

nKE(Tr) + r:l(Tr, t)_-< Ku(Tr)/ (1- T):l(Tr, t).

The first of (3.39) will be satisfied if

[< (1 ,)]:(Tr, t) <-- (1- t)Kl(Or)(3.40)

or if

(3.41)

But observe that

T’E(Tr, t) =< (1 T’)KI(Tr).

t) _<- t) _-< + c ll T)(,r, 9).

So it is enough to choose 7’ so that

(3.42) ’(ff’ + c=ll T)(m ]) --< (1 T’)ko(Tr, ])

where ko is the uniform lower bound (2.21), since Kl(Tr) >- ko(Tr, ]). This last inequality
requires

ko(3.43) 3,’-<
ko + ff + Cll T"

In an identical fashion, the second part of (3.39) will be satisfied if

ko(3.44) ),’ <=
ko +t + Cl T"

So both parts of (3.39) will be satisfied if we choose 3/’ according to (3.32). The proof
of the theorem then proceeds via the standard iteration

ll-n+l n+l)(3.45) (t-,,1 U2 --H(U1, U2)

as in [9, pp. 512-514].
Remark. The extension of this result to the general case N 2 is straightforward.

The system (3.10) has N functionals UI,"’, Us. Everything in (3.10) is the same
except for the last two inequalities, which are replaced by

(3.46) U(Tr, t)<_- min (Ko(or)+.Us(or, t)), i= 1,’’-, N.
ji

j=I,...,N
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We again introduce the system (3.20), where the last two inequalities are
replaced by

(3.47) Ui(or, t)<= min (K0(or)+’s(or, t)), i=l,...,N
ji

j=I,...,N

where ri C(0, T; c1) and satisfy the remainder of (3.21). We then establish the
analogue of Proposition 3.1 by penalization. The analogue ofTheorem 3.1 is established
by introducing a map H mapping C(0, T; Cl)V into itself defined by

H(’I, r,..., -N) U1 U2,..., UN
where the right-hand side is the maximum element of the analogue of (3.20).

3.3. Existence of an admissible sensor schedule. Our objective in this section is to
show that the maximum element UI, U of the QVI (3.10) provides the value function
for the optimization problem (2.61), (2.66)when assumption (3.11) holds. Furthermore,
we want to show how an admissible optimal sensor schedule is determined once the
pair UI, U is known.

We shall prove that

(3.48) U(or, 0)= inf J(u(.)), i= 1,2
u(O)=i
p(O)=

where or H/ satisfies (0r, ])= 1. An optimal schedule will be constructed as follows.
To fix ideas, suppose that i= 1. Then define

(3.49) -1*= inf {Ul(Pl(t), t)= Kl(pl(t))+ U2(pl(t), t)}
tT

where again p(t) is the solution of (3.2). We write

p*(t) pl(t), [0, ’rl*].(3.50)

Next we define

(3.) ’2*= inf {U2(P2(t), t)-- K2(P2(t))+ Ul(P2(t), t)}.
,r’<_t<_ T

In (3.51), it must be kept in mind that P2(t) represents the solution of (3.2) with j 2,
starting at rl* with value pl(r*l). We then define

(3.5)

Note that, unless rl* T,

(3.53)

otherwise

p*(t)=p2(t), t[’*l, ’*].

(3.54)
UI(Pl(’TI), "/’1) --Kl(Pl(,rl*)) + U2(pl(’r*), 7"1"),

U2(Pl(’TI), ’TI) K2(Pl(’TI))-’] U1(pl(7"1*), 7’1"),

which is impossible since

(3.55) Kl(p1(’1*)) > 0, K2(P1(’*1)) > 0 a.s.

Similarly we proceed to construct a sequence of ’1" < r2* < ’3" <’’" and the process
p*(. ). We can then prove the following.

THEOREM 3.2. With the same assumptions as in Theorem 3.1, and in addition,
assuming that (3.11) holds, the sequence ofstopping times "1, "2, defines an optimal
admissible sensor schedule.
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Proof Considering (3.10) as a VI with obstacle ’2, ’1, we can write from the
definition of 7-*"

(3.56) Ul(,W 0)-- E Ul(P1(7-*), 7"1")+ CI(Pl(A)) dA
,0

This can be established by using the penalization (3.23), along lines similar to those
of [9, pp. 578-587]. Then

E{ UI(Pl(7"1*), 7"1")}-- E(U(p*(7"*)),

,{,V(p*(T))x=}+{ U(p*(*), l*)X}.
Substituting back in (3.56) and using the definition of 7"1" in (3.49), we obtain

o
(3.57) }
Fuhermore, again by employing penalization, we can show that

This implies

(3.59) E{U(p(), )X,<r} U(p(r), ),<r+,<r C(p(1)) dl

Next

El Uz(P2(), )X,<} EI*(p*( T))X<,,=}+ E{ Uz(p*(),
Substituting back in (3.57) and using the definition of in (3.51), we obtain

ul(, 0) E {(p*( T))X= + K(p*())Xv<+ K(p*())X<
(3.60)

Proceeding in a similar fashion and collecting results we can write:

i=l

(3.61) + 2 X,+,<T C+a(p*(A)) dA

where we use the notation

(3.62)

if is odd,
Ki

K2 if is even,

if is odd,
Ci=

C2 ifiiseven,

U1 if is odd,
U=

U2 ifiiseven.
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However, observe that necessarily -,* T for n large enough (random). Otherwise we
have ’,* < T for all n, on a set fo c f of positive probability. But ’* ’ ’*-<_ T and

(3.63) (p*(’*), ])-* (p*(*), 1)

where (since (r, 9) 1)

--fo"* 6 dy(3.64) (p*(r*),]) 1+ p. T

(see (2.66)) and

(3.65) (p*(r*), 9) E{’(r*) zy’’u*)}. > 0 a.s.

where st( is the process introduced by (2.8). Therefore on o, as nc

(3.66) Ki(p*(r* ))X.,;<T +o
i=1

and since fo has positive probability, as n o

(3.67) E {i=1K(p*(’r*))X.,<7,},
which contradicts (3.19).

We can thus assert that

(3.68) X*,= T 1 a.s.

In particular, it follows that the sequence -*, r*,. , defines an admissible schedule
denoted by u*. The corresponding state solution of (2.66) coincides with p* and (3.61)
implies

(3.69) Ul(ar, 0) => J(u*(. )).

But by standard arguments, we check that

(3.70) Ul(’rc, O)<=J(u(.)) Vu(.)E Uad
and therefore u*(. is indeed optimal.

3.4. The main result. We want now to get rid of (3.11) and consider the original
functional q in (3.8). Let us consider the approximation (3.12) , of . To n
corresponds a system of QVI"

U1, U2 E C(0, T; (1),

U1, U220,

U’(’rr, T)= U.(ar, T) =,,(),

(3.71)
U’(r, t)<=l(S-t)U’(’,s)+ l(.-t)Cl(r) dl,

u(,<-%(s-u(,s+ (a-c(la s_->

ur(, -<K(+ U(m ,
U(, -< K(+ U’(, .
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From Theorem 3.2, we can assert that

(3.72) U’(-,0)= inf J"(u(.)), i=1,2
u(O)=i
p(O)=

where

(3.73)
Jn(u(.))=E attn(p(U(’), T))+ (p(u(.), t), C(u(t))) dt

+ x,,<(f(u(. , ,, :(u_, ul
i=l

Therefore we deduce that

(3.74) J"(u(" ))-J(u(. ))= E{,(p(u(. ), T))-(p(u(. ), T))}

and from (3.12) we deduce

(3.75)
+{(I p(u(.), r)x(- (14-IlxllVn)/

dx

(f p(u(’), T)x (1+ 1 ))(1 + IlxllVn)/
dx

1 }
But using (2.50) yields (see (2.1a))

E { f P(U(" ), t)[[x’[4
dx}

E p(u(" s)(x) Oa, 21lxll(Nn + IlxllZ)x2
ox, (,,+lxl-)

211xll2(2n+llxll z)
+"o o (,,+ ilxll)

ai

8XiXjn2

2llxll2(2n+llxll=)x’}(n+ Ilxll=)= as + I (x) ttxtl
n + iliI: dx}

where we employ the summation convention over repeated indices. Hence after
majorizing conveniently, we have

(3.76)

E { I P(U(" ), t)(x)llx[[4
dx)

I fo {f } Ft7r(x)llxl] 4 p(u(. ), s)(x)llxll 4
dx ds +--<- dx+F E

/llxll /llxll
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We shall use capital Greek letters, F, A,..., to indicate constants in the following
estimates. Finally we deduce that

E ( f P(u( )’ t)(x)l]x"4 dx) <=t [ f+ Ilx,, 2 rt + i{-i( dx+

(3.77)

Next consider

p(u(’),t)
(p(u(. ), t), l)

=(u(.), t),

which is the normalized conditional probability measure and satisfies Kushner’s
equation

(3.78) d(r(t)(p))=r(t)(Lq) dt+(r(t)(go)-r(t)(q)r(t)(g)) (dz-r(t)(g) dt).
If we apply (3.78) with q Ilxll 2- x2, we obtain

dE{,r( (x2)} E {o’( Lx2) o’( )[o’( X2) o’( (x2) cr()]} dt
(3.79)

=<Ao(1 + E{r(t)(X2)}) dt.

Finally,

E{cr(t)(xZ)}<=A, f r(x)llxll = dx.

But the second term in (3.75) is

1

(3.81)

1 ]1/2
1 1/2

<A2[E{ p(T)(x(1 (l+x2/n) ]1/2
1 /2

<=A3[E{p(T)(x2)p(T)(ri2X2)}] ’/2.
We easily check that

E{(p(T)(x))}_-<A4+ (x)llxll dx <-z’,

dE{p(l)( :2) 2} {p()(Ln (t)(nX2
2} dt.
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But

(3.82)

hence

(3.83) dE(
which implies

X
2 A6

L X2_-
<"

(3.84)

<-(/ I (x)llxll4 dx)"
Therefore, continuing from (3.81), the second term in (3.75) is majorized by Fo/n 1/4.
Collecting results (from (3.75), (3.77), (3.81), (3.84)), we can assert that

(3.85) I"(u(.))- (u(. ))l_-

provided the initial distribution of p(0), i.e., r satisfies

(3.86)

The estimate in (3.85) is uniform with respect to n. Therefore

inf J(u(. ))1 =<(3.87) U, (m 0)
uo)__,.po)__ /,/1/4"

In fact we can replace zero by any e [0, T] and consider the function

(3.88) Ui(w, t) inf J,(u(. ))
u(t)=i,p(t)=cr

where Jr(u(’)) corresponds to a problem analogous to (2.50), (2.61) starting in instead
of zero. Therefore we have

(3.89) UT(cr, t)- U,(m t)l<- 1/4"

However we must be careful of the fact that the constant in (3.89) depends on a bound
on J r(x)llxll4 dx. More precisely, we have proved that

(3.90) gT(cr, t)- U,(m t)l--<n- 1+ (x)tlxll dx

where A’ here does not depend on r (assuming that r is a probability). It follows that

(3.91) UT(m t) U(w, t) in C(0, T;
Taking the limit in (3.71), we obtain that U, U2 is a solution of (3.10), and moreover

(3.92) Ui(w, 0)= inf J(u(.)).
u(O)=i
p(O)=r

However, by a probabilistic argument already used in 3.3, any solution of (3.10) is
smaller than the right-hand side of (3.92). This completes the proof of Theorem 3.1,
and also provides the same statement as in Theorem 3.2, without assumption (3.11)
and for our original given by (3.8).



OPTIMAL SENSOR SCHEDULING IN NONLINEAR FILTERING 813

REFERENCES

[1] M. HAZEWINKEL AND J. C. WILLEMS, EDS., Stochastic Systems: The Mathematics of Filtering and
Identification and Applications, Proc. NATO Advanced Study Institute, Les Arcs, France, Reidel,
Dordrecht, The Netherlands, 1981.

[2] W. H. FLEMING AND L. G. GOROSTIZA, EDS., Advances in Filtering and Optimal Stochastic Control,
Proc. IFIP-WG 7/1 Working Conference, Cocoyoc, Mexico, 1982, Lecture Notes in Control and
Information Sci. 42, Springer-Verlag, Berlin, New York, 1982.

[3] M. METIVIER AND E. PARDOUX, EDS., Stochastic Differential Systems: Filtering and Control, Proc.
IFIP-WG 7/1 Working Conference, Marseille-Luminy, France, 1984, Lecture Notes in Control
and Information Sci. 69, Springer-Verlag, Berlin, New York, 1985.

[4] W. I. FLEMING AND E. PARDOUX, Optimal controlfor partially observed diffusions, SIAM J. Control
Optim., 20 (1982), pp. 261-285.

[5] J. M. BISMUT, Partially observed diffusions and their control, SIAM J. Control Optim., 20 (1982), pp.
302-309.

[6] J. S. BARAS, Optimal sensor scheduling in multiple sensor platforms, in preparation.
[7] J. D. KATTAR, A solution ofthe multi-weapon, multi.target assignment problem, WP-26597, The MITRE

Co., Bedford, MA, February 1986.
[8] G. KALLIANPUR, Stochastic Filtering Theory, Springer-Verlag, Berlin, New York, 1980.
[9] A. BENSOUSSAN AND J. L. LIONS, ContrSle impulsionnel et in.quations quasi-variationelles, Dunod,

Paris, 1982.
[10] A. BENSOUSSAN, Maximum principle and dynamic programming approaches of the optimal control of

partially observed diffusions, Stochastics, 9 (1983), pp. 169-222.
11] E. PARDOUX, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 9

(1983).
[12] J. L. LIONS ND E. MGENES, Problmes aux limites non homognes et applications, Vols. and 2,

Dunod, Paris, 1968" English translation, Springer-Verlag, Berlin, New York, 1972.
13] J. S. Barts ND A. BENSOUSSAN, Optimal sensor scheduling in nonlinearfiltering ofdiffusion processes

II: computational methods, in preparation.
[14] R. S. LIPSTER. AND A. N. SHIRYAYEV, Statistics of Random Processes I: General Theory, Springer-

Verlag, Berlin, New York, 1977.



SlAM J. CONTROL AND OPTIMIZATION
Vol. 27, No. 4, pp. 814-835, July 1989

1989 Society for Industrial and Applied Mathematics
008

FREQUENCY-SCALE DECOMPOSITION OF H-DISK PROBLEMS*

D. WILLIAM LUSE’ AND JOSEPH A. BALLS

Abstract. Time- and frequency-scale decomposition methods have been used extensively for the sim-
plification of automatic control problems. This paper considers the problem of parametrizing all functions
in a specified H-function disk over the unit ball in H. This problem arises in the design of stabilizing
feedback compensators to minimize aweighted sensitivity matrix in the H-norm sense. It is shown that
an H-disk problem, whose data has two-frequency-scale behavior, can be broken down into slow and fast
subproblems. If solutions can be found for both subproblems, then the solutions can be combined to give
an approximate solution for the original problem.

Key words, singular perturbation, optimal control, factorization theory, Beurling-Lax Theorem

AMS(MOS) subject classifications. 47A68, 93B28, 93B35, 93D15

1. Introduction. Frequency-domain plots have been used for many years to rep-
resent control system specifications and to aid in the design of feedback compensators.
The use of such plots has proved very useful for scalar systems. For multivariable
systems, frequency-domain plots still have a strong physical interpretation [1]; but
compensator design based on them seems to require a great deal of experience on the
part of the designer. Thus, there is a pressing need to automate frequency-domain
system design. As pointed out in [2], the constraints diagrammed in frequency-domain
plots can usually be translated mathematically into "function disk" inclusions, in which
the "disks" are described in terms of H and L norms. The development of [2]
further notes the existence of a well-developed mathematical theory for treating
problems of this type. We now consider the problem (e.g., [3]) of choosing a stabilizing
compensator that minimizes the weighted sensitivity of a feedback loop with respect
to open-loop plant perturbations. The minimization is to be done in the H sense.
The following notation will be used. C will denote the complex numbers and C/ will
denote the open half-plane Re (s) > 0. ff will denote the real numbers. H and H2 are
as defined in [4] and [2]. The notations S and M(.) are borrowed from [3]. S is the
ring of proper, stable (bounded on C/), real rational functions of the complex variable
s. We can give S a norm by imbedding it in H. In other words, S is "real rational
H. M(.) is shorthand notation for the set of all matrices whose elements lie in
some set. Thus, M(S) stands for the set of all rational, proper, stable transfer matrices.
When the M(.) notation is used, it is assumed that the sizes of the matrices can be
determined by context. Borrowing standard notation from algebra, the field of real
rational functions of s is R(s). The sensitivity minimization problem [3] can now be
formulated. Referring to Fig. 1.1, we assume that Q(s) M(R(s)) is given and that we
wish to find C(s) M(E(s)) such that the sensitivity S(s) given by (1.1) is a minimum,
and the (four-block) closed-loop transfer matrix of Fig. 1.1 is an element of M(S).
We assume in this paper that Q is square:

(1.1) S(s) (I + Q(s)C(s))-1.

The sense of the minimum is the weighted H norm sense. Thus, the problem is to
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FIG. 1.1

find a compensator C(s) that leaves the closed-loop system of Fig. 1.1 stable and
makes the quantity p(C) given in (1.2) a minimum:

p(C) sup 6-(Wl(s)S(s)W2(s))
Re (s)>0

(1.2) sup 6-(Wl(jw)S(jw) W2(jw))

wsw[[.

We assume that W and We are rational matrix functions such that W M(S) and

Wf M(S) for j 1, 2.
It is a matter of controversy whether this problem is actually one that control

engineers want to solve. In general, the optimal compensator is not physically realizable.
Sometimes a sequence of compensators can be found for which the quantity (1.2)
converges to the optimal value. This is not true, however, in the case of a strictly
proper, stable, scalar plant. In this case, the optimal value of (1.2) is zero, while the
minimum realizable value of (1.2) is at least 11Wl(OO)W.(oo)[[. This follows because
C(oo) =0 for any realizable compensator. In general, the optimal value of (1.2) can
be attained by using a physically realizable compensator only when Q(s) has no poles
or zeros on the extended imaginary axis. In [5] it is demonstrated that control engineers
often want to make tradeoffs between several quantities similar to (1.2). There are
often several function disks within which the control system designer wants various
system transfer matrices to lie. Unfortunately, there is no known solution to such
"multidisk" problems. Thus, the sensitivity minimization problem described here can
be viewed either as an intermediate step toward further research or as a design tool
that may aid in evaluating candidate system designs.

The sensitivity minimization problem as stated above has been solved in a number
of different ways. In this paper, we use the approach of [6]. The first step toward
solution is to rewrite the sensitivity minimization problem as a matrix interpolation
problem. Let Q be expressed as left- and right-coprime matrix fractions over M(S)
as shown in (1.3) [3]"

(1.3) Q= ND-’= -’,
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(1.4a) XN+ YD I,

(1.4b) NX + DY= I.

Let X, Y, f(, f" M(S) be such that the Bezout equations (1.4) hold. Then any stabilizing
compensator can be expressed as

(1.5) C Y- R]Q)-I(x + R/))
where R M(S). Equation (1.5) is one of two equivalent~parametrizations given on
page 108 of [3]. It is customary to require that det Y- RN) 0 in (1.5). It should be
noted, however, that such "infinite" compensators are only some of the many unrealiz-
able compensators that can be produced by inserting various values of R into the
parametrization (1.5). A parametrization of all "possible sensitivities" that result from
a stabilizing compensator can be produced by substituting (1.5) and (1.3) into (1.1)
[3]. The result of this is that every "possible sensitivity" can be expressed as

(1.6) S= 1 NR).

Every "possible weighted sensitivity" can now be expressed as

W1SW2 W1 f"W2 W1NRW
where R M(S). The sensitivity minimization problem has now been reduced to

(1.7) min Wl rW2-
RM(S)

It is generally agreed that the minimization problem (1.7) should be considered solved
if the suboptimal problem (1.8) is solved. Clearly, this could be done by repeating the
solution of (1.8) for a sequence of values of p"

(1.8) Characterize {R

It should also be noted that the solution to (1.8) is likely to be more useful than the
solution to (1.7), since it may be used to allow "breathing room" on the sensitivity so
that other constraints may be added.

Using (1.8) as a starting point, it can be shown that all "possible sensitivities"
(1.6) that satisfy

w,sw=ll <= p
can be parametrized according to (1.9) using methods described in [20]:

(1.9) S=[OllG+ O][O_IG+ 0_]-1

where IIGII_-<I. This characterizes the set (1.8), in principle, because (1.6) can be
backsolved for R. The corresponding compensator can then be computed from (1.5),
or (1.1) can be backsolved for C (s).

The idea of a two-frequency-scale rational matrix was introduced in [7]. Two-
frequency-scale matrices are parameter-dependent rational matrices whose behavior
becomes increasingly separated into high- and low-frequency categories as the par-
ameter approaches a certain specified critical value. In this paper, the perturbation
parameter is e and the critical value is zero. A number of results concerning two- and
multiple-frequency scale matrices are given in [7] and [8].

The objective of this paper is to show that if the data (Q, W, and W2) of the
sensitivity minimization problem all have two-frequency-scale behavior and satisfy
certain regularity conditions, then approximate solutions can be generated by solving
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tWO similar reduced-order subproblems. It is then shown, with considerably more
difficulty, that the matrices 0ij of (1.9) are two-frequency-scale if the data for the
problem is two-frequency-scale.

The remainder of this paper is organized as follows. Section 2 gives background
on two-frequency-scale systems and on the solution of 1.8). The background developed
in 2 is applied to give the main results of the paper in 3.

2. Background.
2.1. Two-frequency-scale matrices. Consider a transfer matrix H(s, e) that is

rational in s with coefficients that depend analytically on the parameter e. In this
paper, e is assumed at all times to be a nonnegative real variable. The general behavior
of such a transfer matrix is very complicated. The concept of a two-frequency-scale
rational matrix narrows down the many possible types of behavior to a degree that
allows many nontrivial results to be proved. The following three statements give an
intuitive description of the two-frequency-scale property.

(1) All coefficients are real analytic in e at e 0.
(2) The poles fall .into two classes. Those in one class approach finite values as

e approaches zero. Those in the other class go to infinity as K (e)/e, where K approaches
a nonzero constant as e 0. K may have an algebraic singularity at e 0. Thus, the
poles fall into two frequency scales--the low or "slow" frequency scale s and the high
or "fast" frequency scale p es. The slow poles approach finite limits in the s frequency
scale as e 0. The remaining fast poles approach finite, nonzero limits in the p frequency
scale as e-0. Thus, the polynomial eS2+ 1 is not allowable as a pole polynomial
because the poles +j/x/- neither go to finite values as e 0, nor can they be expressed
as K(e)/e, where K (e) has the required properties. An attempt gives K (e) +jx/--,
which goes to zero as e 0. An example of an allowable pole polynomial is es + 1. In
this case, K (e) 1.

(3) Two-frequency-scale matrices must be rational and proper for all sufficiently
small fixed values of e. Furthermore, they must behave as rational, proper matrices in
an asymptotic way in each frequency range. Thus, they behave as dynamical systems
for all sufficiently small e, and in the limit as e- 0 in each frequency range.

The preceding verbal descriptions of the two-frequency-scale matrices will now
be made mathematically precise. We first let R denote the ring of germs [9] of
real-valued functions analytic in the real variable e at e 0, and let F be the field of
quotients of R. A rigorous definition of two-frequency-scale rational matrices can
now be given.

DEFINITION 2.1. A matrix-valued function H(s, e) is two-frequency-scale if:
(1) H(s, e) F(s); H(s, e) is proper in s.

(2) H(s, 0) (s); H(s, 0) is proper:

H(, e) N(p), H(, e) is proper.
=0 =0

(3) Each pole sj of H(s, e) can be expanded in one of the following two ways:

(2.2) (B) s(e) =1 bji8 i/q, bjo#0;
E i=o

q is a positive integer that may depend on j.

(2.1) (A) sj(e)= aje/q;
i=0
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It should be noted that part (B) of condition (3) above rules out denominators
such as e2s+ 1 and eS2+ 1. Poles are forced to be "exactly" O(1) or O(1/e) as e0.
The positive integer q takes on nonunity values for denominators such as s2+ e 0.
The matrices computed in part (2) of Definition 2.1 are, for some purposes, approxima-
tions of the matrix H(s, e) for low and high frequency. These approximations are
given a special notation for convenience.in the following definition.

DEFINITION 2.2. Let H(s, e) be a two-frequency-scale rational matrix. Then the
matrices Hs and HF over E(s) and E(p), respectively, are given by

(2.3) Hs(s)= H(s, O),

e=0

Several senses in which Hs and He are approximations of H are made precise in [7]
and [8].

The following theorem connects the frequency-domain concept of a two-frequency-
scale rational matrix with the state-space idea of a singularly perturbed system, for
which there is an extensive literature.

THEOREM 2.1. A matrix H(s, e) is two-frequency-scale if and only if there exists a
minimal realization of the form (2.5) for H(s, e) in which the matrices Ci, Aij, Bj, and
D are in M(R); and det A22(0 0:

(2.5a) 21 AllX h- A12x2 -t- Blu,

(2.5b) 2
1
AIx + 1 1

A22x2 -k-- Bu,

(2.5c) y Cx + C2x+ Du.

Proof For the proof see [10].
In words, Theorem 2.1 says that a matrix H(s, e) is two-frequency-scale if and

only if it has a minimal analytic realization as a singularly perturbed system of
differential equations. Showing that (2.5) has a two-frequency-scale transfer matrix is
a straightforward computation involving system matrices [11]. Showing the converse
requires a theorem for the realization of systems over rings [12]. It should be noted
that "minimal" here means roughly "minimal for almost all sufficiently small e."

It is clear that regularly perturbed systems, that is, systems of the form (2.5) with
the dimension of x2 equal to zero, form a subset of the singularly perturbed systems.
Thus, any behavior that can occur in regularly perturbed systems is possible also for
singularly perturbed systems. It is well known that a system depending on a single
parameter that is completely controllable and observable for almost all values of the
parameter may lose controllability and/or observability at discrete parameter values.
In other words, the order of a minimal realization is a discontinuous function of the
parameter in general. It turns out that a singularly perturbed system of form (2.5) can
have poles that become asymptotically uncontrollable and/or unobservable as e 0
in either or both of its frequency ranges. From the frequency-domain viewpoint, a
two-frequency-scale rational matrix may have poles that do not appear in either Hs(s)
or HF(p). The concept of "lost poles," referring to poles that are "lost" in the limiting
process as e- 0, is introduced to deal with this on a systematic basis. Lost poles are
defined in [7] through the use of parameter-dependent system matrices. They are
defined here, in an equivalent way, using state-space ideas. We first note that if the
rational matrix H(s, e) has minimal realization (2.5), then the slow and fast descriptions
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(2.6)

(2.7)

where

(2.8a)

(2.8b)

(2.8c)

(2.8d)

(2.8e)

(2.8f)

(2.8g)

(2.8h)

(2.3) and (2.4) can be expressed in terms of the blocks of (2.5) as follows"

Hs(s)= Cs(sI-As)-’Bs+ Ds,

He(p) Cp(pI- AF)-’Bp + DE

Cs C1- CzAA21

As =All- AI:AA21
Bs
Ds D C2AB2

Az A2(0),

By B2(0),

DF=D(O).

The subsystems (Cs, As, Bs, Ds) and (Cv, Av, BF, Dr) appear frequently in the
time-domain singular perturbation literature (e.g., [13], [18]). Noting from the above
discussion that the above-mentioned subsystems are not necessarily minimal, we can
now define lost poles.

DEFINITION 2.3. Let H(s, e) be a two-frequency-scale rational matrix. Let (2.5)
be a minimal-order realization whose existence is guaranteed by Theorem 2.1, and let
Cs, As, Bs, and Ds be defined by (2.8). Then the lost slow poles of H(s, e) are those
poles of the system (Cs, As, Bs, Ds) that are uncontrollable or unobservable. Similarly,
the lost fast poles of H(s, e) are those poles of the system (Cv, Av, BF, Dr) that are
uncontrollable or unobservable.

To apply coprime factorization theory to two-frequency-scale transfer matrices,
an analogue of the set S is needed. The following definition of stable two-frequency-
scale rational matrices is borrowed from [14].

DEFINITION 2.4. S is the set of two-frequency-scale rational matrices whose poles
satisfy the following condition. Slow poles (those that satisfy (2.1)) have Re ajo<0;
fast poles (those that satisfy (2.2)) have Re bjo <0.

By Lemma 2.3 of [14], Definition 2.4 could also be stated as follows: a two-
frequency-scale rational matrix H(s, e) is in S if Hs(s) and HF(p) are both stable
and H(s, e) has no unstable lost poles. A portion of a theorem from [14] will now be
extracted and paraphrased.

THEOREM 2.2. Let H( s, e) be a two-frequency-scale rational matrix with no unstable
lost poles. Then H(s, e) has right- and left-coprime factorizations over M(S) as follows:

H(s, e)= N(s, e)D(s,

Furthermore, there exist X, Y, X, and Y in M(S) such that

X(s, e)N(s, e)+ Y(s, e)D(s, e)= I, IQ(s, e)f(s, e)+ (s, e) ,(s, e)= L

Proof For the proof see 14]. [3

The proof of Theorem 2.2 is not obvious because the ring S is not a Bezout
domain. The proof in [14] is done through state-space methods. The results on
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parametetrization of all stabilizing compensators described in 1 now apply to two-
frequency-scale rational matrices. It should be noted that "stable" means "in M(S)"
as pointed out in [14]. All allowable sensitivities can be generated by inserting any R
in M(S) into (1.6). It should also be noted that the corresponding compensator need
not be two-frequency-scale even if it is not infinite. This is not surprising in view of
the remark following (1.5).

The theory of two-frequency-scale matrices described in this section is based on
taking R as the real germs at e 0. This leads to the matrices Hs and HF having real
coefficients. Although the results of [7], [8] were developed for complex germs, a

nearly identical theory results if only real germs are considered.
The following result on block diagonalization of (2.5) is also needed [15].
THEOREM 2.3. There exists a similarity transformation T(e) M(R) that trans-

forms system (2.5) into block-diagonal form as follows"

T(e)-I=AD(e)T(e) 1
A21(e)

i
o 10

1
AF +0(1)

Al(e 0 -10
1
Aa(e)

Furthermore, T(e) and T(e)- have the following forms:

[ I+O(e) -eA2(O)A’+O(e) 1T(e)= AIA2I(O)+O(e) I+O(e)

T(e)_l [ I+0() eA,(O)A?l+o(e)]-A?’A,(O)+O(e) I+O(e)

This theorem is the main tool of a number of papers on time-domain singular
perturbation theory.

2.2. Solution of the function-disk problem. The state-space approach of [16] will
be used to solve problem (1.8). A fairly algorithmic treatment will be discussed here
since a theoretical discussion would be too lengthy to include. Let it suffice to mention
that the approach, for the case W W2 I, involves looking at the graph space of the
operator S(s), treated as a mapping from/-H to H, in a Krein space (indefinite
inner product space) setting. The connection with (1.8) is that if p is normalized to 1,
we require that the quantity within the norm symbol be a contraction mapping. A
relationship between the graph spaces of contraction mappings and negative subspaces
of the Krein space is then exploited.

A blanket assumption is that Q(s) has no poles or zeros on the imaginary axis.
This will guarantee that the process about to be described leads to a well-defined
solution. If pure-imaginary poles or zeros of the plant are present, the algorithm will
try to cancel them with pure-imaginary compensator zeros and poles.

We further assume that Q(s) is square. Although the approach of [6] works in
general, the state-space formulas of 16] are currently available only for the case when



FREQUENCY-SCALE DECOMPOSITION OF H-DISK PROBLEMS 821

Q(s) is square and nonsingular at . The first step is to form the matrices L, J’, and
J as follows"

WY j,=
0 I

(2.9) L= W_I/_ _02i
S=

0

where the matrices N,/, and 9 are as discussed in 1. We now compute (R)(s) such
that

(2.10) (.1) L(s)=(R)(s)F(s),
(2.11) (2) O(-s)*’O(s) ,
(2:12) (3) F and F-1 are in M(S).
Such a , if it exists, is unique up to a J unitary constant right factor. If such a can
be found and the set (1.8) is nonvacuous, then all rational allowable sensitivities can
be parametrzed as

(2.3) S(s)=[o,,(s)G(s)+ o,(s)][o,(s)G(s)+ 0(s)]-’
where G(s) M(S) with ]]GI]I and O is subdivided as

(2.14) O=[ 011021 012].022
Thus, problem (1.8) has been conveaed to a J-inner-outer factorization problem.

The J-inner-outer factorization problem described above is solved in [16], with
the unit disk as the domain of H functions. This work is restated here for the right
half-plane. The initial data for the problem is, by assumption, a minimal state-space
realization for the matrix L(s) defined in (2.9)"
(2.5) L(s) C(st-A)-IB + D.

Viewing all matrices as operators, we now define

(2.16a) A=A-BD-1C,
(2.16b) P Reisz projection of A for the right half-plane restricted

to its image

1 [(sI-A)-ds,r
where F encircles all right-half-plane eigenvalues of A.

(2.16c) P Riesz projection of A for the right half-plane restricted
to its image,

(2.16d) C_= J’-aD-*B*[Im P*,
(2.16e) C+=C[ImP,
(2.16f) B_= P*C*J’,
(2.16g) B+ PBD-1,
(2.16h) ap_=-a* ]Im P*,
(2.16i) ap+=alXmP,

e,( + ,)-c,J,c( )-e,(.j Sl-
j-

Px(t-AX)-BD-J’-D-*B*(t+AX*)-Px* dt,(.k s
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(2.161)
S2

where " Im px, + Im P- Im P* + Im px.

With these definitions, an expression for 19 (when it exists) can now be written down.
It turns out that 19 exists if and only if is invertible, and then

(2.17) 19(s)= {I-t-[C-C+][ S-Ap-O s-Ap+O l--[B-I}B+ 19 (co).

We note that 19 satisfying (2.10)-(2.12) exists if and only if is invertible. If is not
invertible, it can be made invertible by making p slightly larger. It is possible to test
whether the set (1.8) is nonvacuous by computing a generalized Pick matrix [6]. Another
way to see if (1.8) is nonempty is to compute 19 using (2.17) and look at a sample
output of the linear fractional map (2.13).

It is not obvious that (2.17) always produces the same result because there are
arbitrary choices of the factorization (1.3)-(1.4) and of the state-space realization
(2.15). It turns out, however, that the result is unique given Q, W, W2, and
This is because 19 is determined (up to the (J, ,/’)-unitary constant 19(ee)) by the
behavior of Q, W, and W2 at the right-half-plane poles and zeros of O. This section
ends with some facts from the theory of system matrices 11 ]. The system matrix notion
provides a method of describing systems that is somewhat more general than state-space
representation. This allows for a wider range of transformations that preserve the
transfer matrix. The notation is defined by the relationship

(2.18) [TU]"VT-1U+W’-VW

It can be shown easily that system matrices can be left-multiplied by nonsingular
lower-block-triangular factors from the left without changing the transfer matrix. A
similar statement holds for right-multiplication by nonsingular upper-block-triangular
factors. The following theorem, which concerns the special case when W I, follows
easily from formula (6.4) of [11] and several system matrix operations.

THEOREM 2.4. Let Hi, for 1, 2, have system matrix descriptions

Then the product H2H has the following system matrix description:

(2.19) T 0 g H2H
-Vl -v

3. A two-frequency-scale disk problem. We now consider the case where the plant
Q of Fig. 1.1 and the weights W/of (1.8) are two-frequency-scale and satisfy a set of
regularity conditions. The regularity conditions essentially require that the solution to
the problem defined by (1.8) is well-defined in each frequency scale, and that there
are no singularities induced by unstable lost poles as discussed in the previous section.
We start with two lemmas. The first concerns inversion of rational matrices in terms
of a state-space form.

LEMMA 3.1 [19]. Let H(s) be a square rational matrix over an arbitrary field F,
and suppose that H(s) has a state-space realization

H(s)=C(sI-A)-IB+D
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with D invertible. Then H s)- can be written

H(s)-’ D-’-D-’C(sI-A)-’BD-’

where A A- BD- C.
Proof Lemma 3.1 can be proved easily using the Schur complement formula

[17].
The next lemma concerns two-frequency-scale weighting matrices.
LEMMA 3.2. Let W(s, e) be a square two-frequency-scale matrix with no unstable

lost poles. Suppose that Ws(s) and WE(p) are both stable, and both have stable
inverses. Then there exists e*> 0 such that for e [0, e*), W(s, e) is stable and has a
stable inverse. Furthermore, W(s, e)- is two-frequency-scale and [W(s,e)-]s
Ws(s)-, and W(s, e)-] We(p)-.

Proof We first note that Theorem 3.5 of [7] shows that W(s, e) is stable for
e[0, e*) for some e*>0.

The corresponding fact for W(s, e)- will now be shown. Since Ws(s) and Wv(p)
have stable inverses, they must be nonsingular at oe. Lemma 2.5 of [14] shows that
W(s, e) -1 is two-frequency-scale. The expressions for [W(s, e)-]s and W(s, e)
follow by direct substitution. At this point, the only thing remaining to prove is that
W(s, e)- S. Since W(s, e)-]s and W(s, e)-l]v are both stable, we need to verify
only that all lost poles of W(s, e)- are stable, by virtue of Lemma 2.3 of [14] as
mentioned after Definition 2.4. It can be seen from Lemma 3.1 that the lost poles of
W(s, e)- are the same as the lost poles of W(s, e). One way to show this is to use
the Popov-Belevitch-Hautus rank tests [17, p. 136].

The following assumption is motivated by the lemma above.
Assumption A1. This assumption holds for W(s, e) with i--1, 2. W(s, e) is

two-frequency-scale and has no unstable lost poles in either frequency scale. Further-
more, the matrices Wis(s), W/s(S)]-, W/v(p), and Wv(p)]-1 are all in M(S). That
is, they are stable and have stable inverses.

The assumption in A1 on lost poles is needed, for otherwise the stability of S
would not be equivalent to the stability of WISW2. The need for the next assumption
is clear, for if the plant had unstable lost poles, then the existence of a stabilizing,
two-frequency-scale compensator would not be guaranteed, and Theorem 2.2 could
not be applied.

Assumption A2. The plant Q(s, e) is square, is two-frequency-scale, and has no
unstable lost poles in either frequency scale. Furthermore, Qs(S) and Qv(p) have no
poles or zeros on the extended imaginary axis.

The objective ofthis section is to show that a full-order problem can be decomposed
into two reduced-order subproblems, and that the solutions to the two subproblems
can be combined to yield an approximate solution to the full-order problem. For the
purpose of this paper, we will consider that solving problem (1.8) is equivalent to
finding 19 satisfying (2.10)-(2.12) because of the parametrization (2.13)-(2.14).

FULL-ORDER PROBLEM. Given Q(s, e), W(s, e), and W2(S, 6) satisfying Assump-
tions A1 and A2, form left and right coprime factorizations of Q(s, e) whose existence
is guaranteed by Theorem 2.2. Using the notation of this theorem, compute the blocks
of the following matrix to produce L(s, e)"

W(s, e)(s, e) W(s, e)N(s, e)](3.1) L(s, e)=
W2(s, e)-’(s, e)-’ 0
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Find (R)(s, e) satisfying:
(1) L(s, e)=O(s, e)F(s, e);
(2). O(-s, )*’o(, )= J;
(3) F(s, e) and [F(s, e)] -1 are in M(S);

(4) (R)(oo) _,
p I

We now define the slow and fast subproblems.
SLow SUBPROBLEM. Given Q, W1, and W2 satisfying Assumptions A1 and A2,

compute Qs(s), Ws(S), and W2s(S), as well as left- and right-coprime factorizations
of Qs(s). From the matrix

(3.2) LS(s)= W;()s)-I 0

Find Os(s) such that:

(3.3a) LS(s) OS(s)FS(s);

(3.3b) os(-g)*J’(R)S(s) J;

(3.3c) Fs and (FS)- are in M(S);

(3.3d) (R)s() diag (I, p-1 I).

FAST SUBPROBLEM. Given Q, W1, and W satisfying Assumptions A1 and A2,
compute QF(P), W1F(P), and W2F(P), as well as left- and right-coprime factorizations
of QF(P). Form the matrix

W1F W1FNF(3.4) LF(p)= W-v(/F)-1 0

Find )F(p) satisfying obvious analogues of (3.3a)-(3.3d). That is, replace every
occurrence of the superscript "S" by the superscript "F."

It should be noted that the matrices Ns, Ds, Xs, yS, s, lS, ;s, and I7"s are
computed only from knowledge of Qs, Wls, and Wzs. Thus LS Ls in general. A
similar comment holds for the fast subproblem.

A theorem on compensator design can now be stated. In words, it says that an
approximate solution of the full-order problem can be obtained by solving the two
reduced-order subproblems. The approach is to show that a stabilizing compensator
for the full-order system that "almost" satisfies the constraint of (1.8) can be produced
by finding a pair of compensators from the slow and fast subproblem solutions and
combining the results. We note that (R)(s) given by

(3.5) (R)l(S)=(R)S(s) diag (I, pI)OV(O)

is the value of (R) for the slow subproblem when (R)(c) is set to the (J, J’)-unitary value
O’(0).

THEOREM 3.1. Let Q(s, e), W(s, e), and Wa(s, e) satisfy Assumptions A1 and A2.
Suppose that solutions 0s(s) and OF(p) to the two subproblems exist and that the set

(1.8) is nonvacuous for both subproblems. Let GS(s) and GF(p) be matrices in M(S)
such that GS()= GF (0) and the following inequalities are satisfied:
(3.6a) I[GSll <- 1,

(3.6b) IIGlloo 1.
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Suppose that the linear fractional map (2.13) is applied to Gs using 191 defined in (3.5)
to produce sS; and that (2.13) is applied to GF using (OF to produce SF. Let Cs be the
compensator generated by backsblving (1.1) for C when S is set equal to Ss and Q is set
to Qs. Let CF be the same when S is set to SF and Q is set to QF. Suppose the Cs and
CF produced this way are proper. Then the compensator (s, e) defined by

(3.7) (s, e)= CS(s)+ cF(es) cF(o)
stabilizes Q(s, e) for all sufficiently small e. Furthermore,

(3.8) W(s, )S(s, )W(s, )llp + o()
where

(3.9) S(s,e)=(I+Q(s, e)(s, e)) -1.

Proof We first point out that Cs and CF generated as above satisfy

(3.10) cS(c)= cF(o).
This is true because (R)1() 19F(0) and Gs()=G(O). Thus, the linear fractional
map (2.13) produces Ss and SF that satisfy

s() s(0).

Thus, since backsolving (1.1) gives a well-defined unique result, (3.10) holds. Clearly,
C defined by (3.7) is two-frequency-scale and

d(s) CS(s), d(p) c’(p).

Since Cs stabilizes Qs, Cv stabilizes Qv, and there are no unstable lost poles of Q or
(d has no lost poles by construction), d(s, e) stabilizes Q(s, e) by Corollary (3.1)

of [7].
We now show that S(s, e) defined by (3.9) satisfies (3.8). S(s, e) is two-frequency-

scale and has no pure imaginary lost poles (the closed-loop lost poles are also open-loop
lost poles--see [7]). Theorem 4.2 of [8] shows that

where (s, e)= Ss(s)+ Sv(es)-Ss(OO).
By limiting arguments shown in the Appendix, we have

Ilg(, )lloo=p+ o().
We can now write

IIS(s, )11oo--IlS(s, )-,(s, )+ (,

=p+O(e). 13

The next theorem, which concerns the representor 19(s, e), shows that more can
be said about this problem decomposition, and that results stronger than the "one-way"
result of Theorem 3.1 may be possible. Also, it might ultimately prove more useful to
approximate 19(s, e) by singular perturbations rather than by individual sensitivities
satisfying (1.2). This is because it is difficult, in general, to express all of the physical
constraints of a control problem as a single "disk" of the form (1.2) [5]. Thus, a
possible approach is to first compute 19 and then incorporate other constraints by
restricting the choice of the parameter G.
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THEOREM 3.2. Let Q(s, e), W1 (s, e), and W2(s, e) satisfy Assumptions A1 and A2.
Suppose that solutions OS(s) and OF(p), tO the slow andfast subproblems, respectively,
exist. Then a solution O(s, e) to the full-order problem exists for all sufficiently small e.
Furthermore, (R)( s, e) is two-frequency-scale and

(R)s(S)=(R)S(s) diag (I, pI)(R)F(o), (R)F(p)=(R)F(p).

Proof. We first note that L(s, e) given by (3.1) is two-frequency-scale. This follows
from Assumptions A1 and A2, and from Lemma 3.2. Since L(s, e) is two-frequency-
scale, it has a state-space realization of the form (2.5). The matrix D(0) in (2.8h) is
nonsingular because all of the following matrices are nonsingular at : W1F(p), NF(p),
W2F(p) -1, and /v(p)-. This shows that Lemma 3.1 applies to L(s, e). The next step
is to insert the state-space realization for L(s, e) into (2.16a)-(1) and generate the
corresponding (R)(s, e) using (2.17). Formula (2.17) is not quite in state-space form:
the multiplication of --, r T T[B_B+] and (R)(c) would have to be carried out. The term
multiplying (R)(), however, fits naturally into the system matrix format. Formula (2.17)
gives a minimal state-space realization of (R) if the appropriate multiplications are
carried out. Thus, the domain restrictions were made so the state-space is as small as
possible. It turns out that it is easier to use some unrestricted operators here. The
validity of the following system matrix representation is easily seen from (2.17):

P*(s+AX*)Px* P*SI(s-A)P P*C*J’ 1(3.11) (R)(s, e)(R)(c, e) -1--- PxS2(s+AX*)PX* pX(s-A)P PXBD-1

-J’-ID-*B*P* -CP I

where (C, A, B, D) is a state-space realization of L(s, e) of the form (2.5). Thus,

C [C1 C]A _1 A2 _1 A2:2
B

B2

with A22(0) nonsingular. The remainder of the blocks of (3.11) are defined in (2.16).
System matrix operations are now performed on (3.11) to show that (R)(s, e) is two-
frequency-scale and to compute (R)s(s) and (R)v(P).

As a first step toward this end, we note that the projection matrices P(e) and
P(e) are analytic at e 0; furthermore, they have a special structure in the limit as
e approaches zero. Using the notation of Theorem 2.3, and letting F(e) be a curve
that encircles all of the right-half-plane eigenvalues of A, we have

(s A) -- ds

T(e)-’ f T(e)(s-A)-’T(e)-’ ds T(e)

(3.12)

T(e)- I (s--Au)-’ as T(e)
dr()

T(e)-’Pu(e) T(e)
where

Po(e) diag (Ps(e), Pv(e)),

Ps(e) RHP Riesz projection for A(e),

Pz(e) RHP Riesz projection for A2( e ).
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Ps and PF are analytic in e by virtue of (2.16b). The block expressions for T(e) and
T(e) -1 can be inserted into (3.12) to show that

[ Ps+ O(e) e[-PsAI2Ad+A12A]PF]+ 0(82)](3.13) P(e)= -ada21Ps + Pva]a21 + O(e) Pz + O(e)

All quantities Ao on the right-hand side of (3.13) are evaluated at e =0. Formulas
similar to (3.12) and (3.13) for P’ can be written as follows. The analogue of (3.12) is

(3.14) P(e) T(e)-IpD(e)T(e)

where T (e) block diagonalizes A as in Theorem 2.3 and P(e) is the (block diagonal)
right-half-plane Riesz projection for A.

We can now take advantage of the singular perturbation structure of (3.11) by
replacing P(e) with (3.12) and replacing P’(e) with (3.14). After doing this, the
system matrix is simplified by the following steps"

(1) Left-multiplying the first block row by T-*;
(2) Left-multiplying the second block row by T*;
(3) Right-multiplying the first block column by (TX)-*;
(4) Right-multiplying the second block column by T-1.
These operations transform (3.11) to

I P*T-*(s+AX*)P* P*T-*SI(s-A)T-1PD
x* x*(3.15) PDTS2(s+AX*)T PD PDTX(s-A) T-1PD PDTBD-1.

J’-ID-*B* T*PD* CT-1PD I

Matrix (3.15) can be further simplified by inserting the identity terms T*(TX)-*,
T-IT, T*(T)-*, and T-IT into the (1, 1), (1, 2), (2, 1), and (2,2) blocks of (3.15),
respectively. This substitution reduces (3.15) to the following form:

P*D T * TX* s + AD* PD* P*DS1D S AD PD P*DC *DJ 1(3.16) PDS2D(S + AD*)PD* nD( rxr-1)(s AD)PD PDBD
_j,-11:1. Dx* --CDPD I

The following new notation has been introduced"

(3.17a) S1D T-*S1T-1,
(3.17b) S2D TS2( TX)-1,

(3.17c) BD TXBD-,
(3.17d) CD=CT-.
The objective here is to express all blocks appearing in (3.16) in terms of quantities
associated with the slow and fast subsystems. We define

(3.18a) S1s

(3.18b) S1F

(3.18c)

(3.18d)

lJ’_ P’s( + A’s)-’ C*sJ’ Cs( As)-’Ps dt,
2rj

P*v( + A’F) -1 C*FJ’CF( AF)-’ PF dt,
27rj
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It should be noted here that the quantities Sis and S2S would be calculated in solving
the slow subproblem if the particular factorization

NS(s) Ns(s), bS(s)= bs(S), S(s)= s(S)
had been used in forming LS(s), in (3.2), and if the particular realization (Cs, As, Bs,
Ds) had been used to compute OS(s). Thus, the expressions (3.18a, c) could arise in
solving the slow subproblem. A similar statement concerning S1F and S2F holds. We
wish to express (3.17a-d), and thus the entire system matrix (3.16), in terms of quantities
of this type. It can be shown through rather extensive calculation that (3.17a-d) take
the following forms:

[ Sls+O(e) eGl+O(e2)](3.19a) S1D eG* + O(e2) eS1F + O(e2)
where

(3.19b)

(3.19c)

GI P*s CsJ’C*FA*P,
S2s-lt-O(l) Hi+ O(e 1S2D= H*l +O(e)

l
s2v+O(1)

where

(3.19d)

(3.19e)

(3.19f)

H1 PsBsDIj,-1D,BF(AXF)-,PFx,,

BD ! BFD: + 0(1)

c.=[c+o(e) c+ o(e)].

Results on gramians (solutions of Lyapunov equations) already exist in the time-domain
literature (e.g., [18]). The elegance of the complex variable proof, however, warrants
the inclusion of a sample computation in this paper. A derivation of (3.19a) appears
in the Appendix along with the computations for (3.19e).

We are now in a position to compute OF(p). TO do this, we must substitute p es
in (3.16), make the resulting system matrix analytic in e by multiplying appropriate
block columns by e, and set e to zero. If the upper-left block of the resulting
(e-independent) system matrix is nonsingular, then it is a system matrix representation
of (R)F(P). We now have five block rows and five block columns. It turns out that if
we make the substitution and multiply the first three block columns and the fourth
block row by e, the the resulting matrix is analytic. When this is done, the following
system matrix results:

p.D[P -KL(p + AXF*) l px,
0 p+a* J

(3.20) Szsp
P5 o

Hi(p+ A*) ]p.S2F(P + AF*)
-j’-l[O D*B*F]PD*

0 SIF(p--AF)J PD C

P Ku(p-AF)
PD PDPD 0 p AF BED.1

-[0 CF]PD I

G1 and H are defined by (3.19b) and (3.19d), respectively. The product of transforma-
tions TXT-1 clearly has the form (3.21)

[ I+ O(e) eKu+ O(e)]
(3.21a) TXT-1

I[.KL + O(e) I + O(e)
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where

(3.21b)

(3.21c)

KL AXA(O) AIA2(0),

Ku A,(O)A A]c2(0)(A-) -1.

When the remaining multiplications are written out in (3.20) it can be seen that
rearrangement of the first four block rows and columns yields the following structure:

? ? 0 0 9

? ? 0 0 ?
? ? 0 0

The *’s and ?’s represent possibly nonzero entries. A system matrix of this form may
be reduced, by deleting rows and columns, leaving only the ?’s.

After this is sorted out, we get

P*F(p+AF*)PF* P*FSIF(p-A)PF P*FC*vJ’-1(3.22) O(p/e)’O(o)-]=o PvSzv(p+ av*)Pv* Pv(p-av)Pv PvBFD-
j,-1D-*u* ox, CFPF IF -FF

Clearly, the blocks of (3.22) could be the result of a computation of O(P) (i.e., the
fast subproblem computation) if a particular factorization for the plant and a particular
state-space realization for L(p) were chosen. Thus,

(3.23) Or(p) 0(, e) Or(p).
E=O

The computation of Os(s) follows along a similar line. If system matrix (3.16) is viewed
as having five block rows and five block columns (after the substitutions (3.19) are
made), it can be made analytic in e by multiplying the third block row and the second
block column by e. After setting e to zero, (3.24) is obtained:

(3.24)

[ ]p* I --s L--v Iox* Sis(s-As) -GIAF
DL O AF, JrD P*D

0 __S1FAF PD DLc,I |
rS2s(SWAXF*) HIAXF*IDx, Is-As -KuAv
L 0 SvAF, j --o pXD

0 --AF J PD pxD[BsD ]/

.-a’-’[D** D-**]e;* -[C

The rows and columns of (3.24) can be interchanged to place all of the zeros in the
same block. This leaves (3.25), which is similar in form to (2.25):

x T U
T 0 U1
-V -V2 I

where

X= PsKLAF PF -PsG1AFPF
x, x,PsHIAF P -PsKuAFPFJ
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[ 1
PS=s(s+A*)P* Ps(s-As)Ps J’ U2=LPsBs D

T1
PFAF PF --PFS1FAFPF --FFU

x# x# U1PSFAF P PFAFPFJ’ PBFD-
v, [-J’-’D-*BP* CP], V= [-J’-D*P* CP].

A calculation shows that indeed, X is equal to -UV1, making the match to (2.25)
complete. It is easily seen that

(3.26) [ T1
-v

(3.27) [ T2
-v

u,j o(o) diag (I, pI)
I

UI2] --OS(s) diag (I, p).

Thus, from Theorem 2.4, we see that

O(s, e)l=o diag (I, pI)=OS(s) diag (I, pI) oF(o) diag (I, OI).

We have shown that (R)(s, e) obeys parts (1) and (2) of Definition 2.1. Part (3) follows
immediately from (2.17). The poles of (R)(s, e) fall into two categories: they are
eigenvalues of either -Ax* or A. In either case, the poles obey (2.1) or (2.2) because
both -Ax* and A have the "singularly perturbed" form. [3

Appendix.
Proof of (3.19a).

(A1)

where

(A2) Xll

(A3) X12

(A4) X=

and AD =diag (A,, (1/e)A2). Since

c*J’CsT-*C*J’CT-=
C*eJ’Cs

C*sS’C] + o(
c*s’c
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each Eij will be one order of e smaller than the corresponding Xo. In other words,
the Xij’s form a first-order approximation of the gramian (A1). We first note that
Xll(O) Sis because A1 As + O(e). X22 can be computed by changing variables. Let
p=et

X22=
2rrj

p,v(p+ A, )_lC,J,C(p_A2)_lpv. e2 dp

e" &v+O(e2),

since A2 AF + O(e).
The cross-term X12 can be computed by contour integration:

P* +- A*2X*2=
2rrj -joo e

-1

C*FJ’Cs( A,)-lps dt.

Since the integrand falls off as O(1/t2) for large t, this integral can be replaced by a
large D-shaped contour integral. This is diagrammed in Fig. A1. Thus, if the radius
of F is assumed of order larger than l/e,

1
P*v t+-A*2 C*vJ’Cs(t-A,)-lPsdt.X*2=

2rj e

V-V+
FIG. A1
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We now note that

P +- A2* P +- A* P*

is stable for all sufficiently small e, and all the poles of (t- A1)- remain finite as e + 0.
Choose e* so that F1 encircles all the poles of (t-A1)- for all e < e*. We can express
the contour F as F F + F)_. The integral, however, is zero over F)_ because the integrand
is analytic inside F2 (at least for small e). Thus,

e* +-* c*/’c(-l-PX2=
2j

s(t A)-Psdt-[ PA*CJ’Cs(t A)-Ps de + higher-order terms in e
2j r

because -(1/2j) It, (t-A)- dr= Ps. Therefore, X= ePCJ’CeA?Pe + O(e)
and G PCJ’CA)P. The proof of (3.19c) goes in a similar manner.

Proof of (3.19e). We first note that a system of the form (2.5) has corresponding
A given by

A B1D-C A-BD-C]
A A BD-C A-BD-C].E

The transformation T of A to block diagonal ferm given by Theorem 2.3 can now
be expressed as follows:

T [= I -e(A,-BD-’C)(A-BD-C)-] + [O(e) O(e)]
(a -c9-1 ( -cl f o(el o(

B has the form

B=
(1/s)B

Let

Clearly,

X2- +0(1)
E

-+- 0(1).

The computation of the limiting behavior of X is more complicated. Multiplying Tx,
B, and D-1, we see that

X, B, (A,2 B,D-’ C2)(A22 B2D-1 C2)-1B2]D-’ + O(s ).
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We can now expand BsD731 (the right-hand side of the following expression is evaluated
at e=0)"

BsD B1 A12A21B2) D C2A B2)-1.

The Schur complement formula gives us

DI D C2AB2)-1

D-1 + D-1 C2(_B2D-1C2 .31- A2z)-IB2D-1.

Thus, BsD (B1-AlzAB2)[I + D-1C2(Az2 BzD-1Cz)-IB]D-1. After multiply-
ing out and collecting the term (A22-BzD-1Cz)-1B2, we get

BsD {B1 + [-al+ A12ABzD- C2+ B1D-1 C2 Aa:za:z1B:,D-1 C2]

(A22 B2D-1 C2)-1Bz}D-
[B -(A12- B1D-1 C2)(A22- B2o-1 C2)-1B2]D-1

=X+O(e).

This proves (3.19e).
Completion of the proof of Theorem 3.1. We start with the following lemma.
LEMMA A1. Let A(z) and B(z) be matrices real analytic at z =0, and let r be real

with 0 < r <- 1/2. Also, let A(O) 0 and B(0) O, and let

A

Then IlA(je r) + B(je-) I[- -<- P + O(e) (e -* 0). Furthermore, the implicit bounding con-
stant is independent of r.

Proof We assume, without loss of generality, that IIa(0)l12- p, since if Ila(0)ll2 < p,
then the lemma follows immediately. We note that I1" I1= is a continuous function of its
argument. Thus,

[[a(je") + n(je 1-r 112 Ila(0) 112 +f( e p +f( e

where f(e) is continuous at zero and f(0) 0. By elementary properties of the matrix
norm, there exists a vector function x(e) such that Ilx(e)ll 1 and

(A5) [][a(je)+ B(je ’-)]x() 112 p+f(s).

Note that [[A(je)x(e)ll is bounded away from zero for small e, since (A5) implies

[[A(je)x(e

-->p as e- 0.

The left-hand side of (A5) can be rewritten as

II[a(je")+ B(jel-r)]x(e)ll:z= {x(e)*[a(jer)+ B(jel-")]*[a(je ")

+ B(jF, l-r)]x(t?,)} 1/2

{x(e)*[aT(-je’)a(jsr)+ BT(-jel-")A(js ")

+ AT"(-jsr)B(je-") + BT"(-jel-")B(jel-r)]x(e)}l/.
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We now consider individual terms. It is assumed that the functions A(z) and B(z)
have power series expansions valid for all argument values under consideration. Thus,

A(z)= E A,,z" B(z)= E B,,z"
n=0 n=0

x(e)*AT‘(-je")A(je")x(e) <-IlA(je)lt_-<

x(e)*[BT"(-je-r)A(je") + A(-je")B(je l-r)]x( e
=x(e)*{B. (-jel-") ao+A" BI (je-")+O(e)}x(e)

x(e)*{[AB-B(Ao] .je 1-,. + O(e)}x(e)

=o() (- 0).

This follows because the matrix in brackets is skew-symmetric, giving a zero quadratic
form value.

Clearly, the remaining term is also O(e) because of the restricted range of r. Thus,

x(e)*nT(-je, l-r)n(je-r)x() O(e,) (e_, 0).

We now have

I[A(jer) + B(je’-r) ll2 {llA(jer)x( e) ll.+ o(e)}

IIa(jer)x(e)l]:z {1 + O(e)}/z

_-<v+o(e).

The middle equality above follows because IIA(jer)x(e)ll2 is bounded away from zero.
The last statement in the lemma is easily verified.

We are now ready to prove the unproved portion of Theorem 3.1"

II(jo, e)l[- sup Ilss(joo)/ Sv(jew)- Ss()l[,
oR

f
(A6) =max] sup Ss(jw) + SF(jew) Ss )112,

Ss(jo + Sv(jew

We will show that the first term in braces satisfies the required inequality. The proof
for the second term is done by an analogous process. Observe that for any e > 0 and
R > 1, the following set equality is valid:

[0, 1/x/-] [0, R](_J {E -r" 0< r=<1/2}.
The function Ss(s) has a power series expansion at o that is valid for all Is > R, for
some R1

Ss Ss2Ss(s)= Ss(oe)++ +"" Isl> R,s

Let R max {1, R}.
The first term in braces in (A6) can be rewritten as

(A8) sup II’(jw, e)lz =max { sup II(jo, sp
oe[o,/(] oe[o,] re(O ,1/]
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The symbol 0+ means that we do not sup over any r for which e < R. The first term
in braces in (A8) is easily seen to be bounded by p+ O(e). The second term in braces
in (AS) can be rewritten, using (A7), as

sup II(je-, e)[[_= sup IISs(je-r)+Sv(je’-r) -Ss(o)ll2
(0+,1 2] (0+,1/2]

sup ]lP(-je)+S(je’-r)-ss()][2.
r(0+,l/2]

The result follows after making the identifications

A(z) P(-z), B(z) Sl(Z)- Ss(o),

and applying Lemma A1. One final remark is in order. The O(e) result seems to require
a lengthy proof. The weaker result

(jw, e)lloo <-- p + o(vT)
is an almost immediate consequence of (A6).
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Abstract. This paper proves an existence result for a complementarity problem (on a locally convex
space) where the mapping is copositive, positive homogeneous, and of monotone type on a locally compact
cone. A perturbation theorem is proved that extends a result of Mangasarian and Doverspike proved for
n x n matrices on the nonnegative orthant.
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1. Introduction. Let (X, -) be a real locally convex space, let K be a closed convex
cone in X, and let q be in X*. For a mapping T: K -* X*, the Complementarity Problem
(denoted by CP (X, T, K, q) or by CP (T, K, q) when X is fixed) is to find

xK such that Tx+qK* and (Tx+q,x)=O.

Here K* := {y X*: (y, k) ->__ 0 for all k e K}, where (y, x) y(x) for y e X*, x e X. In
the finite-dimensional setting, (linear) complementarity problems are related to linear
(and quadratic) programming, bimatrix games, etc. (see Cottle and Dantzig [3]).
Certain problems in engineering and economics can be posed as (linear) complemen-
tarity problems. In the infinite-dimensional setting, complementarity problems are
related to variational inequalities. They also appear in certain engineering problems
(see Cryer and Dempster [4], Isac [11], and references therein).

In this article, we prove an existence result (Theorem 1) for a copositive T that is
positive homogeneous and of monotone type on a locally compact cone. We also state
a perturbation result (Theorem 2) that extends a result of Mangasarian and Doverspike
[16], [5] stated for matrices on Rn. Banach space applications of our results can be
obtained by working with the weak topology. Our results are new even in the finite-
dimensional setting and generalize our earlier results in [8].

2. Preliminaries. (X, ’) denotes a real locally convex space. K, X*, q, and T,
respectively, denote a closed convex cone in X, the dual of X, an element of X*, and
a mapping from K into X*. tr(X, X*) stands for the weak topology on X and tr(X*, X)
denotes the weak* topology on X*. (X*, X) denotes the Mackey topology on X*,
which is the topOlogy of uniform convergence on balanced, convex, r(X, X*)-compact
subsets of X. (When X is a reflexive Banach space, Mackey topology coincides with
the norm topology.) We use the result (X*, (X*, X))* X (see Horvath [9, p. 205]).
For fX*, xX, (f,x) denotes f(x). For EX, FX*, we define E*:=
{fX*: (f,x)>--O for all xE}, F*:={xX: (fx)>=O for all f F}. We denote the
solution set of CP(T, K, q) by Sol(T, K, q). We note that (since K is a cone)
x Sol T, K, q) if and only if Tx + q, y z) >- 0 for all y K. We say that:

(a) T is eopositive on K if (Tx, x) >= 0 for all x K.
(b) T is copositive plus on K if T is copositive on K and x K, (Tx, x)=0:=>

Tx, k) + Tk, x) 0 for all k K.

* Received by the editors April 25, 1988" accepted for publication (in revised form) October 5, 1988.
t Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore,

Maryland 21228.
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(c) T is copositive star on K if T is copositive on K and xK, TxK*,
(Tx, x) 0:=>-x (T(K))*.

(d) T is pseudomonotone on K if for all x, y K, Ty, x y) >- 0( Tx, x y) >- O.
(e) T is positive homogeneous on K if there is a positive 3’ such that T(Ax) A Tx

for all , >-0, for all x e K.
(f) T is of monotone type on K if either

(i) x-(Tx, x-y) is lower semicontinuous on (K, r) for each fixed ye K, or
(ii) T is monotone on K (i.e., (Tx-Ty, x-y)>=0, for all x, yeK) and

semicontinuous on K (i.e., continuous from lines in K to o-(X*, X)).
It can be easily shown that copositive plus mappings as well as pseudomonotone,

positive homogeneous mappings are copositive star. In this article we deal with locally
compact cones. Examples of locally compact cones include finite-dimensional cones
and cones in the dual X* of a normed linear space defined, for any c e (0, 1) and
e X, by K {f X*: ce [[/[[-</(e)}.

When K is locally compact, K can be written as the direct sum of a finite
dimensional subspace M( K f’l-K) of X and a cone L with compact base B given
by B {x e L: (e, x) 1} for some e e K*. (This follows from Thm. 3.12.8 of [13].)

For xeK we can write x=ab+m (_->0, meM, beB) and define g(x):=
a + Ilmll(=(e, x)+ IIPmll where P is the projection of X onto M). We see that g(x)
is continuous on (K, r) and that the set {x e K: g(x) 1} is compact. We observe that
{x K: g(x) <= 1} is compact and convex.

3. Results. Throughout this section we assume the following:
(a) T is copositive, positive homogeneous, and of monotone type on K;
(b) K is locally compact in (X, r).

Let S := {x e K: Tx K*, Tx, x) 0}. Recall that Sol T, K, q) is the set of all solutions
of CP(T,K,q).

TIEOREM 1. Suppose that 0 x S implies (q, x) > O. Then Sol T, K, q) . If
further T: (K, r) (X*, o’(X*, X)) is continuous, then Sol T, K, q) is compact in (X, r).

Proof. For the function g defined in 2, we see that the set {x K: g(x)<= 1,
(q, x) =< 0} is compact and convex. The argument in Theorem (ii) of Borwein [2] then
shows that the variational inequality

IT-I(g,g,q)’(Tx+(1-g(x))q,y-x)>=O VyK, g(y)-<l, (q,y)<=O
is solvable for some x K with g(x)-< 1 and (q, x)-<0. Fix this x and define f(y):=
(Tx+(1-g(x))q,y-x), (yK). Since zero solves CP(T, K, q) when qK*, we can
assume that q K*. Then there is a k K such that g(k)< 1 and (q, k)<0. Thus, the
convex program

f(x) min {f(y): g(y) <- 1, (q, y) <- O, y K}

satisfies the Slater condition. Hence, there are => 0 and s _-> 0 such that

(3.1) f(x)<-f(y)+t(g(y)-l)+s(q,y) (Vy K)

and t(g(x)-l)=O=s(q,x) (cf. [10, Thm. 2, p. 68]). If g(x)< 1, then t=0, and (3.1)
leads to

(Tx +(1-g(x)+ s)q, y-x)>=O

(since f(x)=0 and s(q,x)=O). Also, g(x)<l gives 1-g(x)+s>O; hence (by
homogeneity of T), (1-g(x)+s)-l/rx solves CP(T, K, q).
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Now suppose that g(x)= 1. Writing (3.1) in the subdifferential form (see, e.g.,
[10, Thm. 2’, p. 69]), we get

o of(x) + tog(x) + sq (1 x)*.

In this case,

(3.2) (Tx+tp+sq, y-x)>=O (VyK)

for some p Og(x). From this we get Tx + tp + sq, x) 0, i.e., Tx, x)+ t(p, x) 0. Since
pOg(x) we have (p, x) >= g(x) l; hence, (Tx, x)=O (by copositivity of T) and
t(p, x) 0, which leads to 0. If s 0, then (3.2) gives Tx K* and (Tx, x) 0, i.e.,
x S. Since g(x)= 1 and (q, x)_-<0, this leads to a contradiction. Hence s > 0, and in
this case (3.2) shows (since =0 and T is positive homogeneous) that s-l/r)x solves
CP(T,K,q).

Now suppose that T: (K, -) (X*, or(X*, X)) is continuous. From this it follows
that the solution set of CP (T, K, q) is closed. To get compactness of this set (from
the local compactness of K) it is enough to show that the solution set is bounded.
Suppose, if possible, that {x} is an unbounded net (consisting of nonzero elements)
in the solution set. Using the decomposition K L(R)M, we can write (as in 2),
x, ,,b + m and observe from the nonnegativity of ,, that g(x,) ,, + ]]m is an
unbounded net in+. The net {g(xo,)-IXo,} is contained in the compact set (x K: g(x)
1}; hence, a subnet {g(x)-x} converges to, say, 2 (in K) such that g()= 1.
Then (Tx + q, y)>-O (for all y K, for all fl) leads to (T(g(x)-x)+ qg(x)-’,

0, which, upon taking limits (and using the continuity of T), gives
(3.3) (T2Ly)=>0 (Vy K).
Also,
(3.4) (Tx, x)+(q, xt)=0 (Vfi)

leads to (q, x) -< 0 (by copositivity) and hence to (q, g(x)-x) <= O. Upon taking limits
we get

(3.5) (q, X)_-< O.

Further, (3.4) gives

Tg(x3 )-ix/3 g(x3 )-ix/3) -]- g(X )-V(q, g(x )-lxt3 0

Now continuity of T gives

(3.6) (T2, 2) 0.

We see that 2 S and (q, 2)<=0. This contradicts our hypothesis, since g(2)= 1
implies that :40. Thus Sol (T, K, q) is bounded, and compactness of this set
follows. F1

Remark 1. When X n and T is an n n matrix copositive on _, LCP T, [, q)
is solvable for all q $*. This is a result of Lemke [15, p. 104]. It can be easily shown
that this same result holds when [ is replaced by a polyhedral cone (Gowda [6]).
However, for general cones, the implication O x S==>(q, x)>=O need not give the
solvability of CP(T,K, q). This can be easily seen by taking in 3, K
{(x, y, z): x, z >-_ O, 2xz >- y2}, T(x, y, z) (x, y, 0), and q (1, 1, 0). (We observe that in
this example, T is positive semidefinite and that CP (T, K, q) is feasible. Thus, on a
nonpolyhedral cone, feasibility need not give solvability even for a positive semidefinite
matrix.)
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THEOREM 2. Consider the following:
(a) q belongs to the J/l-interior of the closed convex cone generated by K*- T(K).
(b) 0 xS=#(q,x)>O.
(c) CP T, K, q) has a solution.
(d) CP (T, K, q) has a nonempty compact solution set.

We have the following:
(i) If T is eopositive star on K then (a)(b)(c).
(ii) If T is copositive star and T is continuous from (K, z) into (X*, or(X*, X)),

then (a)(b) (d).
(iii) If Tis copositiveplus, linear, and continuousfrom (K, z) into (X*, or(X*, X)),

then (a) :> (b) :> (d).
Proof (i) Let T be copositive star on K. In view of Theorem 1, we need only

show that (a)(b) and to this end suppose that (b) is false. Then there exist x # 0,
x S, and (q, x)-<0. We have -x e (TK)*; hence,

(q,x)<=O<=(k*-T(k),x) Vk*K*, kK.

This says that q can be separated from K*-T(K) by a hyperplane, i.e., (a) is false.
(ii) This part follows from Theorem 1 and (i).
(iii) (d)=(b)" Suppose there is a d(#0) in S such that (q, d)0. Let x be any

solution of CP(T, K, q). Since T is copositive plus, we have (Tx, d)/(Td, x)-O. We
see from the linearity of T that T(x / Ad)/ q K* (for all h- 0) and

(T(x +,d), x + ,d)= (Tx + q, x)+,((Tx, d)+(Td, x)} +,2(Td, d)+(q, d)

=(q,d)<-O.

But this says that x + ,d solves CP T, K, q) for all h => 0, contradicting the compactness
of the solution set. Thus (d)(b).

(b)(a)" Suppose that (a) is false. Then there is a net {q} such that q, :g-closed

convex cone generated by K*-T(K) and q,-.q in (X*,A/). Using (X*,)*=X
and a separation theorem, we get x,( # 0) X such that

(q.,x.)<O<-(k*-T(k),x.) Vk*K*, kK, k/oz.

This shows that x, K, (Tx,, x,) 0, and (- Tk, x,) >= 0 for all k K, for all a. From
this we get

Tx,, k) Tx,, k)+ Tk, x)-( Tk, x)

0- (Tk, x,) (since T is copositive plus)

>-0 VkK,

Thus O# x, S. As in the proof of Theorem 1, we can show that g(x,)-x, has a

subnet g(x)-x converging to, say, :. This 2#0 and is in S. Now the set E :=
{x K" g(x)<-1} is compact convex in z and hence in or(X, X*). The balanced hull
[-1, 1]E of this set is also compact convex in or(X, X*).

Since q q in yg and g(x)-x in E, we have

(q, 2)= lim (qt3, g(xt3)-’xo) <= O.

Thus 0 # . e S and (q, 2) <_- 0, i.e., (b) fails.
Hence (b) (a).
Remark 2. The proof of (b)(a) in (iii) is valid if T is copositive, linear, and

continuous (because in this situation, x K, Tx, x) 00( Tx, k) + Tk, x) >- 0 for all
kK).
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Remark 3. Theorem 2(iii) generalizes our earlier Hilbert space results (Theorems
4.1 and 6.1 of [8]), where a condition equivalent to the local compacmess condition
has been used. When X =En, K--E, and T is an n n copositive plus matrix, the
equivalence of (a) and (d) is the well-known result of Mangasarian and Doverspike
[16], [5] that CP (T, E_, ) is feasible for all / near q and only if CP (T,E_, q) has
compact solution set.

Remark 4. In [1] Allen proves that if there is an xoK such that F(xo)
-int (K*), where F(x):= Tx + q is pseudomonotone and (Tx, x) is weak lower semi-
continuous on K, then CP (T, K, q) has a solution. (As Isac [12] shows, we need the
weak lower semicontinuity of x (Tx, x-y) for any y K to get this result.) This is
different from our results even for matrices. While Allen assumes the pseudomonotonic-
ity ofx Tx + q and gets the solvability ofCP T, K, q), we assume the pseudomonoton-
icity (rather, the copositive star property) of T and get the solvability of CP (T, K, q)
for any q int(K*-T(K)). We wish to note that pseudomonotonicity of T need not
imply the pseudomonotonicity of the mapping x Tx + q. For example, let

T=
2

q= u= v

It is easily seen that T ispseudomonotone on [2+ (see, e.g., [7]) while the mapping
x Tx + q is not (since Tu + q, v u) 0 and Tv + q, v u) 1).

THEOREM 3. Consider the following:
(a) S {0};
(b) CP T, K, q) has a solution for all q X*;
(c) CP T, K, q) is feasible for all q X*.

We have the following:
(i) (a) (b) =:> (c).
(ii) If T is copositive star on K then a :> b :> e ).
Proof (i) (a)=:>(b) follows from Theorem 1. (b)=:>(c) is obvious.
(ii) Let T be copositive star on K. If (a) is false then there is a d # 0 such that

d K, Td K*, and (Td, d)= 0. Since T is copositive star we have (Tx, d)<= O, for all
x e K. Hence (Tx-d, d)<0, showing the infeasibility of CP (T, K,-d). Thus (c) is
false and (c):=>(a).

Remark 5. Theorem 3(i) also follows from Theorem 5 in Borwein [2]. Theorem
3(ii) extends Corollary 7 in Borwein [2], where it is proved for copositive plus (linear)
mappings.
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WEIGHTED OPTIMIZATION THEORY FOR NONLINEAR SYSTEMS*

CIPRIAN FOIAS AND ALLEN TANNENBAUM$

Abstract. In this paper, the solution of a nonlinear version of the weighted sensitivity H-optimization
problem is discussed. It is shown that the natural object to be considered in this context is a certain "sensitivity
operator," which will be optimized locally in a given "energy ball" (see 5 for the details). In the linear
case, the authors are reduced again to the classical sensitivity minimization technique of Zames [21]. The
methods were very strongly influenced by the complex analytic power series ideas of [3], [4], [5]. See also
the recent results of Ball and Helton [6] for another approach to this subject.

Key words, sensitivity operator, nonlinear control, dilation theory, skew Toeplitz operator
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1. Introduction. Recently, there has been a great deal of research devoted to the
weighted H-optimization of linear systems. See [13] for a rather extensive list of
references. Much of the underlying theory for this work has been based on the ideas
of Adamjan, Arov, and Krein [1], generalized interpolation theory in H due to
Sarason [17], and, most generally, on the Sz.-Nagy-Foias commutant lifting theorem
[19].

In the papers [3], [4] an extension of the commutant lifting theorem to a local
nonlinear setting was given, together with a discussion of how this result could be
used to develop a design procedure for nonlinear systems. In the present paper, we
continue this line of research with a constructive extension of the linear H theory to
nonlinear systems. We should note that our colleagues Ball and Helton [6] have
developed a completely different, novel approach to this problem based on a nonlinear
version of Ball-Helton theory.

In the theory presented below, we will consider majorizable input/output operators
(see 3 for the precise definition). In particular, these operators are analytic in a ball
around the origin in a complex Hilbert space, and it turns out that it is possible to
express each n-linear term of the Taylor expansion of such an operator as a linear
operator on a certain tensor space. (Our class of operators also includes olterra series
of fading memory [8].) This allows us to iteratively apply the classical commutant
lifting theorem in designing a compensator. (The general technique we call the iterative
commutant lifting procedure. See 6 for the details.) For single input/single output
(SISO) systems, this leads to the construction of a compensator which is optimal
relative to a certain sensitivity function that will be defined in 5. Moreover, in complete
generality (i.e., for multiple input/multiple output (MIMO) systems), our procedure
will ameliorate (in the sense of our nonlinear weighted sensitivity criterion) any given
design. We note that for linear systems, our method reduces to the standard H design
technique as discussed, for example, in [13] and initiated in [21].

In developing the present theory, we have had to extend some of the skew Toeplitz
techniques of [7] and [11] to linear operators defined on certain tensor spaces. This

* Received by the editors May 16, 1988; accepted for publication (in revised form) November 20, 1988.
This research was supported in part by grants from the Research Fund of Indiana University, the Department
of Energy (DE-FG02-86ER25020), the National Science Foundation (ECS-8704047) and (DMS-8811084),
and the Air Force Office of Scientific Research (AFOSR-88-0020).

f Department of Mathematics, Indiana University, Bloomington, Indiana 47405.
$ Department of Electrical Engineering, University of Minnesota, 123 Church Street SE, Minneapolis,

Minnesota 55455.
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has led to several novel results in computational operator theory, and, for example,
provides a way of iteratively constructing the nonlinear intertwining dilation of the
nonlinear commutant lifting theorem considered in [3] and [4]. Moreover, we provide
a generalization of a formula due to Sarason [17] for the optimal interpolant in terms
of a maximal vector. See 8 for the details.

An important point is that many of our results are constructive and lead to
physically implementable compensators. In fact, we reduce a nonlinear optimization
problem to an iterative linear procedure, each step of which we know how to solve.
This is illustrated by an example in 9.

2. Analytic mappings on Hilbert space. We would like to discuss here a few
standard results about analytic mappings on Hilbert spaces. We are essentially following
the treatments of [3]-[5] and [8] to which the reader may refer for all of the details.
In particular, input/output operators that admit Volterra expansions are special cases
of the operators which we study here. See [8], [16], [20].

Let G and H denote complex Hilbert spaces. Set

Bro(G) :: {g G: ]lg]] < ro}
(the open ball of radius ro in G about the origin). Then we say that a mapping
ck’B,o(G) H is analytic if the complex function (zl," ",

(ck(zlgl +" + z,’gn), h) is analytic in a neighborhood of (1, 1,. , 1) C," as a function
of the complex variables z,. , zn for all g, , g," G such that IIg +" "+ g," < ro,
for all h H, and for all n > 0. (Note that we denote the Hilbert space norms in G
and H by and the inner products by ).)

We will now assume that b(0) =0. It is easy to see that if & B,o(G) H is analytic,
then b admits a convergent Taylor series expansion, i.e.,

6(g) 6(g)+6:(g, g)+’"+6,’(g,’", g)+’",
where b," G ... G- H is an n-linear map. Clearly, without loss of generality we
may assume that the n-linear map (gl,..., g,)- b,’(g,..., g,’) is symmetric in the
arguments gl,’", g,. This assumption will be made throughout this paper for the
various analytic maps that we consider. For b a Volterra series, 6n is basically the
nth-Volterra kernel.

Now set

6,’(g1(R)"" .(R)g,’):= b(gl,... ,g).
Then ," extends in a unique manner to a dense subset of G(R)" := G(R). .(R) G (tensor
product taken n times). Note by G(R) we mean the Hilbert space completion of the
algebraic tensor product of the G’s. Clearly if bn has finite norm on this dense subset,
then b," extends by continuy to a bounded linear operator ," G(R)" H. By abuse of
notation, we will set b := b,, and b,’(g):= b,’(g(R). .(R)g) (the tensor product taken
n times).

It is important to note that in principle we can determine b," quite easily from
the input/output operator b. Indeed, we have the following elementary lemma.

LEMMA 2.1. Let dp" Bro(G) H be analytic, th(0) =0. Suppose, moreover, that if
th(g) bl(g)+...b(g)+. ,

then each ofthe qb," defines a bounded linear operator G(R)," H as above (and is symmetric
in its arguments). Then for g G (j 1,..., n) with g, IIg < ro, we have

n!d,(g(R). .(R)g,’)-(2,rr)," d(exp(iO1)g+. .+exp(iO,’)g)

x exp (-i(O q-. q- On) dO1" dO,,.



844 CIPRIAN FOIAS AND ALLEN TANNENBAUM

Proof Expand 4(zlgl +" + z,g,) in powers of zl, , z,. Then it is easy to see
that the coefficient of z...z, is precisely n!4,(g(R)"" "(R)g,). The required result
then follows immediately from the Cauchy formula. [3

Remark 2.2. We should note that if 4 is analytic, then each 4n is continuous (as
an n-multilinear map); hence, the associated linear map extends to the nth projective
power of G. Lemma 2.1 is valid in this more general situation as well.

We now conclude this section with two key definitions.
DEFINITION 2.3. (i) Notation as above. By a majorizing sequence for the holomor-

phic map b, we mean a sequence of positive numbers a, n 1, 2,. such that I14n < ce,
for n _-> 1. Suppose that p := lim sup a 1/. < c. Then it is completely standard ([8]) that
the Taylor series expansion of b converges at least on the ball Br(G) of radius r 1/p.

(ii) If h admits a majorizing sequence as in (i), then we will say that b is
majorizable.

We will see in the next section that a very important class of input/output operators
from systems and control theory are in point of fact majorizable.

3. Operators with fading memory. In this section, we will show that perhaps the
most natural class of input/output operators from the systems standpoint are majoriz-
able. Moreover, for this class of operators we will even derive an a priori majorizing
sequence. We begin with the following key definition:

DEFINITION 3.1. An analytic map b" Bro(G)- H, b(0)-0 has fading memory if
its nonlinear part b- th’(0) admits a factorization

w,
where 4 is an analytic map defined in some neighborhood of 0 G, and W is a linear
Hilbert-Schmidt operator. (In this case, we can assume that there exists an orthonormal
basis of eigenvectors for W in G, {ek}, k 1, 2,’’" such that Wek hkek with

wll :-- 2 IA I = < oo.
k=l

wll= is called the Hilbert-Schmidt norm of W.)
Remark 3.2. System-theoretically fading memory input/output operators have the

property that any two input signals, which are close in the recent past but not necessarily
close in the remote past, will yield present outputs which are close. For more details
about this important class of operators, see [8].

For fading memory operators, we can construct an explicit majorizing sequence.
LEMMA 3.3. Let qb" Bro (G) H, ok(O) O, havefading memory. Suppose, moreover,

that if we write

4, w

as in (3.1), then h" B,(G) B(H). Then the sequence

I1,,’(o)II

r=e" wlt
O :--

rl

for n >= 2, is a majorizing sequence for .
Proof For complete details see [4, Lemma (3.5)]. However, since we will need

some estimates from the proof for Proposition (3.5) below, we will give an outline.
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First, without loss of generality we may assume that W is positive. Since 4" Br,(G)-*
Br2(H), from (2.1) we obtain

1
II(g(R)"" "(R)g)ll r,

for g g, <- rl/n.
Now, since {ei, (R)" "(R) ei." 1-< il,""", in} is an orthonormal basis of G(R)n, we can

write g G(R)n as

and

I1?11 =-- lai,...i.I2<.
I--<_ i,...,in

Now, from the above we can easily compute (see [4] for the details) that

Cn 2 l’i,. i,, ei, @ @ ei,,
<-i,...,in

r n

n r2

r n

<=--
r,.

wIl l.i,...i,,ei, (R)’’" () e, II.r’ n!

This implies that

rl r2 e

r . wll r2 wll
rl

for n _-> 2 as required. [3

Remark 3.4. (i) From the above proof it follows that c;n, where
1 :’-- ’(0)II

,,",11 wllcn := for n _>- 2
n!r

is a majorizing sequence for b. In computations it turns out that it is easier to work
with the majorizing sequence a, given in the formulation of Lemma 3.3.

(ii) Note, moreover, we have that

p := lim sup (an) 1/" ell wl12
rl

(iii) In what follows, we will assume that all of the input/output operators we
consider are causal and are majorizable.

An interesting and useful property of fading memory operators is the following
proposition.



846 CIPRIAN FOIAS AND ALLEN TANNENBAUM

PROPOSITION 3.5. The notation and hypotheses are as in Lemma 3.3. Then each
(regarded as a linear operator on G(R)") is compact for n >-_ 2.

Proof Let the sequence in G(R)"

x(k) :-" E
il,...,in=l

(k)
O il...in eq( ( ei,, 0

weakly. Define a projection in G for each natural number N > 0 by

0 j<-N
Pe;=

e; j>- N+ I.

Then from the above proof of Lemma 3.3, for fixed n, we have that there exist constants
C and C such that

il,i2,"’,in<---Ihl
il...inl 1_ n--1

Thus,

n-1lim sup WP II=II Wll=
Hence as N , we see that

lim sup 114,(x(k))ll =0,

which shows that b, is compact.

4. Control theoretic preliminaries. We start here with the control problem
definition. First, we will need to consider the precise kind of input/output operator
we will be considering. See [3], [4] for closely related discussions. As mentioned above,
we are assuming that all of the operators we consider are causal and are majorizable.
For a discussion of causality in the nonlinear context, see [3]-[6]. Throughout this
paper, H2(Ck) will denote the standard Hardy space of Ck-valued functions on the
unit circle (k may be infinite, i.e., in this case Ck is replaced by h2, the space of
one-sided square-summable sequences). We now have the following definition.

DEFINITION 4.1. Let S: H2(ck) H2(Ck) denote the canonical unilateral right
shift. Then we say an input/output operator b is locally stable if it is causal and
majorizable, b(0)= 0, and if there exists an r>0 such that b :Br(H-(ck))- H2(Ck)
with Sb b S on Br(H2(Ck)). We set

Ci := {space of locally stable operators}.

Since the theory we are considering is local, the notion of local stability is sufficient
for all of the applications we have in mind. The interested reader can compare this
notion with the more global notions of stability as, for example, discussed in [6].

The theory we are about to give holds for all plants which admit coprime locally
stable factorizations. However, for simplicity we will assume that our plant is also
locally stable. Accordingly, let P, W denote locally stable operators, with W invertible.
Referring to Fig. 1, P represents the plant, and W the weight or filter. Now we say
that the feedback compensator C locally stabilizes the closed loop if the operators
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V

FIG.

(I + P C)-1 and C (I + P C)-1 are well defined and locally stable. By a result of
[2], C locally stabilizes the closed loop if and only if

(1) C Oo (I- Po t) -’

for some C. Note then that the weighted sensitivity (I + P C)- W can be written
as W-P q, where q := W. (Since W is invertible, the data.q and are equivalent.)
In this context, we will call such a q a compensating parameter. From the compensating
parameter q, we get a locally stabilizing compensator C via the formula (1).

The problem we would like to solve here is a version of the classical disturbance
attenuation problem associated to the feedback loop in Fig. 1 (see [7], [21]). This, of
course, corresponds to the "minimization" of the "sensitivity" W-P q taken over
all locally stable q. In order to formulate a precise mathematical problem, we need to
say in what sense we want to minimize W- P q. This we will do in the next section
where we will propose a notion of "sensitivity minimization" which seems quite natural
to analytic input/output operators.

5. Sensitivity function. In this section we define a fundamental object, namely a
nonlinear version of sensitivity. We will see that while the optimal H sensitivity is a
real number in the linear case, the measure of performance which seems to be more
natural in this nonlinear setting is a certain function defined in a real interval.

In order to define our notion of sensitivity, we will first have to partially order
the space of analytic mappings defined in a ball about the origin. All ofthe input/output
operators here will be locally stable. We also follow here our convention that for given
ck CI, ckn will denote the bounded linear map on the tensor space (H2(C’)) (R)n

associated with the n-linear part of b, which we also denote by bn (and which we
always assume without loss of generality is symmetric in its arguments). The context
will always make the meaning of bn clear.

We can now state the following key definitions.
DEFINITION 5.1. (i) For W, P, q CI (W is the weight, P the plant, and q the

compensating parameter), we define the sensitivity functions S(q),

S(q)(p) := E p"ll(w- p q).ll
n=l

for all p > 0 such that the sum converges. Note that for fixed P and W, for each q C!,
we get an associated sensitivity function.

(ii) We write $(q)< S(), if there exists a po>O such that S(q)(p)<=S()(p) for
all p [0, po]. If S(q)< S() and S()< S(q), we write S(q)-S(). This means that
S(q)(p)= S()(p) for all p >0 sufficiently small, i.e., S(q) and S() are equal as
germs of functions.
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(iii) If S(q)S(), but S()S(q), we will say that q ameliorates . Note that
this means S(q)(p)< S()(p) for all p >0 sufficiently small.

Now with Definition 5.1, we can define a notion of "optimality" relative to the
sensitivity function.

DEFINITION 5.2. (i) qo Cl is called optimal if S(qo) < S(q) for all q C/.
(ii) We say q CI is optimal with respect to its nth term q,, if for every n-linear

t. C, we have

S(q, +. .+ %_, + q, + %+1. ") S(ql +" "+ %_, + t, +%+,+’" ").

If q Ci is optimal with respect to all of its terms, then we say that it is partially optimal
Clearly, if q is optimal, then it is partially optimal; however, the converse may

not hold. Note, moreover, that if 4 is a Volterra series, then our definition of sensitivity
measures in a precise sense the amplification of energy of each Volterra kernel on
signals whose energy is bounded by a given p. For this reason, it appears that in this
context, Definition 5.1 of the sensitivity function S(q) seems physically natural. In the
next section, we will discuss a procedure for constructing partially optimal compensat-
ing parameters, and then in 7 we will show how this procedure leads to the construction
of optimal compensating parameters for SISO systems. Of course, from formula (1)
above, we can derive the corresponding partially optimal (respectively, optimal) com-
pensator from the partially optimal (respectively, optimal) compensating parameter.

6. Iterative commutant lifting method. In this section, we discuss the main construc-
tion of this paper from which we will derive both partially optimal and optimal
compensators relative to the sensitivity function given in Definition 5.1 above. As
before, P will denote the plant and W the weighting operator, both of which we
assume are locally stable. As in the linear case, we always suppose that P1 is an
isometry, i.e. P1 is inner. In order to state our results, we will need to make a few
preliminary remarks and set up some notation.

We begin by noting the following key relationship:

(W--P q)k Wk- 2 _, P(qh(R)’’’(R)q).
l<-jk il+...+ij=k

Note that once again for b majorizable, b, denotes the n-linear part of b, as well as
the associated linear operator on the appropriate tensor space.

We are now ready to formulate the iterative commutant lifting procedure. Let
l-I: HZ(ck) ---) H2(ck)@ P1H2(Ck) denote orthogonal projection. Using the linear com-
mutant lifting theorem (CLT) (see [19] for the details), we may choose q such that

W Pq 1-i will.
Now given this ql, we choose (using the CLT) q2 such that

w2- P2(q, (R) q,) P, q2ll IIn(w2- P2(q, (R) q,))[I.

Inductively, given q, , q._, set

(2) A, := (W, Z Y P(qi,(R)"’(R)qij))
2<=jn il+...+ij=n

for n >= 2. Then from the CLT, we may choose q, such that

(2a) IIA. P,q.II- IInA. II.
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We now come to the key point on the convergence of the iterative commutant lifting
method.

PROPOSITION 6.1. With the above notation, let q(1):= ql + q2+" ". Then q(’) Ct.
Proof. It suffices to show that IIq. P" converges for all 0 <= p sufficiently small.

Then from (2a)

a. P, q. IIa. =< a.
and so (using the fact that P is an isometry)

(3) q. =< 2 A. -< 2 w / 2 E E P( q,, (R)’’" (R) qij )11.
2<=jn il+...+(j=n

Clearly from the majorizability hypothesis, we can find positive constants Mo, Ro, M,
R such that

(4) W, <----MoRo
(5)

for i-1, and for j >= 2. Thus, IIqll <= MoRo and

(6) [Iq. --< MoR"o + Y MR E Ilqi, ll"" ilqijll
2<=j<<.n il +...+ ij=

for n > 2 Let f(z) Y=of.Z" and g(z) .---o g.z be formal power series. Then we
write f<< g if ILl--< [gl for all n _-> 0.

We introduce the notation

(z):= 2 I[q[lz
n=l

a(z) := E MoR,z"
rl=l

b(z) := E MR"z".
n=2

With this notation, (3) may be equivalently written as

(7) 4(z) << a(z)+ b(4(z)).
Now (formally) define

Iz(z)---- a(z) + b(tx(z)).

Then we claim the following:
(i) /x(z) >> O;
(ii) 4(z)<</z(z);
(iii) is analytic in some sufficiently small neighborhood of zero.

Clearly, the verification of this claim would complete the proof of the proposition.
In order to do this, let f be analytic in some ball of radius ro centered at the

origin. Then we set

[Jill(r) := sup {IT(z)[: Iz] -< r}

for r < ro. Next, we define an operator on the set of analytic functions defined in some
neighborhood of the origin by F(f):= a + b(f) whenever F(f) is well defined as an
analytic function near zero. Then for given 6>0, and r<= 1/2Ro <l/Ro (this choice
for r will be made clear below), we let

B := {f analytic near 0: Ilf- a (r) -- }"
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We want to choose 6, such that F is well defined in B, F: B- B, and such that F is
contractive in B.

Now it is easy to see that

MoRor <= 6 + 2MoRor.
1 Ror

Clearly, we can choose r, 6 such that

1 1
(8a) 0< 6 + 2MoRor<=<.2R R

However,

MR2(6 + 2MoRor)2

(8b) [[F(f)-a[l(,o <- [[b(f)[[(r) < <-2MRZ(6+ZMoRor)2.
1-(6+2MoRor)R

We require then that 6 and r satisfy

(9) 2MRS(6 + 2MoRor)2 <= 6.

With these choices we clearly have that F" B-+ B. Now

IlF(f)-F(g)ll(r<=[lb(f)-b(g)ll(<--
1-Mf l-Mgl

_<
M2(f2 g2)

+M21lg2l[(>
1-Mf (r) 1-Mf 1-

<-- 2M=llf/gll(llf-gll(/aMllgllllf gll
-< (4M2(6 + 2MoRor) + 4M3(6 + 2MoRor)2)l]f gll >.

If we choose 6 and r such that

0 := (4M2(6 + 2MoRor) + 4M3(6 + 2MoRor)2) < 1,

we see that

[IF(f) F(g)ll(r <= Ollf gll(r

Hence by the contraction mapping theorem, we get (iii). Moreover, (i) now follows
immediately by definition of/x and the fact that a(z) >>0 and b(z) >>0. Finally, we can
prove (ii) by induction. Indeed, let

k

q(z) := E
n=l

(z) := E
n=l

Clearly 41(z) <</xl(z), and suppose by induction that 4.(z) <</x.(z) for 1 =< n -<_ N. Then,
note that there exists a polynomial p with positive coefficients depending on a and b
such that 0N+I(Z) (( P(Ol, ON) and tA,N+ --P(/I,""", 6/’N), from which (ii) follows
immediately. This completes the proof of Proposition 6.i.

Note that given any q CI, we can apply the iterative commutant lifting procedure
to W-Po q. Now set

Sn(Q)(P) := E o"llH(w-po q).ll.
n=l
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Clearly, Sn(q)<=S(q) (as functions). We can now state the following result whose
proof is immediate from the above discussion.

PROPOSITION 6.2. Given q CCl, there exists CI, such that S()--Srt(q).
Moreover, [t may be constructed from the iterated commutant lifting procedure.

Moreover, we easily have the following result.
PROPOSITION 6.3. q is partially optimal if and only ifS(q)- Sn(q) (i.e., S(q)(p)

Si(q)(p) for all p > 0 sufficiently small; see 5).
Proof. Assume that q is partially optimal. Then, q must be optimal with respect

to its first term ql. However, we have seen that there exists 1 such that PII[-
iiH Wll. If w-Plqll > liH Wll, then since we are considering germs of functions,
we would have S(q) S(tl+ q2+" ), contradicting the partial optimality of q.

By induction, assume that we have proven

[l( W- p q)[I- IIn(w- p q)jII
for 1 =<j -< n. Then again if

II(w- p q),+ll[ > I[II( W- p

by the above construction, using the commutant lifting theorem, we can find a
such that

IIn(w- p q).+lll I1( w- P (ql -}- q2 +’" + q. + q.+l +""

So once more, S(q) ; S(ql q- + q, + ,+l + q,+a +" "), contradicting the partial opti-
mality of q. Hence, we get that S(q) Sn(q). The proof of the converse direction is
similar. [-1

We can now summarize the above discussion with the following theorem.
THEOREM 6.4. For given P and W as above, any q CI is either partially optimal

or can be ameliorated by a partially optimal compensating parameter.
Proof The proof follows immediately from Propositions 6.1-6.3.
It is important to emphasize that a partially optimal compensating parameter need

not be optimal in the sense of Definition 5.1(i). Basically, what we have shown here
is that using the iterated commutant lifting procedure, we can ameliorate any given
design. The question of optimality will be considered in the next section.

7. Optimal compensators. In this section we will derive our main results about
optimal compensators. Basically, we will show that in the single input/single output
setting, the iterated commutant lifting procedure leads to an optimal design. We begin
with the following theorem.

THEOREM 7.1. There exist optimal compensators.
Proof We will only sketch the proof. Note that our proof is not constructive and

makes use of the weak compactness property of weakly closed, bounded, convex sets
of operators on Hilbert space.

First of all, set

O(1):= {ql" ql is optimal relative to W and P1} {ql" IlII will- wl-Plqll[}.
It follows from the classical theory [1] that O(1) is a bounded, weakly closed, convex
set of operators. Now set

O() := { q2:q2 is optimal relative to W P2(ql (R) ql) and P1}ql

{q2: IIW-P(ql(R)ql)-Plqll IlII(W.-P(ql(R)ql))ll}
Next let

W2(q) := W- P(q(R)q).
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Further, we write

02: U o
q!

qlO(l)

Then we can find a sequence q2j 6)(2) such that

2(q,;)- n, q2;[ inf { 2(q,)- nq2[" q, 0’), q2 O(2)} =: 2.

Without loss of generality, we can assume that q; q weakly. Obviously q O().
Moreover, since {q2;} is a bounded sequence, we can also assume without loss of
generality that q2; q2 weakly. Thus,

2(q,) n,q2 lim inf 2(q,;) n, q2;],

and hence (q,)- P,q2
Clearly the above procedure can be iterated step by step. Convergence follows

by the same argument as that used in Proposition 6.1.
For the construction of the optimal compensator inTheorem 7.3 below, we will

need one more technical result. Accordingly, we will need to set up a bit more notation.
First set H2 := H2(C), and H := H(C) (the space ofbounded analytic complex-valued
functions on the unit disc). Let m H be a nonconstant inner function, let H: H2
H2 mH2 =: H(m) denote ohogonal projection, and set T := H S H(m), where S is
the canonical unilateral shift on H2. (T is the compressed shift.) For H a complex
separable Hilbe space, let S:HH denote a unilateral shift, i.e., an isometric
operator with no unitary pa. This means that S"h 0 for all h H as n . (See
[15] and [19].) We can now state the following generalization of a nice result which
appears in 18].

LEMMA 7.2. Notation as above. Let A: H H2mH2 be a bounded linear operator
which attains its norm, i.e., such that there exists ho H with [[Aho[[ [[A ho 0.
Suppose moreover that

AS TA.

en there exists a unique minimal intertwining dilation B ofA, i.e., an operator B H H2

such that BS SB, A B and H B A.
Proo First of all, without loss of generality, we can assume that [[A] 1. The

existence of B follows from th ommutant lifting theorem [19]. For the uniqueness,
we use the results of [10]. Indeed, let

F:= {DTAh DAb: h H}-

where for a contraction K, we set D := (I-K’K), D 0. Then by [10], B is unique
if F=DTDA, where Dr DTH(m), and DA DAH. Now it is well known that
Drf=(#) where :=(m(z)-m(O)), and :=/[. Thus DTAh=(Ah,),
and so

F= {(Ah, #) DAb" h H}-.

Since ho H is such that Aho ho O, we have

DrAho DAho (Aho, O.

We consider the following two cases.
Case (i). Suppose (Aho, )0. Then C0F, which implies that F0DA,

from which we get that F DTDA.
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Case (ii). Suppose (Aho,/Z}=0. We claim that there exists j>-I such that
TJAho, tz O. Indeed, suppose not. Then TJAho,/x 0 for all j => 1; hence, TAholl
IIAholl- Ilholl. Let M be the Hilbert space generated by the elements TJAho for j => 0.
Then M is T-invariant, and TIM is an isometry. Since T is of class Co (see [19]),
this is impossible. Thus, we can find a minimal j such that (T/lAho, tx) O. However,

IlaS&hol] Tahol] Ilaholl- holl.
Hence replacing ho by Sho, we are back to the first case, from which we can complete
the proof

We now come to the main result of this section.
THWOrtrM 7.3. Let W and P be SISO locally stable operators, with W the weight

and P the plant. Suppose that II W is compact for j >= 1 and I-IPk is compact for k >= 2.
(l-I: H2 H2t)PIH2 denotes orthogonal projection.) Let qopt be a partially optimal
compensating parameter as constructed by the iterated commutant lifting procedure. Then
qopt is optimal

Proof First of all, since II W attains its norm, from Lemma 7.2 we have that the
optimal q constructed relative to W and P is unique. (Actually, in this special case,
since we are working in H2, this follows from [18].) Now from our above hypotheses,
each 11Ak is compact for k => 2; hence, each IIAk attains its norm. Therefore, by Lemma
7.2 each optimal qk constructed by the iterated commutant lifting procedure is unique.
Theorem 7.3 now follows immediately from Theorem 6.4.

COROLLARY 7.4. Let P be locally stable and SISO, with linear part P1 rational
Then the partially optimal compensating parameter qopt constructed by the iterated
commutant lifting procedure is optimal

Proof Indeed, since P1 is SISO rational (recall that we also always assume that
P1 is inner), H2t) P, H2 is finite-dimensional, and so we are done by Theorem 7.3.

Remark 7.5. Corollary 7.4 gives a constructive procedure for finding the optimal
compensator under the given hypotheses. Indeed, when P is SISO rational, the iterative
commutant lifting procedure can be reduced to finite dimensional matrix calculations.
We will illustrate this important point via an example in 9. In a subsequent paper,
we will show that when the hypotheses of Theorem 7.3 are satisfied, the skew Toeplitz
theory of[7] provides an algorithmic design procedure for distributed nonlinear systems
as well.

8. Maximal vectors and optimal interpolants. In order to apply the iterative com-
mutant lifting procedure to an actual example, we will need a generalization of a result
due to Sarason [17] on the optimal interpolant. More precisely, for K a bounded
linear operator on a Hilbert space, ko is a maximal vector, if Ilgkol[- Ilgll Ilkoll 0.
Then for SISO systems, Sarason [17] derives a formula for the optimal interpolant in
terms of a maximal vector ofthe associated Hankel operator (see 1 for a similar result).

In order to state our result, we will first need a few preliminary remarks. Let
H := H2(ck). As above, we let m H be nonconstant inner, and let 11|: H2H2
mH=: H(m) denote orthogonal projection, with T the compression of the canonical
shift on H2 to H(m). Moreover, So will denote the canonical shift on H, defined by
multiplication by e it. Now given h H, we can write h as a column vector (perhaps
infinite)

h= h2.
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We then set

h* := [hi h2"" "].

Moreover, given any bounded linear operator B" H --> H2 such that BS SB, we have
that for z D (the unit disc),

(Bh)(z)= bj(z)hj(z).
j>-_l

That is, we can express B as the row matrix

[bl b:...]

with bj H for j _-> 1. We will identify B with this row matrix. With this notation, we
can now state the following resulting proposition.

PROPOSITION 8.1. Notation as above. Let A" H H2@mH2 be a bounded linear
operator such that ASoo TA. Suppose, moreover, that A has a maximal vector ho. Let
B’H H2 be the minimal intertwining dilation of A, i.e., II1B A, BSo SB, and

IlAll- IIBII. Then if we let A := IlAll , we have that

Ah*oB-
--ho"

Proof First of all, given hoe H, we represent ho as a column vector with components
hi, j-> 1 as above. Then, as we have seen, we have that (Bh)(z)=.j>_ bj(z)hj(z) (for
z e D), and

IIBll-- sup Ibm(z)[ 2 "lzl < 1 ess sup Ibj(sr)[ 2 "[’1 1
j=l j=l

However,

IIAIl=llholl 2-- Ileholl 2 _-< IIBholl2 <_-IIBII211ho[I- IIAII211holl 2.

Thus IIAholl 2-- IlBholl =, and since nBho= Aho, we have that Aho Bho. Next note that
Y4__> Ibj(ei’)12_-< A almost everywhere, and

A Y Ih(e")l- Y bj(e")h(e") dt=O.
27r j=l

(This follows from the fact that ;tllholl 2- IIBholl.) But using the Cauchy-Schwarz
inequality, the expression under the integral sign is nonnegative. Thus,

)(, Y Ihj(e")l2- Y b(e")h(e") <= Z Ib(e")l 2 Y Ih(e")l2 -<, 2 Ih(e")l=
j>-_l j>=l j>-i j>- j>-

almost everywhere, which implies that

E Ib(e")l=A
j--1

almost everywhere, and

hj= dp(eit)bj(e it)

almost everywhere for all j >- 1, and for some function b e H2 satisfying

Aho Bho A 49.
Thus, for

B(e it) [b(eit)b2(eit)
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we have

B(e")Aho(e it) Aho(e")*

almost everywhere, as required. [3

We will apply Proposition 8.1 in our computation of an optimal compensator in
the next section.

9. Example. In this section, we will give an example of our nonlinear design
procedure. Since we have been working in the disc, we will here take discrete-time
systems, even though our techniques obviously go through in a similar manner for
continuous-time systems as well. In what follows below, H192 will denote the space of
C-valued analytic functions on the bidisc D2 with square integrable boundary values.

We let

w()
2

and P Pa + P2, where Pa Z2 (in the discrete Fourier domain), and

.1 F(z._l, .) ._._P(F)=2.n.i
rl=

for F Ho2 H(R)H2. More precisely, as we explained above, we can regard a bilinear
map P: on H x H2 as a linear map on H(R)H2, and then it is easy to see that H(R)H2

can be naturally identified with Ho. (The identification is given by z(R)l za and
1 (R) z - z: .) Note that in the discrete-time domain, P2 is just a discrete Fourier transform
of the "squaring" map, i.e., given the square integrable sequence {a,}, we have that
P2 is the Fourier transform of the mapping {a,}{a2,}.

We now apply our procedure to the weight W and the plant P. Accordingly, if
we let Mw:H2 H denote multiplication by W, and let II:HH@PaH2=: Ha be
orthogonal projection, we set Ao := IIMwl Ha. Notice that Ha- C2, and that via this
isomorphism, we have the identification

However,

from which we get that IIAoll- )/2, and that a maximal vector ho (i.e., a vector
such that IIAoholl- IIAoll Ilholl 0)is given by

h0 :--

where/3 := (/- 1)/2. Using then the Sarason formula 17] mentioned in the previous
section, we can then compute that the optimal compensating parameter is

ql:=
2(1 _/3z)"
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Of course, the above computation was based on standard linear Hoo-optimization
theory. We now want to show how to get the optimal second-order compensating
parameter. Accordingly, following the iterative commutant lifting procedure, we note
that

P(q, (R) q,)(F) |
27ri 311=

dffq,(z-’)q,()F(z-’, ) ----fl I 1 1
F(z_l, ) d"

8 zr 1= 1- flz -1 1- fl----- ?
for F HDZ. P2(ql (R) ql) will be the "weight" for which we will apply the commutant
lifting procedure relative to the "plant" P.

For F HD2, let

F(z,, z): E Fz,z.
j,k =0

Then,

P2(ql(R) ql)(F)
,k=O \2ri J Icl= " --/3z 1 fl"

j,k=O j>k

Z II ll,_-o ())(z,_-o
d

<1;I--<< j-k

k-jzk --1 1 fX :--_--_+ Z z-’
,k=O p z j>k /3 2"rriJo<ls[ ....

Eh,, [h(h+l/(Z)

Z 5k
flk-zk > -1 flh_,zh+k

,k=O 1 /3z --- F Z
k l+h =j-k-1

fl k-jl zmax {j,k

j,k 1-- z

Set A :=-iIP2(ql()q). Then from the above computations, we have that

4
--2 AF Foo+ (flFio + Fo,)Z + fl2Fooz + Fl Z.

Moreover, if we let

4
A, := --25 Al(ker A)"

p-
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we clearly have that

Foc

Aa Foa
= /32 /3 /3 1

Fool
Fao]

where we identify (ker A)+/- with C4 in the natural way. Now

AIA* f12 (f12+ 1)2

and then it is easy to compute that IIAII==: A 2.048924, IIAIII - 1.431406, and that a
maximal vector for A is given by

-1)/3|"
1)/fl2J

Now we must write the Fourier representation of ha in order to apply Proposition
8.1, and so we must express Ho as some H2(ck). Accordingly, we apply the techniques
of [19], to which we refer the reader for all the details about Fourier representations.
More precisely, given F Y Fkzzk2 we have that the Fourier representation of F,j,k =0

denoted by F(’), is given by

l,n

(10) F(r) := Z rn Fn,n/l
n=0 Fn+2,n

Fn, +2

for " eaD. Thus via the above identifications, the Fourier representation of hi, denoted
by ha(r), is

hl(’)

(A- 1)/fl
(A- 1)/fl

0

0

0

-1)/(, /3
0
0

0

Applying Proposition 8.1 (and using the same notation), we get that the minimal
intertwining dilation of Aa, Ba, is given (in the Fourier space) by

B,(sr)

A-1 A 100".. + 00..." ] ]3 ’2
’-ff (A -1)/3 2
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(Note that (h-l)/32 is about 2.74> 1, and hence 1/(z+(h-1)/3 2) is analytic and
bounded in D.) Using the Fourier representation (10) of F, we have that in the Fourier
space

Fn,
l,n

(B,F)(;)=B,() Z "--0 rn+2,n
rn,n+2

Z "(AF’’+(A-1)-’F’+’’’+(A-1)fl-IF’’’+I)+(A-1)-2F’l,

.=o ’+(A-1)3-We are almost done! Indeed, still working with the Fourier representations, the
optimal q2 may be derived from the equality (for z D)

-(4/2)P2( q, (R) ql)F z2q2F -B, F.

Thus, we see that

(q2F)(z)

1 (E,,=oZ"{z(AF,,, +(A-1)-IFn+I,n+(A-1)/-IFn,n+l)+(A--1) -2F n})
z2 z + (, 1)/3 -2

(11)
1 fllk-jlzmaX{j’k}

-z E

Despite its seemingly complicated form, we will now see that q2 has an integral
expression in the Fourier domain, which translates into a rather simple two-linear
function in the time-domain. Explicitly, we may write (11) equivalently as

AF1,1 +(A 1)/3-’(F,, + F1,2)
q2 S $2 +

z + (A 1)/3 -2 (1 fl2z)(z + (A 1)/3 -2)
(12)

3:,Fo,o+3,(Fl,o + Fo,l)
(1 fl2z)(z + (A 1)/3-2)

where

(En=2 zn-2{z(AFnn, +(A 1)/[3Fn+l,n +(A 1)/[3Fnn+l)+(A, 1)/fl2Fn.}),
z+(A-1)/32

and

S2:-- E E (F,,+F,o)/3"-s
n=2 fl’z

Clearly in order to find a computable expression for q2, we must first find such
an expression for the map M.,.." Ho2-> C, defined by M.,..(F):= F.,,. where m, n
0, 1,... are fixed Let a={as} and b={bs} (j>=O) be sequences in the "discrete

2time-domain h By slight abuse of notation, we also let a a(’)=Ys=o ass, and
b b(’) s=o bs denote their discrete Fourier transforms Then it is easy to see that

M.,,,(a(R)b) M.,,,(a, b)= (,.i _mna()b(2 dl dz_ ambn.
’1[= 21 l ’2
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In this way, we get that

where

1
Sl-- 2 T(F)

z+(A-1)/

TI(F):= E z"-Z{z(AF,,,,,+(A-1)/SF,,+I,,,+(’-I)/,SF,,,,,+I)+(A-1)/8
n=2

Hence, we see that

Tl(a@a) A 2 Zn--1 2 Zn--1a.+2(h 1)- E a.a.+l+(h 1)fl-2Z Zn--2 2

=2 =2 =2

which, of course, is the transform of a very simple quadratic map in the time domain.
In the exact same way, we can write down explicit expressions for all the terms of q2

appearing in formula (12).
Note that our above computations essentially amount to finite-dimensional matrix

manipulations. We have then that q + q is the optimal compensating parameter up
to order two. A similar computation allows us to find the optimal compensating
parameter up to any order, and by Proposition 6.1, our procedure is guaranteed to
converge.

10. Conclusions. In this paper we have introduced a novel notion of "sensitivity
minimization," and have given a method for constructing optimal compensators for
SISO systems, and paially optimal compensators for MIMO systems. This generalizes
the standard H linear theory in a rather natural way. However, in contrast to the
linear case, the measure of performance is now given by (the germ of) a ceain
sensitivity function instead of a real number. The key idea is the utilization of an
iterative commutant lifting procedure which can also be employed to ameliorate any
given design in the sense of 5.

The techniques we have used here are local and very much inspired by the previous
work in [3]-[5]. The interested reader can contrast this approach with the nonlinear
Ball-Helton method as given in [6]. An intriguing problem would be to compare
nonlinear designs derived from these two approaches (which, of course, coincide in
the linear case). This we would like to consider in some future work as well as attempt
to derive a more global theory. There are, of course, a number of open questions still
remaining even in our local setting. A key problem is to design optimal controllers for
nonlinear MIMO plants. Indeed, even though we can ameliorate any design, because
of nonuniqueness in the choice of the various minimal inteawining dilations in the
iterative commutant lifting procedure, for MIMO systems we cannot guarantee optimal-
ity but only partial optimality. In a subsequent paper, we plan to show how the skew
Toeplitz techniques of [7] provide a design methodology for distributed nonlinear
systems as well.

At the Systems Research Center of Honeywell in Minneapolis, an interesting
partial dynamic inversion technique due to Elgersma and Morton [9] has recently been
employed to obtain some nonlinear designs related to a sixth degree of freedom aircraft
model. A project on which we are now embarked is the utilization of the iterative
commutant lifting procedure in order to ameliorate this kind of design. Finally, in the
SISO case (in which there is a rather complete theory), our procedure is algorithmic,
and we are presently working on software for its digital implementation with our
colleagues at Honeywell along the lines ofthe work already done in the linear framework
based on 11 and 12].
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NONLINEAR OPTIMAL CONTROL WITH INFINITE HORIZON FOR
DISTRIBUTED PARAMETER SYSTEMS AND STATIONARY

HAMILTON-JACOBI EQUATIONS*

P. CANNARSA? AND G. DA PRATO

Abstract. Optimal control problems, with no discount, are studied for systems governed by nonlinear
"parabolic" state equations, using a dynamic programming approach.

If the dynamics are stabilizable with respect to cost, then the fact that the value function is a generalized
viscosity solution of the associated Hamilton-Jacobi equation is proved. This yields the feedback formula.
Moreover, uniqueness is obtained under suitable stability assumptions.

Key words, optimal control, Hamilton-Jacobi equations, viscosity solutions, evolution equations,
unbounded operators
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I. Introduction and setting of the problem. Let us consider two separable reflexive
Banach spaces, X (the state space) and U (the control space). We denote by] the
norm of X, which we assume to be continuously ditterentiable in X\{0}, by X* the
dual space of X and by the pairing between X and X*. We denote by lxl the
subgradient of ]x], which is obviously single-valued on X\{0}. The same symbols will
also be used in the Banach space U. Moreover, we will use the following notation:

(i) For any Banach space K and any nonnegative integer k we denote by
ck(x; K) the set of all the mappings f: X K that are continuous and bounded on
all bounded sets of X, together with their derivatives of order less than or equal to k.

(ii) We denote by ck’I(x’ K) (respectively, ck’I(x’ K)oc), the set of all the
mappings f in ck(x; K) whose derivative of order k is Lipschitz continuous in X
(in every bounded set of X).

We are interested in the following optimal control problem.
Minimize

(1.1) J(u,x)= {g(y(s))+h(u(s))} ds

over all u LI(0, c; U)loc, subject to state equation

(1.2) y’= Ay + F(y) + Bu, y(O) x.

Following the dynamic programming approach, we will study the Hamilton-Jacobi
equation

(1.3) H(B*DV(x)) -(Ax + F(x), DV(x))- g(x) 0

where H denotes the Legendre transform of h, that is,

(1.4) H(v) sup {-(u, v)-h(u)}.

The connections between (1.3) and problem (1.1)-(1.2) are well known.

* Received by the editors July 15, 1988; accepted for publication (in revised form) November 7, 1988.
This research was supported by Consiglio Nazionale delle Ricerche.

? Dipartimento di Matematica, Universit di Pisa, Via F. Buonarroti, 2, 56127 Pisa, Italy.
$ Scuola Normale Superiore, 56126 Pisa, Italy.
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We assume the following hypotheses.
(SL) (i) A: D(A)cXX generates an analytic semigroup e ta in X and there

exists to R such that e’Atl-< e
(ii) The embedding D(A) X is compact.
(iii) B ( U; X).
(iv) F CI’I(X, X)oc and there exists a R such that (F(x), x*) <- alxl, for all

x* olxl, for all x X.
(v) g Ca’I(X, R)oc and g(x) >- 0 for all x e X.
(vi) h Ca’a(U, R)o is strictly convex and there exists p > 1 such that h(u)>-_

lul for all u e U and some /> 0.
We remark that, if (SL) are fulfilled, then, by classical arguments (see, for instance,

[21]), problem (1.2) has a unique global mild solution y C([0, eo[; X).
In the analysis of (1.3), we meet with two immediate difficulties: the nonsmoothness

of solutions and the unboundedness of A. In fact, first-order partial differential
equations have, in general, no global classical solutions even in finite dimensions.
Therefore, a suitable notion of weak solution is required. Moreover, such a generalized
solution will have to take care of the fact that Ax is defined only on a dense subspace
of X.

The first problem can be successfully treated by the notion of viscosity solution,
introduced by Crandall and Lions [12]-[15]. In [16] they have also extended their
definition of solutions to problems involving unbounded operators. Further results in
these directions have been obtained in [4] and [10] by an approximation procedure.

Stationary Hamilton-Jacobi equations have been extensively studied (see [20] for
general references and results; see also 13]-[ 16]) mainly in the case when the equation
contains an additional term of the form hV with h > 0. This corresponds to the
introduction of a discount factor e-at in the cost.

However, in many applications we are required not to have such a discount, as
in linear quadratic optimal control problems. A large amount of work has been devoted
to the analysis of this case (see, for instance, the review paper [22]). For linear quadratic
optimal control problems, the Hamilton-Jacobi equation is replaced by the algebraic
Riccati equation, as it is well known. In general, uniqueness is false for this equation.
Therefore, we do not expect to have uniqueness for (1.3).

Optimal control problems with a linear state equation and a convex cost functional
are also studied in [3] and [6]. Some generalizations to the nonconvex case, by using
variational methods, are contained in [4], [6], and [7].

The main idea of our approach is to obtain a viscosity solution V of (1.3) as

(1.5) V(x) lim 4(t, x)
t---

where b solves the forward equation (in the generalized sense of [10]):

(1.6) qSt(t, x)+ H(B*Vd(t, x))-(Ax + F(x), Vd(t, x))-g(x) =O, 6(0,x)=0.

For the value function of the control problem (1.1)-(1.2) to be finite, we introduce
the notion of stabilizability that generalizes a welt-known concept in linear quadratic
control (see, e.g., [22]).

DEFINITION 1.1. We say that (A + F, B, h) is stabilizable with respect to the observa-
tion g (or, for brevity, that problem (1.1)-(1.2) is stable) if for any x X there exists

Ux e L(0, oe; U)oc such that J(ux, x) <oe. Such a control ux will be called an admissible
control at x.
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Finally, we define the value function of problem (1.1) (1.2) as

(1.7) V(x)=inf{J(u,x); u6 LI(0, o; U)loc}.

We say that u* LI(0, ; U)loc is an optimal control if J(u*) V(x); in this case,
we call the corresponding solution y* of (1.2) an optimal state and (u*, y*) an optimal
pair at x.

In this paper we show that, if (A + F, B, h) is g-stabilizable, then V is a generalized
viscosity solution of (1.3). Moreover, we obtain the existence of optimal pairs as well
as the feedback formula (see Theorem 4.4).

In 3 we study the "stability" of the closed-loop system. When this system is
stable and B is invertible, we prove the uniqueness of the nonnegative generalized
viscosity solution of (1.3) vanishing at zero (Theorem 5.4).

An application to a nonlinear control problem for a distributed parameter system
is illustrated in 6.

We now explain our definition of generalized solutions. We define solutions of
(1.3) as stationary solutions of the following evolution equation:

(1.8) Wt(t, x) + H(B*V W(t, x)) -(Ax + F(x), V W(t, x)) g(x).

More precisely, we have the following definition.
DEFINITION 1.2. Assume (SL). We say that V C’I(x; R)loc is a generalized

viscosity solution of (1.3) if W(t, x):= V(x) is the generalized viscosity solution of (1.8)
in [0, T] X with terminal data W(T, x) V(x), for all T> 0.

We recall below the definition of generalized viscosity solutions of the Cauchy
problem (see [10])

(1.9)
Wt(t, x)+ H(B*V W(t, x))-(Ax + F(x), V W(t, x))= g(x)

W(T,x)=cho(X), xX, t6[0, T]

where

(1.10) bo c’l(x; l)loc.

DEFINITION 1.3. Assume (SL) and (1.10). We say that We C([0, T]X; R) is a
generalized viscosity solution of (1.9) if we have

(1.11) lim W,(t,x)= W(t,x), VxD(A), Vt[t, T]

where Wn is the viscosity solution (in the sense of Crandall and Lions [13]) of the
problem

(1.12)
Wnt(t, x)+ H(B*V W(t, x))-(A,,x + F(x), V W.(t, x))-g(x) =0,

W.(T,x)=o(X)

where

(1.13) An nA(n-A)-1.

We note that problem (1.12) has a unique viscosity solution (see [13] and also [10]).
A property of generalized viscosity solutions that turns out to be essential to our

approach is semiconcavity (see [9]).
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In applications it is also useful to consider the following more general assumptions:
(SL’) (i) Hypotheses (SL) (i), (ii), (iii), (v) and (vi) hold.

(ii) there exists a Banach space Z (with pairing denoted )), continuously
embedded in X, such that the part of A in Z, Az, generates an analytic
semigroup in Z with domain D(Az) (not necessarily dense in Z)

D(Az) {x D(A) fq Z; Ax Z}.

Moreover, e taz " e"’ for all 0 and some tz R.
(iii) There exists a ]0, 1-I/p[, aR, and two continuous functions /3,

p:[0, [ [0, [, such that Da(a, p) is embedded in Z and

(1.14) F C’"(DA(,p); X),oe,

(1.15) (F(z),z*)zalz]z VzZ, Vz*O[z]z,
(1.16) ]F(x)l(lX[z)+p(Xlz)[Xl.e VxDa(a,p).

We recall that DA(,p) is the real interpolation space between D(A) and X,
introduced by Lions and Peetre [19], with norm

Definition 1.2 remains unchanged under assumptions (SL’), except for the fact
that we assume V c’l(Da(o,p); R)oc. Moreover, in Definition 1.3 we assume We
C([0, T] DA(Ce, p); R) and replace (1.12) by

W,,( t, x) + H(B*V W,( t, x)) -(A,x + F( n(n A)-’x), V W,( t, x))- g(x) O,

W.(7",x)=Oo(X).

2. Preliminaries. In this section we recall the basic results on the time-dependent
Hamilton-Jacobi equation (1.9).

P.o,osroN 2.1. Assume (1.10) and either (SL) or (SL’). Then, there exists a
unique generalized viscosity solution W ofproblem (1.9) given by

(2.1) W(t,x)=inf [g(y(s))+h(u(s))]ds+qbo(y(T)); uL’(t, T; g),oc

where y is the solution of
(2.2) y’(s)= Ay(s)+ F(y(s))+ Bu(s), t<=s<= T, y(t)= x.

Moreover, W satisfies (1.9) in the sense that for every t, x) [0, T] D(A) we have

(2.3) (i) V(pt, px)D+W(t,x), -p,+H(B*p)-(Ax+F(x),p,)<-g(x),

(ii) t(pt, p,)D-W(t,x), -p,+H(B*p)-(ax+F(x),p,)>=g(x).

We recall the definition of the semidifferentials D+ and D-

D+ W(t, x) { (Pt, Px) R X*; lim sup

(2.4)
(s,y)(t,x)

D- W(t, x) { (p,, p) e R x X*; lim inf
(s,y)(t,x)

W(s, y) W( t,[s -x) (s
+ lY

t)p, -(y Px) <= 0},
W(s, y)- W(t,ls_ tl/ly_xlX)-(s- t)p,-(y-x, Px)

>=0}.
Remark 2.2. The results of Proposition 2.1 are proved in Theorems 3.3 and 3.7

of [10] in a slightly different form that is equivalent to the one above in view of the
coercivity assumption on h.
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We now recall the Maximum Principle [8], the feedback formula [4], [9], and
some regularity properties of optimal pairs [9].

PROPOSITION 2.3. Assume (SL) (respectively, (SL’)) and (1.10). Let Wbe given by
(2.1) and t, x) E [0, T] X (respectively, t, x) [0, T] DA 0, p)). Let (u*, y*) be an
optimal pair for W at t, x). Then, there exists p* C([ t, T]; X*) such that

(2.5) p*’(s)+ A*p*(s)+(DF(y*(s))*p*(s)+ Dg(y*(s))=0, p*(T)= Ddp(y*(T)),

(2.6) u*(s)=-DH(B*p*(s)), t<-s <- T.

We call p* a dual arc. Moreover,

(2.7) u*(s) -DH(B*V+W(s, y*(s))),

where

(2.8) V+W(s,x)={qX*’, limsup

t<=s<_T

W(s, y)- W(s, x)-(y-x, q) <0}
Furthermore, there exists 6 ]0, 1[ such that

(2.9) y* E Cl’a(]t, T[; X),

(2.10) p* Cl’(]t, T[; X), u* c,’(]t, T[; X).

Above we have denoted by C1’(I; X), for any real interval I, the space of functions
that are H61der continuous with exponent 3, together with their first derivative, on
each subinterval [a, b] contained in/.

Finally, the following results are proved in [4] and [9].
PROPOSITION 2.4. Assume (SL) (respectively, (SL’)) and (1.10) and let Wbe given

by (2.1). Then we have the following:

(2.11) (i)
(ii)

W( t,.) is locally Lipschitz in Xfor all 6 [0, T];
W(., x) is Lipschitz continuous in [0, T] for all x D(A).

Furthermore, if B-1 (H; U), then W(t, .) is semiconcave in Xfor all E[0, T[; that
is, for all r > 1/T there exists Cr > 0 such that

AW(t,x+(1-A)x’)+(1-A)W(t,x-Ax’)- W(t,x)<-__CrA(1-A)[x’[2

for all t[0, T-1/r], Ix[, [x’l<-_r, A 6[0, 1].
Along with the backward Cauchy problem (1.9), we will consider the forward

problem:

(2.12)
,( t, x) + H(B*Vth( t, x)) -(Ax + F(x), V oh( t, x))- g(x) 0;

6(o, x) 6o(X).

We say that th C([0, T] X; R) (respectively, 4’ ([0, T] Da(a, p); R)) is the gen-
eralized viscosity solution of (2.12) if W(t, x)= oh(T-t, x) is the generalized viscosity
solution of (1.9).

We prove now the analogue of representation formula (2.1).
PROPOSITION 2.5. Assume (SL) (respectively, (SL’)) and (1.10). Let ch be the

generalized viscosity solution of (2.12). Then we have

(2.13) 4(t,x)=inf [g(y(s))+h(u(s))]ds+do(y(t)); uELl(O, eo; U)Io

where y is the solution of (1.2).
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Proof. By definition we have

4(t, x) inf {g(y(s))+h(u(s))} ds+do(y(T));
T-

(2.14)
u La( T- t, T; U), y’(s) Ay(s) + F(y(s)) + Bu(s), y( T- t) xI

Set tr s- T+ to obtain

4(t, x) inf g(y(o-+ r-t))+h(u(r+ T-t))+o(y(r));

u e LI( T- t, T: U), y’(s) Ay(s) + F(y(s)) + Bu(s), y(T- t) x}.
Now, let y(s) y(s + T- t), y(s) u(s + T- t); then

(t, x)=inf {g(g(s)) + h((s))} ds+ o(g(t));

e 1(0, ; u, g’(s ag(s + (g(sl + (s, g(0 x}
and the assertion is proved.

3. Seet efis fr sfllt. To our knowledge there are no general
conditions that yield global stabilizability in the sense of Definition 1.1 (for local results
see [2] and [18]). In the following we give some sucient conditions that may be
applied to various situations. For instance, the problem we analyze in 6 fits into the
framework of Proposition 3.3 below.

The simplest case for which there is stabilizability is when the dynamical system
(t, x) generated by A + F, that is the solution of

is exponentially stable." Indeed, in this case it suces to take u =0 in (1.2). More
precisely, we can easily prove the following proposition.

PROPOSiTiON 3.1. Assume (SL) (respecively, (SL’)). Lee h(O)=0 and suppose that
there exist positive constants C, R, , , and such

(3.2) (, x)l C e-’lxl" for all x e X,

(3.3) g(x)l Clx for Ixl e.
en, (1.1)-(1.2) is stable.

Remark 3.2. A typical assumption that implies (3.2) is that A + F+ e be dissipative
for some e > 0, i.e.,

(3.4) {Ax + F(x) + ex, x*} N 0 for all x D(A) and x*

Next, when B is invertible, we can prove a quite general result.
Pooso 3.3. Assume (SL) (respectively, (SL’)) and let B-e (X; U). Sup-

pose furcher tha there exist positive constants C, R, and such that

(3.5) If(xl Clxt fo Ixl e (respectively, IF(x)l C(lxl,)fo Ixl,
(3.6) Ig(x)l ClxI for Ixl R,

(3.7) Ih(u) Cu for lu R.

en, (1.1)-(1.2) is stable.
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(3.8)

Then

Proof. We set

U(/) -B-’{(to + 1) et(A-t-l)x-F F(et(A--I)x)}.

lu(t)l =< IIB-11l(x;){lo + lllxl e-t+ Clxl e-v’) for t> log (Ixl/R)/%

So, the corresponding solution of the state equation (1.2) is given by y(t)= et(A-’-l)x.
In view of (3.5), (3.6), and (3.7), u is an admissible control at x and the proof is
complete. [3

Now we consider the case when F is "small."
PROPOSITION 3.4. Assume (SL) (respectively (SL’)) and that there exist positive

constants C, R, and cr such that (3.5), (3.6), and (3.7) hold. Assume in addition that
there exists K (X; U) such that A-BK is exponentially stable, i.e., that (A, B) is
stabilizable by a feedback K. There exists Co)0 such that if

(3.9)
IF(x) F(y)I N eolx Yl for all x, y X

(respectively, IF(x)- F(y)I N eolx- y[.p for all x, y DA(a, p));

then (1.1)-(1.2) is stable.
Proof. Assume that (3.9) hold for some e, and let x X. We will show that, if e

is sufficiently small, then the following control

(3.10) ux(t) e’(A--BK)x

is admissible. Let N > 0 and c > 0 be such that

(3.11) e’A-’>ll =< Ne-2ct,

and set

(3.12)

(3.13)

t=>0

[Ivllc=Sup{eC’lv(t)l; t->0}, vE c([0, oo[; x),

(respectively, Ilvllc=Sup{e’lv(t)],,,; t->0}, VE C([0, m[; DA(a,p)),

(respectively, E {v e C([0, oe[; DA(a, p)); IlVllc < oo)),

E, equipped with the norm [[c, is a Banach space. Now consider the problem

(3.14) z’= (A- BK)z + F(z), z(0) x.

By a fixed point argument we can easily show that if e is small, then (3.14) has a
unique solution in Y. Since z coincides with the solution of the state equation (1.2)
when u ux, we have obtained the conclusion. [3

4. Existence. In this section we prove that the existence of solutions to the
Hamilton-Jacobi equation

(4.1) H(B*DVoo(x)) -(ax + F(x), DV(x))- g(x) 0

is equivalent to the fact that (A + F, B, h) is g-stabilizable. We will obtain V as the
limit of the generalized viscosity solution to the problem

(4.2) cht(t,x)+H(B*Vch(t,x))-(Ax+F(x),Vch(t,x))-g(x)=O, th(0, x) 0

when - +o.



868 P. CANNARSA AND G. DA PRATO

PROPOSITION 4.1. Assume (SL) and suppose that problem (1.1)-(1,2) is stable, Let
qb be the generalized viscosity solution to (4.2) and let Voo be given by (1.4). Then, for
all x X we have

(4.3) V(x) lim &(t, x).

Proof. By Proposition 2.5 it follows that ok(t, x) is increasing in for any x X
and 49(t, x) <= V(x). Thus

(4.4) 6oo(x) lim oh( t, x) <- Vo(x).
t’oo

Now let (ut, y,) be such that

4(.t, x)= {g(y,(s)) + h(u,(s))} ds

where u e L(0, t; U) and y’,(s)=Ay,(s)+f(y(s))+ Bu,(s); y(0)= x. Then we have

(4.5) V(x) > h(u,(s)) as >  llu, L’(0,t;n)-

Set u_,(s)=u,(s) if se[0, t] and _u,(s)=0 is s> t; since by (4.5) {_u,} is bounded in
LP(0, c; U), there exists

t, ’ + such that v, := _ut,, u* weakly in LP(0, ; U); set z, _y,,,.

Now fix T> 0; since e ’a is compact for all > 0 (by hypothesis (SL)(ii)) we have that
z, y* in C([0, T]; X), where y* is the solution of (1.2) with u u*. Since h is convex
it follows that

4)oo(x) >- {g(y*(s))+ h(u*(s))} ds.

But T is arbitrary, so g(y*) and h(u*) belong to L(0, oe; R) and

ch(x)>= {g(y*(s))+h(u*(s))} ds>= V(x). l-]

Under assumptions (SL’) a similar result can be proved.
PROPOSITION 4.2. Assume (SL’) and suppose that problem (1.1)-(1.2) is stable. Let

ch be the generalized viscosity solution to (4.1) and V the value function given by (1.4).
Then, for all x Da(a, p) we have

(4.6) V(x) lim th(t, x).
t$

Proof The reasoning is similar to the one above. Since F is only defined in
DA(a, p), now we must prove that

(4.7) z, --> y* in C([O, t]; DA(a, p)).

From (SL’)(ii) and (1.15) it follows that

(4.8)
d+

d--- Iz"( t)lz <- (a + w)lz.( t)]z + ]By.(



STATIONARY HAMILTON-JACOBI EQUATIONS 869

where d+/dt denotes the right derivative. Thus, there exists C(T)>0 such that
Iz,(t)lz <- C(T) for every e [0, T]. We set ’, F(z,) + By,. Then, from the representa-
tion formula

(4.9) z,( t) e’Ax + e(t-s)An(S as

and the fact that v, is bounded in LP(O, oo; U), we conclude that there exists CI(T) > 0
such that Izn(t)l,p<-Cl(T) for every te[0, T]. Therefore, {srn} is bounded in
LP(O, T; X) and we can find a subsequence, still denoted by {rn}, such that r, -*weakly in LP(O, T; X). Moreover, z, y* in C([0, t]; X).

To show (4.7) note that, for all t, e ]0, T[,

ly*(t) z,( t)[,p le<t-’)A,(s)l=,p ds

(4.10)
+ ]Ie’-)AIIQ,<,p)) ds ]ff,(s)[ p ds

Also,

const
(4.11) (X,DA(a,p)) Vt > O.

So, using the fact that e ta, t>0, is a compact operator from X into DA(a, p) and
recalling that c ]0, 1-1/p[, we can easily derive (4.7) from (4.10) and (4.11).

To prove our existence result, we need a lemma.
LEMMA 4.4. Assume (SL) (respectively, (SL’)). For any T>0 and x X (respec-

tively, x Da o, p we have

Vow(x) =inf [g(y(s))+ h(u(s))] ds+ V(y(T));

(4.12)
U tl(0, T; U), y’(s)+ Ay(s)+ F(y(s))+ Bu(s), y(O)= x}.

Proof Denote by V* the right-hand side of (4.12). Let u be an admissible control
and let y be the corresponding solution of (1.2). Then,

{g(y(s))+ h(u(s))} ds {g(y(s)) + h(u(s))} ds

+ {g(y(cr + T))+ h(u(cr+ T))} do"

whence

{g(y(s))+h(u(s))} ds>= {g(y(s))+h(u(s))} as+ V(y(T)),

which implies that V*>= V(x). We now prove the reverse inequality. Fix T>0 and
u LI(0, T; U); let y C([0, T]; X) be the corresponding solution of (1.2) and (ur, Yr)
be an optimal pair for problem (1.1), (1.2) with x y(T). Set

u_ (s) u(s) if0=<s=<T,
_
(S) UT($-- T) if s >= T.

Since yr(0)= y(T), we have

y(s)=y(s) if0=<s -T, y(s)=yT(S--T) if s=>T.
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Then,

Voo(x)<-_ {g(y(s))+ h(u(s))} ds+ {g(yT-(s- T))+ h(yr(s- T))}. ds
T

T

{g(y(s)) + h(u(s))} ds+ Vo(y(T)),
o

which implies Voo(x)<= V*. [3

The main result of this section is the following theorem.
TrEOREM 4.4. Assume (SL) (respectively, (SL’)) and suppose that problem (1.1)-

(1.2) is stable. Then Voo is a generalized viscosity solution of equation (4.1). Moreover,
for any x X (respectively, x DA(a, p)) there exists an optimal pair (u*, y*) and the
following feedback formula holds:

(4.13) u*(t)-DH(B*V+Voo(y*(t))), t>-O.

Proof By Lemma 4.3 and by Proposition 2.1 it follows that V(x) W(t, x) where
W is the generalized viscosity solution of the problem

(4.14)
W(t, x) + H(B*DW(t, x)) -(Ax + F(x), DW(t, x))- g(x) O,

W( T, x) V(x).

Then, Vo is a generalized viscosity solution of (4.1). The existence of an optimal pair
(u*, y*) was implicitly obtained in the proof of Proposition 4.1 (respectively, Proposi-
tion 4.2). Finally, Proposition 2.3 yields the feedback formula (4.13). [3

Remark 4.5. From (2.3) we also obtain that, for all x D(A),

(4.15) H(B*p)-(Ax+F(x),p)-g(x)<=O IpD+V(x),

(4.16) H(B*p)-(Ax+F(x),p)-g(x)>=O VpD-V(x).

Remark 4.6--(Maximum principle). Assume (SL) (respectively, (SL’)). From
Proposition 2.3 we conclude that, if x X (respectively, x Da(a, p)) and (u*, y*) is
an optimal pair at x, then there exists p* C([0, oe[; X) such that

p*’(s) + A*p*(s) + (DF(y*(s))* + Dg(y(*s))) O,

(4.17) p*(s)D+Voo(y*(s)),

u*(s) -DH(B*D+V(y*(s)))

for any s e [0, T].
Remark 4.7re(Feedback dynamical system). Assume (SL) (respectively, (SL’))

and let (u*, y*) be an optimal pair at x eX (respectively, x e Da(a,p)). Then, by
Remark 4.6, y* is a solution of the closed loop equation

(4.18) y’(t)6Ay(t)+F(y(t))-BDH(B*D+Voo(y(t))), y(0)=x, t=>O.

Moreover, by Proposition 2.3, there exists 3 ]0, 1[ such that

(4.19) y* C1.(]0, oo[; X).

Now, we denote by St the dynamical system generated by (4.18), that is,

(4.20) St(x) y( t), >= 0, x S.

Then, from the Dynamic Programming Principle (4.12) it follows that St is a semigroup
of nonlinear operators in X.
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We remark that no theory is available to directly solve the initial value problem
(4.18) except for special situations such as

X U Hilbert space, B 1, h(x)= 1/211xll =, convex.

In this case the operator in the right-hand side of (4.18) becomes m-dissipative (see [6]).
Finally we note that

(4.21) g(Stx) cLl(O, oO.’,X) VxX (respectively, xDA(a,p)).

5. Uniqueness. To make the context of this section clearer to the reader, we recall
some known results from linear quadratic control that correspond to the following
choice of data:

(5.1) H(x) =- lxl =, f(x)=0, g(x)=1/2[Cxl, C (X) x 6 X

where X is a Hilbert space. In this case, setting V(x)=1/2(Px, x), (1.3) reduces to the
algebraic Riccati equation:

(5.2) A*P + PA PBB*P + C*C O.

As it is well known, if (A, B) is stabilizable with respect to the observation C, then
there exists a minimal positive solution Poo of (5.2). Moreover, if the feedback operator

(5.3) L=A-BB*P
is exponentially stable, then P is unique among the positive solutions of (5.2).

In general, no necessary and sufficient condition for uniqueness of positive sol-
utions is known. A sufficient condition for L to be exponentially stable (which would
yield uniqueness), is that C be invertible (more generally that (A, C) be detectable;
see [25]).

The aim ofthis section is to generalize the previous results to the general Hamilton-
Jacobi equation

(5.4) H(B*DV(x))-(Ax + F(x), DV(x))-g(x) =0.

Throughout this section we assume either (SL) or (SL’) and that

(5.5) (i) Problem (1.1)-(1.2) is stable;
(ii) g(0) 0, h(0) 0.

By Theorem 4.5 we know that (5.4) has a generalized viscosity solution given by Voo.
First we remark that 1/oo is minimal.
LEMMA 5.1. Assume (SL) (respectively, (SL’)) and (5.5). Let V be a nonnegative

generalized viscosity solution of (5.4) such that V(O)=0. Then Vow(x) <- V(x), for all
x X (respectively, x Da(o, p)).

Proof. By Proposition 2.5 it follows that &(t, x)<- V(x) where b is the solution
of (4.2). Then, Propositions 4.1 and 4.2 yield the conclusion. ]

Now, to prove uniqueness we must show that V is maximal. A sufficient condition
for maximality is that B-1 (H; U) and the semigroup of nonlinear operators St(x),
defined in (4.20), be "stable" for any x in X.

LEMMA 5.2. Assume (SL) (respectively, (SL’)) and (5.5). Suppose that B-I
(H; U) and

(5.6) Vx X (respectively, x Da(a, p)) ::i r >--_ 1 such that --> St (x) belongs to

L(O, oo; X).
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Then Vo is maximal, that is if V is a generalized viscosity solution of (5.4) such that
V(0) 0, then

(5.7) V(x) >= V(x) Vx X.

Proo Let x X (respectively, x DA(a, p)) be fixed. Set y(t) St(x). Recalling
Proposition 2.4, we have that D+V =0 V (see [9]), where 0 V denotes the generalized
gradient in the sense of Clarke [11]. So, by (4.19) and Theorem 2.3.10 of [11], we can
differentiate the function t V(y(t)) in the following sense. There exists q(t)
D+V(y(t)) such that

d
d- V(y(t))=(Ay(t)/ F(y(t))+ Bu(t), q(t) > -g(y(t))/(u(t), B*q(t)/ H(B*q(t))

>--g(y(t))-h(u(t)).

The first of the inequalities above follows from (4.15). Hence,

V(y(t))+ {g(y(s))+h(u(s))}>= V(x).

Since y e L(0, oe; X), there exists a sequence {t} ]’ oe, such that y(t)-0. Thus, by
the above inequality, we conclude that V(x)>-_ V(x) as required.

Remark 5.3. A sufficient condition that yields (5.6) is the coercivity of g, that is,

(5.8) g(x)>-- C]x] Vx X

for some constant C > 0.
From Lemmas 5.1 and 5.2 we deduce the following uniqueness result.
THEOREM 5.4. Assume (SL) (respectively, (SL’)), (5.5), and (5.6). Then (5.4) has

a unique generalized viscosity solution that is nonnegative and vanishes at x O.

6. Applicatioa to a semilinear parabolic state equation. Let fl be a bounded open
set of R with smooth boundary . Consider the following optimal control problem:

Minimize

(6.1) J(u, x)
1

dt {ly( t, )[P "-]U( t, sc)l v } dsc
P

over all controls u LP([0, oo[ ’).), p > 1, and states y satisfying

(6.2)
0y

ot
(t’)=AY(t’)+F(y(t’)’Vey(t’))+u(t’) in[0,[xf,

(6.3) y(t, sc) 0 on [0, o[

(6.4) y(0, sc) x(sc) on II

where F(r, s) is a real-valued function defined in R xR and x LP(I).
To apply the results of 3-5, we proceed to check the assumptions (SL’). Let

X U LP(fl), A be defined by

(6.5) D(A) W2’p(’) N W’P(-) Az Az Vz D(A)

and let B= 1. Then A generates an analytic semigroup in LP(-) by [1] and the
embedding of D(A) in LP(-) is compact in view of the Rellich Theorem. Also, we set

(6.6) g(x) =pl fa lx(,)lP d, h(u) =l fa ]u(,)lP d
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Then, it is well known that g, h C2(Lp(’-)), provided that

(6.7) p=>2.

So far, we have shown that assumptions (SL’)(i) are satisfied.
Now we check (SL’)(ii). For this purpose we define

z=c(n)

and note that by the results of [23] the part of A in Z, Az, generates an analytic
semigroup. This semigroup is also contracting in view of the maximum principle and
so (SL’)(ii) holds with/z 0. Next, to verify (SL’)(iii), recall the following well-known
characterization of the interpolation spaces Da(a, p) (see, for instance, [24])"

{fe w,(a);floa=o} ifce ,
D(,p=

W’P(a) if. O,p
By the Sobolev Embedding Theorem,

(6.8) DA(ge, p) c C(fl) z if a >--.
2p

Note that the constraint in (6.8) is compatible with the requirement ce ]0, 1- l/p[ if

n+2
(6.9) p>.

2

Let F(x)= F(x, ’x) and assume

(6.10) Fm C=(Rx R").

From the Sobolev Embedding Theorem it follows that

n+p C(6.11) ce > ==> W:’’P(fl)
2p

which in turn implies that F fulfills (1.14). Note again that the constraint in (6.11) is
compatible with the requirement a ]0, 1-1/p[ if

(6.12) p > n + 2.

We will now show that the condition

(6.13) rF(r, 0) -<_ ar2 for all r R and some a R

implies (1.15). The argument is known; nevertheless, we recall it for the reader’s
convenience. First, let

(6.14) z C1(1) be such that [z] has a unique maximum point, say

Then, we can easily show that O[z {z*}, where

z* [ 6 if z(sCo)

-6o if Z(o)=-Izlz,
and denotes the Dirac measure. Thus,

f F(Izlz, 0) if z(so) IZlz,
(6.15) <F(z),

-(-I=lz, o)if=(:o)--IZlz.
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From (6.13) and (6.15) we get

(6.16) (F(z), z*) <- alzl
for all z satisfying (6.14). On the other hand, it is well known (see, for instance, [17,
Lemma 11-7-1]) that z Z satisfies (6.16) if and only if

(6.17) Izl<=lz+A(f(z)-az)[ VA >0.

Since the set of functions z satisfying (6.14) is dense in Z, the proof of (1.15) is
complete. Finally, if we assume that

(6.18) IV(r, s)l-<- t3(Irl) + p(Irl)[sl

where/3, p:[0, [--> [0, [ are continuous functions, then (1.16) easily follows. There-
fore, assumptions (SL’) are fulfilled if

(6.19) (n+p)/2p<a<l-1/p,p>n+2, and(6.10),(6.13),and(6.18)hold.

Our next goal is to show that (A + F, B, h) is g-stabilizable. This will be given by
Proposition 3.3 if we assume that the function/3 in (6.18) satisfies

(6.20) fl(r)<=Cr Vr [0, R]

for some constants C, R => 0.
Now, Theorem 5.4 yields the following theorem.
THEOREM 6.1. Assume (6.19) and (6.20). Then the Hamilton-Jacobi equation

(6.21) (p-1)lDV(x)l’.-p(aex+F(x, Vex),DV(x))-lx[=O, p’-
p

p-1

has a unique generalized viscosity solution Vow>= 0 such that Vow(O)= O. V is the value
function of the control problem (6.1)-(6.4). Moreover, for any x DA(a, p) there exists
an optimal pair (u*, y*) at x and the following feedback formula holds:

(6.22) u*( t) ID+ V(y*( t))l P’-2D+ V(y*( t)).
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REGULARITY OF THE VALUE FUNCTION FOR A TWO-DIMENSIONAL
SINGULAR STOCHASTIC CONTROL PROBLEM*

H. METE SONER AND STEVEN E. SHREVE

Abstract. It is desired to control a two-dimensional Brownian motion by adding a (possibly singularly)
continuous process to it so as to minimize an expected infinite-horizon discounted running cost. The
Hamilton-Jacobi-Bellman characterization of the value function V is a variational inequality which has a
unique twice continuously differentiable solution. The optimal control process is constructed by solving the
Skorokhod problem of reflecting the two-dimensional Brownian motion along a free boundary in the -V V
direction.

Key words, singular stochastic control, variational inequality, free boundary problem, Skorokhod
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1. Introduction. We study regularity of the solution of the variational inequality
associated with a two-dimensional singular stochastic control problem with a convex
running cost. The solution u of this variational inequality, which is the value function
for the control problem, is shown to be of class C2. We also study the regularity of
the free boundary in E2 which divides the region where u satisfies a second-order
elliptic equation from the region where it does not. The free boundary is shown to be
smooth, and this fact is instrumental in our construction of the optimal process for
the stochastic control problem.

Previous work on the regularity of the value function in singular stochastic control
has focused on one-dimensional problems. Beneg, Shepp, and Witsenhausen (1980)
suggested that the value function for these problems should be of class C2 and used
this so-called "principle of smooth fit" to determine some otherwise free parameters
that arose in the solution of their problems. It has been used in the same way by
Harrison (1985), Harrison and Taylor (1978), Harrison and Taksar (1983), Karatzas
(1981), (1983), Lehoczky and Shreve (1986), Shreve, Lehoczky, and Gaver (1984), and
Taksar (1985). (But see Menaldi and Robin (1983), Chow, Menaldi, and Robin (1985),
and Sun (1987) for a variational inequality approach to singular control that does not
use the principle of smooth fit.) An important question is whether the principle of
smooth fit can be expected to apply to multidimensional singular control problems,
or is it strictly a one-dimensional phenomenon. Karatzas and Shreve (1986) suggested
that it might apply in higher dimensions. These authors studied the singular control
of a one-dimensional Brownian motion under a constraint on the total variation of
the control process (a "finite-fuel" constraint). The fuel remaining constitutes a second
state variable, and the value function for this problem was found to be of class C
jointly in both state variables. One should observe, however, that the second state
variable in this problem is not a diffusion; indeed, the fuel remaining is constant until
control is exercised, at which time it decreases an amount equal to the displacement
caused by the control.
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REGULARITY OF THE VALUE FUNCTION 877

This paper concerns the control of a two-dimensional Brownian motion, and
control can cause displacement in any direction. Thus, the discovery of a C2 value
function provides strong support for belief in a widely applicable principle of smooth
fit. Nevertheless, the argument of this paper depends heavily on the fact that only two
dimensions are involved (see Remark 6.2), and we have not found a way to obtain a
similar result in higher dimensions.

This paper is organized as follows. Section 2 defines the underlying stochastic
control problem, and 3 relates it to a free boundary problem, the so-called Hamilton-
Jacobi-Bellman (HJB) equation. Section 4 constructs a C ’1, nonnegative convex
solution u to the HJB equation and proves its uniqueness. Sections 5-10 upgrade the
regularity of u to C2. The key idea here is to use the gradient flow of u to change to
a more convenient pair of coordinates. This is a generalization of the device used by
many authors in one-dimensional problems of differentiating the Bellman equation so
as to obtain a more standard free boundary problem. In 11 the free boundary is
shown to be of class C2’ for any c (0, 1). In 12 we return to the stochastic control
problem, which now reduces to the Skorokhod problem of finding a Brownian motion
reflected along the free boundary in the -Vu direction. The established regularity of
u and the free boundary allow us to assert the existence and uniqueness of a solution
to the Skorokhod problem and finally complete the proof, begun in 3, that u is the
value function for the stochastic control problem of 2.

2. The singular stochastic control problem. Let { W, 0 =< <} be a standard,
two-dimensional Brownian motion defined on a complete probability space (1), , P),
and let {@t} be the augmentation of the filtration generated by W (see Karatzas and
Shreve (1987, p. 89)). The state process for our control problem is

(2.1) Xt

where x is the initial condition and the control process pair {(N,, r,); 0=< <o} is
{,}-adapted and satisfies the conditions:

(2.2) IN, I= 1, V0=<t<o a.s.,

where I" denotes the Euclidean norm, and

(2.3) sr is nondecreasing, left-continuous, and ro 0 a.s..

The process N gives the direction and r gives the intensity of the "push" applied by
the controller to the state X.

Given control processes N and ’, we define the corresponding cost

Io(2.4) V.(x) E e-’[h(X,) dt + d],

where h:R-R is a strictly convex function satisfying, for appropriate positive
constants Co, Co, and q:

(2.5)

(2.6)

(2.7)

(2.8)

loc\ ]

O<=h(x)<=fo(l+[x[ q) Wx2,

IVh(x)l<-_ fo(l+h(x)) ’x,
colyl<-Oh(x)y y<=Co]yl2(l+h(x)) Vx,y2.



878 H. M. SONER AND S. E. SHREVE

Without loss of generality, we also assume that

(2.9) 0 h(0) <_- h(x) Ix

For x e N2, we define the value function

(2.10) V(x) a__ inf VN,c(X).
N,

3. The Hamilton-,lacobi-Bellman equation. We shall show that the value function
V of (2.10) is characterized by the Hamilton-Jacobi-Bellman (HJB) equation

(3.1) max{u-Au-h, IVul2-1}=O.
The following theorem gives a partial description of the relationship between V and
the HJB equation. More definitive results are proved in 12.

THEOREM 3.1. Let u :2__) be a convex, C- solution of (3.1). Then u <- V. For a
given x , suppose there exists a control process pair N, ) such that Vs,c(x) < c and
the corresponding state process (2.1) satisfies

(3.2) u(Xt)-Au(Xt)- h(Xt)=0 Vt (0, o), a.s.,

fot l{Ns=-Vu(Xs)} ds t G [0, cx3),/t

u(Xt)- u(X,+) ,+- t Vt [0, ),

(3.3) a.s.,

(3.4) a.s.

Then

u(x) V(x)= v,c(x),

i.e., N, ) is optimal at x.

Proof Let x and any control process pair (N, ’) be given. Applying It6’s rule
for semimartingales (Meyer (1976, pp. 278, 301)) to e-’u(Xt), adjusting the result to
account for the fact that sr is left-continuous rather than right-continuous, and observing
that ]V ul =< 1 so E to e-SVu(Xs) dWs 0, we obtain for t>= 0:

u(x)=Ee-’u(X)+E e-’[u(X)-Au(X)-h(X)] ds

(3.5) +E e-h(X) ds+ E [-e-SVu(X) N] d

+E E e-’[u(X)-u(Xs+)+Vu(X). N(r+-rs)].
Os<t

The second and fifth terms on the right-hand side of (3.5) are nonpositive because of
(3.1) and the convexity of u, respectively. Because IVul -< 1, the fourth term is dominated
by E to e d’, and thus we have

(3.6) u(x)<-Ne-u(X)+ e-’[h(Xs) ds+d].

We wish to let t- oo in (3.6) to obtain

(3.7) u(x) <= e-[h(Xs) ds + d] Vs,(x).
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Assume E o e-’h(X)< oo, for otherwise (3.7) is obviously true. This implies that

lim E e-th(Xt) O.

Now (2.8), (2.9), and the inequality IVul <_ 1 (from (3.1)) imply that for all yR2,

2
(3.8) u(y) <- u(0) + [y[ <= u(0)+ 1 +[yl2<- u(0)+ 1 +-- h(y),

C0

SO

li__m E e-tu(Xt) O.

We may therefore pass to the limit in (3.6) along a sequence {tn}= such that
E e-t,,u(X,,) -, 0 as tn - oo, and (3.7) follows. Since (N, ’) is an arbitrary control process
pair, we have u(x)<_- V(x).

If (3.2)-(3.4) are satisfied, then the second and fifth terms on the right-hand side
of (3.5) are zero, and the fourth term is E Io e- d. It follows that equality holds in
(3.6), and hence also in (3.7), i.e.,

u(x) V(x) v(,)(x) u(x).

Remark 3.2. Equation (3.1) is similar but not equivalent to a problem arising in
elastic-plastic torsion (Ting (1966), (1967), Duvant and Lanchon (1967), Brezis and
Sibony (1971)). The elastic-plastic problem is posed on a bounded domain flcN",
and is to minimize

J(v) a ffa 1 [2lV
over K {v H(fl); IlVvl]N 1}. Equivalently, one seeks u K satisfying

f h(v-u)- f Vu. (Vv-Vu)NO VveK.

If u solves the elastic-plastic torsion problem, then

(au+h)(lVu[-1)=O,

but u+k may be negative. In the special case that k is a nonnegative constant
function, a solution to the elastic-plastic problem also satisfies a variational inequality
like (3.1) (see Evans (1979, 6), but such an h is not interesting in the control problem.

4. Solution of the HamiltonaeoN-Bellman equation. The existence of a W;
solution to the HJB equation (3.1) follows from a modification of Evans (1979) (see
also Ishii and Koike (1983)), who treated a bounded domain and general h and space
dimension. We need to refer to this construction in the next section, so we provide it
here.

Let B’R be a C function satisfying

(4.1i) /3(r) =0 Vr (-oo, 0],

(4.1ii) /3(r) > 0 Vr (0, oo),

(4. liii) /3(r) r- 1 Vr e [2, oo),

(4.1iv) /3’(r)=>O, /3 "( r) O VreN.
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For each e > 0, we form the penalization function

(4.2) fl(r)----a/3 Vr I,
e

and we consider the penalized equation

(4.3) u-Au +/(lul.) h.

The following lemma is proved in the appendix.
LEMMA 4.1. For every e (0, 1), there exists a nonnegative, convex, Cesolution u

to (4.3). There exist positive constants C1, C2, and p, indepenent of e, such that for all
e (0, 1), for all x

(4.4) 0 <- u(x)<= Cl(1 / Ixl),

(4.5) IVu (x)l_-< CI(1 / Ixl ),
and for every y

(4.6) 0 <- Deu (x)y. y <= C21 y[e(1 + u (x)).

DEFINITION 4.2. We define a norm on the vector space of 2 x 2 matrices by

a _a_ x/trace (AAr ).

If A is symmetric with eigenvalues h and he, then

(4.7) Ilall ,/A / A.
THEOREM 4.3. The HJB equation (3.1) has a nonnegative, convex solution u

satisfying

(4.8) IID u(x)ll C3(1 /lxlm), I.e. xR,
for some C > 0 and m N.

Proof Because D2u is locally bounded uniformly in e (0, 1), we may choose
a decreasing sequence { e,}= with limit zero such that { u-}= and {Vu- },__ converge
uniformly on compact sets, and {Deu-}=l converges in the Lloc-weak topology.
Define u limn_o u ", so that Vu lim,_.oo Vu- and the weak* limit of {D2u-}__l is
Deu. Passage to the limit in (4.3) gives (3.1).

LEMMA 4.4. Let u Wle;, be a nonnegative, convex solution to the HJB equation
(3.1), and define
(4.9) cg A {X 2; IVU(X)I2 < 1}.

Then for every unit vector v,

(4.10) u a--(D2u)v v>0 on

cg is bounded, and u attains its unique minimum over 2 inside

Proof We have

(4.11) u-Au=h on

21 2 C4,aand h e Ci;c(R ), so u e (cg) for all a e (0, 1). Differentiating (4.11), we obtain

u-Au h on

and since h> 0, relation (4.10) holds. Equation (4.11) also implies that u _-> h on
and since IVul -< 1 on R2 but h grows at least quadratically (see (2.8)), c must be
bounded.
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Let 6 (0, 1/2) be given, and choose x R2 such that

u(x) <= u(x) + , Vx .
Define

I[i(X) U(X) "-i- 3IX X612 [X [12,

and note that 6 attains its minimum over 2 at some point yS. In particular,

(4.12) O=Vq(y)=Vu(y)+26(y-x).

But also

u(y) + ,Sly X612--" d/(y) <= qt(x) u(x) <-- u(y) + 3.

It follows that lya-xl_-<l, and returning to (4.12), we see that IVu(ya)l_-<2,<l.
Therefore, y for all 3 (0, 1/2), and the sequence {yl/n}= accumulates at some
yO . From (4.12) we have Vu(y) =0, so yO , and the convexity of u on 2 implies
that u attains its minimum at Yo. This minimum is unique because of (4.10).

THEOREM 4.5. There is only one nonnegative, convex solution u WI25 to the HJB
equation (3.1).

Proof. Let Ul and ua be two nonnegative, convex solutions to (3.1), and let yO be
the point where u2 attains its minimum. Given 3 > 0, define

3(X) -- Ul(X) U2(X) 31x-- yOI2 ’X G [2.

The function q attains its maximum at some x f2, and 0=Vo(x)
Vu1(xa)--VUa(Xa)--23(xa-- y). Consequently,

1 >-_lVu(x)12=lVu2(x)12+4321x-yla+43Vu(x) (x-y).

Because ua is convex, VUE(X) (x-y)>=O, so either IVu2(x)12 1 or x=y. This
last equality would imply that Vu(x) =0, so in any event, IVua(x)12 1. From (3.1)
we have

AU2(X6) U2(X6 h(x).

Because # attains its maximum at x, we have from the Bony maximum principle
(Bony (1967), Lions (1983))

0 >- lim inf ess A q (x)

lira inf ess [Aul(x) Aua(X) -43]

>=U1(X)--U2(X)--43.

It follows that for all x R2,

Ul(X) Ua(X q93(X q- 3IX yO[2

Letting 350, we obtain ul-< u2. The reverse inequality is proved by interchanging ul
and u2.
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Remark 4.6. Throughout the remainder of the paper, u will denote the unique
nonnegative, convex solution in Wt2g to (3.1). The set c will be given by (4.9), and

2,o 2yO c will denote the unique minimizer of u. We shall prove that u C loc for all
a (0, 1) (Theorem 10.3), 0c is of class C2" for all a (0, 1) (Corollary 11.3), and
n(x). Vu(x)-> r for all x 0c, where n(x) is the outward normal to at x and r is
a positive constant (Lemma 12.2).

5. An obstacle problem. Let us return to the construction of u in the proof of
Theorem 4.3 as the limit of a sequence of functions {ue-}=, where each u e- satisfies
(4.3). Define we. IVu  l 2 and compute the product of Vu e,, with the gradient of both
sides of (4.3) to obtain

(5.1)

where

H,, =Vh. Vu,,-IID-u,,II.
Along a subsequence, which we also call { e,}=, {He.}= converges to

(5.2) =a Vh. Vu-X,

where X is the limit of IIO=uo 2 in the weak* topology on Lloc. We will show that

w

solves an obstacle problem involving/-, and we will then obtain WI2,P regularity for
w by invoking the theory of variational inequalities.

For r > 0 chosen so that B(0) a__ {x 2; Ixl < r} contains , define

K,.A{v W’:(Br);O<-_v<=I on Br and v-16 W’Z(B)}.
We pose the problem of finding K such that

lfn Vq. (Vv Vq)-> (ffI-w)(v-)(5.3)
2 o o

LEMMA 5.1. The function w IVul 2 solves (5.3).
Proof Let v K be given. From (5.1) we have

fn (we"-l Awe"-He") (v-we")
(o) 2

(5.4)

I 2’e, (we")(D=ue")vue"" Vue"(v- w’")"
r(o)

0 whenever we,, < 1, and v we- < 0 wheneverThe function u e- is convex,/3e,,(w e-

w e,, > 1. Therefore, the right-hand side of (5.4) is nonnegative, and integration by parts
yields

1
(v we")Vw"’n+ Vw" (Vv-Vw’)

2 I,.(o 2 o
(.)

>-I (He"-we")(v-we")’
Br(O)

where n is the outward normal on OB(O). Now we- - v uniformly on OB(O), w e- - w
uniformly on Br(O), and He’’ - H, Vw e,, - V w, both the latter convergences being weak*
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in L(Br(O)). Because the weak* limit of IVWenl 2 dominates [Vw[2, we may pass to the
limit in (5.5) to obtain

IIR Vw.(Vv Vw)->_ IR (ffI-w)(v-w) VvEKr.(5.6)
2 ,.(0) ,.(o)

T-IEORE 5.2. For every p (1, ), w & [V u[ W;p
Proof This is a classical result. See, for example, Lemma 5.1 and Theorem 3.11,

p. 29 of Chipot (1984).
COROLLARY 5.3. We have w C’(2) for any a (0, 1).
Proof This follows from Sobolev imbedding (Gilbarg and Trudinger (1983, Thin.

7.17, p. 163)).
Remark 5.4. Integration by parts allows us to rewrite (5.6) as

(w--1/2Aw--ffI)(v--w)O /Vgr,
r(O)

for all sufficiently large r, and so

(5.7) max {w _1Aw-/, w- }=0.
Now X appearing in (5.2) dominates IIDZull, and so is dominated by

(5.8) H a Vh. Vu- IIDu .
But let x e be given and choose e > 0 such that the closed disk B(Xo) is contained
in . Choose a positive integer N such that

[Vu"(x)[< 1 Vn_--> N, xe B2(/).
From (4.1i), (4.2), and (4.3), we see that

u - -Au ,, h on Bz(X).
According to Gilbarg and Trudinger (1983, Thm. 4.6, p. 6), for every a (0, 1),
lunlc2.((xo)) is bounded uniformly in n _>-N. Thus, on B(x), D2u ,, is continuous
and converges uniformly to D2u, 1’ []D2u 2, and H. We conclude that (5.7)
remains valid if H is replaced by H, i.e.,

(5.9) max {w-1/2hw- H, w- 1}=0.
6. D2u insitle . Inside the set defined by (4.9), u satisfies the elliptic equation

u- hu h, and is therefore smooth (at least C4’ for all a e (0, 1) because h is C2’1).
In this section, we describe the behavior of D2u as 0)g is approached from inside

LEMMA 6.1. Let z 0c be given. As x approaches z, D2u(x) approaches the
matrix

A(z)(u(z)-h(z))[ u2(z)
-u(z)u(z) u(z)

where ui denotes the ith partial derivative of u.

Proof Because w= [Tu[2= 1 on 0c, A(z) can be characterized as the unique 2x2
positive semidefinite matrix with eigenvalues zero and u(z)-h(z), and with Vu(z) an
eigenvector corresponding to the eigenvalue zero. Let v be a unit vector orthogonal
to the unit vector Vu(z). It suffices to show that

(6.1) lim Du(x)Vu(z)=O
x

(6.2) lim DZu(x), (u(z)- h(z)),.
C
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Because w IV ul 2 attains its maximum value of 1 at z, and Vw is continuous (Corollary
5.3), we have

0= Vw(z)= lim Vw(x)= lim D2u(x)Vu(x).

Since Vu is continuous and Du Lloe, (6.1) follows.
Let 0=Al(x)=<A2(x) denote the eigenvalues of D-u(x). Then u(x)-h(x)=

Au(x)=A(x)+,2(x) for all x % and (6.1) shows that limx_,z.x A(x)=0. Con-
sequently,

(6.3) lim A2(x) u(z)- h(z),

which is thus nonnegative. If u(z)- h(z)= 0, then D2u(x) approaches the zero matrix
and (6.2) holds. If u(z)- h(z) >0, then (6.1) implies that any unit eigenvector corre-
sponding to A(x) must, as x approaches z, approach colinearity with V u(z).
Hence, any unit eigenvector corresponding to ,2(x) approaches colinearity with v, and
(6.2) follows from (6.3).

Remark 6.2. The characterization of A(z) used in the proof of Lemma 6.1 makes
critical use ofthe fact that our problem is posed in two dimensions. The two-dimensional
nature of the problem also plays a fundamental role in Lemma 8.1, and together these
lemmas provide the basis for 10, where the existence of a continuous version of D2u
on 2 is established.

THEOREM 6.3. For every a (0, 1), u C2’a(q), i.e., D2u restricted to c has an
a-H61der continuous extension to c.

Proof Because IV ul 1 on 0% we can choose an open set G
is bounded away from zero on C\G. Elliptic regularity implies the H61der continuity
of D2u on (, so it suffices to prove uniform H61der continuity of D2u on C\G.

Let a unit vector , be given, and define on

if z 0,

Observe that 7/-y 0 and 17/I Y] 1. Therefore,

Au--(D2u)7/ 7/q-(D2u)’y" on \G.

Direct calculation shows that on \G,

(D2u)p p--(D2u)z z+2(v. 7/)(D2u)7/ 2,+(/7.7/)2(D2u)7/ 7/

=lzl2(Au-(D2u)7/ 7/)+2(v. 7/)(D2u)7/ (v-(v. 7/)7/)

q-(t," 7/)2(D2u)7/" 7/.

Since Au u-h and 2(D2u)7/ (Vw/lVul) on \G, we have

(6.4)

1 (Vw. Vu))
on \G.
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All the terms appearing on the right-hand side of (6.4) are uniformly HiSlder continuous
in \G (recall Corollary 5.3).

7. The gradient flow. Recalling Remark 4.6, we let yO denote the unique
minimizer of u. Using the strict convexity of u in (Lemma 4.4), we choose 6 > 0,
Ix > 0 such that

(7.1) B2(y)

(7.2) D2u(x)y y >- lyl2 Vx n2(y),

(7.3) _-< IVu(x)l=<_- VxOB(y),

(7.4) Vu(y+60)" O >- tx /0 Sa,

where Sa a--OBa(O) is the set of unit vectors in 2. For 0 Sa, we define the gradient
flow 6(t, O) to be the unique solution to the differential equation

d
(7.5)

dt
(t, O)=Vu(qt(t, 0)), t>=O,

with the initial condition

(7.6) q(0, 0)= yO+ 60.

We will find it convenient to use q to change coordinates in -. The following theorem
justifies this.

THEOREM 7.1. The map q is a homeomorphism from [0, ] x S1 onto \B(y).
Proof Let us for the moment fix OS and define n(t)&(t, O)-y for all t0.

Because [Vu[l, we have [n(t)lt+6, and y+(t/t)n(t)B2(y) for all t>0.
We conclude from the convexity of u on 2 and from (7.2) that for > 0:

d
1 yOd[n(t) =2Vu( +n(t)). n(t)

--2[Vu(y+n(t))-Vu(y+6tt n(t))].n(t)
(7.7) +2 u

s/

2 D2u(y + zn(t))n(t), n(t) dr

2 (1A )In(t)[2.

Since In(0)[== 2, we can integrate (7.7) to obtain the inequality

(7.8) [0(t, 0)-y1262 1 v e2"(’) VtO, OS1.

One consequence of (7.8) is that

(7.9) 16(s, 0)-6(0, )l >0 Vs>O, OSl, S
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Now let s, [0, o) and 0, q S be given. Again using the convexity of u, we
may write

IO(t/s, o)-4,(t, )12-Iq,(s, 0)-q,(0, )12

(7.10) +2 [7u(p(r+s, O))-Vu(d/(r, q))]. [p(r+s, 0)- O(r, q)] dr

_>-I(s, 0)- q,(0, )1.
If 0, q are in $1 and tl, t2 are in [0, c) and t t2, then (7.9), (7.10) imply that
4,(t, 0) 4,(t, q). If t t2 but 0 q, then the uniqueness of solutions to (7.5) implies
that 0(tl, 0) 0(t:, q). This concludes the proof that q, is injective.

It is clear from its definition that q, is continuous. Define

D _a q([0, o) x Sl) C [2\Ba(y

to be the range of q. Let x D and e >0 be given. It follows from (7.8) that there
exists T > 0 such that

D U(x) 0([0, T] x $1).

But an injective, continuous map on a compact set has a continuous inverse, so -1
is continuous at x.

It remains to show that D=\Ba(y). There is a function ’[0, oo)x-R such
that

p t, fl g t, cos fl, s n fl ’(t,)e[0, oo)x,

and 0 is continuous and locally injective. It follows from Deimling (1985, Thm. 4.3,
p. 23) that

D (e\B(y)) ((0, ) x)

is open. On the other hand, if {xn}7_l C D is a sequence with limit x el2, then (7.8)
shows that {q,-(xn)}= is bounded and thus has an accumulation point (t, 0)e
[0, oo)x S. The continuity of g, implies that x= q,(t, 0), so D is closed. It follows
that D 2\Ba (y).

COROLLARY 7.2. For 0 S and y [1/2, 1 ], define

(7.11) Tr(O)&inf{t>=O; IVu(d/(t, 0))l2>- 3/}.

Then

sup Tv(0)-<-sup Tl(0)<o.
1/2=<yl OS
OS

Proof According to Lemma 4.4, is bounded. We can use (7.8) to choose
t* (0, ) such that

qt([0, t*] x S’).

THEOREM 7.3. The homeomorphism is Lipschitz continuous on compact subsets of
[0, co) St, and - is Lipschitz continuous on all of \Ba(y).
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Proof It follows immediately from (7.5) that I(d/dt)O(t, 0)1<_-1 for all (t, 0)
[0, c) x $1. Now let T > 0 be given and use Theorem 4.3 to choose a Lipschitz constant
C for V u on 0([0, T] x $1). For 0, q $1 and t [0, T], we have

[@(t, O)-d/(t, ,)1_-< Ig,(o, 0)-@(0, )1

+ u((,, 0l-u((,l

Gronwall’s inequality gives

and the local Lipschitz continuity of 0 is proved.
To prove the global Lipschitz continuity of 0-, we let x, x NB(y) be given

and define (t, 0) 0-(x), (t, 0) 0-(x). Assume without loss of generality that

Ix xl N 1 and that h t. Set s q t. According to (7.10) and (7.8),

x’- xl I(s, 0,) (0, 0)1

(7.12)
[O(s, O)-y]-[y-O(O, 0)[

1 v e(’-

6 lv (s ).

If 0_<-- s _<-- 6, then (7.12) yields

1
(7.13)

If s and/ 1, (7.12) again yields (7.13). Finally, if s 6 and 0 </6 1, (7.12)
yields Ix x[ 6-s, so

(7.14) ]t-t](6-)/]x’-x]/"a(6-a)/a[x-x2].
Relations (7.14) and (7.15) imply the global Lipschitz continuity of the first component
of -, i.e., there exists a constant L> 0 such that

(7.15) ]t- t2l LI O(t, 0,) O(t2, 0)] V(t, 0), (t, 02) [0, ) x

Now let x, xBa(y) be given, and define (fi, 0), (t, 02), and s= t- t2> 0
as before. From (7.10), (7.5), and (7.6), we have

Ixl- xl 10(s, 0a) 0(0, 0)l

-s+6lO-O].

Relation (7.15) gives us

1 1 1
10-0 It,-tl+ Ix -xl ( + lx’-xl.
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Remark 7.4. In much of what follows, we will use the coordinates (t, 0)
[0, )x S rather than the coordinates x RZ\B(y). We may identify S with the unit
circle, and let [0, c) S have the product of Lebesgue measure and arc length measure.
An important consequence of Theorem 7.3 is that 0 maps measure zero subsets of
[0, c) S onto Lebesgue measure zero subsets of RZ\B(y). Likewise, 0- preserves
measure zero sets.

8. W2’ regularity for the obstacle problem. The purpose of this section is to show
that the function w IV ul 2 is in WI2;. This improves the regularity result of Theorem
5.2.

LEMMA 8.1. We have

(8.1) (D2u)Vu=O, [[D2u[[ =Au a.e. on

Proof By the definition of c, w attains its maximum value of 1 at every point in
R2\, so Vw=0 everywhere on R\cg. But Vw= 2(D2u)Vu almost everywhere on
and the first part of (8.1) follows. Since D2u is singular almost everywhere on
the second part of (8.1) also holds.

Remark 8.2. Because D2u is positive definite on and positive semidefinite
almost everywhere on 2, and since (recalling Remark 7.4)

d
d--t w(d/(t, 0))= 2DZu(d/(t, O))Vu(d/(t, 0)). Vu(t(t, 0))

(8.2)
a.e. (t, 0) [0, c) S,

the function - w(O(t, 0)) is nondecreasing for almost every 0 S. In particular, with
Ta(O) defined by (7.11), we have

(8.3) w(O(t, 0))=-1 Vt>= TI(0), a.e. OS.
THEOREM 8.3. The function w [V/,/I 2 is in W2’.
Proof Recall that w satisfies (5.9), where for all a (0, 1), n & Vh. Vu -IID2ull =

is of class C’" inside c, and H is defined up to almost everywhere equivalence on
2\ c. We define

vx
h(x) Vu(x)-[(u(x)-h(x))+]2 ifx[2\c.

Now u- h Au _--> 0 on , so u- h _-> 0 on 0. Theorem 6.3 and Lemma 6.1 then show
that /-) is locally H61der continuous with exponent a for any a (0, 1). Because of
(3.1) and Lemma 8.1,

u h =< Au J2u a.e. on 2\.
But Au >= 0 almost everywhere a, so

[(u h)+]2 __< 92u = a.e. on R2\
Therefore >-H amoSt everywhere R2\(, and H on c, so (5.9) yields

(8.5) max {w-1/2Aw-fI, w- 1}-- 0.

With the aid of (8.5) and the H61der continuity of/, we can obtain the W2’

regularity of w from the theory of variational inequalities. More precisely, choose r
so that ( c Br(O) and observe that the Dirichlet problem

/’ Br(O), qq-Aq on 0 on OBr(O)
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has a solution q which is in C2"a(Br(O)) for any a(0, 1) (Ladyzhenskaya and
Ural’tseva (1968, Thm. 3.1.3, p. 115)). Set ___a w-q, so that W2’P(Br(O)) for any
pc (1,) and

(8.6)

(8.7)

Define

max {-1/2A, - 1 + q}=0 in Br(O),

=1 onOBr(O).

Lr{)c wl"2(Br(O));---t)--l- on Br(O and v-le W’(Br)},
and note from (8.6), (8.7) that Lr and

lI V’(Vv-V)>- I ,(v-’) VvLr.
2 (o) r(0)

It follows from Chipot (1984, Thm. 3.25, p. 49), that
W2"(Br(O)). On 2\Br(0), w 1.
COROLLARY 8.4. We have D2u wl’(c).

Proof Use the W1’ regularity of Vw in (6.4).

9. Lipschitz continuity of Tr. Recall the mappings Tr" S1 --) [0 oo) defined by (7.11)
for each y [1/2, 1]. The continuity of Vu implies the lower semicontinuity of each

Tv. In this section we prove that for each y [1/2, 1 ], T is, in fact, Lipschitz continuous.
LEMMA 9.1. We have

IVw(x)l
(9.1) K _a__ sup < c.

vS,,xe D2u(x)p v

Proof Let v, r/ $1 be given and set f& (D2u) v- v and g & V w. r/. Then in c,
f-Af=(DZh)v g-Ag=2VH, r/-g,

where Co> 0 is the constant in (2.8), and H, defined by (5.8), is in wl’cx((9) because
of Corollary 8.4. Furthermore, g =0_-<f on 0cC Therefore the maximum principle
implies that g- Kf<= 0 in % where

K1 (21IXTHII)+
o

In other words, V w. r/-<_ K(D2u) v" v. U
THEOREM 9.2. For each y [1/2, 1], the mapping Tv" $1-[0, c) is Lipschitz con-

tinuous with a Lipschitz constant which is independent of y.
Proof For each y [1/2, 1 ], define

%,=a {O(t, 0); 0<= < Tv(0)} (.J B(y)

(with q, 6, and y0 as in (7.1)-(7.6)). Each c is open, w < 3’ on c and w y on 0c.
For y[1/2, 1), we also have c c. Because of (4.10), Vw does not vanish on c, so
for fixed y [1/2, 1) and z 0c, the outward normal to c exists and is

Vw(z) 2DZu(z)Vu(z)n(z)=
IVw(z)i IVw(z)l

In fact D2w is continuous in and bounded in 2 (Theorem 8.3), so for every
3’ [1/2, 1),0cgv has bounded curvature, i.e., there are constants e > 0, Kv > 0 such that
for every z 0%, and for every x Be (z)"

(9.2) (x- z) n(z) Klx- zlZx 2\%.
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We may use the local boundedness of (d2/dt2)O(t, O)=1/2Vw(O(t, 0)) and the
Lipschitz continuity of 0 to choose a constant K2> 0 such that for every y [1/2, 1),
every/ [0, 1], and every 0, q $1:

(9.3) Iq(T(0) +/3, O)-O(T,(O), O)-Vu(O(T,(O), 0))1 <- K2/3 2,
(9.4) ]O(Tv(O)+fl, O)-O(Tr(O)+fl, )1-<_ g10- 1.
With K as in (9.1), choose L>max {1/2KK2, 1}. Let 0, qS1 be given with 10- ql <_ l/L,
and set

/3-L[O-I, z=O(T,(O), O), x=O(T(O)+, q).

Then (9.3), (9.4) imply the existence of vectors v, r/ BI(0) such that

x z+flVu(z)+K2v+K2[O-Pln.
We calculate

and

(x- z) n(z)
2/3D2u(z)V u(z). V u(z)

IVw(z)l
-t- K2/2n(z) p+ K2lO-qln(z)" q

>2

Klx- zl= KlgVu(z)+ K2fl2v+ K210- qll
__< 9Kv(L2 + K22L4+ K)I0- ul 2.

It is clear that for 10-ql sufficiently small, x Be(z) and

(x z) n(z) >- K,lx z[ 2,

from which we conclude (see (9.2)) that x 2\(r, i.e.,

Tv(q)-< Tv(0)+/3 Tv(O)+L]O-qI.

Interchanging the roles of 0 and q, we obtain

T(0)- T()l<=LlO-ql

for all 0, q S1 such that 10-ql is sufficiently small.
For each O eSI, the mapping tw(O(t, 0)) is strictly increasing on [0, T1(0)]

(see (8.2) and (4.10)). Therefore, the mapping y-> Tv(O) is continuous on [1/2, 1]. The
Lipschitz continuity of T follows from the uniform Lipschitz continuity of Tr for
y [, 1). [3

COROLLARY 9.3. With , 6, and yO as in (7.1)-(7.6), we have

(9.5) {@(t, 0); OS,/[0, Tl(0))} [..J B(y).

Proof Define to be the set on the right-hand side of (9.5). It is clear that c,
and because of (8.3) and Remark 7.4, the Lebesgue measure of c\ is zero. Let
x c\ be given, and define (t, 0) __a 0-(x). Then >= T(O), but because w(T(O), O)
1, we must in fact have > T(O). The continuit.y of T1 and w allows us to chose an
open neighborhood, of (t, 0) contained in c\c, and this contradicts the Lebesgue
negligibility of c\ c. l-]
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10. D2u outside qq. We saw in Lemma 8.1 that oZu is singular almost everywhere
in 2\ (. Indeed

(10.1) UllU1+Ul_u2=O, b/12Ulq-Uz2U2=0 a.e. on

and because u2 + u 1 on E2\ R, we have

(10.2) D2u Au [ u22 --UlU2]-UlU2 u2
a.e. on 2\ R.

Because u has continuous first partial derivatives on 2, the proof of continuity of
OZu on 2\( reduces to a search for a continuous version of u on this set. In order
for Du to be continuous across 0R, we must also have Au u h on 0R (see Lemma
6.1).

We shall construct the desired continuous version of &u in the (t, ) variables.
Indeed, if we set

A(t, O)=Au(d/(t, 0)) VOES > TI(O)

then a formal calculation relying on (10.2) and the constancy of w on R2\R leads to

d 1
02 2(10.3) A(t,

=-A2(t,O) VOWS’ >TI(o)

Integrating this equation and invoking the condition Au u- h on 0R, we obtain

u(O(T,(O), O))-h(O(Tl(O), 0))
A(t, 0)=

1 +(t- Tl(O))[u(tp(Tl(O), 0))- h(O(Tl(O), 0))]
(10.4)

VOeS1, >- TI(O).

The task before us is to show that with defined by (10.4), the function A qt -1 is a
version of Au on R2\R. This is essentially a justification of the formal differentiation
in (10.3), which involved third-order derivatives of u.

Let p" Rz--> [0, oo) be a C function with support in B(0) and satisfying p 1.
For n 1, 2,. ., we define mollifications of u by

(10.5) u(")(x) a u x-- p() d= n2 u()p(n(x- )) d.
FI

Then 7un and Du" are locally bounded, uniformly in n, and un u, 7u(n 7u,
and D-u" D2u in L]o. By passing to subsequences if necessary, we assume that
these convergences occur almost everywhere. We define for (t, 0)

(10.6) l(")(t, O) a--Au(n)(o(t 0)), n-- 1,2,. ,
(10.7) l(t, O)&Au(O(t, 0)),

and observe that l")(t, 0) - l(t, 0) for almost every (t, 0) [0, ) S (Remark 7.4).
LEMMA 10.1. The functions

(10.8) i"(t, 0)= VAu"(q,(t, 0)). Vu(q,(t, 0))

are locally bounded, uniformly in n.

Proof Observe first of all that

1/2A([V,/(n)[2) [[Jalg(n)[[2-] VA,n (n). (VU --Vu(n)),
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where (" is evaluated at (t, 0), and the right-hand side is evaluated at b(t, 0). It
suffices to obtain uniform local bounds on A(IVuI=) and VAu’. (Vu-u").

Define for i {1, 2} the functions

F)(x) Vu x--- p() d
i,i

n u x-- o()

=n u x-- .u x-- O()d,

n=l,2,...,

and note that these functions are uniformly bounded in n (Theorem 8.3). Then

([u(n)(x)[2)ii 2n6 f2 Vu() 7u()[p.(n(x-))p(n(x-))

+p(n(x-))p(n(x-))] dd

=n u x-- .u x--n

2n u x-- Vu x-- n P,()P(n)
n n

The last term is locally bounded in x, uniformly in n. The next-to-last term is

2(x+ u x- x-n - x-
which is also locally bounded in x, uniformly in n, because for all , e B(0),

x-- - x-- -sup
BI(X

This provides a uniform local bound on
On the other hand,

u((x) .(u(x) u((x)

x[Vu(x)-Vu(,)] Vp(n(x- f))p(n(x-,))

x- e),
x u(x)-u x-- o()o(),
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and the boundedness of this expression follows from the local Lipschitz continuity of
Vu. 0

Because of Lemma 10.1, a subsequence of {i(n}__l converges in the Loc-weak
topology to a function sr e Lc([0, oo) x $1). We assume without loss of generality that
the full sequence converges. For each nonnegative integer k, choose a number tk > k
such that {l(n)(tk, O)}n=, converges for almost every 0 S,, and define A.k(tk, O) to be
this limit. (Whereas l(.,. is defined up to almost everywhere equivalence on [0, o)
S1, the functions Ak(tk," are defined UP to almost everywhere equivalence on S1.)
We insist furthermore that to be chosen so that q(to, 0) cg for all O6S1. Then
Au(q(to, .)) is defined pointwise on S1 because Au is continuous on c, and so we
may require that

Ao(to, 0)=Au((to, 0)) V06S,.

For each k =0, 1,. ., define Ak .’[0, CX3)X SI- by

hk(t, O) =a hk(tk, 0)+ ’(S, O) ds,

so that any two versions k and k of this function have the property that the set
{0Sll there exists t[0, c] with k(t, 0) 5 k(t, 0)} has measure zero.

We now relate the functions Ak, k=0, 1,..., to the function of (10.7). Let q9

be a continuous, real-valued function on [0, )x S1, and define

(t, O)& qg(s, O) ds V(t, O) [0, co)x S1.

Fork=0, 1,...,

fsfo’a.(s,O)(s,O)dsdO
Ak(tk, O)(tk, 0)-- (S, O)q(S, O) as dO

$1

Is[lim l(n(tk, O)d(tk, 0)-- I((S, O)q(S, O) ds dO

lim l(( 0)

It follows that Ak almost everywhere on [0, tk] X S1. In particular, for any two
nonnegative integers k and m, Ak and Am agree almost everywhere on [0, tk tin] X S1,
and hence almost everywhere on [0, )x S. In paicular,

(10.9) Ao(t, O)=Au(O(t, 0)), a.e. (t, 0)e[0, m)xS,
and for almost every 0 S1,

(10.10) Ao(t, O)=Au(d/(to, 0))+ (s, O) as vt6[0, ).
to

LEMMA 10.2. Almost everywhere on the set

I]/--1([2\ () {( t, 0) [0, 030) X S TI(0)},
the function appearing in (10.10) is equal to A o.
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Proof From (10.8) we have

i> -+ (t ,-)(r> ,-)
=VAu(") Vu+Au Au

=(uu+u>u)+(u u =
+ U{"l u22 + u,,

Now Ull(n)u22 +Ullu 2Ul2(n)gl2 is locally bounded, uniformly in n, and converges
almost everywhere to 2 det D2u, which is zero on R2g. It follows from (10.1) that for
any function e C(R2),

lim [1(") -+(lo -)(1(") -)]

(n) (n), (n)lim [(u <">, + u u,),+( + u=. . u)]12 "2 11
n 2

=-lim (u{)u2+u,>u,),+(u +

Because the functions (") ott,-1 + (1 tl,-)(1(") q,-) are locally bounded, uniformly in
n, we can show that for every q e L(R2\ @),

q-l+(/o i]t--l) (0 0.(10.11) ,lim. [i->o e-,)(l->

Now let T L(@-(Rk)) be given so that (To O-)lj-l[ L(h), where IJ-l
is the bounded (Theorem 7.3) determinant of the Jacobian of -. From (10.11) it
follows that

On the other hand, i(")+ 1l(") converges in the L/c-weak* topology on [0, m)x $1 to

ff 4-/2__ . 4- A o almost everywhere, and the lemma follows. [3

THEOREM 10.3. There is a Lipschitz continuous version of OZu on [2.
Proof For 0

_
$1 and 0-<t< TI(0), define

(10.12) A(t, O) a--Au(d/(t, 0)),

where, of course, we mean the Lipschitz continuous version of Au inside (Corollary
8.4). For OS and t=> TI(0), define A(t, 0) by (10.4), which gives us a Lipschitz
function. At TI(O), the Lipschitz continuity of A follows from (10.4), Lemma 6.1,
and the equality IVul- 1 on 0R. The Lipschitz continuity of q-i implies the Lipschitz
continuity of a 4, -1.

It remains to show that A 4, -1 is a version of Au, or equivalently,

(10.13) A(t, O)=Au(q(t, 0)), a.e. (t, O)[O, o0) xS

In light of (10.9) and (10.12), we need only show that for almost every OS,
(10.14) A(t, O)=Ao(t, O) Vt-->__ TI(O).
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But (10.10) shows that for almost every 0 S1, the function t--Ao(t, 0) is absolutely
continuous on [0, oo); in particular,

Ao(TI(0), 0) lim Ao(t, 0)
tTl(O)

-lim Au(q(t, O))
ttTl(O)

(10.15)
lim [u((t, O))-h(O(t, ))]

tTl(O)

u(O(T,(O), O))-h(O(T,(O), 0)).

Equation (10.10) and Lemma 10.2 imply that for almost every 0 S,

(10.16) ,o(t, 0)=-A(t, 0), a.e. t>= T,(O).

Equations (10.15) and (10.16) imply (10.14). El

11. Regularity of the free boundary. In this section we apply known regularity
results for free boundaries to show that the boundary of is of class C2’ for all
a (0, 1). In order to apply these results, we recall that w IV u] - is a W2’ function
(Theorem 8.3) which satisfies (see (5.9)) 1- w=>0 on 2 and

(11.1) 1/2A(1-w)=H-w on%,

where we recall that H-a Vh. Vu-IIDull. We shall establish the strict positivity of
the forcing term H-w on 0% Recall that

w-1/2Aw-H_--<0 one2,
and w=l, Aw=0on\,so
(11.2) H-w=H-I>-0 on\%

LEMMA 11.1. The function H is locally Lipschitz continuous, and H > 1 on OCt.
Proof The local Lipschitz COlatinuity of H follows from Theorem 10.3. To prove

that H > 1 on 0c, we assume that there exists a point on 0c where H 1. Without
loss of generality, we take this point to be the origin (0, 0), and we take V u(0, 0)=
(-1, 0).

We first obtain an upper bound on H near (0, 0). Inside , H is differentiable and

(11.3) VH. Vu=(D2h)Vu Vu+(D:u)Vu. Vh-V(IID2uII 2) .Vu.

Let u and u be unit eigenvectors for D2u, and let A1 and A denote their respective
(nonnegative) eigenvalues. Then

V(IID2ulI) Vu -tr (DwDu)-2 tr [(Du)3]
(11.4) AI(D2w)u1. p’q- A2(D2w)/,,2. u2-2(A] h- A)

<=211O ull     sup
uS

Applying Theorem and the remark following it from Caffarelli (1977) to the function
1- w, we have that for some positive constants C and e,

(11.5) sup D2w(x,y)u u<-Cllog(dist((x,y),O))l V(x,y)%
vS

Combining (11.3)-(11.5), we conclude that

VH(x, y) Vu(x, y)>-_D2h(x, y)Vu(x, y) Vu(x, y)+1/2Vw(x, y) Vh(x, y)
(11.6)

--2[ID2u[ILo() C]log (dist ((x, y), 0))] V(x, y) c.
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As (x, y) approaches (0, 0) 0c, Irk(x, Y)I approaches 1 and Vw(x, y) approaches zero.
Using (2.8) and (11.6), we can choose E> 0 such that

Co(11.7) VH(x, y) Vu(x, y)>--f
Let OoS1 be such that (Tl(0O), 0o)--(0,0). For t(0, Tl(0O)) chosen so that

,(t, 0o) [-, ],

d n(b(t, Oo))=VH(d/(t, 0o))" Vu(ff(t, 0o))>- c---9-
dt 2"

It follows that for some " > 0,

(11.8)
H(b(Tl(Oo)-t, Oo))<-H((Ta(Oo), Oo))-1/2Cot

l-1/2cot V t(O,’).

But also

I( T( Oo) t, 0o)-(t, O)[ I( T( Oo) t, Oo) 4,( T( Oo), 0o)

(11.9) + tVu(q(Tl(Oo), 0o))l
<-_ tllD=ult,:o Vt (0, T,(Oo)).

Let/3 > 0 be a Lipschitz constant for H in a sufficiently large neighborhood of (0, 0).
From (11.8), (11.9), we have for all (0, )"

H(t, O)<-H(O(T,(O)-t, Oo))+lH(t, O)-H(d/(T(Oo)-t, 0o))[

<= 1-&Cot / t=llO=ull<.
Choosing " smaller, if necesary, we have H(t, 0) -<_ 1-1/2Cot for all (0, ’). Again using
the Lipschitz continuity of H, we obtain the desired upper bound

(11.10) H(x, y) <-_ 1 -CoX + fllYl V(x, y) [0, ’] x [-’,

We next construct a function "2- such that for appropriate p, tr (0, z),

(11.11) q-1/2Aq_>-H on [0, p]x[-tr, o-],

(11.12) qg-->_l on O([0, p] x [cr, tr]),

(11.13) q(0, 0) 1.

For this purpose, choose 0 < p < min {% (Co/6x/fl)} such that

(11.14) (1--) sink v/p_-> x/p.

Then define

(11.15) tr & min -,

(11.16) A a_ c_o_o ( l
x/p )-13 sink x/p cosh x/tr

( coshx/y (sinh,,/x+sinhx/(p-x))q(x, y) ___a 1 +/3o- 2-
coshx/tr]

1
sinhp

x
-+ V(x, y)+Ap 1 ] -p sinhp]
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Then

(o, ) (p, )= v [-, ],

(#(x, +o.)= 1 +/3o. [1 -sinh x/.x: + sinh x/(p x)] >_- 1
sinhL 3

Vx[O,p]

because

sinh a + sinh b _<-sinh a cosh b + sinh b cosh a
(11.17)

=sinh(a+b) Va, bR.

It remains to verify (11.11). Direct computation reveals

1
q(x, y) - A(x, y) 1 + 2/3o’- Ax + Ap

sinh ,,/x cosh x/y
sinh x/p cosh x/o"

cosh x/y (sinh /x+ sinh x/(p x))-o cosh x/o" sinh

x>= 1 + o" Ax + Ap
sinh x/p cosh

>--1- 1
sinhfpcoshvo" Ax+o"

>-_l-]cox+[yl
>-- H(x, y) V(x, y) 6 [0, p] x [-o’, o’],

where we have used (11.17), the inequality a _-<sinh a for all a->_0, (11.16), and (11.10).
On the other hand, (5.9) implies that

w-1/2Aw<--H on[0, p]x[-o’,o’]

w_-< 1 on 0([0, p] x [-o’, o’]).

The maximum principle implies that w _-< q on [0, p] x [-o’, o’]. In particular, for all
x[O, p],

w(x, O)- w(O, O) w(x, O)- 1 <= o’(x, O)- 1 q(x, O)- q(O, 0),

and thus

(11.18) 0
o o

w(0, 0)_-<-- (0, 0).
Ox Ox

The final step in the proof is to show that (O/Ox)q(O, 0)<0, so (11.18) is contra-
dicted, as well as the assumption that H 1 at some point on 0% We compute

0-0 ( -Y,-1 )(coshx/p-1)sinh,,,pq(O, O)= 2-cosg
(11.19)

sip]
The first term on the right-hand side of (11.19) is bounded above by

sinhp N 2gp.
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As for the second term, (11.14) and the inequality cosh ,v/cr 1 _-> x/o" imply that

sin-- /-O] + (cosh ,/o- 1)

->--2
CO

Therefore,

0-- q(O, O) =< o" 2/3p- p+--v7r]
and (11.15) and the choice of p show that

Ox(0’0) 2p- <0.

THOgM 11.2. efree boundary O is of class C, and w has continuous second
partial derivatives inside up to

Proof Because T is Lipschitz (Theorem 9.2), for every 0 S, the point T(0), 0)
is a point of positive density with respect to the measure of Remark 7.4 for the set
{(t, 0)[0 S, (T(0), )} (E2k). But and - are locally Lipschitz, so every
point of 0 is a point of positive Lebesgue density for 2. It follows from Theorem
2 of Caffarelli (1977) that 0 is Lipschitz. Caffarelli’s Theorem 3 can now be applied
(with v in Caffarelli’s Assumption (H1) equal to our 1- w), and it yields the desired
results.

CorollArY 11.3. e boundary O is of class C2" for every (0, 1).
Proof In light ofTheorems 6.3 and 11.2 and equation (6.4), Du has a C extension

from to @. Therefore, H-w appearing on the right-hand side of (11.1) has a C
extension from to @, and because 0 is of class C, H-w has a C extension to
an open set containing . (In Lemma 12.4, we explain in some detail how to construct
a similar extension.) Lemma 11.1 and Theorem 11.2 permit us to apply a theorem of
Kinderlehrer & Nirenberg (1977) (see also Friedman (1982, Thm. 1.1(i), p. 129)), to
conclude that 0 is of class C l’ for every e (0, 1).

Now observe that w solves the problem

Vw-7w=VH in

Vw=0 on

Since VH is continuous up to 0 and OC is C ’", Theorem 8.34 of Gilbarg and
Trudinger (1983, p. 211), implies that Vw is of class C’ on up to 0% Inserting
this regularity into (6.4), we conclude that DZu, and hence H-w, are of class C ’" on

up to 0% We may again appeal to Friedman (1982, Thm. 1.1) to conclude that
is of class C2’ for every

Remark 11.4. The bootstrapping in Corollary 11.3 can be continued until the
k,regularity of h is exhausted. If, in place of assumption (2.5), we assume that h Co

for some k 3 and (0, 1), then the free boundary is of class C w is of class C’
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inside up to 0% and u is of class C k+l’a inside c up to 0% This argument uses
Ladyzhenskaya and Ural’tseva (1968, Thm. 1.1, p. 107), to wit, ifVH is of class Ck-3,

up to 0 and 0q is Ck-l"", then Vw is of class Ck-’" up to

12. Construction of the optimal control process.
DEFINITION 12.1. Let x be given. A control process pair {(Nt, ’t); 0 <_- <}

as in 2 is called a solution to the Skorokhod problem for ,reflected Brownian motion in
starting at x and with reflection direction -Vu along 0c provided that:

(a) " is continuous,
(b) the process X defined by (2.1) satisfies Xt % 0-<- < c, almost surely and
(c) for all 0_<- <,

(12.1) t- IXEO,N,.=-Vu(X ds,

For every x % the Skorokhod problem of Definition 12.1 has a solution starting
at x. This follows from Lions and Sznitman (1984, Thm. 4.3), provided that the following
three conditions are satisfied:

(C1) has a C boundary and satisfies a uniform exterior sphere condition,
(C2) There exists o->0 such that Vu(x) n(x) > r for all x 0% where n(x) is

the outward normal vector for at x,
(C3) Vu on has an extension to a C function on an open set containing .

Condition (C1) is implied by Corollary 11.3. We establish (C2)and (C3).
LEPTA 12.2. Condition (C2) is satisfied.
Proof Let x 0 be given. We construct a sequence {Xk}=2 in such that Xk --> X

and (VW(Xk)/IVW(Xk)I)- n(x). With K as in Lemma 9.1, we have

2Vw(x). Vu(x)
>__

IVw(x)l -:’

and (C2) follows.
As for the construction of {Xt}k_-2, we choose r> 0 such that B(x + rn(x))

Define x +1/2rn(x), so B/(2) 4 and x OB/e(2). Given k >-- 2, we define
{xe; w(x)<l-(1/k)}. We then translate B/(2) in the -n(x) direction until
it touches O, i.e., we define

p sup {p > 0; B/2( pn(x)) f3 c},

and we choose x B/2(-pn(x))O. Then B/2(-p,n(x)) is an exterior sphere
for 0 at x, so the outward normal to at x is

Vw(x) -pn(x)-x
Vw(x) 12- pn(x) xg]"

As k- c, we have x--> x and p->0, so (Vw(x)/[Vw(x)[)- n(x). [3

LEMMA 12.3. Condition (C3) is satisfied.
Proof Given e > 0, we can find a finite set of open discs {B},=, each with radius

e, such that [_J ,= B, and we can find C functions y "2--> [0, 1] such that
suppygcB for every k and ,=y=l on % We can decompose Vu on as
Y,= yVu, so it suffices to show that each vg - yg7 u has a C2 extension from B 71
to B. For sufficiently small e > 0, in each B there is a C2 change of coordinates
which results in B ( {(x, y)[x <= 0} and B\ {(x, y)lx > 0}. Now v has a C
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extension from Bk 0 c to Bk c (proof of Corollary 11.3), and taking Dk to be zero
on {(x,y)lx<=O}\(Bkfq ), we have a C2 function on the closed left half-plane. For
x > 0, y R, define

Vk(X, y) 3 Vk(0, y) 3Vk(--X, y) + Vk( 2X, y).

It is easy to check that this extended Vk is C2 on all of R2. [q

THEOREM 12.4. Let x 2 be given. If x , then the solution to the Skorokhod
problem of Definition 12.1 is an optimal control process pair for the singular stochastic
control problem with initial condition x posed in 2. If x : , then there exists a unique
pair t, 0) [0, (x)) x S such that x b( t, 0). Define a--A d/( Tl( O), O) and let ]Q, ) be a
solution to the Skorokhod problem starting at . Then N, ) is optimal for the control
problem with initial condition x, where

A-Vu() if t=0,
(12.2) N, rt if t>0,

(12.3) .t A__. {t if t=0

+[x-[ if t>0.

In either case, we have that u(x)= V(x), where u is the solution to the HJB equation
(3.1) (see Theorem 4.6), and V is the value function for the control problem defined by
(2.0).

Proof. The theorem follows immediately from Theorem 3.1 once we observe that
in the case x g, Lemma 8.1 implies that for all s >_- TI(0),

Vu(,/,(s, o)) =Vu(,)+ Vu((-, 0)) d-
T(O)

VU(.) + D2u((’r 0))Vu((’r, 19)) d’r
T(o)

=Vu().

Thus, when x , the control process pair (N, sr) of (12.2), (12.3) causes the state to
jump from Xo x to Xo and u(x) u() Ix l. After this initial jump, the state
is kept inside c by reflection in the -Vu direction along 0c. [3

13. Appendix. Proof of Lemma 4.1. For e (0, 1), R > 0, denote by u ,R the solution
to

(13.1) u’--Au’ +(Ivu’I=) h on Be(O),

(13.2) u ’R 0 on OBR(O).

The existence of U e’R C2(BR(O)) follows from Ladyzhenskaya and Ural’tseva (1968,
Thm. 4.8.3, p. 301); uniqueness follows from the following lemma.

LEMMA 13.1. Suppose that p is a subsolution and b is a supersolution to (13.1).
Then for all x 13 (0):

(13.3) qg(x)-O(x)<= sup [(y)-(y)]+.
yEOBR(O)

Proof If - attains its maximum over BR(O at an interior point x*, then
V(x*) =V(x*) and O>--A(x*)-Ad/(x*)=(x*)-b(x*).

LEMMA 13.2. Let q > 0 be as in (2.6). There exists a constant C1 > 0, independent
of e and R, such that

(13.4) Oue’R(x)<Cl(1W]x] q) [xBR(O).
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Proof To prove the nonnegativity of ue’R, take o = 0 and /= ue’R in Lemma 13.1.
To obtain the upper bound on u ’R, take q u’R and

O(x) E e-’ h(x +x/Wt) at,

where ’x inf { _>- 0; Ix + x/ Wtl--> R}. Then A6 h on BR (0), 0 on OBR(O), and
Lemma 13.1 and (2.6) imply that

u’R(x) <--_ E e-t h(x +x/W) dt

<- E e-t h(x + x/ Wt) dt

<- 2CoE e-’(Ixl +1,/1o) dt

<-- C1(1 /lxl)

LEMMA 13.3o. There exist constants C > 0 and p > O, independent of e and R, such
that

(13.5) max IVu’R(x)I--C(I+RP) Ve(0,1), R>0.
xoBR(O)

Proof. Let N be a positive integer greater than q/2, and define g, B’[0, oe)- by

N r2k r2k
g(r) E B(r) E

=o 4k(k!)2’ k=0 4k(k!)2k

Then

r2N
g(r) _lr g’(r) g"(r) 4N N I)2’

and

(13.6) B(r) _1 B’(r) B"(r) O.

For R > 0, define

OR (X) 2 Co+ Co4u(N !)2g(ixl)

-[2Co+ Co4(N!)2g(R)] B(Ixl) VxR,
B(R)

SO

OR(x) AqR(x) Co(2 + Ixl2N) >- h(x) Vx BR(O),

OR(x) =0 Vx eOBR(O).

It follows from Lemma 13.1 that u’R-< 0R on BR(0), and because these functions
agree on BR(0) and because Vu’R on OBR(O) must point inward, where u’R is
nonnegative, we have

IVu"(x)l<-_lvO,,(x)l VxeOBR(O).
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But on 0Be(0),

B’(R)
IVOe(x)J= c4N(N!)2g’(R)-[2C+c4N(N!)2g(R)]

B(R)

Equation (13.6) and the nonnegativity of B" show that

0 B’(r) <= rB(r) Vr>0,

so we may bound the growth of maXxoBR(O) lVe(x) by a constant times (1+
R2N+I). [’]

LMMA 13.4. There exist constants C > O, p > O, , > O, independent of e and R,
such that

(13.7) [Vu’e(x)l<-,u’e(x)+C]x[P+C Vx6Be(0), e(0,1), R>0.

Proof With C-> 1 and p->_2 satisfying (13.5), and Co as in (2.7), define )t

max {2, Co}, B a___ Cp + Co, and consider the auxiliary function

q(x) Vu,(x) ,-,Xu.(x)-Clx]P-B,
where e (0, 1), R > 0 are fixed, and , is a fixed unit vector. It suffices to show that
q(x)_-<0 for all x Be(0), so let x* be a point at which q attains its maximum over
Be(0). If x* OBe(O), then (13.5) implies that q(x*) <_- 0. Thus, we need only consider
the case that x* Be(O), for which we have

0_-> A(x*) AVu"(x*) -Au"(x*)-Cplx*]-)-.
Using (13.1), we may rewrite this as

0 >- Vu’e(x*) ,+ 2’(r*)V[Vu’e(x*) v]. Vu’e(x*)
(13.8)

-Vh(x*) v- Au’R(x*) Afl (r*)+ Ah (x*)- CpZ]x*l p-z,
where r* denotes ]Vu’R(x*)[2. Because of (2.7),

IVh(x)l<- Co+ ,h(x) Vx N.

Furthermore,
p-2

Cplxl- <-_ Cp -<= Clxl + cp Vx .
Adding these two inequalities, we see that

IV h(x*)l + cplx*l---< ,h(x*)+ Clx*l + B.

Substitution into (13.8) yields

(13.9) O>=q(x*)+2’(r*)V[Vu’e(x*) ,] Vu’e(x*)-A(r*).
Because Vq(x*)=0, we also have

0= V(x*) Vu’"(x*)

(13.10) =V[Vu’R(x*) ] Vu’R(x*)--Ar*

-Cplx*lO-x* v,"(x*.
Substitution of (13.10) into (13.9) results in the inequality

(x*) N A[(r*)-2’(r*)r*]-2Cp]x*[P-2’(r*)x* Vu’R(x*).
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Let us assume that q(x*)> 0. Then

x/>_Vu’R(x*), v>=B>_2,

so r* ->_ 4 and for all e (0, 1),

r*-I
/3 (r*) 1,

1
/3’ (r*) =--.

Consequently,

A e,R 12 2Cp ,R(x,0<(x*)=<--(lVu (x*) /l/e)-lx*lP-=x*.Vu

A
12 2Cp ,_-< (Iv’"(x*) ++)+lx*l"-’lv, (x*)l,

E E

which implies that

2Cp x* p-1

IVu,(x*)l-<_-[x*l-’ < Cp <- CIx*l / B.

This inequality contradicts the assumption that q(x*)> 0.
LEMMA 13.5. For each e (0, 1), there is an increasing sequence {Rn},__l ofpositive

numbers converging to infinity and a function u C2(2) such that {u’"}n=l and
{Vu,o},=l converge uniformly to u and V u respectively, on compact sets. Furthermore,
u is a solution to (4.3) and satisfies (4.4), (4.5), with C1 and p independent of e.

Proof Let e (0, 1) be fixed and let r>0 be given. Then u’ and V u’ are
bounded on B2r(0), uniformly in R and e (Lemmas 13.2, 13.4). Elliptic regularity
implies H61der continuity of Vu’ on Br(0), uniformly in R e[2r, oe) (Gilbarg and
Trudinger, Thm. 3.9, p. 41), and by the Arzela-Ascoli Theorem, we can find a sequence
{R,} along which {ue’Rn} n=l and {7u’R }7=1 converge uniformly on Br(0). Indeed,
by diagonalization we can select {Rn} 1so that {u’&,}_ and converge
uniformly on compact sets to limits u and V u, respectively, where u C 1’’ for all
a (0, 1). Passing to the limit in (13.1), we see that Au exists in the distributional
sense and is equal to u+ e(17Uel2) --h, which is a C’" function. Elliptic regularity
implies that OZu in fact exists in the classical sense and u is C2’’. (By bootstrapping,
we could conclude that u is C4,a because h is C2’1.)

The convexity of u will be established by representing u as the value function
of a stochastic control problem with convex cost functions. With/3 defined by (4.2),
we define a convex function g .Nzo and its (convex) Legendre transform
by

(13.11) g(x)&([x[), l(y) & sup {x. y-g(x)}.
x[

For every y 2,

(13.12) l(y)>=-lyl-g -y lyl2.

Furthermore, the supremum in the definition of l is attained if x is related to y by
y 2/3’(Ix12) x, i.e.,

(13.13) l,(2’(Ix12)x)- 2’(Ixl2)lxl2--(lxl2) Vx 2.
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A control process is any two-dimensional, absolutely continuous process r/ adapted to
the Brownian motion { Wt, $;, 0 =< < 0o} and satisfying r/o 0 almost sarely. Given an
initial state x E2, the corresponding state process is

(13.14) Yt a=x+x/Wt-lt.
For each R > 0, we define the cost corresponding to up to the exit from B(0) as

V’R(X) & E ffn e-t[h()+l(t)]dt,

where re&inf{t0; ][R}, and t=(d/dt)t. The value function up to the exit
from B(0) is

v’R(x) & inf v’R(x).

It is clear that v’R(x) is nondecreasing in R, and

(13.15) lim v’(x)Nv(x)infE e-’[h(Y,)+l()]dt,

where v is the value function for a control problem on N.
LMMA 13.6. For each e (0, 1), R > 0, the solution u’ of (13.1), (13.2) agrees

with v’ on B(0).
Proof It6’s lemma implies that for a given control process , x e B(0) and 0:

R
E e-’u,n( y,)= u,n(x)+ E e- [(lVu,n( y)12

(13.16) -h(Ys)-Vu’n() )] ds

u’(x)- e-[h(Y)+l()] ds.

Letting , we see that v’(x) u’(x) for all all , so v’(x) u’(x). However,
if Y is the solution to

g= x- 2’(IVu’( g)lZ)Vu’( g) ds+,

then the corresponding control process satisfies

"=2’ ’ ’(
and equality holds in (13.16) because of (13.13), i.e.,

e,Rv, (x) u (x) < (x),

and thus u ,R (x) v’R (x).
LEMMA 13.7. For each e (0, 1), the function u constructed in Lemma 13.5 agrees

with the value function v defined in (13.15).
Proo We have immediately from (13.15) and Lemma 13.6 that u v. For the

reverse inequality, let x e be given and define Y (up to the time of a possible
explosion) by

g=x- ’(lu(g(g+.
Imitating (13.16), we have from Itg’s lemma and (13.13) that for every R>0,
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(13.17) u’(x) E Io’’’’ e-[h( YT) + l(7)] ds + E e-t^,u

where

r/, =2fl’(]Vu (Y)]z)7u (Y,), ,=inf{tO;]Y[R}.

Deleting the (nonnegative) second term on the right-hand side of (13.17) nd letting
R , , we obtain

(13.18) u(x)e e-[h(Y)+l()] ds,

where lim r is finite if and only if Y explodes in finite time.
To see that almost surely, observe that for all 0, R > 0,

o

Gronwall’s inequality implies

where we have used (13.12). Letting R c and taking expectations, we conclude that

]2
4e Io^% 4e2‘

sup In <-Ex (7) ds<--u(x) <,
O<=s<t^-oo

But

sup IYTl=<x+ sup InTl+ max IWl
0--<s< ’co 0<s< "ro 0--<s--

and supo__<<t^.lYTl< on {,-<_t}. It follows that P*{z_<-t}=0 for all t>=0.
Inequality (13.18) can now be restated as

u(x)>=E e-S[h(Y)+l(l)] ds>=v(x).

COROLLARY 13.8. For each e (0, 1), the function u constructed in Lemma 13.5
is convex.

COROLLARY 13.9. For each e (0, 1], limlxl_o u (x) o.
Proof. In light of (2.8), (2.9), (13.12), and (13.15), we have

u (x) _-> inf E e- CO e- Ytl=/ Itl - dt.

But the right-hand side is the value associated with a linear-quadratic-Gaussian prob-
lem, which is easily computed to be 1/2a]x]2+2a, where a is the positive root of the
quadratic equation (2/e)a2+ a Co=0.

LEMMA 13.10. There is a constant C2, independent of e, .such that for every
e (0, 1), the function u constructed in Lemma 13.5 satisfies (4.6).

Proof Let v be a unit vector and define u a__ (D2u)v. v. It suffices to produce a
constant C2, independent of e and v, such that

U, C2(1 + U).
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We begin by differentiating (4.3) to obtain- Vuh,=u Au+2fl.(I ]2)(Vu, Vu +[(DRu
(13.19) +4"(]Vu12)(J2uVu" /d)2

>_ uG-auG+z’(lVul=)Vu; Vu.
Let x be a minimizing point for u , choose p > 0 satisfying (4.4), (4.5), choose Co> 0
to satisfy (2.8), let 6 > 0 be given, and define the auxiliary function

6(X) U;v(X Coue (x) ]x Xe[ p+2.

This function attains its maximum at some point y, where we have

(13.20) O=V(y)=Vu;(y)-CoVu(y)-(p+Z)]y-xJP(y-x),

(13.21) O&(y)=&u;(y)-Co&u(y)-6(p+2)[y-xv.
Substituting (4.3) into (13.21) and using (13.19), we obtain

O uL(y)+ 2’(IVu(y)lZ)Vu;(y) 7u(y)
-h(y Cou y Co(IV u (y)l 2)
+Coh( y) 3(p + 2)2[ y 6 xe[p

-=(y)+2’(IVu(y)j2)Vu;(y) Vu(y)
(13.22) -h(y Co(IV u (y)l2) + Coh( y)

-(p+2)a[y-xlp+y-x[p+2

(y)+2’(lVu(y)la)vu(y) 7u(y)

G(1 + h(y)) Gfl(lVu (ya)[2)+ Gh(y)
-26p(/(p + 2)(p+2/z

because of (2.8) and the fact that

-6(p + 2)2r p + 6rP+2 2p(p/2)(p + 2) (P+2)/2

But (13.20) implies that

Vr=>O.

Vu,,(y) Vu(y ColVu(y)12 + rS(p+ 2)]y -xl"(y x) Vu(y)
(13.23) >_ ColVu(y)]2
because u is convex and attains its minimum at x. Substitution of (13.23) into (13.22)
yields

0 (y) + 2CoB’(IV u (y)12)lV u (y)lz- CoB (IV u (y)l2)
(13.24)

Co- 26pP/Z)(p + 2)P+/.
The convexity of B implies that

fl’(r)r fl(r)-(O)= fl(r) VrO,

so (13.24) reduces to

(x)(y)Co+23p’/2(p+2)p+2/2 Vxe2.

Letting 3 $ O, we obtain

u:v(x)Co(l+ue(x)) VXe2,
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A TRIBUTE TO E. J. McSHANE

This special issue of the SIAM Journal on Control and Optimization is dedicated
to E. J. McShane on the occasion of his 85th birthday. During his long career, he has
had a leading role in the development of several mathematical areas that bear sig-
nificantly on present-day control theory. In addition, he served in several capacities
as a national leader in mathematical and science policy matters. Those of us who have
had the privilege to know Jim McShane have the highest regard for him as a
mathematician, a scientific statesman, and a person.

McShane was born in New Orleans on May 10, 1904, and grew up there. His
father was a medical doctor and his mother a former school teacher. He graduated
from Tulane University in 1925, receiving simultaneously Bachelor of Engineering and
Bachelor of Science degrees. He turned down an offer from General Electric and
instead continued as a student instructor of mathematics at Tulane, receiving a Master’s
degree in 1927.

In the summer of 1927, McShane entered graduate school at the University of
Chicago, from which he received the Ph.D. in 1930 under the supervision of G. A.
Bliss. He interrupted his studies during 1928-29 for financial reasons to teach at the
University of Wichita. It was at Chicago that McShane’s long-standing interest in the
calculus of variations began. From 1930 to 1932 he held a National Research Council
fellowship, spent at Princeton, Ohio State, Harvard, and Chicago. This was a very
productive period. It resulted in thirteen research papers, containing a wealth of new
ideas. Another fortunate event was his marriage to Virginia Haun in 1931.

Because of the Great Depression, openings in mathematics departments were
virtually nonexistent in 1932. The McShanes spent 1932-33 at Gottingen, during which
time he translated into English the two volumes of Courant’s Differential and Integral
Calculus. They also saw firsthand some frightening aspects of the onset of Nazi power
in Germany.

After two years (1933-35) on the Princeton faculty, McShane joined the Depart-
ment of Mathematics at the University of Virginia as a full professor in the fall of
1935. He has remained there ever since. In 1939 and 1940, McShane’s important papers
on general necessary conditions in the form of multiplier rules and on a strong existence
theorem for the Bolza problem of calculus of variations appeared. With the onset of
World War II, McShane agreed to head a mathematics group at the Ballistics Research
Laboratory in Aberdeen, Maryland. During this time he wrote a book with J. L. Kelley
and F. V. Reno entitled Exterior Ballistics, which is regarded as the definitive work on
the subject.

After the war, McShane developed a serious interest in the mathematical founda-
tions of quantum mechanics and quantum field theory. While this ambitious program
did not reach fruition, the attempt profoundly influenced his subsequent work on
integration processes and stochastic calculus. This is seen, for example, in his excellent
Bulletin of the American Mathematical Society survey article "Integrals Designed for
Special Purposes" (1963) and his book Stochastic Calculus and Stochastic Models
(1974), which is the definitive treatment of his approach to that subject.

McShane served as President of the Mathematical Association of America during
1953-54. He took an active interest in efforts just then getting underway to revitalize
undergraduate mathematics in the U.S. During McShane’s term as President, the MAA

After this issue was compiled, we were saddened to learn of the death of E. J. McShane on June 1,
1989, at the age of 85.
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Committee on the Undergraduate Program in Mathematics was established. Since that
time the Committee has been a leader in these endeavors. He was elected to the
National Academy of Science in 1948 and served on the National Science Board from
1956 to 1968. During 1958 and 1959, he was also President of the American Mathemati-
cal Society.

McShane has had a lifelong interest in music. His early interest in opera led him
to learn to read Italian libretti. This knowledge, in turn, led G. A. Bliss to suggest to
McShane that he read the then new book Fondamenti di Calcolo delle Variazione by
Leonida Tonelli, which started McShane on his study of multiple integral problems
in the calculus of variations. Later, in the 1950s, McShane learned to play the cello,
and he has been an amateur chamber music performer ever since.

The injustices suffered by some of his colleagues during the post World War II
anticommunist hysteria deeply offended McShane. He himself, in response to the
question on the Aberdeen Proving Grounds security form that asked whether he had
ever been involved with organizations that at any time advocated the overthrow of the
U.S. government by force and violence, replied that, yes, he was an employee of the
state of Virginia. During the McCarthy era, the House Un-American Activities Commit-
tee (HUAC) "invited" him to express his views, but he was not subpoened. He did
not cooperate with HUAC, but wrote a letter in which he stated his views and backed
them up with quotations from various sources.

Victor Klee, recalling his experience as a graduate student at Virginia from 1945
to 1949, writes: ’... He [McShane] was very popular with the graduate students because
of his clear lectures, his amusing anecdotes, and unusual kindness." Klee goes on to
tell how McShane turned his office over to the graduate students, who had no offices
of their own, and says, "... His generosity contributed a lot to the quality of the
graduate program by providing a place for the graduate students to meet with each
other and talk about mathematics It is simply impossible, in a few words, to convey
the extent of the graciousness, kindness, and hospitality that have been [and are]
exhibited by Virginia and Jimmy McShane in their relations with those lucky enough
to know them. These go far beyond professional matters."

The portion of McShane’s work that is significant for present-day control theory
falls into four broad categories" (a) Multiple integral problems in the calculus of
variations; (b) Relaxed controls, necessary conditions and existence theorems for single
integral problems and control problems; (c) Integration theory; (d) Stochastic calculus.

(a) The late 1920s and 1930s saw many changes in the calculus of variations.
L. Tonelli’s book had introduced the "direct method," which was advantageous for
proving semicontinuity and the existence of absolute minima. The solution to Plateau’s
problem by J. Douglas and T. Rado stimulated the rapid development of the calculus
of variations for multiple integral problems and the theory of Lebesgue area of surfaces.
(The Plateau problem is to find a surface of minimum area with given boundary.)
McShane was at the forefront of these developments. While still a graduate student,
McShane obtained the necessary condition of Weierstrass for quasiconvex variational
problems with an arbitrary number of functions of several variables. Soon afterward
he turned to questions of semicontinuity and existence of a minimum for multiple
integral geometric calculus of variations, of which the Plateau problem was a prototype.
Hidden in these problems were notorious analytical and topological difficulties, which
were later overcome by other mathematicians (including Cesari, Federer, and Rado)
as part of Lebesgue surface area theory. McShane provided an elegant solution for
geometric variational integrands which do not vary spatially. The key idea was
that it suffices to find the minimum in the smaller class of "saddle surfaces,"
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which are representable parametrically by a vector function monotone in Lebesgue’s
sense.

(b) In 1939 McShane published a paper in the American Journal entitled "On
Multipliers for Lagrange Theory," which has had a profound, but not generally
recognized, influence on optimal control theory and nonlinear programming. In this
paper, McShane showed that the Weierstrass condition holds along a curve, without
making any assumptions about the normality of the curve. Although this result was
important in and of itself, the method of proof turned out to be a major contribution
to the theory of necessary conditions in optimization problems. The key and novel
elements of the proof were, first, the construction of a convex cone generated by
first-order approximations to the end points of perturbations of the optimal trajectory
and, second, showing that optimality implies that this cone and a certain half-ray can
be separated by a hyperplane. Twenty years later, this idea was used by Pontryagin
and his coworkers in their proof ofthe necessary condition now known as the Pontryagin
maximum principle. In his 1959 Uspekhi paper, Pontryagin states that the proof will
utilize certain constructions due to McShane. No such acknowledgment exists in the
classic book by Pontryagin, Boltyanskii, Gamkrelidze, and Mischchenko entitled The
Mathematical Theory of Optimal Processes, which collected their previous work. This
book appears to have popularized the convex cone and separation constructions, which
were subsequently used by most authors in deriving necessary conditions, not only for
control problems, but also for nonlinear programming problems and abstract optimiz-
ation problems.

Another body of work, which was definitive, in a sense, for problems in the
calculus of variations in one independent variable, was the series of three papers that
appeared in 1940 in volumes six and seven of the Duke Journal In the first of these
papers, McShane showed that if the problem of Bolza is phrased in terms of generalized
curves (which were introduced in 1937 for simple problems in the plane by L. C.
Young) then the problem of Bolza has a solution. In the second paper, he derived the
generalizations of the standard necessary conditions that must hold along a minimizing
generalized curve. In the last paper, he gave conditions under which the minimizing
generalized curve is an ordinary curve. Definitive as this work was, it did not seem to
attract attention outside the circle of cognoscenti in the calculus of variations until
twenty years later, in the 1960s, when generalized curves were rediscovered by control
theorists as relaxed controls, or sliding states. In 1967, McShane, in a SlAM Journal
on Control paper, adapted his 1940 work to the control theory setting ISLAMJ. ControL,
5 (1967), pp. 438-485]. This paper is more elementary and self-contained than most
treatments of relaxed controls and reflects McShane’s dedication to teaching as well
as research.

McShane’s proof, with R. B. Warfield, of a general version of Filippov’s implicit
function theorem (Proceedings of the American Mathematical Society, 1967; corrigenda
and addenda, 1969) was an important contribution to control theory. This lemma gives
conditions that guarantee the existence of a measurable solution to an equation
whenever a pointwise solution exists and is one of the basic tools in optimal control
theory.

Another example of McShane’s interest in instruction is his 1973 paper in the
American Mathematical Monthly entitled "The Lagrange Multiplier Rule." Here he
gives a penalty function proof of the Fritz-John and Kuhn-Tucker necessary conditions
for nonlinear programming problems that is short and accessible to anyone who knows
the Bolzano-Weierstrass Theorem. Later, other authors applied the arguments used
here to obtain necessary conditions for a variety of control and optimization problems.
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(c) Over the years McShane has achieved an extraordinarily deep understanding
of integration processes as they arise in various guises. He wrote three books on
integration, in addition to a number of research articles and the 1963 Bulletin of the
American Mathematical Society survey already mentioned. His 1944 volume Integration
gave a readable introduction to the Lebesgue theory at a time when few such books
existed in English. The 1953 monograph, Order Preserving Maps and Integration
Processes, was an outgrowth of his search for a mathematically correct setting in which
to treat divergent integrals in quantum physics. In 1957, J. Kurzweil defined a
modification of the Riemann integral, which turned out to be more general than the
Lebesgue integral. McShane’s 1983 volume Unified Integration develops in a similar
vein a complete theory of integrals, together with a wealth of applications to physics,
differential equations, and probability. An appealing feature of this approach, from a
pedagogical standpoint, is that point set topology and measurability issues can be
deferred.

(d) During the 1960s and 1970s McShane’s interests turned toward developing a
stochastic differential and integral calculus. The K. Itt5 stochastic calculus was by then
already in existence. It provided a convenient way to represent an important class of
stochastic processes, called Markov diffusions, as the solutions to stochastic differential
equations. The random inputs to an It6-sense stochastic differential equation are
Brownian motion processes, whose formal time derivatives are "white noises." At that
time, however, there was considerable confusion in the engineering literature about
the correct interpretation if an idealized white noise is replaced either by a physical
"wide band" noise or by.some discrete process introduced for numerical approximation
to the solution of the stochastic differential equation. This issue was clarified by the
work of McShane, Stratonovich, and Wong-Zakai.

McShane’s solution was to introduce a stochastic calculus, in which stochastic
differential equations take the form (for scalar-valued processes xt, z,)

dx, =f(x,) dt + g(x,) dz, + h(x,)(dz,)2,
where z, is a stochastic process representing the random inputs. If z, has Lipschitz
sample paths, then one should take (dz,)2= 0; while (dz,)= dt for a standard Brownian
motion z,. Let h =1/2gg’. Then McShane’s stochastic integral has the following con-
sistency property. Let zn be a sequence of processes with Lipschitz sample paths,
such that z") tends (in a suitable sense) to a Brownian motion z on a time interval
0-<_ t-< T. Then the solution x") to the z")-driven stochastic differential equation tends
to the corresponding solution x, of the solution to the z,-driven stochastic differential
equation. The function h is called the Wong-Zakai correction. McShane’s Stochastic
Calculus and Stochastic Models (1974) gives a definitive account of this work. Even
today the consistency question is often not addressed in the applied literature in such
areas as chemical physics, financial economics, and biology. Consistency becomes a
more delicate matter when T is large (or infinite) as happens in questions of large
deviations or ergodicity. It is perhaps ironic that it has been left to probabilists to sort
out these practical consistency questions.

For these many contributions and services to mathematics in general and to
control theory in particular, we thank and honor Jim McShane, a true scholar and
gentleman.

L. D. Berkovitz
Purdue University

Wendell H. Fleming
Brown University
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THE CALCULUS OF VARIATIONS FROM THE BEGINNING THROUGH
OPTIMAL CONTROL THEORY*

E. J. McSHANE

Before I begin this talk, I would like to sketch briefly what I plan to do. I hope
to speak ofsome ofthe important stages ofthe development ofthe calculus ofvariations,
with a disproportionately large part of the hour allotted to recent developments. But
I have no intention of listing important discoveries with their dates. Rather, I shall try
to say something of the underlying patterns of thought at each stage and to comment
on the change in that pattern produced by each of the new ideas. It may seem that I
am deriding our predecessors for not having seen at once all that we have learned.
I have no such intention. We must all do our thinking on the foundation of what we
already know. It is hard to assimilate a genuinely new idea, and even harder to realize
that ideas we have earlier acquired have become obsolete.

Preparing this talk has forced me to formulate with at least some pretension to
clarity what is meant by the calculus of variations. There is no universal agreement
on the definition of the subject, and I have gradually come to the conclusion that part
of the reason is that there are at least two related but ditterent sets of ideas that are
often brought together under the same name. The first set might be called the theory
of extrema. A functional is defined on some class of functions; the problem is to find
a function in the given class that minimizes or maximizes the functional on that class.
If this theory of extrema is included in the calculus of variations, Caratheodory may
be justified in asserting that the first problem in the calculus of variations was that of
finding a curve of given length that joins the ends of a line segment, and together with
that segment encloses the greatest possible area. This was solved, according to
Caratheodory, by Pappus, in about A.D. 290.

The second set of ideas is concerned with functionals on linear topological spaces,
usually function spaces, and constitutes a part of a ditterential calculus on such spaces.
The central problem in this part of the theory is that of finding stationary points of
functionals; that is, points at which the directional derivatives in all directions exist
and are all zero. Since such points are characterized by means of investigating
the ettect on the functional produced by small variations of the function which is the
independent variable, this study of stationary points can reasonably be called the
calculus of variations.

The two sets of ideas both have important applications, but to ditterent problems.
At one extreme we have those problems such as the isoperimetric problem of Pappus
just mentioned and, more recently, problems in which a function is to be found that
produces a best possible result in some sense, such as propelling an airplane between
given points with least expenditure of fuel. At the other extreme we have situations
in which the presence or absence of a maximum or minimum is irrelevant; only the
consequences of stationarity matter. These consequences often include the satisfaction
of a set of ditterential equations. According to what is misnamed "the principle of
least action," the motion of a set of particles follows a time-development for which a
certain integral, called the "action," is stationary. The function for which the action

Reprinted with permission (with minor editorial changes) from Optimal Control and Differential
Equations, A. B. Schwarzkopf, Walter G. Kellet, and Stanley B. Eliason, eds., Academic Press, New York,
1978, pp. 3-51. Copyright 1978 by Academic Press, Inc.

Professor E. J. McShane passed away on June 1, 1989. At the time of his death, he was affiliated with

the Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903.

916



THE CALCULUS OF VARIATIONS 917

is stationary is the one for which the classical equations of motion are satisfied, and
the satisfaction of those equations is all that we want.

In between these two extremes we have the problems of relative extrema. Let us
say that a function y is in the weak e-neighborhood of another function Yo if there is
a homeomorphism between their graphs such that at corresponding points, the values
of y and Yo differ by less than e, and so do the values of their derivatives. The function
y is in the strong e-neighborhood of Yo if this holds with the reference to the derivatives
deleted. A functional has a weak (strong) relative minimum at Yo if for some positive
e, the functional has at Yo its least value on the set of all those y in the domain of the
functional that are in the weak (strong) e-neighborhood of Yo. These concepts have
some applications, related to stable and unstable equilibrium; but I have a strong
suspicion that relative maxima and minima were usually studied, not because they
were really wanted, but because available theory did not permit the study of absolute
maxima and minima.

For lack oftime I shall say little about the second set of ideas, based on stationarity.
This means that I shall disregard some important pure mathematics and some important
applications. I have mentioned that the principle of least action is of this type. So too
is Hamilton’s study of optics and its extension into calculus of variations by Jacobi.
So is all the mathematics of quantum theory that is based on a Hamiltonian. So, too,
is Marston Morse’s theory of the calculus of variations in the large. I shall choose for
my principal subject the development of the first set of ideas that I have called the
theory of extrema.

In the eighteenth century the distinction between the two sets of ideas was hardly
noticed. If it could be shown that any curve that minimized some functional had to
satisfy a certain condition, and a curve could be found that did satisfy that condition,
it was accepted without comment that that curve did furnish the minimum. Nor has
such a feeling quite disappeared. On page 16 of the book by Gelfand and Fomin [1]
(English translation) we read: "In fact, the existence of an extremum is often clear
from the physical or geometric meaning of the problem, e.g., in the brachistochrone
problem, the problem concerning the shortest distance between two points, etc. If in
such a case there exists only one extremal satisfying the boundary conditions of the
problem, this extremal must perforce be the curve for which the extremum is achieved."
I disagree with this on three counts. First, if the calculus of variations is mathematics,
our conclusions must be deducible logically from the hypotheses, with no use of
anything that is "clear from the physical meaning"meven if anything is ever that clear
in physics. Second, if the mathematical expression is meant to be a model of a physical
situation, we are not entitled to unshakable confidence that the model we have chosen
is perfect in all details; rather, we should keep in mind that a mathematical model of
a physical system is necessarily a simplification and idealization. Third, the principle
as stated is untrustworthy. For example, if A and B are two points in the upper
half-plane, there always exists a curve joining them such that the surface of revolution
obtained by rotating it about the x-axis has least area. If A and B are properly located,
there is just one extremal that joins them, and it does not furnish the least area. (See
G. A. Bliss [2, p. 116].)

In the early eighteenth century the necessary conditions for a minimum in various
specific problems were found by ingenious devices, usually involving replacing a short
arc of the curve by another short arc with the same ends. In 1760, Lagrange unified
these special solutions by means of the idea of a variation. Suppose that a function
x - yo(x) (Xo <- x <= x) minimizes a functional J(y(. )) in a certain class K of functions.
Suppose further that we can find a family of functions y( b < < b) such that for
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each a in (-b, b), the function x y(x)(xo, < x < xl.) is in the given class K. Then
the derivative at c 0 of the function J(y (.)), if it exists, must be zero. The function

x rl(x)=Oy(x)/Oa (a =0)

is often called a variation of Yo; Lagrange used the term "variation" and the symbol
6y for the product of this by da. The variation of the functional, which is the derivative
of J(y(.)) at a 0, is the directional derivative of J in the direction r/. In many
interesting cases its vanishing is equivalent to the satisfaction of a certain differential
equation; this is the Euler-Lagrange equation.

For the purposes of mechanics, the goal had now been reached. The Euler-
Lagrange equation permitted the introduction of general coordinate systems, and the
concept of stationary curve unified the whole theory of classical mechanics, as Lagrange
showed in his masterful work. But it was a mental confusion, consistent with the
somewhat uncritical ideas of the period, to think that any stationary curve would
certainly furnish a maximum or a minimum, as wished. In his Principia (1687), Isaac
Newton had discussed the problem of finding a surface of revolution with assigned
base and altitude that minimized a functional that Newton thought represented the
drag when the body is moved through a fluid. Legendre published his necessary
condition for a minimum in 1786, a century later; but in 1788, he published another
paper, entitled "M6moire sur la manire de distinguer les maxima des minima dans
le calcul de variations," in which he pointed out that a curve could satisfy the
Euler-Lagrange equation for the integral expressing the Newtonian resistance and still
not give the surface of least resistance. The most interesting feature of his proof is that
he showed that the Weierstrass condition for a minimum was not satisfied--and
Weierstrass was not born until twenty-seven years later. This work must not have had
the immediate effect that it deserved. Mathematicians continued to act as though the
only feature of importance was the satisfaction of the condition for stationarity. More
than two decades later Robert Woodhouse, F.R.S., a Fellow of Caius College, Cam-
bridge, published a book entitled Treatise on Isoperimetrical Problems and the Calculus
of Variations (1810), in which Legendre is not mentioned. In this book, Woodhouse
poses the problem of maximizing the integral

[dy/dx2] dx,

the class of curves not being clearly specified. By use of variations, he came to the
conclusion that the maximum is provided by the line segment joining the endpoints.
Had he used Legendre’s results, he would have recognized the falsity of his conclusion.
But even without having read Legendre, he should have noticed that unless the
endpoints coincide, no maximum can exist, and the line segment gives to the integral
the value zero, an obvious minimum.

The guiding principle during the eighteenth century and more than half the
nineteenth seemed to be that if a minimizing function is sought for some functional,
then by inventing more and more necessary conditions for a minimum, we can feel
steadily more confident that a function that passes all the tests is in fact the minimizing
function sought. The first necessary condition was stationarity, established when the
curve being tested can be varied in arbitrary directions. The next in order of time was
the Legendre condition, still in the domain of Lagrange-type variations, and in fact
needing only variations that leave the function unchanged outside a small interval.
Next came the condition of Jacobi. Like that of Legendre, it expressed the fact that
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for a minimum, all directional second derivatives (second variations) must be nonnega-
tive; but unlike Legendre’s, it required the variation of the function along long intervals.
Next came the necessary condition of Weierstrass. Unlike the others, it cannot be
established by means of Lagrange-type variations or directional derivatives. The func-
tion being tested is compared with other functions near it in position but widely
different in derivative. That is to say, the Weierstrass condition is necessary for a strong
relative minimum, not for a weak one.

But Weierstrass made a more significant contribution than the discovery of a new
necessary condition. For unconditioned problems, in which the minimum of an integral

y(x), y’(x)) dx

is sought in the class of all sufficiently well-behaved functions with assigned end-values,
he was able to prove that when a function y(.) satisfies conditions that are slight
strengthenings of the four known necessary conditions, it will provide a strong relative
minimum for the integral. Now, at last, instead of feeling confident without conclusive
proof that a curve gave a minimum to the integral, we could feel certain that it gave
a kind of minimum--not indeed the absolute minimum that we were seeking, but at
least a strong relative minimum.

This was truly a great step forward in the theory of the calculus of variations. (It
might help to promote humility among us workers in that field if we notice that in his
biography of Weierstrass in Men ofMathematics, E. T. Bell [3] does not even mention
that Weierstrass wrote on the calculus of variations.) But it had a psychological
drawback. Like the ideas introduced by Lagrange a century earlier, the means used
by Weierstrass were so highly esteemed that they became ends in themselves. No matter
what the calculus of variations was formally stated to be, in the hands of many of its
workers it became a procedure of proving in each new type of problem some analogues
of the necessary conditions of Euler and Lagrange, of Legendre, of Jacobi, and of
Weierstrass, and then of proving a sufficiency theorem of some sort. This is not
astonishing. When I studied calculus, a mere fifty-five years ago, the theory of maxima
and minima consisted of finding points at which the derivative of a function is zero
and then looking at the value of the second derivative. I learned a needed lesson years
later, when for quite practical reasons I needed to find the absolute minimum of a
function, and discovered that setting the derivative equal to zero located the maximum;
the minimum that I needed was at an endpoint, where the derivative was not zero.

Beginners in calculus today are taught a better method of finding minima of
functions f on a closed interval [a, hi. First it is shown (or at least asserted in an
authoritative tone of voice) that a minimum exists. Next, conditions are found that
must be satisfied at the point Xo at which f is minimum; either Xo is a or b, or the
derivative exists at Xo and is zero, or the derivative does not exist at Xo. In many
problems, these necessary conditions rule out all but a few values of x. One of these
gives f its least value; which one can be determined by calculating f at these points.
A similar method could be used to find the absolute minimum of a functional provided
that first an existence theorem is proved, and then necessary conditions are found that
have to be satisfied at the minimizing function. If these necessary conditions rule out
all but a few functions, calculating the corresponding values of the functional will
permit us to find which one furnishes the absolute minimum.

Early in this century David Hilbert proved an existence theorem for certain
unconditioned problems. Later, Leonida Tonelli showed that if an integrand f(x, y, y’)
is convex as a function of y’, its integral is lower semicontinuous; if a sequence of
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functions Yl, Y2, "tends in the strong topology to a limit function Yo, the limit inferior
of the integral along yn is at least equal to the integral along yo. This, with some other
very reasonable hypotheses, gave excellent existence theorems for unconditioned
problems. But when applied to conditioned problems, such as isoperimetric problems
and Bolza problems, it produced no results of interest. These conditioned problems
are neither new nor artificial. As to newness, Forsythe asserts that the word
"isoperimetric" was first used in the early fifth century by Bishop Synesius. As to
artificiality, the engineering problems that led the Russian mathematicians to devise
the modern form of control theory are almost invariably conditioned problems. Condi-
tioned problems were unmanageable until L. C. Young invented what he called
generalized curves.

For those of us who have not encountered generalized curves, a bit of explanation
might be helpful. Suppose that we wish to minimize the integral

Io’(1) [y2 + (y,2_ 1)2] dx

in the class of absolutely continuous functions y(. on [0, 1]. If we divide [0, 1] into
2n intervals of equal length and define y, to be the function with y,(0)= 0 and y’= 1
and y’=-1 on alternate subintervals, the graph of y, is a sawtooth polygon, and the
integral has value 1/12n2. So the lower bound of the integral is zero. But y, tends
uniformly to the zero function, for which the integral (1) has value 1. We need a
different approach. Let us plot each value of y’, on a u-axis. If we select a subinterval
of [0, 1] and choose an x at random in it, there is a certain probability that y’,(x) 1,
and this probability tends to 1/2 as n increases; and likewise, the probability that
y’,,(x) =-1 tends to 1/2 as n increases. So we construct a new kind of object. Instead of
having a number y’(x) associated with each x in [0, 1], it has a probability distribution
P that assigns probability to each of the numbers 1, -1 and the probability zero to
the rest of the real number system. This is what we would have in the unrealizable
situation that on every subinterval of [0, 1], y’(x) were +1 half the time and -1 half
the time. This distribution takes the place of the single number y’(x), which can be
thought of as a distribution in which probability 1 is assigned to the number y’(x) and
zero to the rest of the real numbers. Thus instead of having yo(xl) equal to the integral
of y’o(X) from zero to x(0 -< x =< 1), we have

yo(X1) uPx(du) dx=0;
R

and likewise, the replacement for the integral (1) is

[),g+(- )]P(u) x,
R

which has the value zero. Young’s generalized curves are objects of this new kind.
A generalized curve can be thought of as a pair ((y(x), P):aNxNb) in which the y
is a function on [a, b], and for each x in [a, b], P is a probability distribution on R,
and

y(x,) uPx(du) dx, (a x, b).
R

(This is close to Young’s original formulation; in his book Calculus of Variations and
Optimal Control eory [4], he pre%rs to regard a generalized curve as a functional
on a class of integrands, somewhat like Schwartz distributions.) This can be generalized
at once to higher dimensions.
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The space of generalized curves can be topologized by defining the statement that
a sequence of generalized curves ((yn (X), Pn.x): an -<-- x =< bn tends to a generalized curve
((yo(x), Po,x): a0 --< x _-< b0) if and only if

lim oh(x, yn(X), U)Pn,(du) dx oh(x, yo(x), U)Po,x(du) dx
R R

for every continuous function & that vanishes outside a bounded set. The extension
to higher dimensions is obvious. The remarkable fact is that with this topology, the
space of generalized curves has suiently strong compactness properties so that for
a large class of problems, not merely unconditioned problems, a minimizing generalized
curve can be found for the integral under consideration. Young applied this in 1937
to unconditioned problems. In 1940, I published a sequence of three papers in vhich,
for problems of Bolza in parametric form, it was shown first, that under weak hypotheses
a minimizing generalized curve exists; second, that it satisfies necessary conditions
that are generalizations of the Euler-Lagrange, Legendre and Weerstrass conditions;
and third, that under some extra hypotheses, the minimizing generalized curve has
each probability measure Px concentrated at a single point, so that it is in fact an
ordinary curve in another notation 5]-7.

This set of papers burst on the mathematical world with all the Oclat of a butterfly’s
hiccough. The reaction of mathematicians vas like that of the little boy who wrote his
grandmother: "Thank you for the book about penguins. It taught me more than I
wanted to know about penguins." Because it provided a means of findin extrema
analogous to today’s method of treating minima in calculus, it extended to
mathematicians the privilege of forgetting about semicontinuity and about sufiency
theorems. But it was superfluous. Without it, almost all of them had already forgotten
about semicontinuity and about suciency theorems, And they were justified. The
problem of Bolza was the most general of the single-integral problems of the calculus
of variations. Its mastery gave us the power to answer many deep and complicated
questions that no one was asking. The whole subject vas introverted. We who vere
working in it were striving to advance the theory of the calculus of variations as an
end in itself, without attention to its relation with other fields of activity.

In contrast, the theory of optimal control attracted great attention as soon as
Pontryagin and his followers published it in the late 1950s; and I think that that is as
it should be. In my mind, the greatest difference between the Russian approach and
ours was in mental attitude. Pontryagin and his students encountered some problems
in engineering and in economics that urgently asked for answers. They answered the
questions, and in the process they incidentally introduced new and important ideas
into the calculus of variations. I think it is excusable that none of us in this room
found answers in the 1930s for questions that were not asked until the 1950s. But I
for one regret that when the questions arose, I did not notice them. Like most
mathematicians in the United States, I was not paying attention to the problems of
engineers.

In order to discuss this new aspect of the calculus of variations, it is convenient
to introduce a different method of formulating extremum problems that includes all
the older formulations and also the new problems that arose in the 1950s. A curve- y(t) can be regarded as the path of a moving point, and the motion can be controlled
by choosing a value of ))(t) for each t. But with conditioned problems, we may not
be able to choose 3) arbitrarily. For example, the n components of the vector )(t) may
have to satisfy some differential equations, fewer than n of them. Also, we may not
wish to choose )(t) directly, but to fix it by choosing some parameters u that determine
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defined for all (t, y) in (n + 1)-space R "+1 and all u in a set l)(t, y). We control the
curve by choosing a function u(t). If there is an n-vector-valued function y(t)
(a<=t<-_b) such that for all in [a,b], u( t) l)( t, y( t)) and

(2) y’(t)= yi(a)+ fi(z, y(-), u(-)) d-, (i= 1,..., n),

the function u is an admissible control function and y(. is the response, or trajectory,
corresponding to it. The problem is to find an admissible control u(.) such that the
integral

(3) f(t, y(t), u(t)) dt

attains its least value among all admissible controls for which the responses satisfy
certain end-conditions.

This formulation not only includes all previous ones; it is easier to work with.
Magnus Hestenes stated it in 1950; but his results were published in a RAND report
with little circulation and at a time when the calculus of variations was at ebb-tide,
and they did not attract the attention they deserved. Even earlier, in a paper published
in the Transactions of the American Mathematical Society in 1933, L. M. Graves had
transformed the problem of Lagrange into the control formulation and had established
analogues of the Lagrange multiplier rule (the Euler-Lagrange equation) and the
Weierstrass condition. These together are equivalent to the "Pontryagin maximum
principle," but only when the set (t, y) is all of a Euclidean space and the minimizing
curve satisfies an annoying condition called "normality." Apparently Pontryagin and
his associates did not notice that Graves and Hestenes had both made use of the
notation, and they invented it independently. But they introduced one important new
feature. They allowed the sets l(t, y) to be closed sets, not demanding that they be
open as previous researchers had. To me, as a participant in the older research, it is
of interest to distinguish what it was that they adapted from work of their predecessors
and what they introduced that was quite new. But I lack the time, and I suspect that
most of us lack the interest, for such historical research. However, I do wish to point
out that in their book, published in English translation in 1962, Pontryagin and his
co-authors made a great step forward in one respect, but a step backward in another.
They stated a "maximum principle" that is a generalization of the necessary conditions
of Euler and Lagrange, of Legendre and of Weierstrass; but like the mathematicians
of the eighteenth century, they gave no sufficient conditions for a minimum, and they
stated an existence theorem only for a quite special and simple case. Except for this
last theorem, their theory is what L. C. Young calls the "naive" theory.

Other authors proved existence theorems, but usually under the restrictive condi-
tion that the image in R "+1 of (t, y) under the mapping

u (fo(t, y, u),... ,f"(t, y, u))

is a convex set. Far better results can be obtained by generalizing the problem to allow
"relaxed" controls, an obvious extension of the idea of generalized curves. For each
t, instead of choosing a point u(t) in l)(t, y(t)), we choose a probability measure Pt
on (t, y(t)). Then equations (2) are replaced by

(4) yi(t) y(a)+ f(’, y(-), u)P.(du) d"
(-,y(’))
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and the integral to be minimized is

(5) f(r, y(r), u)P(du) dr.
(’r,y(’))

Since we shall mention these often, it is expedient to introduce some notation
and terminology. We shall sometimes write P. for the distribution-valued function- Pt. An admissible pair is a pair

C (y(.), P.) ((y(t), Pt): a <- <= b)
in which for each in [a, hi, P, is a probability distribution on l)(t, y(t)), and the
functions (fi(t,y(t), u): uf(t,y(t)) are defined and are integrable with respect to

Pt over (t, y(t)), and equations (4) are satisfied. The integral (5) will be denoted by
J(C):

J(C) f(t, y(t), u)P,(du) dt.
(t,y(t))

For simplicity we shall restrict our attention to the important special case in which
f(t, y) is independent of and y; we denote it simply by f. We shall suppose that
F* denotes a closed set in R"+ and E* a bounded closed set in R2n+2; the problem
is to find an admissible pair C such that the points (t, y(t)) lie in F* and the endpoints
(a, y(a), b, y(b)) in E*, and J(C) is the least value of J for all such admissible pairs.
Iff is compact and thef are continuous, and some condition is satisfied that guarantees
the existence of a minimizing sequence that lies in a bounded subset of F*, the minimum
can be shown to exist. The proof can be found in several research papers and several
books in varying degrees of generality and simplicity.

However, in order to carry out our suggested program of solving the minimizing
problem, the necessary conditions for an optimum relaxed control should apply to the
kind of optimum that has been shown to exist. This is not taken care of in all books
and papers on the subject. However, it was done in 1962 in three independent papers,
by J. Warga [8], by T. Wazewski [9], and by R. V. Gamkrelidze [10]. It is easily
accessible in the books on control theory by L. C. Young [4] and by J. Warga [11].
Young proves an existence theorem somewhat more general than that of the preceding
paragraph. For brevity, we shall restrict its generality, but allow its extension to problems
in parametric form. A control problem is in parametric form if the control set f is a
cone, so that whenever u is in f so is pu for all nonnegative p; and the end-conditions
are independent of t; and the functions fi are independent of and are positively
homogeneous of degree 1 in u, so that

fi(y, pu) pfi(y, u)
for u in f and p => 0. It can then be shown that if F*, E*, and 12 are closed and E*
is bounded, and 12 is independent of y, and the f are continuous on F*x, and
either f is bounded or the problem is in parametric form, and there exists a minimizing
sequence of admissible pairs for which

is bounded, then there exists an admissible pair C (y(.), P.) for which the integral
J(C) has its least value. Moreover, if the problem is in parametric form, the range of
can be taken to be [0, 1], and the probability distribution P can be so chosen that

for a certain positive number L the support of P, is in {u f: ]u] L}; that is,

Pt{u 6 D,: Iul C: L}=O (0= tl).
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For discussing necessary conditions for optimal controls, we consider only the
case in which for the optimizing pair (y(.), P.) the points (t, y(t)) lie in the interior
of the set F*. Also, for simplicity we shall consider only the fixed-end-point problem.
For these it is proven, in Young’s book and elsewhere, that the following theorem holds.

THEOREM. Let ((y(t), Pt): a <-_ <- b) be an optimal pair for the problem described
above. For each in [a, b], let (t, y(t)) be interior to F*, and the support of Pt in a
bounded subset of . Then there exist a constant /o, with value zero or -1, and n
absolutely continuous functions d/a,’", q, on [a, b], with the following properties.

(i) qo, p(t), , q,(t) are not all zero for any in [a, b].
(ii) Iffor each in [a, b], each y in F* and each u in we define

H(t, y, u)= d/of(t, y, u)+ d/i(t)fi(t, y, u),
i--=l

then the maximum value of H(t,y(t), u) on is a continuous function oft on [a, b];
and if the problem is in parametric form, the value of this maximum is zero.

(iii) For almost all in [a, b], the support of P is contained in the set on which
H( t, y( t), u) attains its maximum value; and by changing P, on at most a set of measure
zero, we can cause this to hold for all in a, b].

(iv) The functions qi satisfy

(/=- .(,y(, ue,(u

for almost all in a, b].
This theorem and its generalizations are well known to have interesting applica.

tions in problems of optimal control. Many of them are contained in the books by
Pontryagin et al., by L. C. Young, and by L. D. Berkovitz [12]. But if the optimal
control formulation is, as I believe, the modern replacement for the classical calculus
of variations, it must be able to provide solutions for the problems of the classical
calculus of variations, and it should do so with at most little additional effort. Doubts
have been expressed that the ancient problems can be at all conveniently solved by
optimal control methods, without transferring back to the old notation. I do not think
that that is so, and to bear out my opinion I have worked out several very old problems
by optimal control theory. Since the point of the task is to show that a treatment in
full detail can be presented without especial diculty, I lack time and space to present
all these calculations in this talk. Instead, ! have prepared some sheets [the Appendix]
on which I have written out the details of the solutions of four classical problems.
Although these problems have been discussed in many books, the treatment there is
naive," with no existence theorems being established. More surprisingly, even from
the naive point of view many of the discussions are incomplete or incorrect. The fourth
problem is to me the most interesting. It is the ancient problem of Newton: to find a
surface of revolution for which a certain integral, believed by Newton to represent the
resistance encountered by that surface when moved through a fluid, has least possible
value. Newton did not clearly specify the curves he permitted. So in practically all
discussions, all piecewise smooth functions x- y(x) are allowed, and it is then shown
that the problem is unsolvable. Only Goursat, in the third volume of his Cours d’Analyse,
points out that it is physically reasonable to assume y monotonic; this might well have
been what Newton meant. In no book, not even in Goursat’s, is Newton’s statement
about the solution quoted in full. But the solution of the problem with monotone y
exists, and it can be found by the methods of optimal control theory, and it is just
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what Newton said it is. In this problem it appears that the optimal control procedures
are essential; the solution is not accessible by classical procedures.

From what I have just said, it is easy to deduce what I believe should be done
about the teaching of the calculus of variations. Ordinary undergraduate students of
mathematics should be taught a form of control theory simple enough to be understood
and general enough to be applicable to many problems. This may call for some quite
new chapters in advanced calculus texts, but i think it is not unattainable, and not
even very difficult. But another quite different matter is the direction of research.
During the twentieth century the interest in what might be called traditional calculus
of variations has sunk to a low ebb. I think that that is a natural consequence of the
introversion of the subject. Theorems were proved of increasing intricacy, of interest
to a steadily shrinking collection of experts in the subject. The newer calculus of
variations will go the same way unless its practitioners are sensitive to the questions
that arise naturally and demand answers. My own guess is that some of these have to
do with the consideration of problems in which random events play an important part.
There has, in fact, been a considerable development of stochastic control theory. But
both in it and in the deterministic theory I feel that the tendency toward introversion
is showing up. The theorems are becoming more baroque. In particular, in quite
complicated situations we can show that a solution exists; but only in simple situations
can we find a usable approximation to that solution without vast computational effort.
The situation is bad in the deterministic case and worse in the stochastic. I am no
expert in computation, but I have been told that the direct application of the maximum
principle to problems of even moderate complexity is unsatisfactory. This is easy to
believe, because the direct application of the maximum principle would require us
to find the value of u at which H(t, y(t), u) takes its maximum value, and it is hard
to find precisely where a maximum occurs. For stochastic problems, the situation is
worse. In some cases solutions have been stated which in my opinion are not solutions
at all, since they ask the controller to perform infinitely many adjustments of the
controls guided by the instantaneous availability of infinitely many bits of information.
Others, for example, Balakrishnan, have worked on the problem of finding approximate
solutions that are humanly attainable. But a great deal remains to be done both in the
deterministic and in the stochastic cases. A friend of mine, a logician, once gave a talk
in which he proved that no matter how many problems in mathematics have been
solved at any given time, there will always remain unanswered questions. We hardly
need that theorem. Just within optimal control theory there are good problems enough
to fill all the time and demand all the brain power that all the available mathematicians
can give to them.

Appendix: Four classical problems of the calculus of variations

The four problems we shall solve are in parametric form. In each, F* is a closed
set in n-space, and yo and Yl are points of n-space, and ll is a closed cone in r-space.
The functions

(y, u)-fi(y, u) (i--1,...,n)

are continuous on F*x fl and are positively homogeneous of degree 1 in u for each
fixed y. The minimum of

J(C)= f(y(t), u)Pt(du) at

is sought in the class of all admissible pairs ((y(t), Pt): a<-t<--b) for which every y(t)
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is in F*, and

and

y (t)= yo+ f (y(’), u)P(du) d" (a<-_t<-_b),

y’ b yil.

For such problems it is known that a minimizing pair ((y(t), P,): 0=< t_-< 1) exists, the
support of P, being contained in a set {u f: lul L}, provided that there exists a
minimizing sequence of admissible pairs ((yn( t), P,.,): an<=t<=b,) for which the
integrals

lulP,,,(du) dt

are bounded.
It can also be shown, as a corollary of the "maximum principle," that if

((y(t),P): a<=t<_b) is a minimizing pair for this problem, and for each in [a,b]
the support of P, is bounded and y(t) is interior to F*, there exist a constant qo (=0
or -1) and n absolutely continuous functions on [a, b], called 1,. ., q, such that
o, (t),..., (t) never vanish simultaneously and

(i) for in [a, b] the maximum value of

H(t, y, u)=dof(y, u)+ b(t)f(y, u) (uf)

is zero;
(ii) for almost all in [a, b], this maximum is attained at each point of the support

of P,;

(iii) 0(t)= 0(a)-
OY

(’, y, u)P(du) d"

(a -< <= b).
In all four problems r 2, and to avoid superscripts, we shall write (u, v) instead

of (u , u2). Likewise, points in two-space shall be denoted by (x, y) instead of (y, y:),
and points in three-space by (x, y, z).

1. The classical isoperimetric problem. Given a line segment AB, we are to find a
curve of length Lo that goes from B to A and together with AB encloses the greatest
possible area. (See Fig. 1.)

A
FIG.
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If the curve is x=x(t), y=y(t), a<-t<-b, the area enclosed is constant+
b [X.9- y] at.

We restate the problem in relaxed-control form. We denote B, A by (Xo, Yo),
(Xl, Yl), respectively; we define fl to be the (u, v)-plane; and we define

f(x, y, z, u, v) yu xv,

fl(x,y,z,u,v)=u,

f(x,y,z,u,v)=v,

f3(x, y, z, u, v)= ](u, v)l=[u+v]/.

The problem is to find an admissible pair C ((x(t), y(t), z(t), Pt)" a <= <=b) with

x(a)= xo, y(a)= yo, z(a) =O,
(6)

x(b) x, y(b) =y, z(/) o,

for which the integral

J(C) f(x(t), y(t), z(t), u, v)Pt(du, dv) dt

is minimum. Since the endpoints are fixed and the lengths bounded, a solution exists,
by the existence theorem on page 926. For it we can assume that for a certain L, the
support of P, is on the circle I(u, v)l L. Since F* is the whole (x, y, z)-space, the
necessary conditions on page 926 hold; H has the form

H( t, x, y, z, u, v) d/o[yu xv] + d/,( t)u + q2(t)v + 3(t)l(U, V) I.
In particular, H is independent of z, so by (iii) q3 is a constant. If this constant were
zero, we would have

H( t, x, y, z, u, v) qoY + q,( t)]u + [- qoX + q2( t)]v.

In order for this linear function to have a maximum on f the coefficients of u and v
must be zero, so that

tP(t) -qtoy, b2(t) oX.

If o=0, all four Oi are zero, which is false. If o =-l,these last equations are
incompatible with (iii). So 3 0.

We consider two cases.
Case 1. o O.
By (iii), 2 and are both constants. Then H assumes its maximum on the circle

I(u, v)l L at just one point, independent of t, so and 3 are constants and (x(t), y(t))
traverses a line segment from B to A. This is possible, with the end-conditions (6), if
and only if Lo is equal to the distance from B to A. In this case, we have shown that
the line segment BA gives the maximum area. But this is obvious without the discussion,
since then there is only one curve that satisfies the conditions for admissibility.

Case 2. o 1.
In this case,

(7) H( t, x, y, z, u, v) [-y + b,( t)]u + [x + d/2( t)]v + d/3( t)l( u
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For (u, v) on the circle I(u, v)] L, this has maximum value at just one point. So for
each t, the support of P, consists of a single point, and the optimal pair is ordinary.
By (iii) on page 926,

dd/,(t)/ dt- Ic [OH/Ox]P( du, dr)= Ic vP( du, dr)--))(t)

for almost all t. Likewise, for almost all t,

dd/2( t)/ dt ,( t).

Therefore there exist constants cl, c2 such that

61(t) 2c2- y(t), q’z(t) x(t) 2cl.
We substitute this in (7). By (iii), when P, has only one point in its support, that point
is ((t),)(t)), so H has its maximum there, and its partial derivatives as to u and v
are zero. This yields

2C 2y(t) + q3:(t)/L O,

2x(t) 2c + q33)( t)/L O.

Therefore

d
d--- [(x(t) C1)2 + (y( t)- C2)2] 2(x(t) c,)(t) + 2(y(t) c))(t) 0,

and the optimal curve is a circular arc with endpoints B and A.
It should be observed that there may be several such arcs. For example, in Fig.

2, BCADEBCA is one, and so is BCA. But an arc that passes more than once through
A yields the same area as a curve obtained by rotating through 180 a loop beginning
and ending at A, as in Fig. 2(b). This new curve BCAD’E’A does not furnish the
maximum area, because it is not a circular arc. Therefore, neither did the multiply-
traversed circular arc from which we obtained it. The curve that encloses the greatest
area is a circular arc without multiple points that goes from B to A.

2. The brachistochrone. We next consider the problem of the brachistochrone,
first proposed by John Bernouilli in 1696.

(b)

C

(a)

D

FG. 2
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Let us choose axes in the plane with the y-axis vertically downward. A bead
descends by gravity, starting from rest, along a frictionless wire beginning at (0, 0) and
ending at a point (xl, Yl) with xl > 0 and y => 0. It is required to find the shape of the
wire along which the time of descent will be shortest.

In order for the wire to be traversible at all it must lie in the half-plane

F* {(x, y): y 0}.

Along a curve x= x(t), y=y(t) (aN t<= b) in F* with absolutely continuous x(. and
y(’) the time of descent is proportional to

f[(t)+f(t)] ’/

y(t)
at;

we are to minimize this. We extend the problem to relaxed-control form. We define
F* as above, and define f to be the (u, v)-plane. Admissible pairs are those pairs
C=((x(t), y(t), P): a<_- t<_- b) that satisfy

x(t)= fi {Ia uP,(du, dv)} d’,

y(t)= vP,(du, dr) dr

and the end-conditions

x(b)=x, y(b)=y,

and have (x(t), y(t)) in F* for all t. Among these we seek a pair C for which the integral

J(C) f(x(t), y(t), u, v)Pt(du, dr) dt

is a minimum, where

f(x, y, u, v)=[u2+v2]l//y/.

Although the existence theorem on page 926 does not apply to this problem, the
integrand being discontinuous at y 0, a slight modification using a limit process can
be used to show that a minimizing pair exists, with a 0, b 1, and the support of P,
contained in the set {l(u, v)l L}. We omit the details of this proof.

Suppose that there is a t* in the open interval (0, 1) for which y(t*)=0. Since
J(C) is finite, y is not identically zero on [0, t*] or on [t*, 1]. We can therefore find
a positive number c and numbers tl, 2 such that 0 < t < t* < t2 < 1, and y(t) y(t2) c,
and y(t)< c on (t, t2). Then

y-/2[ue+v2]/2pt(du dr) dt> c-/2upt(du, dr) dt
tl

12
c-1/22(t) dt.

tl

So if we replace C by a pair C* in which on the interval It1, t2] the relaxed pair
(x(.), y(. ), P.) is replaced by the ordinary curve x x(t), y c, C* is an admissible
pair, and J(C*)< J(C), which is impossible. So y(t)> 0 for 0<t< 1.
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For every subinterval [a, b] of the open interval (0, 1), the admissible pair
((x(t), y(t), Pt): a <= <= b) minimizes the integral

f {Iy(t)-/2[u2+ v2]’/2P,(du, dv)} dt

in the class of admissible pairs with the same endpoints, and the points of its trajectory
lie in the interior of F*. Therefore, the necessary conditions on page 926 are satisfied.
H has the form

H(t, x, y, u, v): oy-’/2[u2+ v]’/+ ,(t)u + (t)v,

and it attains its maximum at each point in the support of P,. If o were zero, H could
have no maximum, so 0o =-1. This implies that H can have its maximum value at
only one point of the circle [(u, v)l L, so the curve is ordinary, and the one point in
the support of P, is (by (iii)) the point (( t), ))( t)) for almost all t.

By the first of equations (iii), @(t) is a constant. If it were zero, the maximum
value of H on I(u, v)l L would occur at (0, L) or at (0,-L), yielding (t)=0 for
almost all t. But then x(b)= x(a), and by letting a tend to zero and b to we find
x(1) x(0), which is false. So @ 0.

For almost all t, ((t),)(t)) is the only point in the support of P,, so
H(t, x(t), y(t), u, v) attains its maximum at that point. Therefore at (:(t),)(t))

0 Ol-I/ou -y(/)-1/29(/)[3(/)2 + 9( t)2]-1/2 + 1.
Since q 0, this implies that (t) is bounded away from zero and has the same sign
as 0 (necessarily positive). So the function --> x(t) (0 =< _-< 1) has an inverse x--> t(x)
(0-< x_-< x), and the optimizing curve has the representation

x--> Y(x)=y(t(x)) (0--< X--<= Xl).

By the preceding equation,

Y(x)[1 + dY/ dx)2]
This is a familiar equation. Its solution is a cycloid; see, for example, El’gol’ts [13, p.
38].

3. The surface of revolution of least area. Euler proposed the problem of finding
the curve that joins two points in the (x, y)-plane and, among such curves, generates
when revolved about the x-axis that surface that has least area. If these endpoints are
(xo, Yo) and (x,y), and the curve has a representation x--x(t), y=y(t), (a<= t<= b)
in which x(. and y(. are absolutely continuous, the area of the surface of revolution
is

(8) 2r ly(t)l[(t)2+f(t)2] ’/- at;

and this is the integral to be minimized. It is rather obvious that this is the same
problem as minimizing the integral

(9) y(t)[2(t)2 + f( t)2] ’/ at

in the class of absolutely continuous functions x, y with the given endpoints and lying
in the half-plane

(10) F* {(x, y): y >- 0};
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see, for example, Bliss’ Carus monograph [2, p. 89]. This apparently minor point has
led to false assertions in several books. For example, both in Gelfand and Fomin [1]
and in El’gol’ts [13] we find the statement that the area is given by (8) with the absolute
value sign omitted; this is incorrect, and without the qualification y-> 0 (which they
do not mention) the integral (9) has no lower bound. Bliss correctly states the problem,
but on p. 90 says that the necessary conditions previously deduced apply without
change to this problem, which is incorrect because the minimizing curve can lie in
part along the boundary of F*.

We restate the problem as a relaxed-control problem. Let F* be defined by (10),
and let 1 be the (u, v)-plane. Define

f(x,y,u,v)=y[u2+v2]l/2 ((x,y)inF*,all(u,v)).

Among all admissible pairs ((x(t), y(t), P,): a =< b) that have (x(t), y(t)) in F* for
all t, and have endpoints x( a Xo, y( a Yo, x(b) xl, y(b) y, and satisfy equations

x() Xo+ uP,(du, dr) d,

(11)

y(t) Yo + vP(du, dr) dz,

we wish to find one that minimizes the integral

J(C)= I {Iaf(x(t), y(t), u, v)P,(du, dv)l dt.

Let m be the infimum of J(C) in the class of pairs admitted. A minimizing
sequence is a sequence of admissible pairs

C, ((x,(t), y,(t), P,,,): a, <- <_- b,) (n=1,2,3,. .)

satisfying the requirements and such that the integrals J(C,) tend to m. We distinguish
two cases.

Case 1. There exists a minimizing sequence for which the minimum value of y. (t)
on [a., b.] is arbitrarily near zero.

In this case we can choose a subsequence (which without loss of generality we
may take to be the original sequence) for which

(12) lim min {y. t): a. =_< --< b. } O.

Let c, be a point in [a,, b,] at which y, attains its least value. Then

2"! 1/2Dy.(t)[uE+v r.,,(du, dr) dt > y.(t)[-u]P..,(du, dr) dt
an

y(t)(t) dt=[yg- y(c)]/2,

and similarly,

y.(t)[u+v]/P du, dv) dt.,, y(t)uP.,(du, dr) dt

y(( [-(c1/.
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By adding these we obtain

[y) + y2_ 2y,(c,)2]/2 <= j(C,).

Since y,(c,) is the least value of y, and J(C,) tends to m, by (12)

[yo+ y]/2<= m.

The left member of this inequality is J(C) for the ordinary curve C which is the
polygon with successive vertices (Xo, Yo), (Xo, 0), (x, 0), (x, y), so that polygon
minimizes J(C) in the class of admissible pairs with the given endpoints.

Case 2. For each minimizing sequence, all y have a common positive lower bound.
Choose a minimizing sequence with the same notation as before. Let c > 0 be a

lower bound for all the y,. Then

[U2-I /2Pn,,(du, dr) dt<_c-’ yn(l)[u2+v2]l/2Pn,,(du, dr) dl

:J(c.)/c.

So the integrals are bounded, and by the existence theorem on page 926 a minimizing
admissible pair exists, and it can be chosen to be a pair for which a =0 and b 1,
and the support of P, is contained in a circle ](u, v)] L. For this pair, the minimum
of y is positive; otherwise, a sequence of infinitely many repetitions of C would be a
minimizing sequence in which the minima of the y, are arbitrarily near zero, and in
the case we are considering that cannot happen. Since y(t) is always positive, the
trajectory lies in the interior of F*, and the necessary conditions on page 926 must be
satisfied. Let Po (=0 or 1), ql (t), q_(t) be the multipliers, so that

H( t, x, y, u, v) boy( t)[u + v]’/ + Ol( t)u + O2( t)v.

If ’o were 0 this would be a linear function and have no maximum on f. Therefore
o -1.

On the circle {[(u, v)[= L} the function H( t, x( t), y( t), u, v) attains its maximum
at only one point, and by (11) this is ((t),)(t)) for almost all t. So the optimal control
is ordinary. Since H is independent of x, by the first of equations (iii), ql is constant.
If this constant were zero, the maximum of H would occur at either (0, L) or at (0, -L),
and in either case (t)= O. This is impossible, since it would imply x(1)= x(O), which
is false. So 0#0. The maximum value of H occurs at ((t),j)(t)), so its partial
derivative with respect to u vanishes at that point:

0 -y( t)[2(t) + y2( t)] -’/.( t) + ffl.

The quantity in square brackets has value L, so :(t) is bounded away from zero, and
y can be expressed as a function of x. The preceding equation then yields

y( t) ,[1 -- dy/ dx)2] 1/2.

The solution of this is well known to be

y= q, cosh [(x- h)/tl],

where h is a constant. This is the equation of a catenary. It is shown in many places
that there are at most two such catenaries through (Xo, yo) and (x, y). So the absolute
minimum of the surface of revolution is given by the polygon or by one of these at
most two catenaries.
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4. The solid of revolution of least resistance. In his Principia, Isaac Newton dis-
cussed the resistance encountered by bodies moving through a fluid. Although he never
stated a law of resistance specifically, his reasoning in Book II, Proposition XXXIV,
Theorem XXVIII (in the discussion of the resistance of a sphere) leads to the following
law:

The resisting pressure at any point of the surface not sheltered from the fluid by
some part of the body is proportional to the square of the component of the velocity
along the normal to the surface.

This is Forsythe’s formulation, except for the italicized words, which I have added.
They are justified by Newton’s reasoning and by his ignoring pressure on the sheltered
hemisphere. If a solid of revolution is generated by revolving a curve x x(t), y y(t)
about the y-axis and moves in the direction ofthe positive y-axis, and x is not monotonic
increasing, there will be sheltered arcs such as ABC (see Fig. 3). By Newton’s reasoning,
there will be no resisting pressure on this part of the solid, and we can replace the arc
ABC by the line segment AC without affecting the resistance. So we may, and
henceforth shall, assume that x(. is nondecreasing.

A

FIG. 3

Newton’s assertion about the solid of least resistance is contained in the following
two paragraphs of the Scholium following the theorem just cited.

"Incidentally,..., it follows from the above that, if the solid ADBE be generated
by the convolution of an elliptical or oval figure ADBE about its axis AB, and the
generating figure be touched by three right lines FG, GH, HI in the points F, B, and
I, so that GH shall be perpendicular to the axis in the point of contact B, and FG,
HI may be inclined to GH in the angles FGB, BHI of 135 degrees: the solid arising
from the convolution of the figure ADFGHIE about the same axis AB will be less
resisted than the former solid, provided that both move forwards in the direction of
their axis AB, and that the extremity B of each go forward. This Proposition I conceive
may be of use in the building of ships.

"If the figure DNFG be such a curve, that if, from any point thereof, as N, the
perpendicular NM be let fall on the axis AB, and from the given point G there be
drawn the right line GR parallel to a right line touching the figure in N, and cutting
the axis produced in R, MN becomes to GR as GR to 4BR. GB2, the solid described
by the revolution of this figure about its axis AB, moving in the before-mentioned rare
medium from A toward B, will be less resisted than any other circular solid whatsoever,
described of the same length and breadth."

Let us equip Newton’s figure with an x-axis vertically upward through D and a
y-axis along AR, positive in that direction (see Fig. 4). Then B is (0, Yo) and D is
(xl, 0). We denote the length of BG by the perhaps startling symbol 2t The statements
in the quoted paragraphs transform into twentieth century notation thus. Let the optimal
curve BGFNDjoining B to D be the graph x --> y(x) (0 <- x <- xl). Then y(x) is constantly
Yo for 0<_- x<_-2q,2; at 24,2, the right derivative of y is -1; and on [2t2, xl] the function
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(’x)
D N

F
G

E

FG. 4

y(.) satisfies the equation

(13) x=-b2[ +(dy/dx)2]2/2(dy/dx).

In none of the books on the calculus of variations that I have consulted have I
found any such statement. They all deduce (13), but omit all reference to the line-
segment BG and the corner at G.

Newton did not specify the class of comparison curves allowed. We shall allow
only curves x x(t), y y(t) in which x is nondecreasing (which, as we have seen, is
very nearly implied by Newton’s discussion) and y(. is nonincreasing. Newton might
have been willing to accept this reasoning. If y is not monotonic nonincreasing, the
solid of revolution will have a trough generated by the revolution of an arc such as
DEF (see Fig. 5). When the body moves in the direction of the positive y-axis, this
trough will fill with stagnant fluid, and the line-segment DF will be the effective surface,
giving a nonincreasing y. Newton makes no such statement. But in the first paragraph
quoted above, he specifically considers "oval" solids, and in the Principia and in a
letter (presumably written to David Gregory in 1694) only convex figures appear. So
we feel that we are not misrepresenting Newton when we attach his name to the
following problem:

To find a curve x x(t), y y(t), a _---t_-< b in which x(. is nondecreasing and
y(.) is nonincreasing, and

(14) x(a) -0, y(a) Yo, x(b) x, y(b) y (X and yo positive)

and which in that class of curves generates the surface of revolution about the y-axis
that offers least resistance to motion in the direction of the positive y-axis, the law of
resistance being that stated above.

We shall show that this problem has a solution, and that the solution is exactly
what Newton asserted it to be.

FIG. 5

y
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According to Newton’s law of resistance, the resistance at a given velocity is
proportional to

f X( t):( t)
(15) J(C)= (t)2 + )-i)2 dt,

and this is the integral to be minimized. We restate the problem in relaxed control form.
Let f be the control region

f {(u, v): u -_> 0, v ->_ 0}.

Define

f(x, y, u, v) xu3/[ u2 + v2],
fa(x,y,.u,v)=u,

f2(x,y,u,v)=-v.

A pair ((x(t), y(t), Pt): a-<- t<= b) is admissible if P, is a probability distribution on f,
and

x(t) fl(x(z), y(z), u, v)P(du, dr) dz,

y(t) yo+ f2(x(’), y(’), u, v)P,(du, dr) dr (a-t-b),

and the end-conditions (14) are satisfied. Among all admissible pairs, we seek one that
minimizes

J(C) f(x(t), y(t), u, v)P(du, dr) dt.

The simpler existence theorems do not apply to this problem, nor to the analogous
problem in ordinary controls, because fo is not a convex function. But by the existence
theorem on page 926, an admissible (relaxed) pair does exist that minimizes J(C)
among all such pairs. It has also the property that a 0, and b 1, and for all t, the
support of P, is contained in the circular arc

"L {(U, V): 0 U, 0 V, U2"q" V2"-- L2}.
Since F* in this problem is the whole plane, the necessary conditions on page

926 are satisfied. As before, we define

2

H(t, x, y, u, v)= tpof(x, y, u, v)+ 2 Oi(t)fi(x, Y, u, v);
i=1

the qo and 0i have the properties on page 926. In particular, since H is independent
of y, /2 is a constant.

We shall first prove that 60 # 0. Suppose it were zero. Then

H=l(t)u-2v.

If H were positive at some (u, v) in f, it would be unbounded on the set of points
(pu, pv) with p > 0, which is impossible because H has a maximum attained on ft-
SO H is nonpositive, and its maximum value on 12 is 0, attained at (0, 0). So H is
nonpositive at (1, 0) and at (0, 1), and

4,,(t) <_- o_-< 4,.
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If I//2> 0, the maximum value of H on fL occurs at (L, 0) only, so only (L, 0) is in
the support of P,. Therefore, ))(t)=0 for almost all t, and y(t)= Yo for all t, which is
false. If I//2 "-0, I//l(t must never be zero, since qo, 01, and 2 never vanish simul-
taneously. So ql(t)< 0 for all t. Then the only point of fL at which H is maximum
is (0, L). This implies x(t)= 0 for all t, which is false. So the assumption qo 0 leads
to a contradiction, and 0o is -1. Now

(16) H(t,x, y, u, v)=-xu3/[u2+v2]+tPl(t)u-O2v.
We next prove It2 ! 0. If 12 0, let be any point at which x(t) > 0, and let (u*, v*)

be in the support of P,. Then H has its maximum value zero at (u*, v*), so

If u*> 0, this would imply

H(t, x(t), y(t), u*, v* + 1) >0,

which is impossible. So u* 0. Therefore the only point in the support of P, is (0, L),
and dx/dt =0 at almost all points at which x(t)> 0. This is incompatible with the
end-conditions (14), so the assumption 2 =0 has led to a contradiction. Therefore
q2 > 0. This, in turn, implies 0(0)=0. For if not, then 01(0)< 0, and the function

H(0, x(0), y(0), u, v) I]/l(0)u I/t2v

would assume its maximum value zero only at (0, 0), not at any point in FIL. It also
implies that (0, L) is not in the support of P, for any in [0, 1]; for

H( t, x(t), y(t), 0, L) -tP2L < 0.

Then

)(t) f uPt(du, dr)>0

for almost all t, so x(t) is strictly increasing.
For > 0, no point (u, v) of f with 0 < v < u is in the support of P,. For suppose

0 < v < u. Define 0 v u. Then

0 H( t, x(t), y(t), u, v) -x( t)u3/[ u + v2] ’[- Itl( t)u ll21.)

-x( t)u/[ / 02] -t- fill( t)u ffrl2Obl,

H(t, x(t), y(t), u, O) -x( t)u / d/,( t)u,

H(t, x(t), y(t), u, u) -x( t)u/2 + q,( t)u

From the last two equations,

(1 O)H(t, x(t), y(t), u, 0)+ OH(t, x(t), y(t), u, u)= -x(t)(1 O/2)u + l(t)u It20u.
Since

(1 0/2)-(1 + 02)-1= -0(1 0)2/2(1 + 0)2 < 0,

this implies that one of the numbers H(t, x(t), y(t), u, u), H(t, x(t), y(t), u, 0) is
positive, in contradiction to the fact that the maximum value of H is zero. So no point
(u, v) with 0< v < u is in the support of P, for any in [0, 1].

Let A be the set of in [0, 1] such that (L, 0) is in the support of P,. If is in A,

0= H(t, x(t), y(t), L, 0) >_- H(t, x(t), y(t), L, L),
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so

This implies

-x( t)L + qtl(t)L-0_ -x( t)(L/2) + l(t)L- 2L.

x(t) 202.
If is in [0, 1]\A, the support of P, contains some point (u, v) with v 0, therefore

with 0< u <- v. For all we have by equations (iii) on page 926

O,(t)= u2v2 P(du, dr) dr <- uP,(du, dv) dr=x(t).

So if the support of P, contains (u, v) with v > 0,

0 H( t, x(t), y(t), u, v) -x( t)u3/[u2 + v2] + q,( t)u b2v
<- X( t){--U3/[U,2 q-/)2] q. tt} I//2/) {X(t) U/)/[U2 q" /)2]

Hence

and therefore

1[12 <- X( ){U/)/[IX 2 +/)2]} x(t){1/2},

X(t) 22.
So all points with x(t) in [0, 262] are in A, and all points with x(t) in (262, 1] are
in [0, 1]\A. For with x(t) in [0, 22), the support of P, consists of (L, 0) alone, so

{Io }x(t) uP,(du, dr) d" L dz Lt,

y(t) Yo- vP,(du, dr) dr Yo.

So if we define t* 22/L,

x(t*) 2q,,

and y(t) is constantly Yo on [0, t*]. For < t*, (L, 0) is in the support of P,, so

H(t,x(t),y(t),L,O)=O.

By continuity,

H(t*, x(t*), y(t*), , 0) 0.

For > t*, the support of P, is contained in {(u, v) in : v u > 0}. But when v u > 0,

on/ov2 2x(/)u3(u2+ v2)-3(u2-302 < 0.

If the maximum value of H were attained at two different points of, there would
be two rays v m u, v mu (m> m 1) on which H and its first partial derivatives
vanish. That is,

0
H( t, x( y( t), 1, ml) H( t, x( t), y( t), 1, m)=O.

But this is impossible, since

OH
OV
2(,X(),y(),l,v)<O (mIv
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Therefore the support of P, consists of a single point of the arc fL. The optimal pair
is an ordinary pair.

We have shown that

so

Therefore

X(t*)--,(t*)=22,

H( t*, x( t*), y(t*), u, v)=--22U3/[U2+ I)2] nt- 22/,/-- 2v.

H(t*, x(t*), y(t*), L, 0) 0,
(17)

H( t*, x(t*), y(t*), L/,/, L/,/) O.

For each point in (t*, 1], the support of P, consists of a single point of I)L, which
we denote by (u(t), v(t)). Let (a(t), fl(t)) be any point that is the limit of (u(tn), v(tn))
for some sequence of points tl,/2, t3," of (t*, 1] tending to t. Then [3( t) >= ce( t). By
continuity

H(t, x(t), y(t), a(t), /3(t)) lim H(t,, x(t,), y(t,), u(t,), v(tn))=0.

But there is only one point (a (t),/3 (t)) on fL with /3 (t) -> a (t) that satisfies this. If
t> t*, (a(t),(t)) has to be (u(t), v(t)). If t= t*, by (17)

ce L/x/, l L/x/.

So the limit of (u(t), v(t)) as tends to t* from above is (L/,/, L/,/).
For in (t*, 1], the support of P, contains a single point, which for almost all

has to be (2( t), ))( t)). Since H has its maximum value at this point, its partial derivatives
vanish there, so

(18) 2X(t)2(t)3j(t)[(t)2q-j(l)2]-2+O2--O.

This implies that 2 cannot be zero, so y can be written as a function of x, and (18)
amended accordingly. We now have accumulated the following information about the
minimizing function, written as x-+ y(x):

For 0<_-x <= 2qt2, y(x)= Yo. At x 202 there is a corner: the right derivative of y
with respect to x is -1. For x > 22
(19) x=-i]/2[1 q-(dy/dx)2]2/Z[dy/dx].

This is exactly what Newton stated the solution to be.
Parametric equations for the part of the curve to the right of x 24,2 are easily

obtained. If we define r= v(t)/u(t), by (18) or (19) we find that for almost all t, the
function X(r) x(t(r)) satisfies

(20) X(r) (1 + 7"2)262/27".
From this,

dX/dT-= (2/2)[- --2 q- 2 + 3r2].
Let Y(r)= y(t(r)). Since dY/dr=[v/u] dX/dr= r[dX/dr],

dY/dr (62/2)[-r- + 2r + 3r3],
whence

(21) Y(r)= C + (q,2/2)[-log r+r2+3r4/4].
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We let - approach 1; then X(r) and Y(r) approach x(t*)=202 and y(t*)=yo,
respectively, and from (21) we obtain

C =yo-(tP2/2)(7/4).

Substituting this in (21) yields

Y(’) y0+ (2/2)[-log ’+ .2+ 3.4/4_ 7/4].

This and (20) are parametric equations for the part of the curve to the right of the
straight section y yo (0 <_- x -< 2t2).

Note added in proof. Professor John Burns has pointed out to me that Newton’s
least-resistance problem is discussed in Applied Optimal Control by A. E. Bryson and
Y.-C. Ho [14, pp. 52-55]. Their treatment is of the type we have called "naive," and
also it is not rigorous. But they arrive at Newton’s solution, as given above, and they
exhibit graphs for three special cases. Also they assert that Newton’s formula for the
resistance, while inaccurate for subsonic speeds, is very good at speeds above the speed
of sound.
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Abstract. Chattering systems serve as a limit model for control systems with rapidly oscillating control
coefficients. This paper investigates the applicability of relaxed controls to chattering systems. In particular,
the robustness of optimal relaxed controls and their ordinary approximations are examined. In the case of
complete chattering, it is found that the relaxation of the optimal controls can be eliminated.
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1. Introduction. An advantage of working with relaxed controls is that under mild
conditions, existence of optimal solutions is guaranteed. A justification of coming up
with a relaxed solution is that is can usually be approximated well by an ordinary
control, namely, the performance is not changed drastically when the optimal relaxed
solution is replaced by the approximation. These aspects are explained and demon-
strated in the fundamental works of Warga (see [8]) on control systems and Young
(see [10]) on the calculus of variations. McShane [7] has developed a general theory
of relaxed unbounded controls and has shown when a seemingly optimal relaxed
solution is actually an ordinary one.

Robustness is a desired property of optimal solutions and their approximations.
Namely, the performance of the chosen control should not be harmed greatly if a
small change in the system occurs. A situation where this property may not prevail is
when an approximation to a relaxed control is applied to a system with rapidly
oscillating coefficients. Indeed, the standard approximations of a relaxed control are
rapidly oscillating controls. If the oscillations of the approximating controls are not
synchronized with the oscillations of the parameters, a resonance phenomenon may
occur, with cost far from optimal. This problem is even more acute when the oscillation
rate of the parameters is subject to errors or uncertainties; then the synchronization
of the two oscillation rates may become a difficult matter.

The sensitivity to a small change in the highly oscillatory parameters arises not
only in connection with relaxed controls, in general, we would like to have a robust
model for rapid oscillations, and then analyze the uncertain parameters as small
deviations from that model. Such a model has been offered in [1] and [2]. It allows
instantaneous oscillations of the parameters; a convergence mode is then defined with
which the rapidly oscillating parameters can indeed be treated as deviations from the
model. The systems with the infinitely rapid change of parameters are termed chattering
systems.

In this paper we develop the relaxed controls aspect of the chattering systems.
The first interesting phenomenon that we discover is that relaxation can actually be
eliminated in case of complete chattering. The reason is that the oscillations of the
parameters can be used to generate the oscillations that the good approximations of

* Received by the editors August 10, 1988; accepted for publication (in revised form) December 7, 1988.
t Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel.
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the relaxed solutions need; in the limit, ordinary controls suffice. However, there are
cases where relaxed controls are needed for optimality. We study them, with their
approximations, and examine the robustness property.

We find it best to exhibit the ideas by working out in detail a simple example.
This is done in the next section. The abstract theory is treated in 3, where chattering
systems are recalled and relaxed controls for chattering systems are introduced. The
elimination of relaxation is examined in 4. In the closing section we analyze the
robustness of relaxed solutions and their ordinary approximations.

2. An example in detail. Consider the following optimal control problem"

minimize (x(t)+(u ) 1)) dr,
o

(2.1) subject to (t) aj(t)u(t),

x(0) =0.

Here the state x(t) and the control u(t) are scalar functions, defined on [0, 1]. The
index j in the coefficients appears since later on we consider a sequence of problems.
For a given control u(. the integral to be minimized in (2.1) is referred to as the cost
of using u(. ).

We assume that aj(t) is not identically zero on any subinterval of [0, 1]. The
infimal cost is then zero, but it cannot be achieved with an ordinary control. To achieve
zero cost it is necessary to have [u(t)[ 1, but then x(t) is not identically zero, and
thus zero cost is impossible. To get close to the zero cost, the interval [0, 1] can be
divided into k intervals of equal length, and u(t) chosen equal to +1 or to -1 on
alternate intervals; then the cost tends to zero as k- o. An optimal relaxed control
exists. It is the control, say v(t), which assigns to each the values +1 and -1 with
equal probabilities. The sequence u(.) constructed earlier converges, indeed, to the
optimal relaxed control v(. as k (see Berkovitz [4, IV.4] or Warga [8, III.3]).

Consider now a sequence of optimization problems of the type (2.1), each deter-
mined by its coefficients aj(t). We wish to examine systems with rapidly oscillating
coefficients; for definiteness we take

(2.2) aj(t) cos 2wjt

and we are interested in the behavior for large j, say j-. An interpretation that we
adopt is that j is subject to uncertainty; thus the solution to the optimization problem
should be robust with respect to the uncertainty.

As mentioned, the relaxed control v(t) is an optimal solution of (2.1) regardless
ofthe coefficients aj(t). The performance ofthe approximations u(t) depends strongly,
however, on the coefficients. For instance, ifj k the control u(t) is a bad replacement
ofthe optimal relaxed control. (If k is fixed, however, andj -, then the approximation
is valid. This is not accidental, as we show in the closing section.)

The chattering systems were developed (see 1 ], [2]) as a robust model for systems
with rapidly oscillating coefficients. The abstract framework is recalled in the next
section; here we describe the chattering limit of (2.1) as j-. Since the oscillation
rate grows indefinitely, in the limit we wish to allow instantaneous oscillations, say at
time to. This is done by computing the distribution of the values cos 2jt of the
coefficients, in a small neighborhood of to, and taking the limit as j. The limit
distribution as the neighborhood shrinks to to depicts the infinitely rapid oscillation
at to. In the case of (2.1) it is easy to make the computation; the limit distribution
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does not depend on to (due to periodicity) and it is given by

1
(2.3) d/3 7r(1-o"2) 1/2 do

where cr [-1, 1] and dcr is the Lebesgue measure. The interpretation is that in the
limit the coefficient a(to) "oscillates" at to according to d/3. The control function, in
turn, may also oscillate and respond instantaneously to the change of the coefficient.
Thus, the control function has the form u(t, r), and the interpretation is that the value
u(t, o-) is applied when the time is and the value of the coefficient is o-. The chattering
variational problem therefore has the form

minimize x()+ (u(t, cr)-l) dl dr,
-1

(2.4) subject to 2(t) o’u(t, o-) d,
--1

x(0) =0.

By inspection we see that (2.4) has an ordinary optimal solution. Indeed,/3 is symmetric
around 0, and hence the choice u(t, o-)= 1 for all (t, o-) yields a zero cost. If this
optimal solution is applied to the sequence of problems (2.1), the resulting cost tends
to zero as j - co. (Note that u(t, o-) is quite far from the suggested approximations
uk(t), which did not work uniformly anyway.) The phenomenon has a natural explana-
tion as follows. Although the control u(t, o-)= 1 does not oscillate, the combination
of the control with the oscillating parameters aj(t) provides the dither necessary to
mimic the optimal relaxed behavior.

There is also an optimal relaxed control of (2.4); indeed the relaxed control v(t)
described earlier is one. It can be interpreted as an optimal relaxed control of the form
v(t, o-) by letting v(t, o-)= v(t). It can be approximated in the topology of relaxed
controls by ordinary controls uk(t, o-) in various ways (see Example 3.2, or Warga [8,

III.3]). One possibility is the sequence u(t) defined earlier, and indeed, if u(t) with
large k is fixed, then the cost of applying it to the jth problem is small, as j

These observations reflect the properties in the general case analyzed in the rest
of the paper.

3. Relaxed controls for chattering systems. First we recall what chattering systems
are (following 1 ]). Then we examine how relaxed controls are applied to the chattering
systems.

The ordinary control systems in this paper are of the following form:

minimize Q(x( t), u( t), t) dr,
b

(3.1) subject to 2 f(x, t) + g (u, t),

x(a=xo.

The chattering system is obtained when at each the unique control function g(.,
is replaced by a distribution ’,, which is a probability measure on the space G of
functions g(u): Rm- R (here x R, u e R’). The admissible controls, in turn, are
functions u(t, g) of both the time and the coefficient g(.) G. (We still call g the
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coefficient of u, as in (2.1), although in the general case g is a function of u.) The
optimization with a chattering system, therefore, has the form

minimize Q(x(t), u(t, g), t)t(dg) dt,

(3.2) subject to 2=f(x, t)+ [ g(u(t, g)),(dg),

x(a)=xo.

Here dg indicates that the integration is done with respect to the variable g; the measure
’, depends on the time t. The system (2.4) is an example of type (3.2) with G consisting
of g(u)=ru and o- [-1, 1], and ’, =/3 is time invariant. The ordinary system (3.1)
is a particular case of (3.2), when sr, assigns a unit mass to g(., t).

We now display the technical assumptions concerning the data.
The function Q(x, u, t), which generates the cost in (3.1) and (3.2), is defined on

Rn R [a, b], and it is assumed continuous in the three variables.
Let ,1 and K1 be two positive constants. Let o denote the collection of mappings

f:R"x[a,b]-R" that are measurable in and satisfy If(x,t)l<=,l(Ixl+l) and
If(x, t)-f(y, t)l<-Klx-yl. We assume that the function f in (3.2) belongs to o.

Let 2 and 2 be two positive constants. Let G denote the collection of continuous
functions g(u): R - R" satisfying Ig(u)[ =< ,2(lu[ + 1) and Ig(u)- g(u2) -< 21u- u2I.
The space G with the topology of uniform convergence on compact sets is compact
and metrizable (see, e.g., [1]). Denote by Prob (G) the space of probability measures
on G endowed with the weak convergence of measures; the latter is metrizable and
Prob (G) is then a compact metric space (see Billingsley [5]). We assume that ’,
as a function from [a, b] into Prob (G) is measurable. We denote by the space of
all such measure-valued functions.

In this paper we work under the following assumption for the sake of simplicity.
Assumption. Let U be a compact set in R"; all control functions are.restricted

to have values in U.
With little complication of notation, the set U can be made dependent on and

g. Unbounded controls can also be accounted for by using the techniques of McShane
[7] or Warga [8, VI.4]. We omit the details.

The admissible controls, therefore, are the functions

(3.3) u(t,g):[a,b]GU,

which are measurable in both variables.
We now describe how to apply relaxed controls to the chattering systems. Following

the ideas of Warga we allow the control function to assign to each (t, g) a probability
distribution on U. Thus, if Prob (U) denotes the space of probability distributions on
U, then a relaxed control is a mapping

(3.4) v(t, g): [a, b]x G- Prob (U)

assumed measurable in both variables (compare with (3.3)) and where the compact
metric structure on Prob (U) is induced by the weak convergence of measures. The
ordinary control u(t, g) is a particular case of a relaxed control with the identification
of the value u(t, g) with a measure concentrated on u(t, g).

A relaxed control v(.,.) affects (3.2) by averaging for each (t, g) the effects of
the points u U according to the distribution v(t, g). To employ another integral
notation in (3.2) would complicate the formulas. We therefore adopt the notation
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introduced in Young [9] (thanks are due to a referee for this reference), and also used
in McShane [7], as follows. If R(u) is a function of the. variable u, and if v(t, g) is a
measure on U, then (R(v(t, g))) denotes the average u R(u)v(t, g)(du). With this
notation, the optimization problem (3.2) with the availability of relaxed controls has
the following form:

minimize (Q(x(t), v(t, g), t)),(dg) dt,

(3.5) subject to :=f(x, t)+ f (g(v(t, g)))t(dg),

x(a)=xo.

Existence of optimal solutions to (3.5), and the possibility of approximating them
with ordinary controls, follow from the general theory of Warga [8, Chap. 4]. We
derive these results from the following similar observations that are used in the sequel.

A relaxed control function v(., induces a measure, say V, on [a, b] x G x U as
follows. If [c, d] c [a, b], Go c G, and Uo c U, then

(3.6) V([c, d]x Gox Uo) v(t,g)(Uo),(dg)

This measure is a (b- a)-multiple of a probability measure, since v(t, g) and ’, are
probability measures. We say that the relaxed controls Vk(t, g) converge to vo(t, g) if
the induced measures Vk converge to Vo in the weak convergence of measures. With
this convergence we have the following.

LEMMA 3.1. The space of relaxed controls is metric compact; the ordinary controls
are dense in it.

Proof. The space of bounded measures with the weak convergence of measures
is metric compact (see Billingsley [5]). Therefore we have only to show that if V0 is
a limit of Vk and the latter are generated by relaxed controls, then so is V0. But this
is a simple disintegration fact, since ,(R)dt is fixed in the construction (3.6) and Vk(t, g)
are all probability measures. This verifies the compactness. The approximation by
ordinary controls can be exhibited by a straightforward construction, since on a, b] x G
the measure t(R)dt is atomless, as in Berkovitz [4, IV.4] or Warga [8, III.3].

Example 3.2. An optimal relaxed control for (2.4) is the constant measure-valued
control v(t, r) that assigns +1 and -1 with equal probabilities. A sequence that
converges to it in the topology of relaxed control is the sequence Uk(t) defined in 2.
Another sequence can be constructed by dividing [-1, 1] into k intervals of equal
length, and let Uk(t, tr)=+l if r belongs to the even intervals and Uk(t, or)=-1
otherwise.

LEMMA 3.3. If Vk(’," converge to Vo(’," ), then the cost of Vk(’," converges to
the cost of Vo(’," ).

Proof To each Vk(’,’) we associate the function

3,k( t) I S)J(g(vk( t’ g)))t(dg).

The convergence of /)k to DO implies (immediately from (3.6)) that 3,k(" converges to
3’0(" in the weak-L1 convergence on [a, b]. A standard continuous dependence result
implies that the solutions Xk(" of the differential equations in (3.5) with /)k converge
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uniformly to the solution Xo(" of the differential equation when Vo is applied. Define

qk(t)= I (Q(Xk(t), Vk(t, g), t)),(dg).
G

The continuity of Q together with the convergence of Vk to V0 imply that qk(" converge
weakly in Ll([a, hi) to qo(" ). Since the integral of qk(" is the cost of Vk, the proof is
complete.

THEOREM 3.4. The optimization problem (3.5) has an optimal relaxed control, say
Vo(’,’). There is a sequence of ordinary controls Uk(’,’) which converge to Vo(’,’) in
the topology of relaxed controls; in particular the cost of Uk converges to the infimal cost.

Proof The result is a direct consequence of Lemmas 3.1 and 3.3.

4. Elimination of relaxation. If the chattering in the system (3.5) is complete, in
a sense to be defined, the ordinary controls yield the same performance as relaxed
controls. This is the subject of the present section. The phenomenon is similar to the
bang.bang principle (see, e.g., Berkovitz [4]). Here it is the integration with respect to
the measures ’, that enables the elimination of the relaxation. Indeed, ordinary controls
suffice when for each the measure ’, has no atoms (namely, no single point g has
positive measure). We call this property complete chattering; the other extreme, no
chattering, is the case where for each the measure ’, is concentrated on one point,
namely, the ordinary case (3.1).

Before stating the results, we introduce the following convenient tool. Define

(4.1) F(t, g, x)= {(g(u), Q(x, u, t)): u U};

thus (t, g, x) F(t, g, x) is a set-valued map with values being subsets of R n+l. The
continuity of g(.) and Q(-, .,.), and the topology on G, imply that F has a closed
graph. In particular, if x(t) is continuous, then (t, g) F(t, g, x(t)) has closed values
and a closed graph.

We need to integrate the set-valued function F with respect to ’, on a subset
GN(t) of G as follows. Let GN(t) denote the collection of points g G such that g
is not an atom of st,. The set GN(t) is then the t-section of the set GN ((t, g): g is
not an atom of st,}. The latter set is measurable with respect to the Lebesgue field on
[a, b] and the Borel field on G (see [3, Lemma 4.4]). Denote

(4.2) F( t, x) f F( t, g, x)’,(dg)
N(t)

where the integral is defined to be the set in R n+l of integrals (on GN(t) with respect
to st,) of integrable functions y(.) where y(g) is a selection of F, namely, y(g)
F(t, g, x) for ’,-almost every g. This is the standard integration of set-valued maps
(see, e.g., Klein and Thompson [6]). Here and x are parameters of the integration;
parametrized integration of set-valued maps was examined in [3], and the main result
of the latter is the tool we use in the sequel.

The result we state and prove is somewhat more general than the one promised
in the beginning of the section; the latter follows as a simple consequence.

THEOREM 4.1. Let Vo( t, g) be a relaxed control for (3.5). Let Xo( t) be the trajectory
generated by Vo and let Co be its cost. There exists a relaxed control vl t, g) with the same
cost, that generates the same trajectory, and that has the property that whenever g is not
an atom of ,, v( t, g) is concentrated on one point.

Proof. Denote

(4.3) Oo(t,g)=23(g(vo(t,g)), Q(xo(t), Vo(t,g), t)),
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namely, Oo(t, g) is the integrand in the problem (3.5) when Vo(t, g) is applied to it.
Clearly, Oo(t, g) is in co F(t, g, Xo(t)), the convex hull of F(t, g, Xo(t)). Denote

(4.4) y0(t) 1 Oo(t, g),(dg).
N(l)

Then Vo(t)coF(t, Xo(t)) (see, e.g., Klein and Thompson [6, Thm. 18.1.9]). Since r
is atomless on Gs(t), the set V(t,x(t)) is actually convex [6, Cot. 18.1.10], and it
follows that yo(t)F(t, Xo(t)). By the theorem in Artstein [3], it follows that there
exists a measurable selection O(t, g) of F(t, g, Xo(t)) such that

(4.5) Ol(t g),(dg)= To(t).
G(t)

A standard implicit functions lemma (see, e.g., Berkovitz [4, Thm. 7.1]) implies the
existence of an ordinary control ul(t, g) defined on GN such that

Ol(t, g)=(g(ul(t,g)), Q(xo(t), Ul(t, g), t)).

Consider the relaxed control vl(t, g) that is equal to Vo(t, g) if g is an atom of ’,, and
equal to the ordinary control u(t, g) if g is not an atom of sr,. By (4.3)-(4.5) it follows
that Xo(t) is also the trajectory generated by u(t, g) and, given that, it follows that Vo
and v have the same cost. This completes the proof.

COROLLARY 4.2. Suppose that for every the measure , is atomless. Let Vo( t, g) be
a relaxed control, let Xo(t) be the trajectory generated by it, and let Co be its cost. Then
there exists an ordinary control Uo( t, g) that generates the same trajectory and has the
same cost. In particular, the problem (3.2) then has an optimal ordinary solution.

Proof. The first part is a particular case of Theorem 4.1; the conclusion then
follows from Theorem 3.4.

5. Robustness. The control policy that we recommend when rapid oscillations
with uncertainty are present is as follows. First solve the limit chattering problem.
Then apply the solution to the case of rapid oscillations. Success of such a plan is the
robustness in the title of the section. It holds, however, only under some restrictions
on the control functions that are used. In this section we determine these restrictions
and establish the existence of ordinary controls satisfying these restrictions. Results
in this direction appear in [1, 7] for ordinary controls; here we complement these
results and examine in particular the relaxed controls case.

We recall the limit notion that we use to determine if a problem of type (3.2), or
(3.1), is a small perturbation of another problem. Note that each problem is character-
ized by a pair (f(x, t), st,) x (see 3).

Let f, j 0, 1, 2, ., belong to 0%. We say that f converge to f0 if for every x R"
,fo(x, s) ds.’This is the standardand e [a, b] the sequence f(x, s) ds converges to
b

convergence that ensures continuous dependence of solutions. The topology induced
by it on o is metric and compact (see [1]).

We now define a convergence on . First we identify the measure-valued map
t- ’t with the measure ’= t(dt on [a, b]x G, namely,

’(O) ,(O,) at

when D [a, b] G and D, is the t-section of D. Then " is a (b-a)-multiple of a
probability measure. With this identification, the convergence on is then the weak
convergence of measures (see, e.g., Billingsley [5]). With this convergence becomes
metric and compact (see [1]).
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We need the following notation. By cost (v, f, ’) we denote the cost of the control
v when applied to the problem generated by (f, ’) . The first robustness result
is under strong conditions on the controls, as follows.

PROPOSITION 5.1. Let To(t, g) be an admissible relaxed control that is continuous
in the g variable. Let (fj, ) converge to (fo, o) in x . Then cost (To, f, ) converge
to cost (To, fo, ’0).

Proof Proposition 7.1 of [1] is the analogous result for ordinary controls; the
proof is similar. Here is the key step. Let yj(t) be defined by (4.3)-(4.4) above, when
Vo is the control and (f, ) the data of the problem. The continuity of To(t," and the
convergence on x imply that yj(.) converge to 3’o(’) in the weak-L1 sense on
[a, b]. This implies the convergence of the cost.

The continuity condition may be severe in some situations; for instance, if U is
disconnected (say U contains a finite number of points) and when we look for ordinary
controls. (Note, however, that both the optimal relaxed solution and the optimal
ordinary solution in (2.4) are continuous, with U={-1, 1}.) The following result
establishes only a near robustness result, but under eased conditions, which, as we see
later, can be fulfilled in general.

PROPOSITION 5.2. Let K c[a,b]x G be a compact set such that ’o(([a, b]x
G)\K) < 6. Let To(t, g) be an admissible relaxed control such that (to, go)6 K implies
that To(to," is continuous at the point go. Suppose (f, ) converge to (fo, o) in
Then limsup Icost (vo,f, )-cost (vo,fo, o)1<= e(6), with e(6)-,O as 6-.0.

Proof Define Vl(t, g) such that v(t, g) To(t, g) if (t, g) K and rE(t, g) is con-
tinuous in the variable g. This can be done in a standard way, since the space of
probability measures on U is convex. By the previous proposition cost (v,f/,
converges to cost(v,fo,’o). The result would then follow if we prove that
Icost (Vl, fo, go) cost (To, fo, g’o)l =< e (6) with e (6) 0 as 6 - 0. But this follows directly
from (3.5). Indeed, the continuous dependence implies that the trajectory x(t) gener-
ated by v is close to the trajectory x0(t) generated by To; the continuity of Q(., u, t)
and the fact that the cost is an integral on [a, b] x G with respect to go, and-([a, b] x
G)\K has ’o measure 6, imply the result.

Optimal solutions of (3.2) may not satisfy the robustness or the near robustness
conditions of the previous results. We wish, therefore, to establish the existence of
approximate solutions that satisfy the conditions. The following result verifies the
existence of a nearly robust approximate solution in the general case, and a robust
approximate solution under an additional condition on U. In particular, since the
optimal solutions may be relaxed, we wish to verify the existence of robust, or nearly
robust, ordinary controls.

Denote by p (vl, v2) the distance between the control functions V (t, g) and v2( t, g);
namely, the metric that generates the convergence of control functions (see Lemma
3.1). Recall that the cost is continuous with respect to this metric.

THEOREM 5.3. Let v( t, g) be an admissible control for the problem (3.2) generated
by the data (f, ). Let e > 0 and 6 > 0 be given. There exists an ordinary controlfunction
u( t, g) such that p(v, u)< e and such that a compact set K [a, b] G exists, with
’(([a, b] G)\K)<6 and U(to,’) is continuous at points go with (to, go)K. If, in
addition, U is a convex set, then K can be chosen equal to a, b] x G.

Proof The ordinary controls are dense in the space of relaxed controls (Lemma
3.1), therefore an admissible, namely measurable, ordinary control ul(t, g) exists such
that p(v, ul) < e/2. Given 61 > 0, by the Lusin Theorem (Warga [8, p. 70]) there exists
a K c [a, b] G such that ’(([a, b] G)\K) < 61 and ul restricted to K is continuous.
The number 61 can be chosen such that 61-<-6 and such that any extension u of the
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restriction of ul to K, to the space [a, b]x G, will satisfy p(ul, u)< e/2. What we
should show now is the existence of such an extension, with the desired continuity
properties. If U is convex, then, since K is compact, a standard extension technique
provides a continuous extension u of the restriction of ul to K, which is the second
claim of the theorem. If U is not convex, we proceed as follows. To each (t, g) K
we associate the subset K (t, g) of K, consisting of all points in K closest in the space
a, b] x G to (t, g). Then K (t, g) is a multifunction with a closed graph and nonempty

values. It has a measurable selection (e.g., Klein and Thompson [6, Chap. 14]), say
r(t, g). Define u(t, g) by u(t, g) u(t, g) if(t, g) K and u(t, g) u(r(t, g)) otherwise.
Then u is measurable, and continuous at points (t, g) in K. This completes the proof.

Clearly, without the convexity of U there may not exist an ordinary control u(t, g)
near the optimal control, and thht is continuous in g. Take for instance the differential
equation in (2.2) and (2.4), with Q(x, u, t)-x, and U {-1, 1}. The optimal control
is u(t, or)=-sgn tr, and it cannot be approximated by a control continuous in

A conclusion of the previous discussion is that near (in the topology of relaxed
controls) every optimal relaxed solution there exists an ordinary solution that is either
robust or nearly robust. However, note that this robustness is not uniform, as we have
seen in the example of 2. When Uk is fixed near the optimal relaxed control v, then
forj- oo only a small error is guaranteed. But with a varying index k, there is no small
bound on the errors as j- c.
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This paper is dedicated to the memory of E. J. McShane.

Abstract. The evolution of the state x(.) of a system under uncertainty governed by a differential
inclusion

for almost all t[0, T], x’(t)F(t,x(t))

is observed through an observation map H:

’t[0, T], y( t) H(x( t)).
The set-valued character due to the uncertainty leads to the introduction of the following:

Sharp input-output map, which is the (usual) product

VxoeX, l_(xo):=(HoSt’)(Xo):

Hazy input-output map, which is the square product

VxosX, l+(xo):=(H[])(Xo):

t.J H(x(" )).
x(. ),’;e( xo)

f’) H(x(. )).
x(.) (xo)

Where 6e denotes the solution map, recovering the input x from the outputs I_(xo) or l+(xo) means that
these input-output maps are "injective" in the sense that, locally,

X X2:=: l(xt) f’) I(X2) 0.

Criteria for both sharp and hazy local observability are provided in terms of (global) sharp and hazy
observability of the variational inclusion

w’(t) DE(t, (t), ’(t))(w(t)),

which is a "linearization" of the differential inclusion along a solution 2(.), where for almost all t,
DE(t, x, y)(u) denotes the contingent derivative of the set-valued map F(t, .,. at a point (x, y) of its graph.
These conclusions are reached by implementing the following strategy:

1. Provide a general principle of local injectivity and observability of a set-valued map I, which derives
these properties from the fact that the kernel of an adequate derivative of I is equal to zero.

2. Supply chain rule formulas that allow computation of the derivatives of the usual product I_ and
the square product I/ from the derivatives of the observation map H and the solution map

3. Characterize the various derivatives of the solution map 6e in terms of the solution maps of the
associated variational inclusions.

4. Piece together these results for deriving local sharp and hazy observability of the original system
from sharp and hazy observability of the variational inclusions.

5. Study global sharp and hazy observability of the variational inclusions.

Key words, convex process, set-valued derivative, differential inclusion, inverse mapping theorem,
observability, uncertain system, variational inclusion

AMS(MOS) subject classifications. 93B07, 93C10

1. Introduction. We describe the evolution t [0, T]-> x(t) X of the state x(.
of a system under uncertainty by a differential inclusion

(1) for almost all t[0, T], x’( t) F( t, x( t))

where the set-valued map takes into account disturbances and/or perturbations of the
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system. Let us mention a familiar representation of uncertainty"

foralmostall t[O,T], x’(t)-f(t,x(t))+g(t,d(t)), d(t)D(t).

This system is observed through an observation map H that generally is a set-valued
map from the state space X to some observation space Y, that associates with each
solution to the differential inclusion (1) an observation y(. satisfying

(2) Vt6[0, T], y( t) H(x( t)).
For instance, y may be given in a parametrized form:

Vt6[0, T], y(t)=h(x(t))+e(t), e(t)6Q(t).

We assume for simplicity that H does not depend on the time t, but we shall provide
in the appropriate remarks the extensions to the time-dependent case.

0bservability concepts deal with the possibility of recovering the initial state

Xo x(0) of the system knowing only the evolution of an observation [0, T] -- y(t)during the interval [0, T], and naturally, knowing the laws (1) and (2). Once we get
the initial state Xo, we may, by studying the differential inclusion, gather information
about the solutions starting from Xo, using many results provided by the theory of
differential inclusions. For instance, under an adequate Lipschitz property, we know
that for every g(.

ow(xo) )(’) +M diam (F(t, :(t))) dtB

where ow(xo) denotes the set of all trajectories of (1) starting at xo, M is a constant
independent of)(. and B denotes the closed unit ball in the Sobolev space W1’1(0, T).

Let OW := owe from X to (0, T; X) denote the solution map associating with every
initial state xo X the (possibly empty) set ow(xo) of solutions to the differential inclusion
(1) starting at xo at the initial time t- 0.

In other words, we have introduced an input-output system where the
1. inputs are the initial states Xo, and the
2. outputs are the observations y(. ) H(x(. )) of the evolution of the state of the

system through H:

5 H
Inputs ---> States -> Outputs

X Xo "> x(. ow(Xo) ->y(. H(x(. ))

Initial states x’(t) F(t, x(t)) Observations.

x(o) Xo

It remains to define an input-output map. But, because of the set-valued character
(the presence of uncertainty), we can conceive two dual ways for defining composition
products of the set-valued maps OW from X to the space (0, T; X) and H from
(0, T; X) to (0, T; Y). So, for systems under uncertainty, we have to deal with two
input-output maps from X to (0, T; Y):

Sharp input-output map, which is the (usual) product

VXo6 X, I_(xo) :: (H OW)(Xo):= U H(x(" )).
x(.)e(Xo)

Hazy input-output map, which is the square product

VXo6 X, I+(xo) := (H ow)(Xo):= H(x(. )).
x(.)O(xo)
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The sharp input-output map tracks the evolution of at least one state starting from
some initial condition Xo whereas the hazy input-output map tracks all such evolutions.

Opinions may differ about which would be the "right" input-output map, just
because they depend on the context in which a given problem is stated. So, we shall
study observability properties of both thesharp and hazy input-output maps.

Recovering the input Xo from the outputs I_(xo) or I+(xo) means that the set-valued
maps are "injective" in some sense.

When H and 5e are single-valued maps, the input-output map is called observable
whenever the product I := H 5e is injective, i.e.,

(3) H(x,) H(xz):=> x, x2.

When we adapt this definition to the set-valued case, we come up with two
possibilities: If I stands now for either I_ or I/, we can require either the property

I(x)= I(xz)=C’x x:z

or the stronger condition

I(x) I(x2) x x2.

The first way would not be, in general, useful in the framework of uncertain systems
since we often observe just one output y(. H(xo) and not the whole set of possible
outputs HSf(Xo). That is why we will adopt the second point of view, by saying that
the sharp or hazy input-output map ! is "observable" if

(4) X, X:z::::> I(x1) ["] I(x2) .
If this property holds only on a neighborhood of some Xo, we shall say that I is "locally
observable" around Xo.

This is a very pleasant concept that we will study for hazy input-output maps.
However, it is a bit too strong for sharp observability, and we will be content with

the weaker condition that the inverse image i-l(yo) of some observation Yo contains
at most one input Xo:

(5) xl xoYo: I(Xl).

If this is the case, we will say that the input-output map I is "observable" at
(Xo, Yo) and "locally observable" at (Xo, yo) if it holds only on a neighborhood of Xo.

In other words, sharp observability at (XoYo) means that whenever Yo is an
observation of some solution x*(. ), i.e., Yo H(x*(. )), then x*(0)= Xo. Local sharp
observability means that the above holds true only for those x*(0) not too far from Xo.

Hazy observability at (Xo, Yo) means that Yo can be a "common" observation only
for one input Xo. In other words, if we (hopefully) observe an output Yo, which is a
common observation of all solutions x(. ) 5e(go), then go Xo.

Actually, the purpose of this paper is to derive local observability of both the
sharp and hazy input-output maps from the global sharp and hazy observability at
zero of "variational inclusions" through a linearization of the input-output map. The
linearization techniques based on the differential calculus and inverse function theorems
for set-valued maps has been successfully used in the study of local controllability of
differential inclusions and control systems with feedbacks. (See [12], [13], [10], [11],
[o].)
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Here, variational inclusions are "linearizations" of the differential inclusion (1)
along a solution (. ) 5e(Xo) of the form

(6) w’( t) DF( t, ( t), :g’( t))(w( t))

where for almost all t, DF(t, x, y)(u) denotes an adequate concept of derivative (the
contingent derivative, defined below) of the set-valued map F(t, .,. at a point (x, y)
of its graph. Let us just say for the time that they are set-valued analogues of continuous
linear operators.

(These linearized differential inclusions are called variational inclusions because
they extend (in various ways) the classical variational equations of ordinary differential
equations" their solutions starting at some u provide the directional derivative of the
solution to the initial system in the direction u.)

To say that the variational inclusion is hazily (respectively, sharlly) observable at
zero amounts to saying that whenever all (respectively, at least one) solutions w(. to
the variational inclusion (6) starting at u satisfy

(7) Vt [0, T], n’((t))w(t)=0

then u 0.
To reach such conclusions, we shall choose the following strategy:
1. Provide a general principle of local injectivity and observability of a set-valued

map I that derives these properties from the fact that the kernel of an adequate
derivative of I is equal to zero.

2. Supply chain rule formulas that allow computing the derivatives of the usual
product I_ and the square product/+ from the derivatives of the observation
map H and the solution map

3. Characterize the various derivatives of the solution map in terms of the
solution maps of the associated variational inclusions.

4. Piece together these results for deriving local sharp and hazy observability of
the original system from sharp and hazy observability of the variational
inclusions.

5. Study global sharp and hazy observability of the variational inclusions. (This
has already been done in [5], for time-independent closed convex processes,
where it was shown that sharp observability is a dual concept of controllability
and where various characterizations were provided. See the last section for the
comments on the observability of a system around an equilibrium).

But, before implementing this program, we have to avoid the trivial case when
the hazy input-output map/+ takes (locally) empty values.

For doing that, we "project" the differential inclusion (1) onto a differential
inclusion

(8) for almost all [0, T], y’(t) 6 G(t, y(t))

in such a way that the following property holds true:

(9)
V(Xo, yo) Graph (H) all solutions x(.) to (1) and y(. to (8) satisfy

Vt [0, T],y(t)H(x(t)).

If such is the case, then the hazy input-output map/+ is well defined.
To proceed further, we need to introduce the concept of "contingent derivative"

of a set-valued map H from a Banach space X to a Banach space Y at a point (x, y)
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of its graph: It is the set-valued map DH(x, y) X Y that associates with any direction
u the set DH(x, y)(u) of directions v satisfying

(H(x+hu’)-y)liminf d v, 0.(10)
h-,O+, u’-,u h

The choice of this particular derivative is motivated by the fact that its graph is the
contingent cone to the graph of H at (x, y), where the contingent cone TK (x) to K c X
at x K is the set of directions v X such that

lim inf d (x + hv, K / h O.
h-,.0

For our purpose, the contingent cone plays a major role compared to other tangent
cones. However, we shall need other tangent cones and associated derivatives.

The map H is said to be "derivable" if for every (x, y) in the graph of H, v belongs
to DH(x, y)(u) if and only if

(H(x+hu)-y)lim d v, 0.
h-,0+ h

We extend the concept of cOl-function by saying that H is "sleek" if and only if

Graph (H) (x, y)Graph (DH(x, y)) is lower semicontinuous

where means."maps to." (It underlines the set-valued character of the map under
consideration.) In this case, the graph of DH(x, y) is a closed convex cone. Maps
whose graphs are closed convex cones, called closed convex processes, are the set-
valued analogues of continuous linear operators, and enjoy most of their properties.

Returning to the projection problem, we shall say that a set-valued map G: [0, T] x
Y Y is a "Lipschitzian square projection" of the set-valued map F" [0, T] x X X
by H if and only if

(i) F x G is Lipschitzian around [0, T]x Graph (H),
(1)

(ii) V(x,y)Graph(H), G(t,y) fq,.xDH(x,y)(v).
In this paper "F is Lipschitzian on K [0, T] X" means that for all (t, x), (t, y) K

F(t, x) F(t, y)/ k(t)[Ix- yllB
where k Ll(0, T). We shall prove that if there exists a Lipschitzian square projection
of F by H, then the hazy input-output map I+ := H 9 has nonempty values for any
initial value Yo H(Xo).

We state now the observability properties of the hazy input-output map around
a solution .(. to the differential inclusion (1). We assume that F satisfies the following
assumptions:

(i) Vx X the set-valued map F(., x) is measurable,

(ii) Vt [0, T], Vx X, F(t, x) is a closed nonempty set,
(12)

(iii) ::lk(.) Ll(0, T) such that for almost all [0, T]
the map F(t,. is k(t)-Lipschitzian.

TaEORM 1.1. Let us assume that H is continuously differentiable, that F satisfies
assumptions (12), that it has linear growth in the sense that

::lc>O such that ]lF(t,x)]l:= sup
yF(t,x)

and that is has a Lipschitzian square projection G by H.
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1) IfF is derivable and iffor some 2(. ) (Xo) the contingent variational inclusion

13 for almost all O, T], w’(t) DF t, 2(t), 2’(t)) w(t))
is globally hazily observable through H’(2(. )) at zero, then the system (1) is locally hazily
observable through H at (Xo, H(2)).

2) IfF is sleek and iffor every solution x(. to the differential inclusion (1) starting
at Xo, the contingent variational inclusion

(14) for almost all O, T], w’(t) DE t, x (t), x’(t)) w(t))
is globally hazily observable through H’(x(. )) at O, then the system (1) is locally hazily
observable through H around Xo.

Observability properties of sharp input-output maps require stronger assumptions.
We state first the result for the simpler, convex case.

THEOREM 1.2. Let us assume that H is linear and that the graphs of the set-valued
maps F( t, ): X-oX are closed and convex. If for some 2(. b(Xo) the contingent
variational inclusion (13) is globally sharply observable through H at zero, then the system
(1) is globally sharply observable through H at (Xo, H(2)).

A more general case requires some additional assumptions.
THEOREM 1.3. Assume that F has closed convex images, is continuous, derivable,

Lipschitz in the second variable with a constant independent of and that the growth of
F is linear with respect to the state. Let H be a twice continuously differentiable function
from X to anotherfinite-dimensional vector-space Y. Consider an observation y* I_(xo)
and assume that for every solution 2(. to the differential inclusion (1) satisfying
y*(. H(2(. )) and for all [0, T] we have

Ker H’(2(t)) fq [F(t, 2(t))- F(t, 2(t))] +/- {0}.

If for all 2(. as above the contingent variational inclusion (13) is globally sharply
observable through H’(2(. )) at O, then the system (1) is locally sharply observable through
H at (Xo, y*).

2. Hazy and sharp input-output systems. Let us consider a set-valued input-output
system of the following form built through a differential inclusion

(15) for almost all t[0, T], x’(t)F(t,x(t))
whose dynamics are described by a set-valued map F from [0, T] x X to X, where X
is a finite-dimensional vector-space (the state space) and 0< T<_-oe. It governs the
(uncertain) evolution of the state x(. of the system. The inputs are the initial states
Xo and the outputs are the observations y(. ) H(x(. )) of the evolution of the state of
the system through a single-valued (or set-valued) map H from X to an observation
space Y.

Let 6e := 6e from X to (0, T; X) denote the solution map associating with every
initial state Xo e X the (possibly empty) set 6e(Xo) of solutions to differential inclusion
(15) starting at Xo at the initial time t=0.

We can conceive two dual ways for defining composition products of set-valued
maps G from a Banach space X to a Banach space Y and a set-valued map H from
Y to a Banach space Z (which naturally coincide when H and G are single-valued).

DzFrI’ro 2.1. Let X, Y, Z be Banach spaces and G:X Y, H: YZ be
set-valued maps.

1. The usual composition product (called simply the product) H G:XZ of
H and G at x is defined by

(H G)(x) := [_J H(y).
yG(x)
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2. The square product H[] G" X-Z of H and G at x is defined by

(H[B G)(x) := H(y).
ycG(x)

Remarks. 1. The observability problems that we address involve the inversion of
these input-output maps.

There are two ways to adapt to the set-valued case the formula that states that
the inverse of a product is the product of the inverses (in reverse order), since we
know that there are two ways of defining the inverse image by a set-valued map OW of
a subset M:

(a)

(b)

-(M) := {x (x) M },

+(M) := {x](x) c M}.

We then observe the following formulas of the inverse of composition products"

(i) (Ho OW)-’(y)= OW-(H-I(y)),

(ii) (HE]OW)-’(y) 5+(H-l(y)).

This may provide a further justification of the introduction of these two "dual"
composition products.

2. Recall also that a set-valued map OW is upper semicontinuous if and only if the
inverse images OW+ of open subsets are open and that it is lower semicontinuous if and
only if the inverse images ow- of open subsets are open.

3. Observe finally that square products are implicitly involved in the factorization
of maps. Let X be a subset, be an equivalence relation on X and b denote the
canonical surjection from X onto the factor space X/. If f is a single-valued map
from X to Y, its factorization f" X/ Y is defined by

ff(:) := (f [--] b- 1) (:).
It is nontrivial if and only iff is consistent with the equivalence relation , i.e., if and
only if f(x) f(y) whenever b (x) 4 (Y).

When F’X Y is a set-valued map, we can define its factorization F" X/R Y
by

]() := (F [-] b-1) ().
We can associate with this system described through state-space representation

two input-output maps.
DEFINITION 2.2. Let us consider a system (F, H) defined by the set-valued map

F describing the dynamics of the differential inclusion and the observation map H.
Let OW :- owe denote the solution map of the differential inclusion. We shall say that
1) The product I_:= H OW, from X to c(0, T; Y) defined by

VXo X, I_(xo) := [_J H(x(. ))
x(. )c,(Xo)

is the sharp input-output map.
2) The "square product" I+ := HI-] S, from X to (0, T; Y) defined by

VXo X, I+(xo) := fl H(x(’))
x(. ),(xo)

is the hazy input-output map.
Remark. Observe that when the observation map is single-valued, the use of a

nontrivial hazy input-output map requires that all solutions x(.) oW(x0) yield the
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same observation y(. H(x(. )). Hence we have to study when this possibility occurs,
by projecting the differential inclusion (15) onto a differential equation that "tracks"
all the solutions to the differential inclusion. This is the purpose ofthe next section. [3

3. Projection of a system onto the observation space. Our first task is to provide
conditions implying that the hazy input-output map I/ :=H ow is not trivial, above
all when the observation map is single-valued.

We shall tackle this issue by "projecting" the differential inclusion given in the
state space X onto a differential inclusion in the observation space Y in such a way
that solutions to the projected differential inclusion are observations of solutions to
the original differential inclusion.

Let us consider a differential inclusion

(16) x’(t) e F(t, x(t)), x(0) Xo

where F:[0, T]xX--*X is a nontrivial set-valued map and an observation map
H:X Y from X to another finite-dimensional vector-space Y.

We project the differential inclusion (16) to a differential inclusion (or a differential
equation) in the observation space Y described by a set-valued map G (or a single-
valued map g)

(17) y’(t) 6 G(t, y(t)) (or y’(t) g(t, y(t))), y(0) Yo

that allows us to track partially or completely solutions x(. to the differential inclusion
(16) in the following sense:

(a) /(Xo, yo) Graph (H) there exist solutions x(.) and y(.
to (16) and (17) such that t [0, T], y( t) H(x( t)),

(18)
(b) l(xo, yo) Graph (H) all solutions x(. and y(.

to (16) and (17) satisfy Vt[0, T], y(t)H(x(t)).

The second property means that the differential inclusion (17) is, so to speak, "blind"
to the solutions to the differential inclusion (16). When it is satisfied, we see that for
all Xo H-l(yo), all the solutions to the differential inclusion (16) do satisfy

/t[0, T], y( t) H(x( t)).

We need the following definition.
DEFINITION 3.1. Let (x, y) belong to the graph of a set-valued map F:X---> Y

from a normed space X to another Y. Then the contingent derivative DF(x, y) of F at
(x, y) is the set-valued map from X to Y defined by

(F(x+hu’)-y)v DF(x, y)(u) lim inf d v, 0
h-,O+.u’- h

and the paratingent derivative PF(x, y) of F at (x, y) is the set-valued map from X to
Y defined by

(F(x’+hu’)-y’)v PF(x, y) (u)e lim inf d v, 0
h O+,(x’,y’) F(x,y),u’ h

where "F denotes the convergence in Graph (F).
(See 23 for the study of paratingent cones and the applications ofChoquet’s Theorem.)

When F is pseudo-Lipschitzian around (x, y) Graph (F) in the sense that

lk > 0 such that (x’, y’) Graph F near (x, y), /x" X near x,
F(x") c F(x’) + kllx’- x"lln
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the above formulas become

(i) v DF(x, y)(u)cC, lim inf

(ii) v PF(x, y)(u):>

F(x+hu)-Y)h =0,

(F(x’+hu).s-.y..’)lim inf d v, O.
hO+,(x’,y’)-") t’(x,y) h

Moreover, in this case the derivative DF(x, y) has nonempty images and is k-Lipschit-
zian (see [12]).

PROPOSiTiON 3.1. Let us consider a closed set-valued map Hfrom X to Y.
1. Let us assume that F and G are nontrivial upper semicontinuous set-valued maps

with nonempty compact convex images and with linear growth. We posit the assumption

(19) V(x,y)Graph (H), G(t, y)Vl(DH(x, y)o F)(t,x)f.

Then property (18) (a) holds true.
2. Let us assume that F G is nontrivial Lipschitzian on a neighborhood of [0, T] x

Graph (H) and has a linear growth. We posit the assumption

(20) V(x,y)Graph(H), G(t,y)c(DH(x,y)7-lF)(t,x).

Then property (18)(b) is satisfied.
Proof It follows obviously from the viability and invariance theorems of the graph

of H for the set-valued map F G.
1. When G(t, y) intersects (DH(x, y) F)(t, x)= (.J Ft.)DH(x, y)(v), we

deduce that Graph (H) is a viability domain of F x G (t,.). Hence we apply the
Viability Theorem (see [14], [1, Thm. 4.2.1, p. 180]).

2. When F x G is Lipschitzian and satisfies (20), we deduce that Graph (H) is
invariant by F x G(t,. ). Hence we apply the Invariance Theorem (see [8], [1, Thm.
4.6.2]). l-]

In particular, we have obtained a sufficient condition for the hazy input-output
set-valued map/+ to be nontrivial.

First, it will be convenient to introduce the following definition.
DEFINITION 3.2. Let us consider F:[0, T] x X X and H :[0, T] X Y. We

shall say that a nontrivial set-valued map G:[0, T] x Y Y is a Lipschitzian square
projection of a set-valued map F" [0, T] x X X by H if and only if

(i) F G is Lipschitzian around [0, T] x Graph (H),

(ii) V(x,y)Graph(H), G(t,y)(DH(x,y)F)(t,x).

Therefore, for being able to use nontrivial hazy input-output maps, we shall use
the following consequence of Proposition 3.1.

PROPOSITION 3.2. Let us assume that F:[0, T] x X-X and H X-., Y are given.
If there exists a Lipschitzian square projection ofF by H, then the hazy input-output map
I/ := H IS] has nonempty values for any initial value Yo H(Xo).

Remark. When the observation map H iS single-valued and differentiable, then
conditions (19) and (20) become, respectively,

(i) Vye H-’(x), G(t, y)rl(UvF(,,,,)H’(x)(v))#
or G(t, y) r) (H’(x) F)(t, x) ,

(ii) Vy H-’(x), G(t, y)c f’lz(,,x H’(x)(v)
=:(H’(x)F)(t,x).
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When G g is a single-valued map, we obtain naturally the following consequence.
COROLLARY 3.1. Let us consider a closed set-valued map Hfrom X to Y.
1) Let us assume that F is an upper semicontinuous set-valued map with nonempty

compact convex images and with linear growth and that there exists a continuous selection
g with linear growth of the product

V(x,y)eGraph (H), g(t, y)e(DH(x, y)o F)(t,x).

Then property (18) (a) holds true.
2) Let us assume that F x g is Lipschitzian on a neighborhood of [0, T] x Graph (H)

with linear growth. If g satisfies

V(x,y)Graph(H), g(t,y)6(DH(x,y)F)(t,x),

then property (18)(b) is satisfied.
Remark. Naturally, these formulas have their analogues when the observation

maps are time-dependent.
Conditions (19) and (20) becomes, respectively,

(i) V(t,x,y)Graph(H), G(t,y)O(Ucv(,,x)DH(t,x,y)(1, v))#,

(ii) V(t,x,y)6Graph(H), G(t,y)ccF(,,xDH(t,x,y)(1, v).

When the observation map H is single-valued and differentiable, then these
conditions can be written in the form

(i) V(t, x) Dom (H),
G(t, H(x))71(O/OtH(t,x)+Ul(,.x)H’(t,x)v)#, or
G(t, g(x)) f’) (O/Ot H(t, x)+(S’(t, x) F)(t, x)) ;

(ii) V(t, x) Dom (H),
G( t, H(x)) O/Ot H( t, x) + (,, H’( t, x)v
=: O/Ot H(t, x)+(H’(t, x)[] V)(t, x).

Remark. We observe that when the set-valued maps F and G are time-independent,
Proposition 3.1 can be reformulated in terms of commutativity of schemes for square
products.

Let us denote by the solution map associating to any Yo a solution to the
differential inclusion (equation) (17) starting at Yo (when G is single-valued and
Lipschitzian such solution is unique).

Then we can deduce that property (18)(b) is equivalent to

Vyo6Im(H), *(yo)c((H[])[]H-1)(yo).

Condition (20) becomes: for all y Im (H),

G(y)c CI DH(x,y)(v):=(DH(x,y)?-]F)[]H-l(y).
xH-l(y) veF(x)

In other words, the second part of Proposition 3.1 implies that if the scheme

F

H-1 $ DH(x, y)
Y Y
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is "commutative for the square products," then the derived scheme

,9

x -o (o, T; X)
H,],’H- $ H

Y ---> cg(0, T; Y)

is also commutative for the square products.

4. Hazy and sharp observability. The observability concepts deal with the possibil-
ity of recovering the input--here, the initial stateafrom the observation of the evolution
of the state. In other words, they are related to the injectivity of the, sharp and hazy
input-output set-valued maps, or, more generally, to the single-valuedness of the
inverses of those input-output maps.

So, we start with precise definitions.
DEFINITION 4.1. Let 0%: X Y be a set-valued map. We shall say that it enjoys

local inverse single-valuedness at an element (x*, y*) of its graph if and only if there
exists a neighborhood N(x*) such that

{x ly* N(x*)= (x*}.

If the neighborhood N(x*) coincides with the domain of , is said to have (global)
inverse single-valuedness at y*.

We shall say that it is locally injective around x* if and only if there exists a
neighborhood N(x*) such that, for all x x2 N(x*), we have @(x)CI ,(x2)= . It
is said to be (globally) injective if we can take for neighborhood N(x*) the whole
domain of .

With these definitions at hand, we are able to adapt some of the observability
concepts to the set-valued case.

DEFINITION 4.2. Assume that the sharp and hazy input-output maps are defined
on nonempty open subsets. Let y* H(oW(x0)) be an observation associated with an
initial state Xo.

We shall say that the system is sharply observable at (respectively, locally sharply
observable at) (x0, y*) if and only if the sharp input-output map I_ enjoys the global
inverse single-valuedness (respectively, local) at (Xo, y*).

Hazily observable and locally hazily observable systems are defined in the same
way when the sharp input-output map is replaced by the hazy input-output map I+.

The system is said to be hazily (locally)observable around Xo ifthe hazy input-output
map 1+ is (locally) injective around Xo.

Remarks. Several obvious remarks are in order. We observe that the system is
sharply locally observable at (Xo, y*) if and only if there exists a neighborhood N(xo)
of Xo such that

If x(’)A(N(xo)) is such that y*(.) H(x(.)), then x(O) Xo,

i.e., sharp observability at (Xo, y*) means that an observation y*(. characterizes the
input Xo.

The system is hazily locally observable at (xo,y*) if and only if there exists a
neighborhood N(xo) of Xo such that, for all x N(xo),

If Vx(’) (x,), y*(’) H(x(’)), then x, Xo.

It is also clear that sharp local (respectively, global) observability implies hazy local
(respectively, global) observability.
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We mention that if we consider two systems and 2 such that

Vx x, (x) g;(x),

then
1. If 2 is sharply locally (respectively globally) observable, so is ;
2. If is hazily locally (respectively globally) observable, so is 2.
We shall derive local observability and injectivity of a set-valued map :X Y

from a general principle based on the differential calculus of set-valued maps.
For that purpose, we shall use its contingent and paratingent derivatives

D(x*, y*) and P;(x*, y*), which are closed processes from X to Y (see the previous
section for precise definitions).

Since 0 D;(x*,y*)(O), we observe that to say that the "linearized map"
D(x*, y*) enjoys the inverse single-valuedness at zero amounts to saying that the
inverse image D;(x*,y*)-(O) contains only one element, i.e., that its kernel
Ker D(x*, y*) is equal to zero, where the kernel is naturally defined by

Ker D(x*, y*):= D;(x*, y*)-(0).

THEOREM 4.1. Let be a set-valued map from a finite dimensional vector.space X
to a Banach space Y and (x*, y*) belong to its graph.

1. If the kernel of the contingent derivative D(x*, y*) of at (x*, y*) is equal
to {0}, then there exists a neighborhood N(x*) such that

(21) {x [y* e (x)} 0 N(x*) {x*}.

2. Let us assume that there exists 3’ > 0 such that (x*+ yB) is relatively compact
and that ; has a closed graph (then ;(x*+ yB) is compact). Iffor all y (x*) the
kernels of the paratingent derivatives P(x*, y) of ; at (x*, y) are equal to {0}, then
; is locally injective around x*.

Proof 1. Assume that the conclusion (21) is false. Then there exists a sequence
of elements x, x* converging to x* satisfying

Vn-0, y*(x,).

Let us set h, := [Ix,- x*l[, which converges to zero, and

u,:=(x,-x*)/h,.

The elements u, do belong to the unit sphere, which is compact. Hence a subsequence
(again denoted) u, does converge to some u different from zero. Since the above
equation can be written as

n_->0, y*+h,O (x*+h,u,)

we deduce that

OD(x*,y*)(u).

Hence we have proved the existence of a nonzero element of the kernel Of D(x*, y*),
which is a contradiction.

2. Assume that is not locally injective. Then there exists a sequence of elements
x, x, N(x*), x # x, converging to x* and y satisfying

2Vn ->__ 0, y. o%(x.) 0 (x.).

Let us set h, := [Ix,- x,ll, which converges to zero, and

u":=(x.-x.)/h..
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The elements u, do belong to the unit sphere, which is compact. Hence a subsequence
(again denoted) u, does converge to some u different from zero.

Then for all large n
2y, e @(x) f)

We deduce that a subsequence (again denoted) y, converges to some y e ,(x*) (because
Graph () is closed).

Since the above equation implies that

VnO, y.+h,,O,.(x2,,+h.u.)
we deduce that

O P(x*, y)(u).

Hence we have proved the existence of a nonzero element of the kernel of P(x*, y),
which is a contradiction.

When o% is convex (i.e., its graph is convex), we have a simple.criterion for global
observability: Define the algebraic derivative Da(x, y) of at (x, y) by

v Da(x, y)(u)cr::lh>O such that y+hv (x+hu).

Then Graph D o%(x, y) Graph D(x, y).
PROPOSIrION 4.1. Let be a convex set-valued map from a Banach space X to a

Banach space Y and (x*, y*) belong to its graph. If the kernel of DF(x*, y*) is equal
to zero, then

x x*y*
_
(x).

Proof If not, there exists x x* such that y* e (x). We set u := x- x*. Equality

y* +0= y* 6 5(x) off(x* + u)

implies that u, which is different from zero, does belong to the kernel of
D,(x*,y*).

Therefore, using this result for proving sufficient conditions for sharp and/or hazy
observability, we need:

1. To have chain rule formulas for composition and square products of set-valued
maps;

2. To characterize the derivatives of the solution map in terms of solutions to the
associated variational equations.

The next proposition provides chain rule formulas for square products that are
needed for estimating the contingent and paratingent derivatives of the hazy input-
output map i/ in terms of the adjacent and circatangent derivatives of the map G at
(x*,y*).

Despite the fact that both adjacent and circatangent derivatives can be defined
for any set-valued map F, the formulas are simpler when we deal with pseudo-
Lipschitzian set-valued maps. Since we use them only in this context in this paper, we
provide their definitions in this limited case.

DEFINITION 4.3. Let (x, y) belong to the graph of a set-valued map F:X-o y
from a normed space X to another Y. Assume that F is pseudo-Lipschitzian around
(x, y) Graph (F), then the adjacent derivative DF(x, y) and the circatangent derivative
CF(x, y) are the set-valued maps from X to Y, respectively, defined by

v OF(x, y)(u)Cr lhi_mo+ v, =0
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and

(F(x’+hu)-y’)v CF(x, y)(u) lim d v, =0.
h-’>O+,( x’, y’)-> l=( x, y h

Several remarks are in order. First, all these derivatives are positively homogeneous
and their graphs are closed.

We observe the obvious inclusions

CF(x, y)(u)c DF(x, y)(u)= DF(x, y)(u)c PF(x, y)(u)

and that the definitions of contingent and adjacent derivatives on the one hand, the
paratingent and circatangent derivatives, on the other, are symmetric. When F :=f is
single-valued, we set

Df(x):= Df(x,f(x)), Df(x) := Df(x,f(x)), Cf(x) := Cf(x,f(x)).

We see easily that

Df(x)(u)f’(x)u

Df(x)(u) =f’(x)u

Cf(x)(u) =f’(x)u

if f is GS.teaux differentiable,

if f is Fr6chet differentiable,

if f is continuously differentiable.

The choice of these strange limits is dictated by the fact that the graph of each
of these derivatives is the corresponding tangent cone to the graph of F at (x, y). (The
graphs of the circatangent derivatives are the Clarke tangent cones to the graphs, which
are always convex.)

The most familiar instance of set-valued maps is the inverse of a noninjective
single-valued map. The derivative of the inverse of a set-valued map F is the inverse of
the derivative:

P(F)-(y, x) PF(x, y)-,

D(F)-(y, x)= DF(x, y)-,

D(F)-l(y, x)= DF(x, y)-,

C(F)-’(y, x)= CF(x, y)-l,

and enjoy a now well investigated calculus.
The cirCatangent derivatives are closed convex processes, because their graph are

closed convex cones, i.e., they are set-valued analogues of the continuous linear
operators. We refer to [21] and [2, Chap. 7] for various properties of closed convex
processes.

We say that a set-valued map F is derivable at (x, y) Graph (F) if DF(x, y)=
DF(x, y) and that it is derivable if itis derivable at every point of its graph.

We say that a set-valued map F is sleek at (x, y) Graph (F) if

Graph (F) (x’,.y’)Graph (DF(x’, y’)) is lower semicontinuous at (x, y)

and it is sleek if it is sleek at every point of its graph. In this case, we can prove that
the contingent, adjacent, and circatangent derivatives coincide.

PROPOSITION 4.2. Let us consider a set-valued mapGfrom a Banach space X to a
Banaeh space Y and a single-valued map Hfrom Y to a Banaeh space Z. Assume that
G is Lipschitzian around x*. If H is differentiable at some y* G(x*), then
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1. The contingent derivative of H[-I G is contained in the square product of the
derivative ofH and the adjacent derivative of G:
Vu e Dom (DG(x*, y*)), D(HT-1G)(x*, H(y*))(u) H’(y*) DG(x*, y*)(u);

2. If H is continuously differentiable around y*, then the paratingent derivative of
H G is contained in the square product of the derivative of H and the circatangent
derivative of G:
Vu e Dom (CG(x*, y*)), P(H G)(x*, H(y*))(u) H’(y*) CG(x*, y*)(u).

Proof 1. Let u Dom DG(x*, y*) and w belong to D(H G)(x*, H(y*))(u).
Hence there exist a sequence h, > 0 converging to zero and sequences of elements u,,
w. converging to u and w, respectively, such that

Vn >-0, H(y*)+ hw f"l H(y).
y G x*+ h.u,,

Take now any v in DG(x*, y*)(u). Since G is Lipschitzian around x*, there exists
a sequence of elements v, converging to v such that

Vn >- O, y* + hv,, G(x* + hu).

Therefore,

Vn >- O, H(y*) + h,,w H(y* + h,,v).

Since H is ditterentiable at y*, we infer that

H’(y*)v w.

Since this is true for every element v of DG(x*, y*)(u), we deduce that

w (’1 H’(y*)v H’(y*)[-] DG(x*, y*)(u).
vED’G(x*,y*)(u)

2. Let u e Dom CG(x*, y*) and w belong to P(H G)(x*, H(y*))(u). Hence
there exist a sequence h, > 0 converging to zero and sequences of elements (x,, z,)
Graph (HI--1G), u, and w, converging to (x*, z*), u and w, respectively, such that

Vn->O, z + hw f-1 H(y).
y G x,, + h,,u.

The set-valued map G being Lipschitzian, there exists a sequence of elements y. G(x.)
converging to y*. By definition of the square product, we know that z. H(y.).

Now take any v in CG(x*, y*)(u). Since G is Lipschitzian around x*, there exists
a sequence of elements v. converging to v such that

Vn >-_ O, y,, + h,,v,, e G(x,, + h,,u,,).

Therefore,

Vn >-0, H(y.)+ h.w. H(y,, + h.v,,).

Since H is continuously ditterentiable around y*, we infer that

H’(y*)v w.

Since this is true for every element v of CG(x*, y*)(u), we deduce that

w 0 H’(y*)v H’(y*) CG(x*, y*)(u). [3
vECG(x*,y*)(u)

For the usual product, it is easy to check that

H’(y) DG(x, y)(u) D(Ho G)(x, H(y))(u).
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Naturally, equality holds true for algebraic derivatives: if H ( Y, Z) is a linear
operator, we check that

(22) H DaG(x, y)(u)= D,(Ho G)(x, H(y))(u).

We do not know for the time other elegant criteria implying the chain rule for
the usual composition product of set-valued maps in infinite-dimensional spaces. Let
us mention, however, the following result involving the co-subditferential DG(xo, yo)*,
which is the closed convex process from Y* to X* defined by

pDG(x,y)*(q) if and only ifV(x’,y’)Graph(G), (p,x’-x)<=(q,y’-y).

Let us assume that H is a continuous linear operator H ( Y, Z) from Y to Z. Equality

D(H G)(xo, Hyo)(U)= H DG(xo, yo)(U)

holds true if X and Y are reflexive Banach spaces and the co-subdifferential of G at
(Xo, Yo) satisfies

Im (n*)+ Dom (DG(xo, yo)*) Y*.

Furthermore, this condition implies that the kernels of D(HoG)(xo, Hyo) and
H DG(xo, Yo) are equal to {0} (see [6]).

5. Variational inclusions. We now provide estimates of the contingent, adjacent,
and circatangent derivatives of the solution map 5e associated to the differential
inclusion

(23) x’(t) F(t, x(t)), a.e. in [0, T].

We shall express these estimates in terms ofthe solution maps of adequate linearizations
of differential inclusion (23) of the form

w’( t) F’( t, x( t), x’( t))(w( t))

where for almost all t, F’(t,x,y)(u) denotes one of the (contingent, adjacent, or
circatangent) derivatives of the set-valued map F(t, .,. at a point (x, y) of its graph
(in this section the set-valued map F is regarded as a family of set-valued maps
xF( t, x) and the derivatives are taken with respect to the state variable only).

These linearized differential inclusions can be called the variational inclusions,
since they extend (in various ways) the classical variational equations of ordinary
differential equations.

Let : be a solution of the differential inclusion (23). We assume that F satisfies
the following assumptions:

(i) ’x X the set-valued map F(., x) is measurable,

(ii) Vt[0, T], /xX, F(t,x) is a nonempty closed set,
(24)

(iii) 3/3 > 0, k(. ) LI(0, T) such that for almost all t [0, 7"]
the map F(t,. is k(t) Lipschitz on (t) +/3B.

Under the above assumptions the map Xo-.*Se(Xo) is pseudo-Lipschitzian around
(if(0), if). Consider the adjacent variational inclusion, which is the "linearized" along
the trajectory ff inclusion

(25)
w’(t) DF(t,(t),’(t))(w(t)) a.e. in [0, T],

w(0)= u

where u X. In Theorems 5.1 and 5.2 below we consider the solution map O as the
set-valued map from R" to the Sobolev space WI’(0, T; R").
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THEOREM 5.1 (adjacent variational inclusion [11]). If the assumptions (24) hold
true, then for all u X, every solution w W’(O, T; X) to the linearized inclusion (25)
satisfies w DO(g(0), )(u).

In other words,

{w(" )1 w’(t) DF(t, (t), ’(t))(w(t)), w(0) u} c Dbe(:(0), ff)(u).

Proof Filippov’s theorem (see, for example, [1, Thm. 2.4.1, p. 120]) implies that
the map u (u) is pseudo-Lipschitzian on a neighborhood of ((0), ). Let hn > 0,
n 1, 2,... be a sequence converging to zero. Then, by the very definition of the
adjacent derivative, for almost all t [0, T],

lim d(w’(t.), F(t, :(t)+ hnw(t))- ’(t) O.(26)

Moreover, since :’(t) F( t, (t)) almost everywhere in [0, T], by (24), for all sufficiently
large n and almost all [0, T]

d (’(t) + h,w’(t), F( t, (t) + h,w(t))) <= h,(I w’( t)[[ + k(t)l w(t) 11).
This, (26), and the Lebesgue dominated convergence theorem yield

(27) d(’(t)+ hw’(t), F(t, (t)+ h,w(t))) at= o(h,)

where lim,_ o(h,)/h, 0. By the Filippov Theorem (see, for example, [1, Thm. 2.4.1,
p. 120]) and by (27) there exist M =>0 and solutions y, 6 ow(:(0)+ h,,u) satisfying

Y’, ’- h.w’ll ,’o,-;x) <-- Mo(
Since (y,,(O)-(O))/h,, u w(0) this implies that

lim
y"- w’ in L(0, T; X).w in C(0, T; X), lim

y’ ’
Hence

lim d ( w,
oW($(0) + h,u) :)h,,

=0.

Since u and w are arbitrary the proof is complete. [3

Next consider the circatangent variational inclusion, which is the linearization
involving circatangent derivatives:

w’(t) CF(t, 2(t), 2’(t))(w(t))
(28)

w(0) u

a.e. in [0, T],

where u X. The next theorem is similar to Lemma 4.11 of [11].
THEOREM 5.2 (circatangent variational inclusion). Assume that conditions (24)

hold true. Then for all u X, every solution w WI"(O, T; X) to the linearized inclusion
(28) satisfies w C5(ff(0), :)(u).

In other words,

{w(. )l w’(t) CF(t, (t),’(t))(w(t)), w(0) u}c CSe(.f(0), .f)(u).

Proof By Filippov’s theorem the map u- 0(u) is pseudo-Lipschitzian on a

neighborhood of (if(0), 2). Consider a sequence xn of trajectories of (23) converging
to : in WI’(0, T; X) and let h, 0+. Then there exists a subsequence x := x.j such that

lim x.(t) :’(t) a.e. in [0, T].(29)
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Set hj hnj. Then, by definition of circatangent derivative and by (29), for almost all
t[o, T]

(30) lim d(w’(t) F(t, xj(t)+ Ajw(t))-xj(t)) =O"
l

Moreover, using the fact that xj(t) F(t, x(t)) almost everywhere in [0, T], we obtain
that for almost all [0, T] and for all j large enough

d(x( t) + hjw’( t), F( t, xj( t) + hjw( t))) w’(/)ll + k(t)II w(t) II).

This, (30), and the Lebesgue dominated convergence theorem yield

(31) d xj(t)+ Ajw’(t), F(t, xj(t)+ Ajw(t)) dt= o(Aj)

where lim. o()/ =0. By the Filippov Theoremand (31), there exist M0 and
solutions y (x(0)+ &u) satisfying

Ily5- x5- &w’l[ tl(0, T; X) Mo(&).

Since (y(O)-x(O))/&= u w(0), this implies that

lim
y x w in C (0, T; X), lim

yj x w’ in L (0, T; X).

Hence

(x(O)+h,u)-x;)(32) lim d w, =0.

Therefore we have proved that for every sequence of solutions x, to (23) converging
to and every sequence h, -* 0+, there exists a subsequence x x,j that satisfies (32).
This yields that for every sequence of solutions x, converging to and-h, - 0+

( 5(x(O)+ hu)-xn)lim d w, 0.

Since u and w are arbitrary the proof is complete.
We now consider the contingent variational inclusion

w’(t)-C6 DF(t,(t),’(t))(w(t)) a.e. in [0, T],
(33)

w(0) u.

THEOREM 5.3. (contingent variational inclusion). Let us consider the solution map
5f as a set-valued mapfrom R to W’(O, T; R") supplied with the weak-, topology and
let Y(. be a solution of the differential inclusion (23) starting at Xo. Then the contingent
derivative Dg(Xo, (.)) of the solution map is contained in the solution map of the
contingent variational inclusion (33), in the sense that

(34) D(xo,(’))(u)c {w(’)lw’(t)6-6-6 DF(t,(t),’(t))(w(t)), w(0) u}.

To prove the above theorem we need to recall a property of Kuratowski’s upper
limit: Let K, be a sequence of subsets of a Banach space X. We say that the set

co-lim sup K, := E-6 U K,
n N>0 n>N
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is the convex upper limit of the sequence K,. Recall that the Kuratowski upper limit of
the K,’s is defined by

limsupK,:= (q f’) U (K+eB).
no e>O N>O nN

It is clear that the convex upper limit is closed and convex. Moreover, since
co U _>__ N (K, + eB) co U,>_N K, + eB, we obtain

co-limsupK:= 0 CI E-6 1,3 (K,+eB).
e>0 N>0 n:>N

Hence the convex upper limit contains the closed convex hull of the Kuratowski upper
limit. The convex hull of an upper limit and the convex upper limit are related by the
following lemma.

LEMMA 5.1. Let us consider a sequence ofsubsets K, contained in a bounded subset
of a finite-dimensional vector-space X. Then

co-lim sup K. E-6(lim sup K,).

Proof Since an element x of co-lim sup._ K, is the limit of a subsequence of
convex combinations vN of elements of U ,> N K, and since the dimension of X is an
integer p, Carath6odory’s Theorem allows us to write

p p

/)N :’--" N
aj XN, where aft=l, aff >- O

=o =o

where N => N and where x. belongs to KN.,. The vector a N of p + components a
contains a converging subsequence (again denoted) a N that converges to some non-
negative vector a of p + 1 components a such that =o a 1.
The subsets K, being contained in a compact subset, we can extract successively

subsequences (again denoted) xN converging to elements xj that belong to the
Kuratowski upper limit of the subsets K,. Hence x is equal to the convex combination
,P--o ajx and the lemma is proved. [3

Proof Fix a direction u R" and let w(. belong to D(xo, (" ))(u). By definition
of the contingent derivative, there exist sequences of elements hn-->0+, u,--> u and
w.(. )--> w(. in the weak-, topology of W’(0, T; Rn) and c> 0 satisfying

(t)II < c a.e. in [0, T],(i) IIw
(35) (ii) ’(t) + h,w;(t) c F(t, (t) + h,w,(t)) a.e. in [0, T],

(iii) w.(0)= u,.

Hence

(i)
(36)

(ii)

w,(. converges pointwise to w(. ),

w;(. converges weakly in L(0, T; R") to w’(.).

By Mazur’s Theorem and (36)(ii), a sequence of convex combinations

Vm(t):= aPw,(t)
p=m

converges strongly to w’(. in L(0, T; X). Therefore a subsequence (again denoted)
vm(.) converges to w’(.) almost everywhere. By (35)(i),(ii) for all p and almost all
tc[O, r]

F( t, ( t) + hpwp( t)) g’( t)
W’p( t) fq cB.

hp
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Let t[0, T] be a point where vm(t) converges to w’(t) and x’(t) F(t,x(t)). Fix
an integer n->l and e>0. By (36)(i), there exists m such that hp<-_l/n and IIw(t)-
w(t)l[<-_l/n for all p>=m.

Then, by setting

F( t, ( t) + hy) ’( t)
f_) cB(y, h):=

h

we obtain that

Vm(t) K,, :=co ( U
he]O, l/n], y w(t)+B/n

and therefore, by letting m go to oe, that

(y, h))

w’( t) -C-6 ( he]0, I/n], y w(t)/B/n
(y, h)).

Since this is true for any n, we deduce that w’(t) belongs to the convex upper limit:

w’(t) CI 6-6( kJ (y, h)).nl he]O, l/n], yw(t)+B/n

Since the subsets (y, h) are contained in the ball of radius c, we infer from the
last lemma that w’(t) belongs to the closed convex hull of the Kuratowski upper limit

w’(t)-6-6 CI ( (3 ((y, h)+eB)).e:>0, n--l h]O, 1/n],yw(t)+B/n

We observe now that

e>O,n-->l h]O, 1/n],yw(t)+B/n
(Op(y, h)+ eB)) c DF(t, :(t), g’(t))(w(t))

to conclude that w(. is a solution to the differential inclusion

w’(t)’U6DF(t,(t),’(t))(w(t)) a.e. in [0, T],

w(0) u.

Since w DS(Xo, (. ))(u) is arbitrary we proved (34).

6. Local observability theorems. In this section we piece together the general
principle on local inverse univocity and local injectivity (Theorem 4.1), the chain rule
formulas (Proposition 4.2) and the estimates of the derivatives of the solution map in
terms of solution maps of the variational equations (Theorems 5.1, 5.2 and 5.3) to
prove the statements we have announced on local hazy and sharp observability.
Throughout the whole section we assume that H is differentiable and F has a linear

growth. We impose also some regularity assumptions on the derivatives of F. In the
next theorem it is assumed that F(t, is derivable in the sense that its contingent and
adjacent derivatives do coincide.

THEOREM 6.1. Let us assume that for every [0, T], F( t,. is derivable, satisfies
assumptions (12), and that it has a Lipschitzian squareprojection G by H. Let( 5e(Xo).
If the contingent variational inclusion

(37) for almost all t[0, T], w’(t)DF(t,(t),’(t))(w(t))
is globally hazily observable through H’(:(.)) at zero, then the system (23) is locally
hazily observable through H at (Xo, H()).
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Proof We apply the general principle (Theorem 4.1) to the hazy input-output
map /+ :=H 5f, which is defined since we have assumed that there exists a square
projection G (see Definition 3.2 and Proposition 3.2). We have to prove that the kernel
of the contingent derivative D/+(Xo, Yo) of/+ (where yo := H(2(. ))) is equal to zero.
By Filippov’s Theorem, the solution map 5 is Lipschitzian around Xo. Then we can
apply Proposition 4.2 which states that for all u Dom (D(Xo, 2(. )))

DI/(xo, yo)(U)c (H’(2(. ))[’-] D(Xo, 2(. )))(u).

By Theorem 5.1, we know that for any u X, the set (u) of solutions to the adjacent
variational inclusion (25) starting at u is contained in the adjacent derivative of 0:

(u) := {w(. )1 w’(t) DF(t, 2(t), 2’(t))(w(t)) and w(0) u}

(38) ={w(’)lw’(t)6DF(t, 2(t),2’(t))(w(t)) and w(O)= u}

c Db5(Xo, 2)(u).

We also know that for all (x, y) Graph (F(t,.)), the contingent derivative DF(tx, y)
is k(t)-Lipschitz (see [12]). Hence, by the Filippov Theorem [1, Thm. 2.4.1, p. 120]
for every u Rn, the contingent variational inclusion (37) has a solution starting at u.
Therefore, by (38), Dom (DSt’(Xo, 2(. ))) is equal to the whole space. This yields

Vu R", DI+(xo, Yo)(U)C (H’(2)i--]cb)(u)

so that the kernel of D/+(Xo, Yo) is contained in the kernel of H’(2) . But to say
that the kernel of H’(2)Tq is equal to zero amounts to saying that the linearized
system (37) is hazily globally observable at zero through H’(2(. )). Hence the kernel
of D/+(Xo, Yo) is equal to zero, and thus, the inverse image of hazy input-output map
I_(yo) contains locally a unique element Xo. [3

Remark. The above result remains true with DF in (37) replaced by DF if instead
of derivability of F we assume that

Dom (Db(Xo, 2(. )))=

In the next theorem we assume that F is sleek, so that its contingent and
circatangent derivatives do coincide.

THEOREM 6.2. Let us assume that F is sleek, has convex images, satisfies assumptions
(12), and that it has a Lipschitzian square projection G by H. Iffor all 2(. b(Xo) the
contingent variational inclusion (37) is globally hazily observable through H’(2(. )) at 0,
then the system (23) is hazily observable through H around Xo.

Proof We apply the second part of the general principle on local injectivity
(Theorem 4.1) to the hazy input-output map I/ :=H 0, which is defined since we
have assumed that there exists a square projection G. We have to prove that the kernels
of the paratingent derivatives PI+(xo, y) of/+ are equal to zero (where y(. ):= H(2(. ))
and 2(.) 5e(Xo)). In the way similar to Theorem 2.2.1 of [1, p. 104], we prove that
for all y>0, the set 5(Xo+yB) is compact in C(0, T;Rn). Hence I+(xo+yB) is
relatively compact in C(0, T; R"). By Filippov’s Theorem, the solution map 5 is
Lipschitzian around Xo. This and compactness of 5e(Xo+ yB) imply that Graph (I/) is
a closed set. Then we can apply the second part of Proposition 4.2 which states that
for all u Dom (C(xo, 2(. )))

PI+(xo, y)(u) H’(2( )) CS(Xo, 2(" ))(u).



970 J.-P. AUBIN AND H. FRANKOWSKA

By Theorem 5.2, we know that for all u, the set (u) of solutions to the circatangent
variational inclusion (24) starting at u is contained in the circatangent derivative of St:

,t,(u):={w(.)[w’(t) CF(t,(t),’(t))(w(t)) and w(0)= u}

{w(. )l w’(t) DF(t,(t),’(t))(w(t)) and w(0)= u}

c C(xo, X)(u).

But from the proof of Theorem 6.1 we know that Dora () R". Therefore,

PI+(xo, y)(u)c (H’(X)[-I )(u)

so that the kernel of PI/(xo, y) is contained in the kernel of H’(). But to say
that the kernel of H’()V] is equal to zero amounts to saying that the linearized
system (37) is globally hazily observable through H’(:) at zero. Hence the kernel of
PI/(xo, y) is equal to zero, and thus, the hazy input-output map is locally injective
around Xo.

We consider now the sharp input-output map.
THEOREM 6.3. Let us assume that the graphs of the set-valued maps F( t, )" X X

are closed and convex. Let H be a linear operator from X to another finite-dimensional
vector-space Y. Let (. be a solution to differential inclusion (23). If the contingent
variational inclusion (37) is globally sharply observable through H at zero, then the system
(23) is globally sharply observable through H at (Xo, H()).

Proof. We apply Proposition 4.1 to the sharp input-output map I_ := H St. We
have to prove that the kernel of the algebraic derivative DaI_(xo, Yo) of i_ (where
yo := H(:)) is equal to zero. Consider 90 as a map from R" to the Sobolev space
WI’I (0, T;

Since the graph of the solution map 5e is convex (for the graphs of the set-valued
maps F(t,. are assumed to be convex), and since the map H is linear, we know that
the chain rule (22) holds true:

(39) DaI_(xo, yo)(U) (H DaSt(Xo, (" )))(u).

It remains to check that the algebraic derivative DaSt(Xo, )(u) of St is contained in
the subset a(u) of solutions to the algebraic variational inclusion starting at u"

DoSt(Xo, Y.(.))(u)cqt,(u):={w(.)lw’(t)DaF((t),’(t))(w(t)) and w(0)= u}.

Since the algebraic derivative of a convex set-valued map is contained in the contingent
derivative, then the set o(u) is contained in the subset (u) of solutions to the
contingent variational inclusion (37) starting at u. Hence the kernel of Dfl_(Xo, Yo) is
contained in the kernel of H . But to say that the kernel of H is equal to zero
amounts to saying that the contingent variational inclusion (37) is sharply globally
observable through H at zero. Therefore the kernel of Dfl_(Xo, Yo) is equal to zero,
and thus, the inverse image of sharp input-output map at Yo contains a unique element.
This concludes the proof, l]

If we assume that the chain rule holds true, we can state the following proposition,
a consequence of the general principle (Theorem 4.1) and of Theorem 5.3 on the
estimate of the contingent derivative of the solution map.

PROPOSITION 6.1. Let us assume that the solution map of the differential inclusion
(23) and the differentiable observation map H do satisfy the chain rule

DI_(xo, yo)(U) (H’(X) DSt(Xo, X( )))(u)
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where Yo H()). If the contingent variational inclusion

w’(t)6-6 DF(t,(t),’(t))(w(t)) a.e. in [0, T]

is globally sharply observable through H’((. )) at zero, then the system (23) is locally
sharply observable through H at Xo H()).

However, we can bypass the chain rule formula and attempt to obtain directly
other criteria of local sharp observability in the nonconvex case.

THEOREM 6.4. Assume that F has closed convex images, is continuous, Lipschitz in
the second variable with a constant independent of and that the growth of F is linear
with respect to the state. Let H be a twice continuously differentiable function from X to
anotherfinite-dimensional vector-space Y. Consider an observation y* I_(xo) and assume
that for every solution (. to the differential inclusion (23) satisfying y*(. H((. ))
and for all [0, T] we have

(40) KerH’((t))(F(t,(t))-F(t,(t)))+/-.

Iffor all as above the contingent variational inclusion

(41) w’(t)E-6 DF(t,g(t),’(t))(w(t)) a.e. in [0, T]

is globally sharply observable through H’((t)) at zero, then the system (23) is locally
sharply observable through H at (Xo, y*).

Proof. Assume for a moment that the inclusion (23) is not locally sharply observ-
able through H at (Xo, y*). Then there exists a sequence x Xo, x-> Xo such that
y* I_(x), i.e., for some x, 5e(x)

(42) y*=n(x,(.)).

Taking a subsequence if needed and keeping the same notation, we may assume that
x,- weakly in wl’(0, T; R). Then (42) yields that for every t[0, T] where
’(t), x’(t) do exist

(43) H’((t))’(t)= H’(x,(t))x’,(t).

We shall prove that the convergence is actually strong and even more, that there exists
a constant c > 0 such that

(44) [[x’,,(t) g’(t)[[ c]]x,,(t) :(t)[[ a.e. in [0, T].

Indeed otherwise there exist sequences tk and nk such that

X’k(tk)F(tk, Xnk(tk)), g,’(t)F(t,g(t)),

Taking a subsequence and keeping the same notation, by continuity of F, we may
assume that for some [0, T], p 6 F(t, :(t))

(45) tk -- t, ’( tk) -- p.

Let p denote the Lipschitz constant of F with respect to x and. let y(tk) F(tk, (tk))
be such that

(46) Y tk gk tk)ll t g t )1[.
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Since H’ is locally Lipschitz and x’,,. are equibounded, from the last inequality and
(43) we deduce that for some constants M, M > 0

H’(( tk))(y( tk) 2’(

<= IIH’(( t))(x’, t) ’( t))ll + P]lH’(( t))][
(47)

---II n’(x tk))Xnk tk) H’(X( tk))’( t)]] + Mllx tk) ( t)ll ][x. (t.)

+pllH’((t,))ll ]]x (t.)-(t.)ll
From (46) and the choice of tg, we obtain

Ily(t)-’(t)]]
(48)

Ilx,k (t) x(t)ll
when k - c.

It is also not restrictive to assume that for some u of u]l
y(tk)--’(tk)

(49) Uk := ily(t.)_,(t)ll u.

Then (47), (48) yield

u Ker H’(X(t)).

On the other hand, u, is contained in the space spanned by F(tk, 2(tk))- F(t,, 2(t,))
and, by continuity of F, u is contained in the space spanned by F(t, (t))-F(t, (t)).
Since u 0 this contradicts (40) and therefore (44) follows.

From the Gronwall inequality and (44) we deduce that for some M2 > 0

IIx(t)-x(t)ll <= M=llx(0) x(0)ll.
Setting h, IIx,- xoll, we obtain

Taking a subsequence and keeping the same notation, we may assume that

X
w weakly in W’(0, T).

hn
By Theorem 5.3, w is a solution of the contingent variational inclusion of (41).

Moreover, w(0) 0. Since H(x,(. ))= H(:(. )) taking the derivatives we obtain that
for every E [0, T], H’((t))w(t)=0. This contradicts the assumptions of Theorem 6.4
and completes the proof. I3

Example. Observability around an equilibrium. Let us consider the case of a time-
independent system (F, H): this means that the set-valued map F:XX and the
observation map H:X Y do not depend on the time.

We shall observe this system around an equilibrium ff of F, i.e., a solution to the
equation

(50) oF(x).

For simplicity, we assume that the set-valued map F is sleek at the equilibrium.
Hence all the derivatives of F at (2, 0) do coincide with the contingent derivative
DF(g, 0), which is a closed convex process from X to itself.

The theorems on local observability reduce the local observability around the
equilibrium g to the study of the observability properties of the variational inclusion

(51) w’(t)E DF(g, 0)(w(t))
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through the observation map H’(ff) around the solution zero of this variational
inclusion.

We mention below a characterization of sharp observability of the variational
inclusion in terms of "viability domains" of the restriction of the derivative DF(, O)
to the kernel of H’(2).

Recall that a subset P c ker H’(2) is a "viability domain" if

fw P, DE(Y,, 0)(w) fq Te(w)
where Te(w) denotes the "contingent cone to P at w P."

PROP0STION 6.2. Let us assume that F is sleek at its equilibrium and that H is

differentiable at . Then the variational inclusion (51 is sharply observable through H’()
at zero if and only if the largest closed viability domain of the restriction to ker H’(2)
of the contingent derivative DF(, O) is equal to zero.

Proof. Let us denote by E the restriction of the contingent derivative DF(, 0) to
the kernel of H’(2) defined by

DF(, 0)() if uker H’()
(52) E(u):=

if u ker H’(2).

We consider the associated differential inclusion

(53) w’(t)E(w(t)).
We know that the largest closed viability domain of the closed convex process E

is the domain of the solution map of the associated differential inclusion (53). (See
[6] and [7].)

But if we denote by the solution map of the variational inclusion (51) and by
the set of functions x(. such that

Vt[0, T], x(t)kerH’(2),
then we observe that the solution map of the differential inclusion (53) is the set-valued
map u-..Y(u)f-I 1. Hence its domain is the set -(). Since

-() ker (H’()) ),
we infer that the largest viability domain of E is the kernel of the sharp input-output
map H’() .

Consequently, the variational inclusion (51) being sharply observable if and only
if the kernel of H’(2)o is equal to zero, our proposition ensues.

Remark. In the same way, the variational inclusion (51) is hazily observable if
and only if the kernel of H’(2)[2 is equal to zero.

There are also some relations between the kernel of the hazy input-output map
H’(2)[2 and the largest invariance domain of the restriction of the derivative to the
kernel of H’(2). First, we remark that

Y2+() ker (H’())

i.e., that the kernel of H’(2) is the largest set.enjoying the "invariance property":
for any u ker H’(ff)[--1 , all solutions to differential inclusion (53) remain in this
kernel.

When F is Lipschitzian in a neighborhood of ker H’(2), any closed subset
p c ker H’(2) that is "invariant" in the sense that

Vw P, DF(, 0)(w) c Te(w)

enjoys the invariance property. The converse is true only if we assume that the domain
of DF(, 0) is the whole space.
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Then, if such is the case, the variational inclusion is hazily observable through H’(g)
at zero if and only if the largest closed invariance domain of the restriction to ker H’(g)
of the derivative DF(, 0) is equal to zero.

Remark. We have proved in [5] that under some further conditions the sharp
observability of the variational inclusion at zero is equivalent to the controllability of
the adjoint system

(54) -p’(t) DF(, 0)*(p(t)) + H’()*u(t), u(t) Y*.
PROPOSITION 6.3. We posit the assumptions of Proposition 6.2, we assume that

DF(, O) (0) 0 and we suppose that

(55) ker H’(:) + Dom (DF(, 0))= X.
Then the sharp observability at ero of the variational inclusion (51) is equivalent to the
controllability of the adjoint system (54).

(About eleven characterizations of this property are supplied in [5].)
Proof Assumption (55) implies that the transpose E* of the restriction E of the

closed convex process DF(, 0) to ker H’() is given by the formula

(56) (DF(Y., 0)]kerH,(:))* DF(X, 0)* + Im (H’(g)*)
(see [2, Cor. 3.3.17, p. 142]).

We also know (see [5, Prop. 1.12, p. 1198]) that if the domain of the transpose
E* of E is the whole space, then a vector subspace P is an invariance domain of E
if and only if its orthogonal P- is a viability domain of E* (this is also true when the
domain of E is the whole space. But this does not apply to our case, since the domain
of E is the kernel of H’(:)). Since the domain of E* is equal to the domain of
DF(, 0)* (thanks to formula (56)), this condition is equivalent to DF(, 0)(0)--0.

Hence the variational inclusion (51) being sharply observable at zero if and only
if the largest closed viability domain of E is equal to zero (by Proposition 6.2), we
deduce that this happens if and only if the smallest invariance domain of E* is equal
to X, i.e., if and only if the adjoint system (54) is controllable.

Therefore, our statement follows from Theorem 5.5 of [5, p. 1207]. [3

REFERENCES

[1] J.-P. AUBIN AND A. CELLINA, Differential Inclusions, Grundlehren der Mathematischen Wissen-
schaften 264, Springer-Verlag, Berlin, New York, 1984.

[2] J.-P. AUBIN AND I. EKELAND, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.
[3] J.-P. AUBIN AND H. FRANKOWSKA, On inverse function theorems for set-valued maps, J. Math. Pure

Appl., 66 (1987), pp. 71-89.
[4] Set.valued analysis, monograph, to appear.
[5] J.-P. AUlalN, H. FRANKOWSKA, AND C. OLECH, Controllability ofconvex processes, SIAM J. Control

Optim., 24 (1986), pp. 1192-1211.
[6] J.-P. AUBIN, Smooth and heavy solutions to controiproblems, in Proc. Conference on Functional Analysis,

Santa Barbara, CA, June, 1985, Marcel Dekker, New York, Basel, pp. 24-26.
[7], Viability theory, monograph, to appear.
[8] F. H. CLARKE, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), pp. 247-262.

[9] S. DOLECKI AND D. L. RUSSEL, A general theory of observation and control, SIAM J. Control Optim.,
15 (1977), pp. 185-220.

[10] H. FRANKOWSKA, Local controllability of control systems with feedback, J. Optim. Theory Appl., 60
(1989), pp. 277-296.

[11] ------, Local controllability and infinitesimal generators of semi.groups of set-valued maps, SIAM J.
Control Optim., 25 (1987), pp. 412-432.

12], The maximum principlefor an optimal solution to a differential inclusion with end point constraints,
SIAM J. Control Optim., 25 (1987), pp. 145-157.

[13], Contingent cones to reachable sets of control systems, SIAM J. Control Optim., to appear.



OBSERVABILITY OF SYSTEMS UNDER UNCERTAINTY 975

[14] G. HADDAD, Monotone trajectories of differential inclusions with memory, Israel J. Math., 39 (1981),
pp. 83-100.

[15] R. HERMANN AND A. J. KENER, Nonlinear controllability and observability, IEEE Trans. Automat.
Control, 22 (1977), pp. 728-740.

[16] A. ISIDORI, Nonlinear Control Systems: An Introduction, Lecture Notes in Control and Information
Sciences, 72, Springer-Verlag, Berlin, New York, 1985.

[17] A. J. KRENER AND A. ISIDORI, Linearization by output injection and nonlinear observers, Systems
Control Lett., 3 (1983), pp. 47-52.

[18] A. J. KRENER AND W. RESPONDEK, Nonlinear observers with linearizable error dynamics, SIAM J.
Control Optim., (1985), pp. 197-216.

[19] A. B. KURZHANSKII, Control and Observation under Conditions of Uncertainty, Nauka, Russia, 1977.
[20] G. LEITMANN, The Calculus of Variations and Optimal Control, Plenum Press, New York, 1981.
[21] R. T. ROCKAFELLAR, Monotone Processes of Convex and Concave Type, Mem. Amer. Math. Soc.,

Providence, RI, 1967.
[22], La Thdorie des Sous-Gradients, Presses de l’Universit6 de Montr6al, Montr6al, Quebec, Canada,

1979.
[23] SHI SHUZHONG, Choquet Theorem and Nonsmooth Analysis, Cahiers Math. D6cision, (1987), #8621.
[24] , Thorb.me de Choquet et analyse non rgulib.re, C.R. Acad. des Sci. Paris, 305 S6r. 1, pp. 41-44.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 27, No. 5, pp. 976-990, September 1989

(C) 1989 Society for Industrial and Applied MAthematics

005

GLOBAL DIRECTIONAL CONTROLLABILITY*
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This paper is dedicated to the memory of E. J. McShane.

Abstract. This paper derives sufficient conditions for the image of a function (01: Q- R’" to cover an
open segment originating at qt(t) and with direction w (or even a neighborhood of such an interval) subject
to restrictions of the form q2(q)E C or q2(q)+ Gc C. Here 2:Q Y, Q is an arbitrary set, C a convex
subset of the topological vector space , and G a neighborhood of 0 in Y. Also derived are similar directional
controllability conditions subject to the additional restriction q E OR c Q for an "abundant" subset R of Q.
These conditions are applicable to unilateral problems of control theory and of (infinite-dimensional)
mathematical programming. These results are global and apply to problems defined by functions whose
restrictions to certain finite-dimensional sets are differentiable (but not necessarily C ) or are locally uniform
limits of differentiable functions.

Key words, directional controllability, conical controllability, sufficient conditions, inclusion restrictions,
attainable sets, nonsmooth data
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1. Introduction. The concepts of controllability originally arose in the study of
linear control systems and their attainable sets [1], [12] and were later applied to
smooth nonlinear systems [3], [4]. In our own studies (e.g., in [6]-[9]) we had adapted
this concept to nonlinear and nonsmooth systems subject to infinite-dimensional
inclusion restrictions. A model of such control systems is provided by the objects

qeQ, o-//cQ, ccLr, q=(I,2):Q-->E"N,
where Q is an arbitrary set (but usually assumed to be a convex subset of a real vector
space), an "abundant" subset of Q, C a convex subset of a topological vector space
Lr, and 2(q) e C. In the context of control theory, 8 may represent the set of ordinary
control functions (or a subset closed under measurable concatenations), Q the corre-
sponding set of relaxed controls, 1 an m-dimensional function determined by the
solution x(. of the (differential or functional-integral) equation of motion controlled
by u or q Q, and the restriction q2(q) C a unilateral state constraint such as
x(t)A for all t.

Crudely speaking, we say that q is controllable at if q(/) covers a neighborhood
of q(), where s4 is the set o//fq q(C) or, in a stronger type of controllability,

: {u ()+ c}
for some neighborhood G of 0 in Y. Typically, controllability is studied at points c
that are extremals (or stationary points) of the problem because controllability rules
out as a solution of a related optimization problem. However, even if q is not (or
cannot be shown to be) controllable at , it is still of interest to determine whether
(s4) extends in the direction w from q(), i.e., whether q(s4) covers an open
segment originating at q(q) and with direction w or even a neighborhood of such a
segment. We had initiated the study of such directional controllability in a previous
paper [11] which deals with higher-order conditions for local conical controllability,
the term "conical" referring to the shape of the neighborhood, in the present paper
we study first-order conditions for global directional controllability without smoothness

* Received by the editors March 7, 1988; accepted for publication November 1, 1988. This research
was partially supported by National Science Foundation grant DMS-8619002.

? Department of Mathematics, Northeastern University, Boston, Massachusetts 02115.
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assumptions ("smoothness" being the term used in nonsmooth analysis to mean
"continuous differentiability" and not necessarily C behavior).

We present the basic results in 2, some examples in 3, and the proofs in 4.

2. Covering theorems. We shall assume given the objects , Q, o-g, C, , q as
described in 1. We endow each space R for s 1, 2, with the norm [(xl, , x.)[
Yi--1 [xi], and denote by B and / the open and closed unit balls in , by dip, A]
the distance of the point p to the set A, and by A, A, and co A the interior, the
closure, and the convex hull of a set A. We refer to a set B as a neighborhood of a
point x, respectively, of a set A if x B, respectively, A c B. For A, B c L, we write

AB:={zeYlz+B=A}.
If W is a convex subset of Nk with W, p" Wmx’ and x e W (but x is

not necessarily in W) we say that p is ditterentiable at x and has the derivative p’(x)
[5, p. 167] if p’(x) is a linear operator from Rk to N’X L such that

lim [-xl-’[p()-p(x)-p’(x)(-x)]=O as -x, W\{x}.

Condition 2.0. Let X c Nk and ’X--> Q. We say that q and satisfy Condition
2.0 if for every x X there exists a sequence (u,(x)) in 0// such that

lim q(u,(x)) q((x)) uniformly for x e X

and

x --> q (u, (x)) X --> ’ x : is continuous for each n 1, 2, .
Remark. This definition is motivated by problems of optimal control in which o-//

represents an "abundant" set of ordinary controls (e.g., a set closed under measurable
concatenations) and Q the corresponding set of relaxed controls. If q is continuous
(with respect to the weak star topology of relaxed controls [5, Chap. IV]),

X= O=(O,,...,Ok)lOj>-O, 0,<-_1 gI6Q, yjQ-gl,
i=1

and

k

q(0)=+Z Ojyj,
j=l

then q and satisfy Condition 2.0 [5, Thm. IV.3.9, p. 285].
THEOZM 2.1. Let w6", Co>0, X be a closed subset of k, O6X, G an open

neighborhood of 0 in , - k compact and convex, and q q) X m y{.

Assume that
(a) q2(O) C,
(b) q is differentiable at every x X,
(c) for each x X f’) [0, ao]- there exist rl(x) - and r(x), rl(X > 0 such that

Then

6’(x)n(x) {w} c (R) G 6(x)]

rl(x) + r(x)Bk -, x+[0, r,(x)][q(x)+ r(X)Bk] X.

qt(O)+aw{d/(x)lxX f-la, q2(x)+(1-e-)G= C} V e [0, o].

If, furthermore,
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(d) o’Q-"xY and t’XQ satisfy Condition 2.0, =(0), and q(x)=
q(t(x)) for all x X,
and

(e) q(x) is offull rank for all x X t [0, ao]3-
then for every a (0, ao) and s (0, 1), there exists a neighborhood Vs, of 0 in " such
that

(**) ,(t) + aw+ Vs, c {q,(u) u 6 % q2(u)+ (1-e-’)sG C}.

If condition d holds and
(f) the functions

p’[0, ao]-* (0,1],. fl’(0, ao][0, oo), 6"[0, ao](0,1)

are pointwise limits from below of positive continuous functions and such that, for all
a [0, ao] and x

p()

then, setting

we have

and

I(a)= p(t)fl(t) dt, J(a) e-(-t)6( t) dt,

q,( gl) + aw + I(a),, c {q,(q)[ q Q, qz(q) + J(a )G c C}

Vo [0, Co]

,(q) +w+I()9 = {,(u) u % _(u) + sJ()a= c}

Va (0, ao), s (0, 1).

Remarks.
1. A special case of Theorem 2.1 (and of Theorem 2.2 below) applies to problems

without inclusion restrictions. If q o Q-" and q q :X " are given, then
we can apply Theorem 2.1 by setting

Y=C=[, q_(q)=q2(x)=0 Vq6Q, x6X.

Then all the assumptions referring to C, Y, qz, 62 are automatically satisfied.
2. We observe that the last two conditions in (c) are automatically satisfied for

appropriate choices of r(x), r(x) if X is a cone, 8-c X and (x) 8 for all x a0-.
3. In Theorem 2.2 below we drop the assumption of Theorem 2.1 thatthe function

6 is differentiable. We assume, instead, that q can be locally uniformly approximated
by differentiable functions that essentially satisfythe conditions of Theorem 2.1. This
approach is related to the previously introduced concepts of derivate containers [6]-[8],
[10] and of Frankowska’s -set [2] but, in the present case, it requires somewhat
weaker hypotheses.

THEOREM 2.2. Let w ’, G be a neighborhood of 0 in 3, X a closed subset of
k, 0 X, 3" gk compact and convex, ao O, and " X Q such that the function

x- q,(x) := (4(x))’x- xy
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is continuous, and q2(0)=q:,2() C, where :=(0). Assume that for each
X f"l [0, ao].Y there exist a closed neighborhood W(g) of and differentiable functions
qi=(Oi, q2)’XfqW() xfor all i= l,2,. such that

lim i uniformly on X W()

and each satisfies condition (c) of eorem 2.1. en
()+aw{(x)lxXa, 2(x)+(1-e-)G C}

{(q)[qQ,(q)+(1-e-")G=C} a[O, ao].

3. Examples. In the two examples below there are no inclusion restrictions.
Example I. Let

O = =(, x=(x,x),

(x) x + Ix, + xl ’/ (x) x-x
We choose an arbitrary ao and set

X={xlx+xO}, =X9
(x) x, 1, n(x) (, n)(x).

In the neighborhood of any x X, we approximate by functions g( X, X), defined
by

x)(y)= y, + h(y, +y, x(y=y-y,

where h(z) can be any increasing differentiable functions that uniformly approximate
z /2 on [0, 1] as j , e.g.,

hi(z .-/2 :3/2_ <=j +zj z for 0z=l/j, hi(z) z/ for z> 1/j.

For w z, the equation x.(x)(x)= w is of the form

(1 + a)n(x)+ an(x) w,, n(x)-n(x) w,

where a h(x + x). This equation has the solution

(1) ,(x)=(l+Za)-’[w+aw], z(x)=(l+Za)-[w-(l+a)wz].
Since a 0, it follows that

(2) [n(x[ n,(xl + n(x)l = Iwl + 2 w,l.
Thus, by (1) and (2), (x) Wo (i.e., ,(x) + (x) > 0 and [(x)[ < 1) if

w w:= {v (v,, v)lzv,-v>O, lv[+elv,[<}.
Since X is a convex cone and = X, it follows, by Theorem 2.2, that for all ao> 1
and w W, we have

(3) (0)+ aw w 6(a) qa [0, ao].

Since a is compact, relation (3) remains valid for all w and, since ao can be
taken arbitrarily large, we have

(4) 6({x[x+xO})={v={v, v)[2v-v0}.
We can verify that this result is the best possible by setting

1 Xl + X2, 2 Xl- X2

which transforms the equation (x)= v (v, vz) into

() C, + 21C, ’/ v- v, C v.
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On the other hand, (5) can also be solved when 2Vl- v2 < 0 but that requires that
we restrict ourselves to values of ’l xl + x2 < -4. This suggests that we might proceed
as above but with

X={x2[x+x2<=O}.
However, as will be seen below, Theorem 2.2 is based on Theorem 2.1, which is derived
by a procedure bearing some similarity to an approximate integration of the differential
equation dx/dc r(x) with the initial condition x(0) 0 (a differential equation which
is unconventional because its right-hand side may be discontinuous). Therefore, this
theorem cannot yield results requiring an immediate jump from 0 to xl+x2<-4.
However, if we set

Yl -2- xl, Y2- --2--X2
and use (Yl, Y2) as the new variable, with X and - defined as before, then we can
use Theorem 2.1 to show that

and therefore, by combination with relation (4), that o([2) =l2.
Example II. Let Q 0//= 3, x (xl, x2, x3),

2 2(X Xlq_q9 (X) IX2-- Xl[-t- X3, ( X2 X

We at first choose some R >_-1 and set

X-Xl-{xglxz<=O},
; -,- {x 31x2--< o, Ix, l/lxl/e / ]x31/e -< 1} Xl,

O0 "-"-, q(X)-- X, I]/ (491X1 ’1 (X)-’- (T]I T2)(X ).

For each x e X and w (wl, w2)e2, the equation 0’(x)rt w has the form

7,(2Xl, 1)+ r]2(--1, 1)+,73(1, 1)= (w,, W2).

This equation will have a solution 7(x) in - for all x X 71 [0, ]---and r/(x) will
thus satisfy the relations

r(x)+r(x)B,c, x+[O, rl(x)][r(x)+r(x)B,]cX

for appropriate r(x), rl(x) > 0--if w 6’(x) for all x X f"l [0, ]-. It is easily seen
that this is the case if w is in the interior of

PR =CO {(1/2, 1), R(1,-1), R(1, 1), R(-1,-1)}c X.

Thus, by relation (*) of Theorem 2.1, for every choice of R => l, a [0, ], and w PR,
we have

,,w ,(o) +w (x [o, 1/4]o3.
Therefore,

(2) (Xl) D P:= [,.J
RI

We next consider the complement of P. To do so, we redefine X, ’, and O as

X--Xa:._{x[3lx2x21, XlO}, - :..- 53,
For each x X and w (w, w)eN2, the equation 6’(x) w now has the form

(3) n,(-2Xl, 1)+ (n, + n2)(1, 1)= (w,, w2).
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Assume that [w[ _-< and w2-w > 0, and set

=(2x+l)-(w2-w), 7=3x(2x+l)-(w-w),
q3=(2x+l)-l(w+2xw)-q ifxX,x>O,

r/l=w2-w, r/2=l, r/3=w-I ifxX,x-0.

Then r/(x) (r/l, r/, r/3) 3- and r/(x) is a solution of (3) satisfying the relations 7 > 0,
r/2> 2xr/. Thus 0(x) and r/(x) satisfy conditions (a)-(c) of Theorem 2.1 for every
choice of ao> 0. It follows that

aw=O(O)+awO(Xz) ifa_->0, lw]-<landw-w,>0
so that 0(X2) z {(v, vz)lv2-v >0}. Together with relation (2) this shows that q(X1
x) =.

4. Proofs.
LEMMA 4.1. Let A, B, B, B2, G c , and G be an open neighborhood of O. Then
(a) (A(R) ,)(R)=A(R)( +) (A(R) )(R)

and

and

hence,

(b) AOG=AOG=A@G.
IfA is convex then
(c) AO B AOco B and this set is convex,
(d) AOG=AOG =AoG,
(e) AOA2Gc AOAG if 0-<h,_-<A2,

(f) (A+ B)B A ifA is closed and either A# or is finite-dimensional.
Proof We have

(a(R) )(R)+ += [(a(R) )(R) :+]+

Conversely, since

we have

Therefore,

a A@B + B A;

(A@ B,)@B A@(B1 + B2).

A(B+B2)+B+B2 A

A@(BI+B)+Ba A@B.

A@(B, + B2)a (A@ B1))B,

which proves (a).
Let A@ G and g G. Then g + V+ V O for some symmetric neighborhood

V of 0. We can find x A@ G such that x + V, whence it follows that

+g+ Va x+g+ V+ Va x+Oc A,

implying that : + g A. Since this is valid for every g G, we have + G c A, hence
: A@ G. Thus

A@GaA@GaA@G,

which proves (b).
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Now assume that A is convex. Then z e A@B implies that z+ Be A, hence
z+co Be A and z A@co B which proves (c). Furthermore, A= (A) and therefore,
by (b) (replacing A with A),

AG=(A)G=AG,

whence relation (d) follows because

AGAGcAG.

By (c), A)AG A@A co G for all A and, since A co G AaCO G for 0<= A <--

Aa, we have

AAaG=AA_co GcAA co G=AAG,

which proves (e).
Finally, let the assumptions of (f) be satisfied, z (A + B) B, and belong to

*, the set of continuous linear functionals on . Then z + B c A + B; hence

lz + inf IB >= inf l(A + B) inf 1A + inf lB,

implying Iz >= inf lA. Since Lr* is arbitrary, it follows from the convex separation
theorem that z A. Thus (A + B)) B c A. Conversely, if a A then a + B c A + B so
that A c (A + B) B. This proves (f).

LEMMA 4.2. Let X be a closed subset of Ek, 3- Ek, 3- convex and compact, G an
open neighborhood of 0 in , ao > O, d/ (q, ba)" X [" Y continuous, d Y, and
C convex. Assume that

lim a li.rn/3j lim yj 0, lim s 1, a [0, ao),

O<-a+j<_ao j=l,2,...,

and

(1) paO+{(x)[xX(a+)3-,6(x)+s.GcC+y(C-d)} W=l,2, ....
Then

p {,(x)lx X Y, (x) co}.

Proof By (1), for every j e {1, 2,... } and g G, there exist

x3X, zB, cg.C

such that

(2) p OljT.j 3t" l Xj ),

We may assume that

x 6 (a + j)3-, d/(x)+ sg= (l + yj)Cg,- yd.

otherwise choosing appropriate subsequences. Then (2) implies that p 01(Xo), Xo
and

lim %j=lim (l + y.i)-l[a(x)+ s.ig +’I,jd] a(Xo)+ g /g a.

Thus (Xo) + g C for all g G, hence tOa(Xo) e C@ G and, by Lemma 4.1, 0(Xo) C@
G. S

lim x Xo X f3 [0, ao] 3-, lim zj z Bin,
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LEMMA 4.3. Let X be a closed subset of Rk, 0 X "c k, f convex and compact,
G an open neighborhood of 0 in ,

/3>0, me{1,2,...,k}, weR", r, rl>0, ?eff, y(0,1),

and (,, 02)" X ->" x a continuous function such that
(a) q/(0) exists and q’(O)n(w} [C(R)G-q(0)];
(b) ff(0)Bk = fiB,.
(c) 7+ rBk ’, [0, r,][, + rBk] X, rO’(O)Bk yG, b2(O) C.

Then for every e (0, r) there exists > 0 such that

Ol(0) + a[w+ (r- e)flB,.] c { Ol(X) lX X fq aft, 02(x) + a(1 -T)Gc C}

v [o, ,:t,].

If, furthermore,
(d) q Q --> ,. x , X --> Q and un X --> ll for n 1, 2, satisfy Condition 2.0

and q(x)= ,(4(x)) then

ql((0)) + a[ w + r e )fiB,.]

(**) c{p(u,(x))lxXfq3-,q(u,(x))+re(1-y)GC,n{1,2,...}}

Proof Let e,. , e,, be the columns ofthe unit rn x rn matrix and b, , b,. B
such that

Let

O(O)b tier Ytx l, m.

a(0) r/+’.

Since rff_(0)Bk is compaCt and yG open, it follows from (c) that there exists
such that

(1) a(O)e f, [O, r,]a(O)eX, , O.O’(O)b, e ylG

Furthermore, by (a),

(2) O(O)a( O) (O)rt +Y O,$(O)b w + flO.

Now assume that condition (d) is satisfied. For 0 e rB,, and a = (0, r], we set

h"(O, a)=l [q(u,,(aa(O)))-O(aa(O))]

(3)
d(O, re)= l--[O(aa(O))-q(O)-a’(O)a(O)].

Let 0< e < r. We observe that we can determine a (0, rl] sufficiently small so that

(4) Id,(O, a)l<=1/2efl, d2(O, re)e1/2(y-y,)O Vre(0, re,],0r/,..
Since lim. q(u.(rea(O))) (rea(O)) uniformly for all 0 and re, for each re (0, reo] we
can determine N(a) such that

(5) Ih()(o,
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(6)

We have

For arbitrary z (r- e)B,, and a (0, al], we consider the equation

,(u(a(O)) ,((0)) + (w+ z)= q,,(0) + (w+ z).

rP(UN()(a( O)) (ca( O)) + cehN(O,
(7)

0(0) + a[q’(0)a(0) + d(O, ce)+ hN()(O, )],
and thus, by (2), (6) is equivalent to

0 [Z dl(O )-h )(0, )].

By (3)-(5), the right side of the above equation defines a continuous mapping of rB
into itself. Therefore, this equation admits a solution 0 that also satisfies (6).

Now let :=min (a, e/y). Then, by (a), (c), (1), (4), (5), (7), and Lemma 4.1,

2(UN(a)(O,))=2(O)+[(O)+ O(O)b+d2(O,a)+h)(O,a)]
(8)

=6:(0)+[c@(-e)G-e:(o)]= C@(-e)G V(0.

Thus, the first two relations of (1), (6) (with its solution 0), and (8) yield relation (**).
The same argument, in a simpler form, will prove the validity of relation (*)

without the use of assumption (d) if we redefine Q as x, as , (x) as x, and u,(x)
as x.

LZMMA 4.4. Let X be a closed subset of , c, ff convex and compact, G an
open neighborhood of 0 in

m{1,2,...,k}, w6

o>O. [O.-o). xay. e(o.).
and ) X x continuous. Let, furthermore, e O, [0, 1), I be the unit
m x m matrix, and M the m x k matrix of the form [L 0]. Assume that

(a) ’() exists and ’()n {w} x C@ G- ()];
(b) [6;()+ e,M]B =B
(c) + rB , + [0, r][ + rB] X,

r6()B = (-)eG, () C@G.

en for every e (0, r) there exists (0, o- if) such that

.() + (. a)[w + (r- )B]

O(x)+(a-6)(1-7)(1-r)GcC@rG} V 6[a, if+k].
In particular, if z rB then there exists a function x, on if, ff + such that

xy. x-(-a)y.

O(x,) ()+( 6)(w+ z)- eM[x, --( 6)],
e(x) + ( a)(1 )(1 r)G c C@rG.

Proof Let ff o- 6, X X and, for all x X,
e(x)=e.(+x)+.Mx, e(x)=e:(+x). 6(x)=(e?.62)(x)

G=(1-r)G, C=C@rG, w=w+eM.
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Then

’(O)’q qt()rl + eM’q w+ elMrl w *,

I]/ (0) I/t2() C rG2 C r’(0)k
and, by Lemma 4.1,

’(0) ()n c G ()

= CO(1- r)G- 6(0) COG-(O).

Thus the function satisfies the assumptions of Lemma 4.3, with the symbols denoted
by replacing similarly named symbols in Lemma 4.3. It follows then, by relation (*)
of Lemma 4.3, that for every e (0, r) there exists k such that

0()+ a[w+(r-e)] +aeM 0(0) + a[w +(r-e)]

= {(x) Ix x , (x) +( -)G = C}
{(+ x)+ eMxlx X a, 2(+ x)+ a(1- y)(1-z)G CzG}

Va [0, ].

We observe that, since ff is convex and 6if, the relation x ff implies
+ x (6 + )ff. If we replace 6 + by and, in the expression on the right-hand

side, + x by x, then the conclusions follow directly.
Proof of eorem 2.1. Step 1. We may, and shall, assume that k m. Indeed, let

r(x) be as described in condition (c). Then

:=sup{lr(x)llxX [0, o]Y} <

because ff is compact. Therefore, if k < m, we may replace, x, y, 6(x, ,..., x), n(x,’’’, x)

by

k=m, X=Xx-, ff=ffXm_,

6(x,,..,x)=6(x,...,x), n(x, "..,x)=(n(x,...,x),0,...,0),

which yields an equivalent problem that also satisfies conditions (a)-(c). (It is clear
that, for k < m, conditions (e) and (f) cannot be satisfied.)

Let s (0, 1), T max {Ixl Ix if} and

e,,={6(x)lxXY, 6(x)C(-e-)sG} qa[0,o].

We shall show that, for all e (0, 1] and a [0, o],

() a[6(0) + ,w, e,,] 2

With s and e fixed, let

A= {a [0, o] (1) is valid for [0, ]}.

Each of the sets P. and A is closed because is continuous, ff compact and, by
Lemma 4.1, the set C(1-e-)sG closed. We easily verify that 0A. Now assume,
by way of contradiction, that ff := max A < ao. Since
such that

(2) 16,()- [6(0) + aw]l zeal, 6()c(-e-)sG.
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Let M be the rn x k matrix of the form [/, 0], where. I is the rn x rn unit matrix. We
observe that q,]()+ elM is of full rank except for at most rn values of el. We may,
therefore, choose el e (0, e] so as to preserve full rank, and then determine/3 > 0 such
that [q() + e,M]Ba B,,. Let- s(1 e-a), 3’ (1 s + se-a)-’(1 s), r, r,().

Since q/()Bk is compact, it follows from (c) that there exists re (0, r(ff)] such that

r/(:)+rB-,,e3", +[O,r](rl()+r,)cX, r0()/cy(1-’)G.

It follows then, by Lemma 4.4 (with rt () and z =0), that there exist k e (0, ao- )
and a function a x" c, c + c - X such that, for all c e c, c + c ],

x e -,

This last relation implies (using Lemma 4.1) that

O(x e C (R) rG,
where

cr ’+ (c c)(1 y)(1 r),

and we verify that tr_>_ s(1- e-) for a => c. Thus (again by Lemma 4.1),

(4) tO2(x)eC@s(1-e-)G Vc e [c7, c7 + c].

Relations (2) and (3) imply that

101 (Xc) [01(0) -" OW]l IIl(Xa Il( (O a )W + I1() I//1 (0) -"
<- elM[x, a c) r/(:)]1 + 2e8T <- 2e( ce T+2eT

2edzT Va e [6, 6z +

This last inequality, together with (4), shows that relation (1) is valid for all a e
[0, + c], contrary to the definition of . Thus (1) holds for all a e [0, ao].

Since P,,, is closed for each a and. s and since e can be chosen arbitrarily small,
it follows that q(0) + awe P,.s for all .a e [0, ao] and s e (0, 1). By Lemma 4.2, this
implies that validity of relation (*).

Step 2. We next proceed to prove relation (***) under assumptions (d) and (f).
However, we at first replace (f) by the stronger assumption

H" assumption (f) holds with continuous p(. ),/3(. ), and 6(. ).

Under assumptions (d) and H we first prove that, for every

peB,,, se(0,1) and ae[0, ao],
we have

(5) (O)+ow+sl(a)pe{O(x)JxeXfhaO-, O2(x)eC@sJ(a)G2}

for all a e [0, ao]. Let p and s be fixed, and let

A= {a e[0, ao] (5) is valid for a e[0, a]}.
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r=sJ(a), e,=0, r=p(a), rl=rl(2),

y=(1-r)-’(1-6(c;)), e=r(1-lp]),

that there exists t; (0, ao- c; such that

The functions a l(a) and a J(ce) are continuous and positive and J(a) < for all
a [0, ao]. It follows that A is closed, and clearly 0 A. Assume, by way of contradic-
tion, that ff := max A < ao. Since c A, there exists 2 X n c- such that

(6) d/()=ql(O)+ff.w+sI()p, q2() CsJ()G2.

It follows now from (6) and Lemma 4.4, with the redefined parameters

O,(X) + (a ff)(w+ rfl[O, 1]p)= ,,(0) + aw+(sI(ff)+(ce c;)rfl[0, 1][0, 1])p

(7) c {d/l(X)[xeXa, d/2(x)e C[7"+(ce-f)(6(ff.)-7")]G}

Since p(. ),/3(. ), and 6(. are assumed to be positive and continuous and 0 < s < l,
there exists ale (0, d such that, for all a c, ci + al],

(a-5)p(g)fl(ff)es p(t)fl(t) dt= s[I(a)-I()],

and, therefore, there exists O(a) [0, 1] such that

(8) st(5)+(a-S)p(ff)fl(5)O(a)= sI(a).

Furthermore, we observe that a--> J(a) satisfies the equation

’()+J() (),

and, therefore, we can reduce a, if necessary, so that

hJ(ct)/ha + J(c;) =<- 6(c;) for a e (if, + a,],
S

where

a(.)/aa := ( a)-’[()- ](a)].

If we recall that, in this step, r sJ(ff), then the last inequality implies

s.(o)<=sJ(a)+(,-a)[c(a)-sJ(a)]= +(- a)[(a)- ].

This relation, (7), and (8) yield

(O)+aw+sI()pe{(x)lxeX naff, z(x) e CsJ(a)G}

V (a, a +a].

This shows that the relation (5) holds for all a [0, ff + a], contradicting the definition
of 6, and thus proves that relation (5) holds for all a 6 [0, ao].

We now replace assumption H with the weaker assumption (f). We observe that
assumption (f) remains satisfied if we replace p(.), fl(.), 6(.) by the continuous
functions

.()p(), .()(.), .()() vj , 2,..., [0,.o]
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whose existence is postulated in (f). Since these functions are positive and converge
pointwise from below, we have

lim ln(a) I(a), lim J,(a) J(a) ta [0, ao],

where

I,(a) := fo pn(t)fln(t) dt, J,(a) := e--’)6n(t) dt,

and we have just shown that relation (5) is valid with I(a), J(a) replaced by In(a),
Jn(a). We now choose a point/5 B, and sequences (s,) in (0, 1) and (Pn) in Bm
converging to 1 and/5. Since relation (5) holds with s, p, I(a), J(a) replaced by sn,
Pn, In(a), Jn(a), and since q is continuous and g- compact, it follows from (5) (as
modified) and Lemma 4.2 that

@,(0) + aw+ I(a)/m c {ql(X) xX rl ag-, @2(x)+J(a)G C}
(9)

Va [0, Co].

Thus relation (9) holds under assumptions (d) and (f). This proves relation (***).
Step 3. Our next goal is to prove relation (**) under assumptions (d) and (e).

Let 0< d < ao, and let un be defined as in Condition 2.0. By (*) and (d), there exists
: X r3 dg-- such that

2(:) q2(()) 6 CO(1 -e-a)G.
Now fix s (0, 1). Then, by Condition 2.0, we may determine a sufficiently small
p (0, ao-6] and a sufficiently large N so that

2(u,(X + x))- q2((X)) (1 s)(1 e-a)G;

hence, by Lemma 4.1,

(10) q2(un(2+x)) C((1-e-a)sG tn>-_N,

We than set

(11)
ao =p, / =06[ w =0 X =X-x, r

4(x) (+ x), u.(x) u.(g + x), q,;(x) ((x)) Vx x.
Since ,’(0) q(ff) is of full rank, there exists/3 * > 0such that q’(0)/k fl*/,,,.

Thus the assumptions of Lemma 4.3 are satisfied by the function q and the objects
defined in (11) (neglecting the relations in Y). Therefore, there exists
(corresponding to e 1 s) such that

?(0) + [w + s/] (#) + aw+
{,(u.(x))lx e x ,o} v, e (o, d].

Since g- is convex, we have + x ( + a)g and, therefore, in view of (10), this yields,
for a=a=min(c p) and Va=asB

q,(gl)+ aw+ V,ac {o,(u)[ u 6 /./, qz(U)+(1-e-a)sGc C}.

This proves relation (**).
Step 4. We use a similar argument to prove relation (****). Specifically., assume

that conditions (d) and (f) hold, and let 0< c < ao and p B,. Then, as was shown
in Step 2, relation (9) is valid and implies that there exists X cg- such that

(12) O,(2)=q,(O)+dw+I(a)p, qz(2)=q2((2))COJ(a)G.
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Now let s c (0, 1). We may determine a sufficiently small p (0, ao- c and a sufficiently
large N so that

(13) o_(u,(y-+x))c CsJ(d)G Vn>=N,

We then set

xcX(a+p)-.

a=p, r/*=Ock, w*=Oc[m, X*=X-y,,

(14) fl=(c), y=l-6(ff), r=r(y-), rl--rl()),

q(x)=(y-+x), u(x)=u,,(Y-+x), q,=(x)=rCl((x)) VxX*.

Then the assumptions of Lemma 4.3 are satisfied by the function Ol and the objects
defined in (14) if we neglect the relations in L. Therefore, in view of (12), for every
e (0, 1) there exists d > 0 such that

q ffl + if.w-+- I ff. p {//I(Y-)-- (I((Y-))

(x))lxcxC (01(6#(0))’[ O[W# +(r- e)/3/,,] c {(,Ol(U (’] a3-, n 1, 2,... }

Vc e (0, c];

hence, in view of relation (13) and setting a above, we have

,(,) + aw+ t(a)p {,(u) u c ou, q,(u) COs(,)O}.

This proves relation (****).
Proof of Theorem 2.2. Step 1. Let W W(0) and i correspond to ff 0, and let

s (0, 1). We can determine as > 0 sufficiently small and is sufficiently large so that

Xfqa-c W, (x)-2(O)(1-s)G Vi>-i.,, xXa-.
Now let i=> is. Then i restricted to X fqasg- satisfies the assumptions (a)-(c) of
Theorem 2.1, with ao and C replaced by as and C,, where Cs is the closure of
C + (1 s) co G. Therefore, by relation (*) of Theorem 2.1, for every a e [0, as] we have

I//’1(0)’- OW C{I//1"’(X)[xcXNof.& oi(x)+(1-e-)Gc
so that for each i_-> is there exists x X f’l a8- such that

tll(O + OW

We may choose a subsequence of (x i) converging to some x e X fq a- and conclude
that

ff(0) + aw ,l(X), ff2(x

which implies that, for all a

(1) b(O) + aw {qt(x) lx X a-, tlt2(x) + (1- e-’)G c Cs}.

Let

A= {a [0, a] [relation (1) holds for all a [0, a]}.

The set A is closed because p is continuous and 3" compact, and clearly 0 A. Thus
c := sup A A and there exists Y- X c3- such that

Now assume that 5<ao, and set, for X =X-Y- and xeXfq(ao-ff)

ff(x)=g,(y-+x), C=Cs@(1-e-a)G, G=e-aG.



990 J. WARGA

By Lemma 4.1, C * is convex and C*G Cs G. Therefore, our argument leading
to relation (1) is valid, with 0, ao, C, and G replaced by , ao-6, C, and G,
and implies that there exists as E (0, a0-6] such that

(2)

We have

O(O)+awE{O(x)lxeX*Oa-, O(x)+(1-e-)G c C}

V E [0, o].

1 e-a + e-(1 e-s) 1- e-(+)

and therefore, by Lemma 4.1,

C(1.-e-)G= Cs(1-e-(a+))G.
Thus, by (2), for all a e [0, as] we have

01(O)+(6+oe)we{O,(x)lxeX gl(6+ce)-, 02(x)+(1-e-(a+))Gc
This shows that max A>_-6 + c> 6, contradicting the definition of 6. Therefore,
A [0, ao] and relation (1) is valid for all s E (0, 1) and a e [0, ao]. Our final conclusion
now follows from (1) and Lemmas 4.1 and 4.2 by letting s
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Abstract. Optimal control problems governed by ordinary differential equations with control constraints
that are not necessarily compact are considered. Conditions imposed on the data and on the structure of
the terminal sets imply that the minimum is attained and that the value function is locally Lipschitz. A
necessary condition in terms of lower directional Dini derivates of the value function is given. The condition
reduces to the Bellman-Hamilton-Jacobi (BHJ) condition at points of differentiability of the value, and for
a subclass of the problems considered imp.lies that the value is a viscosity solution of the BHJ equation. A
strengthened version of the necessary condition gives an optimal feedback control and a procedure for
approximating optimal controls.

Key words, optimal feedback control, synthesis of optimal control, lower directional Dini derivates,
Bellman-Hamilton-Jacobi equation, viscosity solution

AMS(MOS) subject classifications. 49B05, 49C05

1. Introduction. An important optimal control problem is the following. The state
of a system at time is described by an n-vector x( t) (xl( t), ...,x"(t)) whose
evolution is governed by a system of differential equations

(1.1) x’ =f(t, x, u(t)), x(z)

where u is a control function, or simply control, selected from some preassigned class
of functions. A terminal set - is given in (t, x)-space, as is a real-valued function g
defined on -. Let b(. )= 4( r, , u) be a solution of (1.1) such that at some time ty,
the trajectory 4(" hits the set - for the first time. The optimal control problem is to
select a control u* that minimizes g(ty, 4(ty)).

Another problem, whose solution is even more useful in applications, is that of
finding the optimal feedback, or optimal control synthesis. In this problem we seek a
function U in some class defined on a region Yt of (t, x) space such that for all initial
points (z, ) in Yt the solution of

(1.2) x’=f(t,x, U(t,x)), x(z)

lies in and minimizes g(tf, b(ty)) for the initial point selected.
Suppose that the values u(t) of the controls u are required to lie in some set Z(t)

in ". Suppose that for each (z, :) in some region , the optimal control problem has
a solution and that u* and th* are the control and corresponding trajectory that achieve
the minimum. Let W(z, sc) denote the value of the minimum for the problem with
initial point (z, ). If W is continuously differentiable on , if the data of the problem
are sufficiently diiterentiable, and if u is piecewise continuous, then the well-known
dynamic programming argument shows that all points (t, x) of

(1.3) Wt(t, x)+ min (Wx(t, x),f(t, x, z)).=O
zZ(t)

where denotes inner product. Moreover, the minimum is attained at the values
of the optimal controls at time for the problem with initial point (t, x).
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Relation (1.3) can also be used as a sufficient condition for optimality, an observa-
tion first made by Carath6odory [4, 231] in connection with problems in the calculus
of variations. Let W be a continuously ditterentiable function such that

(1.4) W( tf, xf g( tf, xf

at points (ts, xy) of the terminal set. Let u* and 4* be a control and corresponding
trajectory for the problem with initial point (r, ) such that if for all r = -< t, whenever
we substitute x=4*(t) in (1.3), then the minimum is attained at z=u*(t). Then
(4*, u*) is optimal. To see this we note, assuming the requisite differentiability, that
if u is a control and 4 is the corresponding trajectory that

W( tf, c/)(tf))- W(’, so) W(s, c/)(s)) as

{ w,(, 4)(+(Wx(, 4)(,f(, 4)(, u(l ds.

By (1.3) the integrand is nonnegative, so that W((f, 4(t) ->_ W(-, ). On the other hand,
if we take (4, u) (4*, u*), the integrand is zero and so W(t, 4*(t])) W(r, :). But
by (1.4), W(t., 4(t))= g(ts, 4(tf)) and W(t.7, 4*(t))= g(7, 4(])). Thus (4*, u*)
minimizes.

Suppose further that a function U* can be found such that the minimum in (1.3)
is attained at U*(t, x) and such that (1.2) with U(t, x) replaced by U*(t, x) has
solutions for all (r, ). If the function U* has the requisite smoothness properties, the
arguments of the preceding paragraph show that U* is an optimal feedback control.

Unfortunately, in many specific problems the suciency theorem and the method
of obtaining optimal feedback controls outlined above cannot be applied because the
value function W does not have the requisite smoothness properties, nor does there
exist any other solution W of (1.2) with the requisite smoothness.

Various authors have attempted to salvage the Carathodory approach. One
technique applicable to many examples is to assume that the field of extremals--that
is, trajectories along which the Pontryagin maximum principle holds--has a certain
structure. The ideas of Carathodory can then be adapted to these situations. See
Berkovitz [2], Boltyanskii [3], and Young [12], for example. Another approach, in
which (1.3) is replaced by an equation involving the Clarke generalized gradient, was
taken by Vinter and by Clarke and Vinter. See [6] and [7]. Reference [7] gives references
to earlier work of Vinter.

In this paper we shall develop yet another modification of Carathodory’s ideas.
We first recall a definition. Let L be a real-valued function defined on N x N. The
lower Dini derivate of L at the point (t, x) in the direction (1, h), where h N, is
denoted by D-L(t, x; 1, h) and is defined by

L( + , x + 6h L( t, x)
1.5) D-L( t, x; 1, h lim inf

a,o 6

Similarly, the upper Dini derivate of L at (t, x) in the direction (1, h) is denoted by
D+L(t, x; 1, h) and is defined as in (1.5) with lira inf replaced by lim sup. The function
L is said to have a directional derivative at (t,x) in the direction (1, h) if
D+L(t, x; 1, h)= D-L(t, x; 1,h). We denote the directional derivative by DL(t, x; 1, h).
If L is differentiable at (t, x), then DL(t, x; 1, h) exists for every h " and

DL(t, x; 1, h) L,(t, x)+(Lx(t, x), h).
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To describe our approach as simply as possible we shall assume that for each
the set Z(t) is a fixed compact set Z. In the paper itself more general constraints will
be allowed. Let Q(t, x) {h: h =f(t, x, z), z Z}. in the problems that we consider the
value function W will be locally Lipschitz continuous. We shall show that W satisfies

(1.6) min D-W(t, x; 1, h) =0
hO(t,x)

at each point (t, x) of . This is the generalization of (1.3). At points of differentiability
of W, relation (1.6) implies (1.3). Relation (1.6) also implies that W is a viscosity
solution of the Hamilton-Jacobi equation (1.3).

Now let W be any locally Lipschitz function that satisfies (1.6) at all points of Y2
and that satisfies the boundary conidition (1.4) at points of -. For (t, x) in let

(1.7)

F(t, x) arg min D- W(t, x; 1, h)
hQ(t,x)

{h" h Q(t, x), D-W(t, x; 1, h)=0}.

Then F(t,x) is nonempty, and the function F may be set-valued. It is an easy
calculation, which we shall give in Lemma 5.1 below, that any absolutely continuous
solution q of the differential inclusion

(1.8) x’F(t,x), x(’)

is optimal. Thus, if (1.8) has a solution for each initial point (-, ) in Y2, then F will
be an optimal feedback control in the sense described. In this paper we shall impose
conditions on F that guarantee the existence of a solution of (1.8). The proof will
describe a constructive method for approximating such solutions.

In conclusion we point out that with minor modifications in wording and
hypotheses to suit the new context, our results and arguments apply to control problems
in which the state of the system is governed by a differential inclusion

x’ Q( t, x), x(’) :.
The interested reader will have no trouble in interpreting our results in this context.

Results related to some of ours have been obtained in the differential inclusion
context by Frankowska [8].

2. Assumptions and problem formulation. As indicated in the Introduction,
denotes time and x denotes a vector in n, the state space. The letter z denotes a vector
in ", the range space of the controls. Components of vectors are denoted by super-
scripts. Thus x (xl, x"), z (z 1, z"), etc. The Euclidean norm of a vector
is denoted by I" I. Let T> 0 be fixed.

A mapping from [0, T] x En x E" to n is denoted by f, and g denotes a mapping
from [0, T] x [ to [. The letter Z denotes a mapping from [0, T] to the subsets of
[". If is a subset of some Euclidean space, by an e-neighborhood of , we mean
the set W() defined by ()={y" ]y’-yl<e for some y}.

A mapping Q from a subset of a Euclidean space N p to subsets of a Euclidean
space Nq is said to satisfy property (Q) at a point y in if

(2.1) Q(y)= 0 clco{Q((y)f3 )}.
6>0

Note that if the mapping Q satisfies property (Q) then Q(y) must be closed and convex.
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We now state our assumptions on the data of the problem.
ASStMPrION I. (1) The mapping f is continuous on [0, T]
(2) For every R > 0, there exists a constant KR > 0 such that for all 6 [0, T],

z[W" and x, E in En with Ixl<= R, IE1_-< R,

If(t, x, z) -f( t, E, z)l _<-- KR[X

(3) There exists a real-valued function /3 in L[0, T] such that for almost all
t [0, T] and all x6Nn, z

If(t, x, z)] <=/3( t)(1 +

(4) For each (t, x) in [0, T] x[R" let

Q(t, x)= {h. h =f(t, x, z), z Z(t)}.

The mapping Q satisfies property (Q) at every point of [0, T]
(5) For every R > 0 there exists a constant K > 0 such that for all t, ’ in [0, T]

and all x, E such that Ix[ _-< R, [E -<_ R,

[g(?, E)-g(t, x)[ _-< K([?-t[ + [E- x[).

Remark 2.1. The requirement that Q satisfies property (Q) is imposed to ensure
the existence of optimal solutions, since we do not assume that the sets Z(t) are
compact. The mapping Z Z(.) is said to be upper semicontinuous with respect to
inclusion (u.s.c.i) at to if for every e >0 there exists a 6>0 such that Z(t) N(Z(to))
whenever It-tol< 6. In problems with compact constraint sets Z(t), in order to
guarantee the existence of optimal solutions it is assumed that at each in [0, T] the
set Z(t) is compact and the mapping Z is u.s.c.i. It is also assumed that at each (t, x)
in [0,.T]" the set Q(t, x) is convex. It is known that for f continuous, these
conditions imply that Q satisfies property (Q) in [0, T]x[ ". Thus, our treatment
includes the compact case. See [1] and [5].

Remark 2.2. If the sets Q(t, x) are not convex, we consider the relaxed problem
in which the right-hand side of (1.1) is replaced by

n+l

?( t, x, ,, "rr) 2 "rrf( t, x, zi)
i=1

where =(z, ,z,+)E("+)" and zr=(r ,+ n+l,...,or )[ The state variable
for this problem is x and the control variables are and or. If z Z(t) is the control
constraint for the original problem, then the control constraint for the relaxed problem
is 2(t), where 2(t) denotes the Cartesian product of Z(t) with itself (n+ 1) times,
and zr F---{zr" ri-> 0, 27=+1 ri= 1}. In the relaxed problem the sets

O(t,x)={h" h6 f(t,x,., or), (.,

are convex. We henceforth suppose that if the sets Q(t, x) are not convex, then we
are considering the relaxed problem. We shall, however, retain the notation of the
original problem. Note, however, that in the noncompact case we must still postulate
that Q(t, x) is closed and that (2.1) holds at each point y (t, x) in [0, T] x R ".

A control u on z, T], 0 =< z < T, will be defined to be a measurable function defined
on [r, T] with u(t)e Z(t) almost everywhere on [r, T].

Standard theorems concerning the existence and uniqueness of solutions of
ordinary differential equations, elementary arguments and Gronwall’s Lemma give the
following result.
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LEMMA 2.1. Letfsatisfy (1)-(3) ofAssumption I. Thenfor each (r, ) in [0, T)R"
and each control u on r, T] the differential equation (1.1) has a unique solution eb r, )
defined on it, T]. Let be a compact set contained in [0, T)x R". Then these exists a
constant R > 0 that depends only on , such that for any (r, sc) in and any control u
on [r, T] the unique solution ok( r, ) of (1.1) satisfies

(2.2)

and

(2.3)

14( t, r, )l R for r <= <= T

for all t, t’ in Jr, T]. Moreover, there exists a constant K > 0 that depends only on
such that for any pair of points (r, ) and (r’, ’) in gg and any control u defined on
[max(t, r’), T]

(2.4)

for max (r, z’) =< =< T.
Given an initial point (r, :) and a control u on it, T], we shall refer to b( r, :)

as the trajectory corresponding to u.
We now discuss the nature of the terminal set 3-. Let o be a closed domain in

[0, oo)x
with the hyperplane T has nonvoid interior relative to the hyperplane.

if T, oo) x R" , then we define

(2.5) ,.U ([:r, oo) x ")

and say that the terminal set 3" is of Type I.
Example. To illustrate terminal sets of Type I consider the problem of reaching

an e-neighborhood of the origin in minimum time, where we restrict the time so as
not to exceed some fixed time T. The set for this problem is the half-cylinder
{(t, x): => 0, ]xl e} and the set - is the union of this half cylinder and the halfspace
T, oo)xn. The function g is defined by g(t, x)= t.

If T, oo) x IR __. o, then we define

(2.6)

and say that the terminal set - is of Type II.
Let

(2.7) {(r, so): (r, ) e [0, T)x R", (r, s) if}.

It follows from Lemma 2.1 and the definition of 9-, that for any (r, sc) in and any
control u on It, T], the corresponding trajectory b( r, sc) will intersect - at a first
time t, t,(r, , u)=min {t: (t, b(t, r, sc))e ’}. We call t, the terminal time of the
trajectory 4.

The stopping rule for our problem will be, "Stop at time t."
For each (r, :) in such that controls exist on [r, T] we formulate the following

problem.
PROBLEM I. Minimize J(r, so, u) g(t, b(t, r, :)) subject to (1.1) over all controls

u on It, T].
It is known that under Assumption I and our assumptions on - that if the set of

controls is nonempty, then there exists a control u* on r, T] that furnishes a minimum.
See [1] and [5].
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To carry out our analysis we will need to impose a further condition relating the
dynamics to the boundary. If - is of Type I, let 0O% denote those boundary points of
O% that do not belong to T, ) x E", i.e.,

(2.8) }O%= oo% [0, T] x ".

If - is of Type II, let O% 0-=0o%.
Note that O% is smooth, since it is a subset of the boundary of . In our example= {( t, x). O <= <-_ r, Ixl= }.
For p e , p e ", define

(2.9) B(t,x, po,p)=sup{po+(p,f(t,x,z)): zeZ(t)}.
At (t,x)eo% let (Vo, v)=(Vo(t.,x), v(t,x)) denote the unit normal to 00% that points
to the exterior of .

ASSUMPTION II. For every compact subset N of 0O% there exists an e > 0 and a
constant c> 0, where e and c depend only on N such that the following holds. If
(t’,x’)eY3, if (t,x)eX(t’,x’) and if (p,p)eX(Vo(t’,x’), v(t’,x’)) then
B(t,x, po,p)<--c.

Remark 2.3. If for each t, the set Z(t) is compact and the mapping Z is u.s.c.i.
on [0, T], then the assumption

+(,f(t,x,z))<O
for all (t, x) 0 implies Assumption II.

3. Lipsehitz continuity of the value. We henceforth assume that for each 0_-< - < T
there exists at least one control on [’, T]. We have already noted that under this
assumption Problem I has a solution for each initial point (-, ) in . Let W(r, )
denote the value of the minimum for the problem with initial point (’, :). The function
W is thus defined on all of .

We extend the definition of W to t2 0-= by the formula

(3.1) W(t, Xl) g(t, x) if (t, Xl) 0-.

We now state the principal result of 3.
THEOREM 3.1. Let Assumptions I and II hold and let W be defined as above.. Then

for every compact set contained in (3 0 -, there exists a constant K > 0 such that for
’, ) and , ) in ,

(3.2) W(’, :)- w(, :)1 =< K(I- 1 /1- 1).
COROLLARY 3.1. W(’, ) g(q, x) as (’, ) (q, x), for all (tl, x) 03-, and

the convergence is uniform on compact subsets of 03-.
The corollary is an immediate consequence of the theorem and (3.1).
Our proof will utilize the function p defined on [0, oo) x N" as follows" p(t, x)

signed distance of (t, x) to 0o, where we take p(t, x) > 0 if (t, x) O% and/9(t, x) < 0 if
(t, x) (O%-0O%). Since 0O% is C (2) it follows that if is a compact subset of 0O%, then
there exists an Co>0 such that p is C’ on o(). Also, at points (tl, x) of 0O%

(p,(t, x), p(t, x)) - (, )as (t, x) O% tends to (t, x). Moreover, on compact subsets of 0O%, the convergence
is uniform. It therefore follows from Assump,,tion II that for any compact subset of
0O%, and hence for any compact subset of 0O%, there exist an e > 0 and a c > 0 such
that for all t, x) We,()
(3.3) sup [pt(t,x)+(pt(t,x),f(t,x,z))]<--c.

zZ(t)
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Since is compact it suffices to show that there exist a K > 0 and a 6 > 0, both
of which depend only on , such that (3.2) holds whenever I(r, s) -(r’, s’)l < 6.

We first consider the case in which both (r, s) and (, s:) are in f3 ; neither
point is on the boundary. To every control u on [r, T] we associate a control a on
[, T] as follows. If - > r, let a(t) u(t) for <- t<_- T. If < r, let be any control on
[, T].Definea(t)=(t)for<=t<rand(t)=u(t)forr<-_t<=T. Letqb( )=b( r,st)
and b(.)= b( ,-, s) denote the trajectories corresponding to u and fi, respectively.
Let t, t,(r, st) and ?, ?,(?, st) denote the corresponding terminal times.

LEMMA 3.1. There exist a constant K2 > 0 and a 6 > O, both of which depend only
on 2f, such that if r, ) and , -) are in f f3 and I( r, ) , )1 < 8, then

(3.4) t, ?.l =< Ke(Ir- ?] + Isc- sol)

We first note that if both tl and 71 equal T, then (3.4) is trivially true. We therefore
suppose henceforth that at least one of the inequalities tl < T or 71 < T holds.

By (2.2) of Lemma 2.1 there exists an R > 0 that depends on such that the
terminal point (h, qS(t,)) of any trajectory with initial point (r, s) in will lie in
([0, T]x BR)f30, where BR denotes the closed ball of radius R in n. Let R
([0, T] X BR)f30o. Then R is a compact subset of 0o. Also, any trajectory & with
initial point in whose terminal time tl is less than T satisfies (tl, b(q)) R.

Let el el(Y3R) and e C(R) be the constants in Assumption II associated with
this R.

By (2.4) of Lemma 2.1 there exists a 8, > 0 such that if I(r, s:) -(, st)l < 81, then
for all max (r, ?)_-< t-< T,

Ib(t, r, sc) q(t, ?, ()l < e,/2.

We now suppose that I(r, st) (’, st)l< 8, and that tl < ?,. Then tl < T and (tl, &(tl))
R. Since I(t,, b(h)) (tl, (t,))[ I&(t,) 4(tl)1 < el/2, it follows that (tl, 4(tl))
,/2().

Let O(t)= p(t, oh(t)). Then 0 is absolutely continuous and

(3.5)
ao
d- O,(t, &(t))+(O(t, 4(t)),f(t, &(t), (t))) a.e.

From (3.3) we see that as long as (t, b(t)) stays in N,(R), the right-hand side of
(3.5) does not exceed -c. Since (tl, ch(t,))eN,/2(Y3R), it follows from the continuity
of & that there exists a maximal interval t,, tl + or) with tl + c =< 71 such that if is in
[t,, t,+ a), then (t, f(t))eX,(R) and (t, 4(t)) -. For all in this interval we have

(3.6) 0(t)- 0(tl) =<-c(t-

From (3.6) we first see that t, + a < ?, is not possible. For then, since O(h) < el/2,
and O(tl + a) e,, we would have ca <-_-el/2, which is impossible. Hence (3.6) holds
for t, =<t---1. If 1 < T, then 0(?)=0 and we get from (3.6) that

({l- tl) <--c-’ ff(t,) <= C-’[(t,, dp(t,))--(t,,

It now follows from (2.4) that

(3.7) -, t,) <--- Kz([r ?l + Ist ([)

where K K,/c. If T, then 0(T)=> 0, in which case (3.7) still holds.
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If 71 < t.1, we reverse the roles of tl and , and obtain that (3.7) holds with left-hand
side equal to tl- 1. From these two inequalities the lemma follows.

LEMMA 3.2. With the notation as above, there exists a constant K3 > 0 that depends
only on , such that for (’, ) and , ) in f-) ,

whenever I(r, ) (?, 0l =< 81.
Proof I( ?1)- b(tl) ----14S(71) b( ?1)1 + 14’(1) b(tl)l. By (2.3) and (2.4) of Lemma

2.1, the right-hand side ofthe preceding inequality does not exceed K([z- 71 + I- ([) +
(1 / R)[?-t,[. Lemma 3.2 now follows from this and from Lemma 3.1.

From (5) of Assumption rand the two preceding lemmas we obtain the following:

g(, q(?l))- g(h,

<= K3(I r 1 + ]+ 1).

Recall that a depends on u. Hence

w(/, -) w(-, s)+

Reversing the roles of (r, s) and (?, ) gives (3.2) with K K3 when both (r, so) and
(, ) are in

We now suppose that (r, :) f3 and that (?, ) fq0-. To emphasize that
(?, :) 0- we shall write this point as (71, gl).

We first consider the case in which 1 T.
As above, let (tl, xl) be the terminal point of &(.)= b( r, :, u), where u is a

control in [r, T]. Then

(3.8) 0<_- -1- t T-t< T-r=?l-r=-r.

Also,

(3.9)
]x,-:ll I(+ f(s, &(s), u(s)) ds-l[

<= I ,1 + ’1 , ,I

for some constant c’> 0.
We now consider the case 71 # T. Then (?, 21) . Since (1, :) (, 0 belongs

to we also have that (71,ffl) R. Let el and be as before. We take (-, ) to be
such that (r, )/,/2(YR) and ](’, )-(?,

Let 0(t) p(t, b(t)) for " <= <__. tl and note that tl <= T. Then arguing as before, we
get that 0(t) 0(-) <- c(t r) for all ---- =< tl. If tl < T, then 0(t) 0 and we get

(3.10)

If tl T, we get

0 < tl- r <= c-1(O(r) O(T)) <= c-1 O(r),
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so that (3.10) still holds. Hence we always have

(3.11) [t- ?[<=[fi-r[+[r- ?[<-_A([’- [+[-])

for some constant A > 0. Comparing (3.11) with (3.8), we see that (3.11) holds whether
or not ? T.

Also, by (3) of Assumption I and (3.10),

Ix,- Ix,- +

<---- If(s,
(3.12)

c(l -

Comparing (3.12) with (3.9) we see that (3.12) also holds whether or not 71 T.
It now follows from (3.11) and (3.12) and (5) of Assumption I, that if [(z, :)-

(?l, g)] < 8, where 8--- min (el/2, 8), then there exists a K4>0 such that

g(t,, x,) W(’,, ,) g(t,, x,) g(f,, g,)

<= K’(lt,-

From this inequality (3.2) follows with K K4.

If both (, ) and (?, ) belong to 0-then (3.2) follows with K K from (3.1)
and (5) of Assumption I.

Hence the theorem holds with 8=min (e/2, 8) and K =max (K3, K4, K).

4. A necessary eond|tion. The principal result of this section is the following
theorem.

THEOREM 4.1. Let Assumptions I and II hold andfor each 0 <- < T let there exist
a control u on [% T]. For each zin [0, T] and each z in Z(t) let there exist a 80>0 and
a control u in [’, + 80) such that limt_.+o u(t)

(4.1) min D-W(z, ; 1, h)=0.
Q(’r,:)

Before we prove Theorem 4.1 we discuss some of its implications.
We have already pointed out that Assumptions I and II imply that if for each

the set of controls on [r, T] is not empty, then Problem I with initial point (% ) in
has a solution. Thus W is well defined on . In Theorem 3.1 we have shown that

W is locally Lipschitz in t.J . Thus W is ditterentiable almost everywhere on . At
points of ditterentiability (4.1) becomes

(4.2) Wt(r, )+ min (Wt(7" ),f(t,x,z))=O
zZ(t)

where W (0 W/ox, ,0 W/ox").
Let (r, :) be a point in and let ( )= ( r, ) denote an optimal trajectory

for the problem with initial point (-, ). Since W is Lipschitz continuous and is
absolutely continuous, the function to defined on It, t] by the formula to(t)=
W(t, @(t)) is absolutely continuous. Thus almost all points of[r, t] are simultaneously
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Lebesgue points of and points of differentiability of to. At such a point we have

dto
--=lim W(t+ 8, #(t+ 8))- W(t, #(t))]8 -1

dt -,o

lm W t+, O(t)+ O’(s) ds W(t, O(t))
0

=lim[W(t+8, O(t)+’(t)+o())- W(t, O(t))]8-0

DW(t, O(t); , O’(t))
where in passing to the last line we have used the Lipschitz continuity of

On the other hand, the Principle of Optimality, discussed below, gives the relation

w(t+, O(t+ ))- w(t, O(t)) 0.

Hence DW(t, (t); 1, ’(t))=0. Combining this relation with (4.1) gives the following
result that can be considered as a form of the Pontryagin maximum principle.

COOLLAaV 4.1. At almost all points of , t],
0= DW(t, O(t); 1, O’(t))DW-(t, O(t); 1, h)

for all h Q( t, ( t)).
If for each in [0, T] the set Z(t) is compact, or ifwe strengthen (3) of Assumption

I to require that be finite-valued for all and that (3) holds for all t, then

n(t, x, p) min (p, h) min (p,f(t, x, z))
heQ(t,x)

is defined and finite on [0, T] x" x". In this case, an elementary argument due to
Lions and Souganidis [10] and based on one of the equivalent definitions of viscosity
solution shows that (4.1) implies that W is a viscosity solution of

u,+H(t,X, Ux)=O, (t,x),
(4.3)

u(t, x) g(t, x), (t, x) .
The next theorem is the Principle of Optimality for Problem I. Note that we do

not require Assumption II to hold for the terminal set.
TEORE 4.2. Let be a connected set in [0, T)x" and let if’ be a set in

[0, T] x " such that ’ . For each , ) in let Problem I with terminal set if’
have a solution (u*(.), *(. )) where u*(. )= u*( , ) and *(. )= 6*( r, ). en
if t is the terminal point of *,
(4.4) W(t, &*(t))= W(r, ), z t t.
If (u, ) is any other control trajectory pair with initial point (z, ) and terminal point
(r, then

(4.5) w(t, 6(t)) w(r, ), rz tz :.
The proof is well known and will be omitted.
We shall also need the following result, whose proof we omit.
LEPTA 4.1. Let K be a set in ofpositivefinite Lebesgue measure and let A "K "be Lebesgue integrable on K. Let ( denote the set of regular probability measures such

that x fd exists. en the sets clco{f(x)’ x K} and , cl{x fd" {} are
equal

We now take up the proof of Theorem 4.1. We first show that

(4.6) inf D-W(r, ; 1, h)O.
heQ(r,)
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Let h Q(’, ). Then there exists a z in Z(z) such that h =.f(z, , z). Also, there
exists a control u defined on [-, -+ 6o) with u(-)= z that is continuous from the right
at -. This control can be extended to [r, T], and we denote the extended control
also by u. Let 5 be the trajectory corresponding to u and having initial point (r, ).
Then for > 0

(r+ 8)= + f(s, (s), u(s)) ds

(4.7 =+ [f(, ,+o(] s

+f(, , +o(,
where o is as 0.

By the Principle of Optimality,

W(r+ , (+))- W(f, )]-1 0.
If we substitute the rightmost expression of (4.7) into this inequality and use the
Lipschitz continuity of we get that

[w(r+ , + h)- w(z, )]-’ + o(1) e0.
From this, (4.6) follows.

We next show that there exists an h*e Q(z, ) such that D-W(z, ; 1, h*)N0.
This in conjunction with (4.6) will establish the theorem.

Let denote the optimal trajectory for the problem with initial point (, ). Then

(4.a (r+ + ’(s s

where ’(s)e Q(s, (s)) for almost all rNsN T. Hence, since 0 is continuous, given
an e > 0, there exists a (e)> 0 such that if N s N r+ then

(4.9) ’(s)e Q((r, )) a.e.

Let K denote the set of points in [, + ] at which the inclusion (4.9) holds. Then
the measure of K equals & Thus

+
’(s) ds ’() $’(s)

From (4.9) we get that

cco{’()" s e g} cco {O((r, ))}.
From this relationship and from Lemma 4.1 we et that

I ’(s)()clco {O((z, ))}.

Let

h -= (s)

We have shown that for every e > O, there exists a 8 > 0 and a point h such that

(4.10) (z+ 8)= so+ 8h, h clco ((z, s)).
Since

[hal<- 6- IO’(s) ds<-_8- [l+q(s)l[[[loods
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where 11/311 is the L[0, T] norm of/3, it follows from (2.2) of Lemma 2.1 that there
exists a constant A such that Ih61 <=A for all 3 < 6(e). Hence there exist sequences
ek0 and 6k k(ek) 0 such that hk clco {Q(X,,.(z, ))} and such that hk converges
to some element h* in

Let e > 0 be fixed, but arbitrary. Then there exists an integer k’ such that if k > k’,
then Q(k(’, :))___ Q(c(z, )). Hence clco {Q(Xk(z, :))} c_ clco {Q((z, ))}, and
so hk clco {Q((-, ))}. Hence, h* clco {Q(X(z, :))} for arbitrary e > 0. It now
follows from property (Q) that h*6 Q(z, ).

We return to our sequences {3k} and {hk}. From the definition of h* and from
(4.10) we get that

(4.11) b(r+ k) + 6kh* + o(6k).

From the Principle of Optimality we have that

w(+, 0(+ ))- w(, )]’ 0.

Substituting (4.11) into this relation and using the Lipschitz continuity of W, we get that

lim W(z+6, :+ 6kh*)- W(z, :)]61 0.

Recall that 6k- 0 as k . Hence

lim inf[ W(-+ 3, :+ 3h*)- W(z, )]6-1 _<-0,
6-*0+

so that D-W(r, so; 1, h*) <-0. This proves the theorem. Note that our argument shows
that D-W(r, so; 1, h*) =0, so that we are justified in writing min in (4.1).

5. Optimal synthesis. Let V be a real-valued function that is continuous on t3 0 -,
that is locally Lipschitz on , and that satisfies

min D-V(t,x; 1, h)=0, (t,x)Y,
hO(t,x)

(S.1)
V(t,, Xl) g(tl, x1), (tl, Xl)

We have shown in Theorems 3.1 and 4.1 that if the assumptions of Theorem 4.1
hold, then the value function W is one such function. In the case of compact constraints,
or in the case that (3) of Assumption I is strengthened to require that/3 be finite-valued
for all and that (3) holds for all t, any viscosity solution of (4.3) that is continuous
on t2 3- and locally Lipschitz continuous on can be shown to satisfy (5.1). The
proof of this assertion makes use of the definition of viscosity solution and arguments
similar to, but simpler than, those ofTheorem 4.1. No uniqueness theorems for viscosity
solutions are used.

For each (t, x) in let

(5.2) F(t,x)-{h: hQ(t,x),V-V(t,x; 1, h) =0}.

The set-valued function F furnishes a generalized optimal synthesis or feedback in
in the following sense.

LEMA 5.1. For each (’, :) in , any solution of the differential inclusion

(5.3) x’=F(t,x), x(z)

that is defined on an interval z, + a) such that 0 hits 3- at a time tl < a is an optimal
trajectory for Problem I with initial point % ).
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Let q be a solution of (5.3) with the hypothesized properties. Since F(t,x)_
Q(t, x), the solution q also satisfies q’(t) Q(t, q(t)) almost everywhere. By Filippov’s
Lemma there exists a control v such that q/(t)=f(t, q(t), v(t)) almost everywhere.
Thus v and q are a control and trajectory pair.

To see that (0, v) is optimal, let (4, u) be any control trajectory pair for the
problem with initial point (r, ). Then the function on [-, tl] defined by (t)=
V(t, oh(t)), is absolutely continuous on [r, tl]. Hence

I,[ d
W(s, ck(s))]dsV(tl, )(tl) V(7", )--

(5.4)
[’ DV(s, th(s); 1, th’(s)) as >-_ o.

The second equality follows by the same argument that was used to calculate dw/dt
in the proof of Corollary 4.1 and the last inequality follows from the first condition
in (5.1). From (5.4) and the second condition in (5.1) we get that

(5.5) g(tl, (tl)) > V(7", ).

If we take (b, u)= (q, v) in the preceding argument, then the last inequality in
(5.4) will be replaced by an equality. Hence we get g(l, q(l)) V(r, ), where is
the terminal time of q. If we combine this relation with (5.5) we get that for all control
trajectory pairs b, u for the problem with initial point r, ), g( tl, b (t) -> g( 1, q()).

COROLLARY 5.1. Iffor each (’, ) in equation (5.3) has a solution d/( r, ) on
an interval sufficiently large for d/ to intersect , then V W.

Remark 5.1. We have already noted that in the case of compact constraints or a
suitably strengthened (3) of Assumption I, a viscosity solution of (4.3) that is locally
Lipschitz continuous on satisfies (5.1). Thus, such a solution of (4.3) will give a
synthesis of optimal control in the sense indicated.

We now define a sequence of functions that will converge to a solution of (5.3)
when F satisfies certain conditions. This will give a constructive procedure for finding
solutions that, in principle, can be implemented to obtain approximations to solutions.

For each n 1, 2, 3,... we define a Euler polygon approximation En of order n
for (5.3). To emphasize the dependence of E, on the initial point (’, :) we write
E,( r, ). Let -, be a partition of[r, T] with partition points r ro < "gl <" < "F2n T
with the following properties. (i) For i>0, It(,)l-< IIlloo, where/3 is the function in
(3) of Assumption I. (ii) For i>0, (3) of Assumption I holds with t--’i. (iii) If
6,--max{0=<i=<2n-l: ri+-ri}, then 6,<=(T-r)/n.

Let ho be an element of F(ro, :o), which is fixed for a particular sequence of Euler
polygons. For to--< _-< rl define

(5.6) E,(t)=o+ho(t-%).

Now suppose that E,(t) has been defined for ro=<t_-<’i, where l=<i<2n-1. Let
i En(ri), and let hi be any element of F(’i, :i). Then for ri--< t--< ri+ define

(5.7) E.( t) i + hi( ’i).

Thus, E is defined for all to--< t-<_ T. Note that the triple (-0, 0, h0) is independent of
n, but that for i> 0, the triple (’i, i, hi) depends on n.

LEMMA 5.2. Given (r, ) and a choice hoe F(r, ), then there exist constants
R>0 and M>0 such that for all all n and all ’<=t<-_T, we have ]E,(t)I<-_R and
]E’,(t)]<=M. At the partition points ’i, E’,(ri) is interpreted as either of the one-sided
derivatives.
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To establish IE,(t)l <= R it suffices to show that I:l =< R for all n and all 0 -< =<2n,
where we take 2, E,(T). Let R1 max ([ho[, [[/3 [[). It then follows from (5.6) and
(3) of Assumption that + [:l---- (1 + I:d)(1 + R8). By a simple induction argument,
(5.7) and (3) of Assumption I, we get that for all n and all 0=< i<=2n 1,

/ I:,+1 -< (1 / 1ol)(1 + TRln-1)2".
From this it follows that there exists an R > 0 such that I:il-<-R for all n and all
0_-< i__<2n-1.

For r<=t<-_ T, E’,,(t)=h for appropriate O<-i<=2n. By construction and (3) of
Assumption I, for > 0 we have Ih[--< I1# I1 (1 / Since ho is independent of n and

(t)l--< M follows.I ,1 < R for all n and 0 <

The functions {En} are unifo.rmly bounded and equicontinuous, so there exists a
subsequence that we again label as {E}, that converges uniformly on It, T] to a
continuous function . Since the integrals ’ E’(s) ds, r < <= T are uniformly bounded
and uniformly absolutely continuous, the function is absolutely continuous and the
derivatives E ’ converge weakly in LI[ r, T] to ’. Ifwe could show that ’(t) F( t, (t))
almost everywhere on It, tl], where tl is the terminal time, then by Lemma 5.1,
would be optimal. Moreover, the convergent subsequence {E} would approximate
uniformly.

We now take up conditions that are sufficient for to be a solution of (5.3).
DEFINITION 5.1. A subset g of is said to be an exceptional set for the synthesis

if for each (-, :) in there exists a limit point q( r, :) in C"[ r, T] of some sequence
{E.( r, :)} of Euler polygons such that the set

(5.8)
has Lebesgue measure zero. Here t is the terminal point of q,.

Remark 5.2. Any set go whose projection on [0, T] has measure zero can be an
exceptional set. Exceptional sets also arise as "dispersal surfaces," in the terminology
of Isaacs [9] for control problems. Example 5.1 below illustrates a simple case of this.

THEOREM 5.1. Let the mapping F satisfy property (Q) at each point (t, x) of
with the possible exception of points in an exceptional set
any uniform limit b( r, ) of a sequence E,,(r, ) of Euler polygons that satisfies
meas o(qt)= 0 satisfies (5.3) almost everywhere on r, T] and is optimal.

Proof. In view of the discussion preceding Definition 5.1, we need only prove that
satisfies (5.3).
We have already shown that E’.+O’ weakly in L[r, T]. Hence by Mazur’s

Theorem there exists a sequence of functions O,j defined by the formulas
k(ni) k(ni)

n.i onj,iEni+i Onj, 0, Z ln.i,i
i=1 i=1

where nj+ > nj + k(n), and such that q+ q’ in L[r, T]. An elementary argument
shows that the uniform convergence of E. to q implies that ,; q uniformly on
It, T]. Since
such that O’..; q’ almost everywhere.

Let to> r be a point of It, T] such that q(to)- q’(to) and to 5(q). The set of
such points has full measure. We conclude the proof by showing at such a point
q/(to) F( to, @(to)).

Let 3>0 be given. Since [E’.(t)[<-M for all in [r, T] and all n, there exists a
positive r/ such that r/< ?J/3 and if [t’-t"[< r/, then IE.(t’)-E.(t")[<6/3 for all n.
Also, there exists a positive integer N1 such that for n > N, [E.(t)-q(t)l < 6/3 for
all in It, T].
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There exists a positive integer N2 such that for all n > N2, the partition r, has
partition points in (to-r/, to]. Let v v(n) be the index such that ’ is a partition point
of r,, in (to- r/, to] and satisfies - _ to < ’+1.

Let N max (N1, N2). Then for n > N, (recall that v v(n))

[(%, E,(%))- (to, (to))[_-< ]% to[+[E,(r)-(to)l
--< I tol + [En (%)- E,,(to)l + ]E.(to)- @(to)l < ’%

In other words, we have (, E,(’)) X(to, ,(to)). By our definition of E,, we have
that E’,(- + 0) .F(r, E,(r)). Hence, E’(- + 0) F((to, ,(to))). But by our choice
of v and the definition of E,,, we have that E’,(’+O)=E’,(to). Hence E’,(to)e
F((to, ,(to))), for n> N. This in turn implies that there exists a positive integer
J J(/) such that for j > J,

bn.,(to) CO (F(fs(to, @(to)))}.

Since @’n,( to) " @’( to), the preceding statement implies that @’(to)
clco (F(8(to, b(to)))}. Since 8>0 was arbitrary

@’(to) clco(F(Afs(to, @(to)))}.
8:>0

Finally since property (Q) holds at (to, O(to)), we get that @’(to) F(to, @(to)), and
the theorem is proved.

We illustrate Theorem 5.1 with a simple example.
Example 5.1. Let n 1, let T= 1, let the terminal set be [1, o)xR, and let

g(t,x)= -x2. We wish to minimize g(1, b(1)) -(0(1))2, over all & that satisfy x’ u,
x(r) , and -1 u _-- 1.

It is clear that for (z, ) with :>0, the optimal control is u(t)= 1 for -_t_-<l

and the optimal trajectory is the straight line of slope one through (z, ). Similarly for
(% ) with :<:0, the optimal control is u(t)=-I and the optimal trajectory is the
straight line of slope negative one. For (z, ) with =0, both u(t)= +1 and u(t)=-1
are optimal controls and both the lines with slope plus one and minus one are optimal.
The value function W is given by W(z, :) =-[:+(1-)] if0 and by W(r, )=
-[:-(1- r)] if :<-_0.

The partial derivative Wt is continuous on [0, 1] x R n, but the partial derivative

We is discontinuous at all points (-, 0) with 0-’_ 1. Thus, the classical dynamic
programming approach to this problem fails. We show how our theory applies. For
(%) with so>0 we have that DW(z,; 1, h) exists for all hQ(t,x)=[-1,1] and
DW(’, ; 1, h)=2(1-h)[+(1-z)]. Hence min (DW(z, ; 1, h)’ h [-1, 1]}=0 and
occurs at h 1. Thus F(z, )= if >0. For (% :) with :<0 we calculate that
DW(z, :; 1, h)= -2(1 + h)[s- (1- r)], so that F(-, so)=-1. For points (% s) with =0
we have that if h_->0, then DW(r,O;1, h)=2(1-’)(1-h), while if h<_-0, then
DW(r, 0; 1, h)=2(1--)(l+h). Hence F(r, 0) =(+I}U {-1}.

The mapping F clearly satisfies property (Q) at all points of [0, 1) x [, except for
those points on the line 0. We take the exceptional set g to be the line segment
((, )’ 0<_- r< 1, 0}. It is clear for any (’, ) with 30, that the Euler polygons will
all be the unique optimal trajectories from the point and will never intersect g. For
initial points on g, the Euler polygons will either be lines of slope plus one or minus
one, depending on whether ho +1 or ho =-1. In either case the resulting trajectory
only has the initial point in common with g. Thus the function clearly gives the
optimal feedback.
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6. Other terminal sets. The terminal sets that we have considered in this paper
are (n/ 1)-dimensional with n-dimensional boundaries. In many applications the
terminal sets 3- are of lower dimension. For example, in the "time optimal to the
origin" problem the terminal set is the t-axis.

One treatment of such problems is to replace the problem by an approximation
to the problem in which the terminal set has the structure that we have considered
here. We illustrate with the time optimal to the origin problem. We take T to be very
large and e>0 to be very small. We take the terminal set 3- to be the union of
T, ) x [" and , where is the half-cylinder {(t, x): => 0, Ilxll--< e}. The new terminal

set 3- falls within the purview of our theory. If we succeed in obtaining an optimal
synthesis for this problem, then we can determine those points from which we can
reach in minimum time tl, where tl <= T. For many practical situations this model
is adequate.

Another treatment of problems with lower-dimensional terminal sets that are
closed is the following. The problem is first transformed into a problem frith fixed
terminal time, say T 1. This can always be done (see, e.g., [1, p. 27]). In the trans-
formed problem the terminal set will be some closed set cg in the hyperplane T.
The transformed problem is then replaced by a sequence of problems Pn in which the
terminal set 3- is always T, c)xR and the payoffs are functions {gn} defined by

gn(t, x)= if(x)+ n dist (x, c)

where is the payoff of the transformed problem and dist (x, )= min {[x-y[’y }.
Each problem P, falls within the purview of our theory and has a value function

W,. inter and Mendoza [11] have shown that the values W, converge to a function
W that is the value of the transformed problem. Thus the optimal feedback syntheses
of the problems P, are approximations to the optimal synthesis for the transformed
problem.
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Abstract. A duality theorem is proved for problems of optimal control of linear dynamical systems in
continuous time subject to linear constraints and convex costs, such as penalties. Optimality conditions are
stated in terms of a "minimaximum principle" in which the primal and dual control vectors satisfy a saddle
point condition at almost every instant of.time. This principle is shown to be equivalent to a generalized
Hamiltonian differential equation in the primal and dual state variables, along with a transversality condition
that likewise is in Hamiltonian form.
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1. Introduction. This paper focuses on optimal control problems of convex type
and the special properties they enjoy, in particular, properties of duality. A fundamental
problem form, intended for approximations of more complicated control situations as
well as direct use in mathematical modeling, is introduced in terms of linear dynamics
and linear constraints that may be represented by penalties, either finite or infinite. A
duality theorem is proved and is made the basis for deriving necessary and sufficient
conditions for the optimality of control functions and state trajectories. The work
extends the author’s recent results on continuous time problems with piecewise linear-
quadratic costs [1], [2]. It ties in more generally with the theory of dual problems of
Bolza in the calculus of variations, as developed earlier by methods of convex analysis
in Rockafeller [3], [4]. A bridge is thereby provided to a conceptual framework
dominated by a Hamiltonian function and its gradients or subgradients in the expression
of optimality condition.

The chief aim, besides setting up the duality, is to demonstrate that solutions to
problems in the chosen class can be characterized in two quite different, yet equivalent,
ways. First, there is a "minimaximum principle," which expresses the primal and dual
optimal control vectors at any time as giving a saddle point of a certain convex-concave
function. Second, there is a generalized Hamiltonian differential equation in terms of
primal and dual states but no direct mention of controls.

The minimaximum principle is suggestive of computational approaches that
depend on generating sequences of control functions as in various algorithms of convex
programming. The Hamiltonian system, on the other hand, is of interest in that it can
be solved like an ordinary differential equation from any choice of initial primal and
dual states. While this may or may not be a practical tool in calculating optimal
trajectories, it reveals important information about such trajectories, for example, that
under our assumptions they can be realized by optimal control functions that are
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essentially bounded. Knowledge of the Hamiltonian function is crucial also to the
prospects of applying Hamilton-Jacobi theory in its latest forms to convex problems
of optimal control.

The model problem we start from is not the broadest possible problem that would
fit under the heading of convex optimal control. It is selected, rather, to yield strong
results while still encompassing a wide spectrum of applications. The details of structure
are designed to facilitate dualization.

To help keep formulas compact and readable, we write xt and u, as the state and
control vectors at time instead of x(t) and u(t). These vectors belong to R and Rk,
respectively. We also make use of an auxiliary control vector ue [k,, which affects
endpoint costs and constraints; the subscript e is utilized also to designate data elements
connected with endpoints. (See 1] for a discussion of the modeling possibilities with
endpoint controls.) Inner products of vectors in $" and [k will be expressed in the
notation (.,.) and the Euclidean norm by l’ I.

We denote by q/ the space of all control elements u consisting of a choice of
vector ue and an essentially bounded, measurable function tu, defined over the
interval [to, t], which is fixed throughout the paper. We handle /as a Banach space
in the norm Ilull max {luel, ess sup, lutl}. Each u determines a state trajectory
x: txt [n, which is Lipschitz continuous over [to, t]. The time derivative of x,,
which exists for almost every t, is denoted by t. The space of all such Lipschitz
continuous arcs x in [n is denoted by M= M[to, tl]. This is a Banach space in the
norm Ilxlloo max {IXol, ess sup, .,}. (The superscript oo is a reminder that the derivative
function t-: belongs to O[to, t].)

The control problem we address takes the following form:

Minimize the functional

F(u)= [{p,, u,}+q,(u,)+,(q,-C,x,-D,u,)-{c,,x,}] dt

() + [(Pe, Ue)+te(ue)+d/e(qe-Cex,t-Deue)-(ce, x,,)]
over u 0//, where x is determined from u by. Ax, + Btu + bt a.e., x,, B,ue +

Here and e are functions on Rk and k.’, while , and Oe are functions on certain
spaces [1 and R I,’. The dimensions of the various vectors and matrices in () are of
course completely determined by the dimensions of these spaces. In general we assume
the following:

(A1) ,, e, ,, e, are lower semicontinuous, proper, convex functions.

(A2) 9, and depend epi-continuously on t [to, tl].

(A3) A,, B,, b,, C,, c,, D,, p,, q,, depend continuously on t [to, t].
By (A3) we are assured, in particular, that each choice of u 0/ gives rise to a

unique trajectory x, which belongs to the space s because the function t
Atx, + But + b, is essentially bounded. The mapping u x is continuous. The proper-
ness in (A1) asserts that the functions ,, , ,, Oe, do not take on the value -0%
although they might in some cases take on o as long as they do not have this value
everywhere. The role of c is to provide an infinite penalty for certain constraint
violations; more about this will follow.

Assumption (A2) means that the epigraphs sets epi o and epi ,, which are closed
convex subsets of []k+l and Rl+, depend continuously on in the sense of set
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convergence. This form of continuity has been studied by many authors in recent years
(see Salinetti and Wets [5], Wets [6], for properties and references). As a special case,
of course, epi-continuity is present when , and g,, do not actually vary with t.

PROPOSITION 1.1. Under (A1)-(A3), thefunctional F in problem ) is well defined
on the Banach space with values in (-o, c]. Furthermore, F is convex and lower
semicontinuous.

Proof The epi-continuity of epi , in (A2) entails that the function (t, w)-,(w) is lower semicontinuous on to, tl] x R k. Therefore, this function is definitely a
normal integrand in the sense of [7] and is bounded below on [to, tl] x W for every
bounded set WcRk. It follows that Ct(ul) is measurable in when ut is measurable
in t, and it is essentially bounded from below when u, is essentially bounded in t. For
any u , then, the integral of ,(u,) has a well-defined value in (-o, ]. Similar
properties hold for . Since (A3) implies q-Cx,-D,u, is a bounded measurable
function of when ul is such a function of (here we note that x, as determined by
the dynamics, is continuous in t), we conclude that the integral of (q,- c,x- D,u,)
likewise has a well-defined value in (-c, ] for any u /. Thus F(u) is well defined
on o-//with values in (-oo, oo]. The convexity of F follows, obviously, from the convexity
in (A1) and the fact that the dynamical mapping u x is affine. Lower semicontinuity
in the norm topology of follows from the lower semicontinuity in (A1) and continuity
in (A3), as well as the continuity of ux, by Fatou’s Lemma (cf. [7]).

Problem () may involve implicit constraints beyond the ones already mentioned,
due to the possibility of values. Recall that the effective domain dom F consists of
the elements u such that F(u)< o; similarly for dom, and dom Ce. Minimizing
F over o//is the same as minimizing F over dom F. Obviously the condition u dom F
requires u to belong to the set

(1.1) U:= (u q/

and satisfy

(1.2)

(1.3)

,(u,) dt < and Ce(Ue) < O
to

u, Ut a.e. and ue Ue, where U, := dom , and Ue := dom Ce,

q Ctx Dtu, Rt a.e. and q Cxt Deue Re,

where R, := dom t#, and Re := dom @e.
The control problem dual to () involves dual states Yt ,1 and dual controls

v, and ve ". Let us denote by Y’ the set of control elements v consisting of a
choice of ve and an essentially bounded, measurable function t yr. This is a Banach
space in the same way as described above for /. The dual problem takes the. following
form:

Maximize the function

G(v)= [(q,, v,)-d/* (v,)-* (B*t y,+ D* v,-pt)-(b,, yt)] dt
to

()
+ [(qe, ve)-d/*(v,.)-q*(B’y,,,+D*ve-pe)-(b,yt,,)]

over v 7/’, where y is determined from v by

-p, A,* y, + C,* v, + c, a.e., y,, C* ve + c.
The asterisk on a matrix denotes transpose, but on a convex function it indicates the
conjugate function (Legendre-Fenchel transform) in the sense of convex analysis [8].
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Note that the dual dynamical system goes backward in time and uniquely determines
a Lipschitz continuous trajectory y 6 for each v .

Just as (A3) is preserved in passing to transposes, assumptions (A1) and (A2)
imply the corresponding properties for the conjugate functions:

(AI*) t*, Pe*, @t*, @*, are lower semicontinuous, proper, convex functions.

(A2*) q* and * depend epi-continuously on to, tl].

The equivalence between (A2) and (A2*) follows from Wijsman’s Theorem [9] on the
continuity of the Legendre-Fenchel transform with respect to epi-convergence. There-
fore, we immediately get the version of Proposition 1.1 that applies to the dual problem.

PROPOSITION 1.2. Under (A1)-(A3), thefunctional G in problem ( is well defined
on the Banach space U with values in [-, ). Furthermore, G is concave and upper
semicontinuous.

Implicit in () are the constraints that v should belong to the set

(1.4) V:= v7/" O*(v,)dt<oeandt*(Ve)<

and satisfy

(1.5) v, V a.e. and Ve Ve, where Vt := dom 0* and Ve := dom Oe*,

(1.6)
B* y, + D*t vt p, St a.e. and B*e Yto + D*e Ve- Pe Se,

where St := dom q* and Se := dom q *.
The special case of these primal and dual problems that was treated in [1] and

[2] as extended linear-quadratic optimal control is obtained by taking

t(ut)--1/2(ut, Ptut) forut Ut, ,(ut)= forut U,,

(e(Ue)--1/2(Ue, Pel,te) fOrUe Ue, e(Ue) -’-(X) fOrUeZ Ue,
(1.7)

t(Vt)--1/2(Vt, Qtv,) for vt Vt, 0,*(vt)= for vtJ Vt,

(Ve)-"1/2(Ve, Qeve) for Vee We, e(Ve) --00 for VeZ Ve,

for polyhedral sets Ut, Ue, Vt, Ve, and positive semidefinite symmetric matrices Pt, Pe,
Qt, Qe. The philosophy behind this is fully explained in [1] and will not be repeated
here, except to say that the functions t, Se, ,*, *, are then piecewise linear-quadratic
and yield a version of linear-quadratic optimal control in which piecewise linear-
quadratic penalty terms may be present and are readily dualized.

In general, the terms involving , and I//e in () may be viewed as monitoring the
vectors st qt Ctxt- Dtut and Se qe Cext, Deue. A simple example would be the
one where $t vanishes on a certain set K but has the value c outside of K. Then the
0, term expresses through infinite penalties the condition that st K almost everywhere.
This condition might represent a system of equations or inequalities. Instead t could
have finite, positive values outside of K, and then we would have a finite penalty
representation of such a constraint system. Similarly, e could play this role for
constraints on the endpoint xt,, while q* and q* could have such interpretations in
the dual problem. Many examples are worked out in [1].

Our strongest results will eventually call for a further assumption"

(A4) and q are coercive, while O, and O are everywhere finite.

Coercivity of , means that limlwl_. ,(w)/[w[=, which is true in particular when
the control set Ut in (1.2) is bounded; similarly for p and Ue. It is known from convex
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analysis [8, 13] that q, and qe are coercive if and only if the conjugate functions qt*
and q* are finite everywhere. Likewise, q, and @e are finite everywhere if and only if
q,* and q,* are coercive. Thus (A4), like the earlier assumptions, has an equivalent
dual form:

(A4*) q,* and @e* are coercive, while q t* and q * are everywhere finite.

The interpretation of (A4), then, is that there are effectively no exact implicit constraints

of type (1.3) and (1.6) in the primal and dual problems. In other words, this additional
assumption corresponds to the situation where all the monitoring of qt- C,xt- Dtut
and qe Cex,l Deue in the primal problem and of Bt* y, + Dt* v, p, and B* Yto + D* ve
Pe in the dual problem proceeds with finite values: no infinite penalties. Such a property
may naturally be present in a given application, or it may be achieved as a mode of
approximation for a problem one is really interested in. Anyway, we may argue that
it is vital for the development of computational methods for problems like () and
(). Conditions on x or on x and u jointly that are modeled as exact constraints can
lead to serious numerical complications, whereas such conditions on u alone, as in
(1.2), present relatively little difficulty. See [1] for more on this issue.

PROPOSITION 1.3. Under (A4), the epi-continuity assumption (A2) is equivalent to

having q* (r) and d/t(s) be continuous in t[to, t] for each rRk and sRI. Then in

fact q* (r) is continuous with respect to (t, r), and d/,(s) is continuous with respect to (t, s).
Proof. For finite convex functions, epi-continuity with respect to is equivalent

to pointwise continuity with respect to t; (see Salinetti and Wets [5, Cors. 4, 5]).
Furthermore, finite convex functions whose values depend continuously on are jointly
continuous in and their other variables [8, Thm. 10.7].

PROPOSITION 1.4. Under assumptions (A1)-(A3), the sets U and V in (1.1) and
(1.4) are convex and nonempty. When (A4) holds too, U is identical to the set offeasible
controls for (), i.e., the elements u 1 for which F(u) is finite, and likewise V is the
set offeasible controls for (). In particular, feasible controls do exist, then, for both
problems.

Proof. The convexity of U and V is obvious from their definitions by the convexity
in (A1). Clearly F(u)= when u U, and G(v) =- for v V. According to (A2),
the multifunction t-->epi ,, whose values are nonempty closed convex sets by (A1),
is continuous. For such a multifunction the continuous selection theorem of Michael
[10] applies: it is possible to choose (u,, a,)epi , continuously with respect to
[to, t]. Then qt(u,)=< a,, so the integral of q,(u,) cannot be and therefore must

be finite. Taking any u in Ue, a set which is nonempty by the properness of q in
(A1), we obtain a control element u U. Thus U # . Any u U, on the other hand,
makes all the terms in the formula for F(u) in () be finite except perhaps for the
integral of tilt(s,), where s, q,- C,x, + Dtu,. The function t st is essentially bounded
in by (A3). The continuity of (t, s) , (s) asserted by Proposition 1.3 implies that
the latter function is bounded on to, tl] x W for any bounded set W c !. We thereby
obtain the essential boundedness of qt(s,) in and hence the finiteness of its integral.
This yields the desired conclusion in the case of (). The corresponding result for ()
follows by duality. 1-1

2. Minimax representation. The close relationship between problems () and ()
that leads to their being called dual to each other stems from a joint representation in
terms of a minimax problem in R . To give this, we introduce the functional

(2.1) J(u, v): Jt(ut, l),) dt-l-Je(ue, l)e)--j(u, V)
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in the notation

(2.2)
J,(u,, v,):= (p,, u,}+(q,, v,)-(v,, D,u,}+q,(u,)-q,*,(v,),

J(u, v,,) := (p, u>+(q, v)-(v,, Dtu,}+ .(u,,)- q,*(v),

and with j taken to be the bi-affine functional on /x that corresponds to the
dynamics and is expressed in terms of the trajectories x and y associated with u and
v by

j(u,v):= (y,,Btut+bt) dt+(Yto, Bu+b)
to

(2.3)
/" ’,

[ (x,, C* v, + c,} at + (x,,, C* ve + c}.
to

(The validity of the equation in (2.3) is proved in 1, 6].) Because some of the terms
in (2.2) can take on the value while others are -, a convention is necessary to
ensure that J(u, v) is well defined. The one we follow is standard in convex analysis:
o oo o. This clarifies the meaning of J, (u,, v,) and Je (ue, re) in all cases in (2.2):

(2.4)

nte value
J,(u,, v,)=

when u, e U, and v, V,
when u, U, and v, V,,
when u, U,,

te value when u Ue and v e V,
J(u, v) when u U and v

when u, U,

where the sets U,, U, V, V, are the effective domains in (1.2) and (1.5). The convention
enters into the formula for J(u, v) in resolving the integral as o whenever the positive
part of the integrand (which is always measurable by the argument given in the proof
of Proposition 1.1) has integral m while the negative part has integral -o. (This
amounts to writing J(u, v) with the terms ,o t#,(u,) dt and -’,’o 0,*(v,) dt separated out
and then invoking the convention o-a3 o in forming the overall sum. The first of
these terms is unambiguously finite or c, as seen in Proposition 1.1, while the second
is finite or -o.)

PROPOSITION 2.1. The functional J is convex.concave on ell x V with finite values
on U x Vbut infinite values everywhere else. For each v V, J u, v) is lower semicontinuous
in u all, while for each u U, J(u, v) is upper semicontinuous in v T’. The objective
functionals F and G in and ( are given by

F(u)=infJ(u,v)=infJ(u,v) and G(v)=supJ(u,v)=supJ(u,v).
u u U v’F ve V

Proof. In view of the definitions of U and V in (1.1) and (1.4), the convention
adopted in the formula for J(u, v) entails, having

finite value when u e U and v V,
(2.5) J(u, v) -o when u U and v V,

m when u U.

The fact that J(u, v) is convex in u and concave in v relative to the product set U x V
is obvious from the convexity of the functions ,, , *, @*. The semicontinuity
follows from (A1) and (A3) by Fatou’s Lemma (el. [7]).



HAMILTONIAN TRAJECTORIES AND DUALITY 1013

To establish the formula asserted for G(v), it suffices because of the infinities in
(2.5) to prove the first equality in the case of v V. This is done by taking the first of
the forms for j(u, v) in (2.3) and calculating

inf J(u, v)= [(q,, v,)-g/,(v,)-(y,, v,)] dt+[(qe, v)-O(v)-(y,o, v)]
u to

+ inf [(p,- B* y,, u,)+,(u,)] dt+[(p-By,., u)+(u)]
U

,’ (By,-p) dt (B Y,o-P) through theThe infimum on the right equals -,o
conjugacy formulas

(r)= su ((r, u)- ,(u)} and (r)= su ((r,u)-(u)}

and the fundamental theorem on conjugates of integral functionals, (cf. [7, Thm. 3C]).
The proof of the formula for F(u) follows the same pattern. (The apparent lack of
symmetry in (2.5) is restored though the observation already made that only the values
of J on U x V really matter.)

THEOREM2.2. Under (A1)-(A3), the optimal values in problems () and ()
always satisfy inf() sup ). A pair (fl, ) furnishes a saddle point ofJ on x if
and onlyif fl is optimal for (), g is optimal for (), and one actually has inf()=
sup (). is saddle point condition is equivalent to the following, where and fi denote
the primal and dual trajectories generated by fi and :

(fi,, g,) is a saddlepoint ofJ(u,, v)-(Bfi,, u,)-(C,,, v,) on U x E for a.e. t,
(2.6)

(fi, ) is a saddlepoint ofJ(u, v)-(Bfio, u)-(C, v) on U x .
Proo Up to the equivalence ofthe saddle point condition with (2.6), the assertions

are well.known consequences of th relationship displayed in Proposition 2.1, where
primal and dual objectives are drived as "halves" of a minimax problem. The saddle
point condition has the means by definition that

flargminJ(u,) and argmaxJ(a,v).

Due to (2.5), it requires that a e U and g E Then in terms of the notation

(2.7)

it reduces, by the calculation in the proof of Proposition 2.1, to, e argmin J(u,, 0,) and 0, e argmax Jr(fit, v,) a.e.,

z argmin ](u, G) and z argmax ](a, v).

These relations assert that (fl,, ,) is a saddle point of on k xl for almost every
and (fi, g) is a saddle point of ] on Rk,’x l.. But Z and ] have the structure (2.4)
relative to U, x E and U x V. The saddle points in question are therefore expressed
equivalently with respect to U, x E and U x V. This is all that has to be proved.

The saddle point conditions in (2.6) will be referred to as the minimaximum
principle for () and (). This principle is always sucient for optimality according
to the Theorem 2.2, and it is necessary for optimality in any circumstances where we
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happen to know that inf ()= sup () and that both problems have solutions. We
shall prove in due course that assumption (A4) provides such a circumstance. Our
method requires us to examine an auxiliary pair of problems in which trajectories are
optimized without direct mention of controls. This will be done in the next section.

The minimaximum principle can be stated in terms of a duality between finite-
dimensional optimization problems at every instant of time. With x and y as parameter
vectors in , consider the problems

(,(x, y)) min {(p,- B*t y, u)+ p,(u)+ q6(q,- Ctx- D,u)},
UI

(,(x, y)) max {(q,-C,x, v)-C*, (v)-p,(B*, y+D*, v-p,)},
V,

for each [to, tl] and also the problems

(e(X, y)) min {(pe-B*e y, Ue)+e(Ue)+Oe(qe-feX-Deue)},
te U

(e(X,y)) max {(qe-feX, Ve)-*e(Ve)-rPe(B*ey+D*eVe-Pe)}.
De V

PROPOSITION 2.3. The minimaximum principle (2.6) is equivalent to the following
set of conditions on and , as expressed through the corresponding trajectories

if, solves (,(,, 37,)), 7, solves (,(,,

e solves (e(X,,, fit,,)), e solves (e(Xtl, fito)), inf (ie(t| fito) =sup (e(,,, 37,0)).
Proof. Elementary minimax theory informs us that (a,, t3,) has the saddle point

property in (2.6) for a given if and only if a, minimizes over u e Ut the function

f,(u) := sup {J,(u, v)-(B*,y,, u)-(C,X,, v)},
V

maximizes over v V, the function

gt(v): inf {J,(u, v)-(B,*37,, tl)-(Ct.t, V)},
u U

and inft,f supv, g,. These functions are calculated from the reciprocal conjugacy
formulas"

q6(s)=sup {(s, v)-q*(v)} and q(s)= sup {(s,, Ve)--e(Ve)}
V, v V,.

to be the objectives in ,(,, 97, and (,(,, 37, ), respectively. The assertion concerning
this pair of problems is therefore valid. The one for ((,,, 97,0)) and (e(,,, 37,o)) is
similarly proved.

3. Bolza formulations. Generalized problems of Bolza in the calculus of variations
concern trajectories as elements of the space = l[to, tl] consisting of all the
absolutely continuous arcs x in R" over [to, tl]. (The superscript 1 refers to the fact
that the function t, is an element of [to, tl].) Such problems have the form

Minimize (x):= L,(x,, ,) dt + Le(x,o x,,) over all x e ,
tO

where the functions L and L on ["" may be extended-real-valued. In the convex
case, where L, and L are convex functions on I" ", there is a dual problem

Maximize (y):= M,(y,, p,) dt- M(Y,o, y,,) over all y e M,
to
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in which M, and Me are derived from L, and Le by

(3.1) Mt(y,, Pt)= L*(gt, y,) and Me(yto, y,,)= L*(y,o,-y,,).

An extensive duality theory for convex problems of Bolza was developed in [3]
and [4]. We intend to apply this theory to gain insights into the relationship between
the control problems () and (). For this purpose we choose to define

L,(x, w)= inf
Ut

Atx+Btu+bt=w

{(Pt, u)+qt(u)+Ot(qt-Ctx-Dtu)-(c,,x)},

Le(xo, X)= inf

BeU + b

{(Pe, Ue)+ qe(Ue)+ e(qe- CeX,- Deue)-(ce, x)}.

(Here x and u are temporarily just dummy vectors in R" and Rk, and similarly Xo and
x in ".) Our work with these expressions will make use of the concept of the recession
function associated with a lower semicontinuous, proper, convex function f on ",
denoted by rcfi Many facts about such recession functions are assembled in [8, 8, 13].
We mention in particular that

(3.3) (rcf)(z) lim [f(g+ hz)-f(g)]/h for any . domf
A-

and that coercivity of f is equivalent to rcf being the indicator function 6o of the
origin, where

6o(Z)=C for z0, 6o(0)=0.

PROPOSITION 3.1. Under assumptions (A1)-(A4), the Bolza functional in ()
is well defined on . and is convex. The functions Lt and Le are themselves lower
semicontinuous, proper, and convex on ", and Lt depends epi.continuously on t.
The infima defining Lt and Le are attained whenever finite, i.e., whenever the given
constraints in (3.2) can be satisfied. The recession functions are expressed by

(3.4)
(re L,)(x, w)= (rc q,,)(-C,x)-(c,, x)+ 6o(w-A,x),

(rc Le)(Xo, x) (rc I]le)(-Ctx1) -(Ce, X1) -I- 60(X0).

Proof Consider the functions

Kt(x, w, u)=(Pt, u)+ qt(u)

(3.5)
+ O,(qt- Cx- Dtu)-(ct, x)+ 6o(w-Atx- Btu bt),

Ke(xo, x, ue)= (p, Ue)"l-e(Ue)

+ e(qe Cx,- Deue) -(ce, x)+ 6o(Xo- Beu + be).

By virtue of (A1) these are lower semicontinuous, proper, convex functions on R" R"
Rk and " R" x Rk,’. The definitions given for L and L in (3.2) are equivalent to

(3.6) L,(x, w)= inf K,(x, w, u) and L(xo, x)= inf Ke(xo, x, Ue).
I 1Aeke

In the language of convex analysis, therefore, L, is the image of Kt under the projection
(x, w, u)(x, w), while Le is the image of Ke under (Xo, x, ue)(xo, x). We wish to
apply a general theorem about such images, namely Theorem 9.2 of [8]. This involves
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a condition on the recession functions of Kt and Ke, which are calculated via (3.3)
and the coercivity of , and in (A4) to be

(rc K,)(x, w, u)= (p,, u)+ Bo(u)+ (rc O,)(-C,x-D,u)
-( ct, x) + o(W A,x atu
o(U) + (rc ,,)(-C,x)-(c,, x)+ o(W A,x),

(3.7)
(rc Ke)(Xo, x, u) (Pc, ue) + o(Ue) + (rc g,)(-Cx Due)

-(c,, x)+ o(Xo-/u)
o(U) + (rc g,,,)(-C,,x,)-(c,,, x)+ o(Xo).

(We make use of the coercivity of 9, and oe in replacing rc o, and rc oe by 80.) The
fact that (re K,)(0, 0, u)= 0 only for u 0, and (re K)(0, 0, u,)= 0 only for u, 0
guarantees by the theorem just cited from [8] that L and L are lower semicontinuous,
proper, convex functions for which the infima in (3.6) are always attained (i.e., the
ones in (3.2) are attained when the constraints can be satisfied), and that

(re L,)(x, w)= inf (re K,)(x, w, u) and (re L,,)(Xo, x)= inf (rc K,,)(Xo, x, u,.).
M t4elke

The latter formulas are the same as those claimed in (3.4) because of the special nature
of rc K, and re K in (3.7).

We must verify that L depends epi.continuously on t. We shall do this by way
of theorems of McLinden and Bergstrom [11], showing first that K, depends epi.
continuously on t. Let us write K, K+K+K with

K(x, w, u) o,(u), K(x, w, u)=5o(w-A,x-Btu).
The functions in this decomposition are lower semicontinuous, proper, and convex on
"x R"x k. We argue first that each depends epi-continuously on t. This is obvious
for K because of (A2). It holds for K because this is a finite convex function by
(A4) whose values depend continuously on (cf. Proposition 1.3). (A finite convex
function depends epi-continuously on if and only if its value at each point depends
continuously on [5, Cors. 4, 5].) In the case of K the epi-continuity follows from
Theorem 8 of 11 because the linear transformation (x, w, u) w A,x Btu depends
continuously on (by (A3)) and has all of [" as its range. We deduce next from
Theorem 5 of [11] that K+K depends epi-continuously on t, because the set
dom KZ-dom, K, is all of ["x "xk and therefore certainly contains the origin in
its interior. The same theorem of 11 applied to K + (K + K) then yields the desired
epi-continuity of K, with respect to t, since dom K-dom (K+K) too is all of
[ x" x k. Recalling now that
(x, w), and (re K,)(0, 0, u)=0 only for u =0, we obtain from Theorem 7 of [11] that
L, depends continuously on t. This property of L implies in particular that L,(x, w)
is lower semicontinuous with respect to (t, x, w). The integrand in the formula for the
Bolza functional @ is certainly measurable then. The functional is well defined in this
case under the c-o o convention explained earlier. Its convexity follows from that
of L and L.

COROLLARY 3.2. Under assumptions (A1)-(A4), the dual Bolza functional in
() is well defined on M[to, t] and is concave. The functions M, and Me are lower
semicontinuous, proper, and convex on "x, and M depends epi.continuously on t.
These functions satisfy the reciprocal conjugacy formulas
(3.8) L,(x,, ,) M,*(,, x,) and L(X,o, x,) M*(x,,, -x,t).
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Proof. This merely invokes the basic properties ofthe Legendre-Fenchel transform
[8, 12], including the fact that it preserves epi-convergence of convex functions [9].

Now it will be demonstrated that the dual Bolza functional xlt bears the same
relationship to the elements of the dual control problem () as the primal Bolza
functional does through (3.2) to the elements of

PROPOSITION 3.3. Under (A1)-(A4), the dualfunctions M, andM are expressed by

-M,(y, z) sup {(q,, v)-d/*t (v)-*t (B*, y+ D*, v-p,)-(b,, y)},
v V

A y+ C*tv+c
(3.9)

-M(yo, y) sup {(q, v,)-d/*(v)-(B,yo+ D*u,,-pe)-(b,, yo)}
Ve V

C*ev,,+ce y

where the suprema are attained whenever the indicated constraints can be satisfied. The
recession functions of Mt and M are given by

(re M,)(y, z) (re ,,*)(-B,* y)-<b,, y>+ o(Z + At* y),
(3.10)

(re Me)(yo, y) (rc *)(-B*yo)-(b, yo)+/o(Y).

Proof. Starting toward the proof of the formula for M in (3.9), we observe that
the definition of M in (3.1), which means

Mr(y, z) sup {(z, x)+(y, w)}= Lt(x, w),

can be combined with the specification of L, in (3.2) to yield

M,(y, z)= sup {(z, x)+(y, Atx + Btu + bt>-(p,, u>

(3.11) -,(u) Or(q,- C,x D,u) + (ct, x)}

=(b,,y)-inf {f(x, u)-g(E(x, u))},

where E is the linear transformation given by E(x, u)= C,x+ D,u and f and g are the
convex and concave functions given by

f(x, u) ot(u)-(z+ A*t y+ ct, x)-(B*t y+pt, u),

g(s)= -djt(q, s).

Inasmuch as g is finite everywhere by (A4), we can apply Fenchel’s Duality Theorem
as stated in Corollary 31.2.1 of [8] to write

inf (f(x, u)-g(E(x, u))} =max (g*(v)-f*(E*(v))}

where the "max" indicates attainment. The adjoint linear transformation E* takes v
into the pair C,* v, D,* v). Direct calculation of the conjugate functions f* and g* yields

f*(s, r) $o(S + z + A*t y + c,) + o*t(r + B*t y -Pt),

g*(v)=(qt, v)-d/* (v).

Therefore

-Mt( y, z)=-(bt, y)

+ max {(qt, v)- O*t(v)- o( C*,v + z + A*, y + c,) *,(D*,v + B* y -p,)}.
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This is equivalent to the formula asserted in (3.9). The argument for Me runs parallel.
We have from (3.1) that

Me(Yo, Yl)-sup {(Yo, Xo)+(y,, x,)- Le(xo, x)},
Xo,XI

and combining this with (3.2) we get

Me(yo, y,) sup {(Yo, Beue + be)-(y,, x,)-(pe, u,)-
XO,XI

--d/e(qe- Cex, Deue)-(ce,

(be, Yo)- inf {re(x,, tte)-ge(Ee(x1, Ue))}
Xl tie

where Ee(xl, ue) Cexl + Oeue and

fe(Xl, Re)= e(Ige)+(yl, x,)-(B*e Yo-Pe, He),

ge(Se) --e(qe--Se).

Fenchel’s Duality Theorem brings us to

-Me(Yo, y) -(be, yo)+ max {g*e(Ve)-f*(E*e(V3))},
Ve

where E*e(Ve) (C*ve, D’eVe) and

f*e (S, re)= 6o(y,)+ q*e(re + B*e Yo-Pe),

and this representation is equivalent to the one claimed for Me in (3.9). Because of
the symmetry between the formulas in (3.9) and (3.2), we can obtain the recession
function expressions in (3.10) by appealing to Proposition 3.1 in dual form.

These results prepare us for demonstrating that the Bolza problems (/) and (B)
are reduced representations of control problems quite close to, but somewhat broader
than, () and (). The extended control problems, which we denote by (’) and (’),
are obtained simply by replacing / and 7 by the slightly larger control spaces’

ll’ :-- {ul ue IR k’’, u, ’ measurable in with t-+ Bttl summable},

07’ := { v[ Ve ’, v, ! measurable in with C,* v, summable}.

Thus the extended primal problem is

minimize the functional

F(u)= [(p,, u,)+q,(u,)+q,(q,-C,x,-D,u,)-(c,,x,)] dt
to

(’)
+ [(Pe, Ue)+qe(Ue)+tPe(qe-Cex,,-Deue)-(ee, X,i)]

over u q/’, where x is determined from u by, A,x, + B,u, + b, a.e., x,,, Bue + b

while the extended dual problem is
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Maximize the functional

G(v) [(qt, vt)-O*t(vt)-qo*t(B*t yt+D*tvt-p,)-(b,,y,)]dt
to

(’)
+[(qe, Ve)--te(lJe)--(e(Be Yto-t- D*eve-Pe)-(be, Y,o)]

over v ’, where y is determined from v by

-)), A,* y, + C,* v, + c, a.e., y,, C*e Ve + Ce.

Note that each u a//, does determine a unique trajectory x s in (’), and similarly
each v U’ determines a unique y s/1 in (2’). We shall say in this situation that x
and y are realized by the controls u and v. For the moment we think of the functionals
F and G in the extended sense of (’) and (’) as being defined with the appropriate
conventions regarding infinite values, but it will emerge from further analysis that
actually F(u) > -oo and G(v) <

PRO’OSITON 3.4. Assume (A1)-(A4). Then the primal problems (R) and (’)
are equivalent to each other in the sense that

(x) inf {F(u)[u all’, x realized by u}, with attainment when (x) <

Likewise, the dual problems () and (’) are equivalent to each other in the sense that

(y) =sup {G(v) v V’, y realized by v}, with attainment when (y) >

Proof In terms of the functions K, and Ke in (3.5) define

Y(x, u) Kt(x,, 2,, u,) dt + Ke(xo x,,).
to

The representations (3.6) lead to

(3.12) (x) min {Y(x, U)IUe Nk,., U, measurable in t}.
This is justified by the fundamental result in 12, p. 316] on control formulations versus
Bolza formulations. (The inf-boundedness condition in the hypothesis of that
result is fulfilled because of the recession function property of K, established in
(3.7).) Formula (3.12) is equivalent to the assertion made in the present theorem
about the primal problems. Symmetry yields the corresponding fact about the dual
problems.

4. Hamiltonian functions and luality. Further progress in applying the theory of
Bolza problems to the original control problems () and () will depend on a study
of the Hamiltonian function for problems () and (2), which in general is defined
on [" x N by

(4.1) H,(x, y)= sup {(y, w)-L,(x, w)}.

PROPOSITION 4.1. Under assumptions (A1)-(A4), the Hamiltonian H(x, y) isfinite
everywhere, concave in x N, convex in y N, and continuous in t, x, y).

Proof The fact that H,(x, y) is concave in x and convex in y follows simply from
the convexity of L,(x, w) in (x, w), as in the theory of convex problems of Bolza more
generally. The defining equation (4.1) says that H,(x,.) is the function conjugate to

L,(x,.). For each choice of and x, L,(x,.) is not only lower semicontinuous and
convex but proper on N ". This is evident from (3.2) and the finiteness of 0, assumed
in (A4). Moreover, the recession function of L,(x,. is (rc L,)(0,. on the general basis
of (3.3), and the formula in Proposition 3.1 shows (rc L,)(0,. to be 6o. Thus L,(x,.
is coercive, so that its conjugate must be finite everywhere. In other words, H(x, y)
must be finite for all (t, x, y).
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We claim next that for fixed x, Lt(x,’) depends epi-continuously on t. This is
equivalent to the assertion that the function (z, w)-(Lt+f)(z, w) depends epi-
continuously on when for fixed x we define f(z, w) 6o(Z-X). Such epi.continuity
is justified by Theorem 5 of [11], because dom L-domf is all of R x[n. The
Legendre-Fenchel transform preserves epi-convergence [9], so in passing to the conju-
gate function H(x,.) of Lt(x,’) we have Ht(x,.) depending epi-continuously on t.
Because H,(x, is finite everywhere, its epi-continuity with respect to is the same as
the continuity of Ht(x, y) in for fixed (x, y) [5, Cors. 4, 5]. This implies the con-
tinuity of H(x, y) in (t,x, y) by [8, Thin. 35.4], due to the concavity-convexity.

THEOREM 4.2. Assumptions (A1)-(A4) guarantee that the Bolza problems (B)
and () both have solutions, and the same for the extended control problems (’) and

’). Moreover,

-< inf (’) inf (B) sup (n) sup (’) > .
Proof Only the part concerning the Bolza problems needs to be dealt with, because

the rest will then follow immediately from Proposition 3.4. We shall apply the main
results of the duality theory for Bolza problems in [4, Thm. 1, Thm. 3 and its Cor. 1].
The background for this application is the finiteness of the Hamiltonian as proved in
Proposition 4.1, which guarantees by the corollary on p. 17 of [4] that certain basic
integrability conditions, called (Co) and (Do) in that paper, are fulfilled. The duality
results say then that we have az> inf () =sup (n) > o with solutions existing for
both problems, provided that the following two criteria are met in terms of arcs x and
y in 1 (this is a slightly specialized case of the results in question):

(rc L,)(x,,.,) dt+(rc Le)(Xo, Xt,)<-_O only for x 0,
to

" (rc M,)(y,,.9,) dt+(rc Me)( yto, y,,) <-_ O only for y 0.

The recession function formulas provided in Propositions 3.1 and 3.3 indicate that this
is indeed true in the present circumstances, because a linear ordinary differential
equation has no solution starting from the origin except the 0-solution.

The conversion of this duality and existence theorem into one for the original
control problems () and () will rely on the theory of optimality conditions for
convex problems of Bolza as developed in [3], [4], and 13]. In addition to a generalized
Hamiltonian differential equation involving subgradients of Ht, there is a transversality
condition on endpoints that usually is expressed through subgradients of Le or Me but
will now be posed in a new form. This form involves subgradients of what we shall
call the endpoint Hamiltonian:

(4.2) He(x,, Yo) := sup {(Xo, Yo)- Le(xo, x,)}.

PROPOSITION 4.3. Under (A1)-(A4), the endpoint Hamiltonian He is a finite con-
cave-convex function on [ x.

Proof Definition (4.2) expresses He(x1,’) as the function conjugate to Le(., x).
The latter function, as seen from its definition in (3.2), is not identically for any
choice of x and is therefore by Proposition 3.1 a lower semicontinuous, proper, convex
function on [". Moreover, its recession function is (rc Le)(’, 0), and this is 6o by
formula (3.4) in Proposition 3.1. Hence Le(’, xt) is coercive. Consequently, its conjugate
He(x,’) is finite everywhere [8, 13]. This means that He(x, Yo) is finite for every
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choice of (xl, yo) in R" x R". The concavity of He(xl, Yo) in Yo is a general consequence
of the joint convexity of Le(xo, Xl) in (Xo, x) in (4.2), cf. [8, Thm. 33.1].

Optimality conditions for the Bolza problems will be presented now in terms of
subgradients of the concave-convex functions H, and He. The theory of such sub-
gradients may be found in 35-37 of [8]. I-1

THEORE 4.4..For arcs and fi to be optimalfor () and () under (A1)-(A3),
the following pair of conditions is always sufficient, and when (A4) holds they are also
necessary"

(4.3)
(-t,,t)OHt(.t,y,) fora.e, t6[to, t],
y,,, )7,o) 0He X,,, )7,o).

Proof If the second condition.in (4.3) were replaced by the usual transversality
condition (37to,-fi,,)0L(X,o, x,,), the general result would become a special case of
Theorems 5 and 6 of 13], because of the equality of optimal values in Theorem 4.2. It
remains only to observe that the stated conditions in terms of He and Le are equivalent
to each other by a general fact of subgradient theory in the case of the relationship
between He and Le in (4.2), namely, Theorem 37.5 of [8]. I’]

COROLLARY 4.5. Suppose (A1)-(A4) hold. Then for an arc to be optimal in the
Bolza problem () it is necessary and sufficient that there exist an arc .f such that the
Hamiltonian conditions in (4.3) are satisfied. Any such arc fi then solves ().

Proof This combines Theorem 4.4 with the existence assertions in
Theorem 4.2. [’!

Generalized Hamiltonian differential equations formulated for convex problems
of Bolza as in (4.3) have been studied for their own sake in 13] and also, incidentally,
play a central role for Bolza problems in the nonconvex case (cf. Clarke [14]).
Next we need to determine the specific form they take relative to the given data
structure.

PROPOSITION 4.6. Under (A1)-(A4) one has

(4.4)
H(x, y)=(y,A,x)+(b,, y)+(c,,x)+J*t (B* y, C,x),

Je (Be Yo,He(x,, Yo) (be, yo)+(ce x1)+ * * CeX1)
where J*, and J* are the concave-convex functions on [" " conjugate to Jt and Je in
(2.2) and given by

J*,(r, s)= sup inf {(r, u)+(s, v)-J,(u, v)}
u U ve V,

inf sup {(r, u)+(s, v)-J,(u, v)},
v V u Ut(4.5)

J*(re, Se)= sup inf {(re, Ue)+(Se, ve)-Je(ue,
ue Ue Ve V,,

inf sup {(re, Ue)’’(Se, l)e)--Je(lde, De)}.
ve Ve ue Ue

These functions are finite everywhere, and J*t(r, s) depends continuously on (r, s).
Proof The conjugacy formulas

tpt(qt C,x- D,u) sup {(q,- C,x- Dtu, v)- Ot*(v)}
t

sup {(q,- C,x- D,u, v)- O*(v)},
Vt

tpe(qe- Cex, Deue) sup {(qe- CeXl Deue,
te

sup {(qe CeXl- Deue,
V
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allow us to rewrite the defining formulas (3.2) for L, and Le in the notation (2.2) as

L,(x, w)= inf sup {J,(u, v)-(e,, x)-(C,x, v)},
U V

A1x+ B1u+b

Le(xo, xl) inf sup {Je(Ue, re)--(Ce, xl)-(Cex,
U, v,, V,

Beu+ b

These expressions can be substituted into the definitions (4.1) of H, and (4.2) of He
to obtain

gt(x, y)= sup {(y, A,x + B,u + b,}- sup {J,(u, v)-(c,, x}-(C,x, v)}}
U, V,

=(y,A,x)+(bi, y)+(c,,x)+ sup inf {(C,x, v)+(B* y,, u)-Jt(u, v)},
U,, V,,

He(Xl, Yo) sup {(Yo, Beige -[- be)- sup {Je(Ue, re)--(Ce, Xl)-(CeXl, De)}}
ue Ue Ve V,,

=(be, Yo)+(c,,x)+ sup inf {(C,x, Ve)+(B* yo, ue)-J(ue, re)}.

In the final versions of these formulas, inf and sup can be interchanged because of
the coercivity of the functions q,, qe, q,*, q*, in the definitions (2.2) of J, and Je and
the structure (2.4). This is justified as a minimax theorem by Theorem 37.3 of [8], a
result that establishes at the same time the finiteness of the expressions (4.5).

Our last task in the proof is to demonstrate that J*,(r, s) depends continuously
on (t, r, s). This could be carried out in detail with arguments like those that established
the continuity of H(x, y) in (t, x, y) in Proposition 4.1. There is a shortcut, however.
The argument for H, made no use of any particular properties of the vectors and
matrices in (A3) other than their continuous dependence on t. The continuity property
would therefore be present in particular if B and C, were identity matrices, in which
case the continuity property of H, reduces to that of J,. Thus J,(r, s) must be continuous
with respect to (t, r, s) as claimed.

The next theorem establishes the equivalence between the Hamiltonian and
minimax approaches to optimality.

THEOREM 4.7. Under assumptions (A1)-(A4), the Hamiltonian optimality condi-
tions in (4.3) are satisfied by a pair of arcs and fi in s41 if and only if and fi are
trajectories in o realized by controls t ’ll and that satisfy the minimaximum

principle (2.5).
Proof This result will be developed from the following formulas for the sub-

gradients of/4, and He, which are based on the representations of these functions in
Proposition 4.6. Here 0 and 02 designate subgradients with respect to the first and
second arguments of a bivariate function. We have

OH,(x, y) A* y+c,+C* * *OzJt (Bt y, Ctx),

O:I-I(x, y)= A,x + b, + B,O,J* (B* y, Ctx),

eO2Je (Be Yo,O1He(Xl, Yo) Ce "-[- C: : * CeXl)

Oge(x, Yo) be "q- BeO1J*e (B*e Yo, Cex).

These formulas are obtained by the calculus in Theorems 23.8 and 23.9 of [8] and are
justified by the finiteness of the concave-convex functions J, and Je that was proved
in Proposition 4.6. We combine these formulas with the fact that

OSt(x, y)=O1H,(x, y) xo2gt(x, y) and OHe(x, yo)=O1He(x, Yo) xOHe(xo, Yo)
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(cf. [8, 35]) and similarly for Jr* and Je* to see that

(4.6)
OHt(x, y) {(A* y+ C*t v+ c,, A,x + B,u + b,)l(u, v) OJ*t (B*t y, Ctx)},

OHe(x,, yo) {( Ce ve’-l- ct, Beue nt- be)l(Ue Ve) OJ*e (B*e Yo, CeXl)}.

A further observation is that the subditterentials of J,* and Je* give sets of saddle points:

(4.7)
OJ*t (B* y, Gx) argminimax {Jr(u, v)-(B* y, u)-(Gx, v)},

U1,v V,

OJ*e(B*e Yo, CeXl)=argminimax {Je(b/e, Ve)-(B*e Yo, ble)--(CeXl,

which is true by conjugacy [8, Thms. 36.6, 37.5]. As far as endpoints are concerned,
we have from (4.6) and (4.7) that

(4.8)

Y,,, ,o) oHe (,,, Y,o)
3(ae, G) argminimax {J(ue, v)-(B*e Yo, u)-(Cexl, re)}

with :to BeOe + be, Yt, Cee e + Ce.

Similarly, for any it is true that

(4.9)
(-fi,,),) OHt(gt, Y,):> =I(G, 5,) argminimax {Jr(u, v)-(B* y, u)-(C,x, v)}

U,,v v,

with 2, AtX, + Btt q- bt, -fit A*, y, + C*t G + ct.

If the minimaximum principle (2.6) holds for some choice of ti P and Y’, and :
and y are the corresponding state trajectories in the control problems () and (R),
we do have (4.7) and (4.8), the latter for almost every t. Then, according to the formulas
we have arrived at, and y satisfy the Hamiltonian conditions (4.3) and belong to
s4 instead of just s4 .

Conversely, suppose ) and 35 are elements of s for which the Hamiltonian
conditions (2.6) hold. Certainly then there is a choice of ie and fie for which (4.8)
holds. We know further that for almost every we can find fit and St satisfying (4.9).
It must be shown that these vectors can be chosen in such a way that the functions
t-- ut and t- vt are measurable and essentially bounded. Inasmuch as Jr* is finite
everywhere, the subgradient set OJ*,(r, s) is always nonempty and compact (by [8,
Thm. 23.4] as applied to the separate arguments). The continuity of J*,(r, s) in implies
further that the multifunction t, r, s) - OJ*, (r, s) is locally bounded and of closed graph
[8, Thm. 24.5]. Therefore the multifunction tOJ*,(g,, Yt) is locally bounded and of
closed graph, as well as nonempty-va|ued. A measurable selection then exists (cf. [7,
Cor. 1C]) and must be essentially bounded. This selection is in the form of a function
t-(G, G) with exactly the properties we need.

We have arrived at the main duality theorem in this paper.
THEOREM 4.8. Assumptions (A1)-(A4) guarantee that the primal and dual control

problems and ( are both solvable and satisfy

-oe < inf () inf (u) sup (RB) sup (2) < oe.

An arc solves () if and only if it is realized by a control a that is optimal in (),
and an arc solves ) ifand only if it is realized by a control that is optimal in ).

Proof Mostly this is a corollary of Theorems 4.2, 4.4, and 4.7, combined. In
general we would of course have inf ()-> inf (’) and sup (2)=< inf (R’). To obtain
the full result, we need only show that when ti /and V satisfy the minimaximum
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principle, then F(ti)= G(7). The minimaximum principle implies by Proposition 2.3
that

(pt- B*t Yt,

=(qt-CtY,t, )- (a,)- (By, + D,-pt)

for almost every and

(pe-Bfito, ae)+e(ae)+e(qe-Gtt-Deae)

=(qe-fet, ,)-(ae)-(B,o+ Dee-p,).

Integrating the first equation with respect to [to, t] and adding it to the second
equation, we obtain

F(a)- (Bfit, a,} dt+ (ct, 2t) dt-(BYto,
to to

G(o) (C,x,, o,) dt + (b,, y,) dt (Gx,,, )+ (b,
to to

This reduces to F(a)= G() because of the identity in (2.3).
The methods used to obtain this result have relied heavily on assumption (A4),

which as we have seen corresponds to the absence of any exactly modeled constraints
on the primal or dual states. A more general theory in which state constraints are
present might well be possible, but results for convex problems of Bolza in that case
in 15]-[ 17], indicate it would require consideration of impulse controls and trajectories
with jumps.
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Abstract. Convex functions have nice properties with respect to both minimization and maximization.
Similar properties are established here for functions that are permitted to have bad local behavior but are
globally convex in the sense that they behave "convexly" on triples of collinear points that are widely
dispersed. The results illustrate a development that seems desirable in the interest of more realistic mathemati-
cal modeling: the "globalization" of important function properties. In connection with the maximization
of globally convex functions over convex bodies in a given finite-dimensional normed space E, there is
interest in estimating the maximum, for points c of bodies C E, of the ratio between two measures of
how close c comes to being an extreme point of C. Good estimates are obtained for the cases in which E
is Euclidean or has the "max" norm.

Key words, convex, quasiconvex, maximum, minimum, optimization, extreme points, norm
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Introduction. In the mathematical modeling of practical optimization problems,
the following assumptions are often made:

(a) The feasible region C is a convex subset of a Minkowski space E (a normed
finite-dimensional real vector space);

(b) The objective function q is convex, that is, q is a real-valued function on C
such that

(1) q(y) _-< Aq(x) + (1 A)q(z)

for all

(2) x,zC withx#z, 0<A<I, y=Ax+(1-A)z.

Because of the following well-known facts, convexity is useful in connection with
both minimization and maximization:

(P1) Each local minimum of a convex function is a global minimum.

(P2) If a convex function attains a maximum, then (under mild restrictions on the
domain) it does so at an extreme point of its domain.

Each of the properties (P1) and (P2) serves to narrow the search for the extreme
values of a convex function, and each is the basis of algorithms for finding or
approximating these values and the points of the domain C where they are attained.
(There are many references for convex minimization. See 13 for a survey of approaches
to convex maximization.) However, in a number of situations it seems that (a) is fully
justified while (b) is dictated as much by mathematical convenience as by realism.
Even when the real objective function appears to be convex when viewed globally, it
is likely to exhibit small "blips" in local behavior that cause it to deviate from the

* Received by the editors November 21, 1988; accepted for publication December 13, 1988. This research
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Department of Mathematics, University College, London WC1E 6BT, United Kingdom.
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mathematical ideal expressed in (b). Similar statements apply to other important
function properties, such as linearity and monotoneity. The main purpose of the present
paper is to suggest the desirability of "globalizing" various function properties that
are important in optimization--that is, of formulating definitions that permit bad local
behavior while preserving the function property in some global sense--and of studying
the consequences of these definitions. The resulting mathematical framework may turn
out to be especially appropriate for some of the many practical optimization problems
in which rapid solution is more important than precise solution, so that the practical
needs can be met by any algorithm that is sufficiently fast and comes sufficiently close
to finding the optimum. (This is the consideration, for example, that has led to the
popularity of simulated annealing as an algorithmic tool for solving problems in VLSI
design and other areas [9], [16.].)

It is not clear which generalizations of the notion of convex function will prove
to be most useful in modeling. That can be determined only by extensive computational
practice in conjunction with development of the underlying theory. However, in the
previous generalizations with which we are familiar [14], [4], [3], [1], [15], local
behavior is restricted in ways that exclude the sort of blips that we want to permit. To
illustrate the sort ofmathematical developments that we have in mind, we here formulate
some notions of global convexity or global quasiconvexity that depend on a nonnegative
parameter g. They reduce to the usual notions when g 0, but for g > 0 they do permit
wild local behavior and they lead to "g-versions" of (P1) and (P2).

Our main g-versions of (P1) are Theorems 2.1 and 2.2, which are straightforward
and easy to prove. However, the search for quantitative precision in the case of (P2)
leads to some difficult problems concerning the relationship between two measures of
how close a nonextreme point c of a body C comes to being extreme. (The term body
is used to mean a finite-dimensional line-free closed convex set, so the existence of
extreme points is guaranteed.) The obvious measure is :(C, c), the minimum distance
of c from C’s set of extreme points, and we want to find a -maximizing point c for
which this distance is not too large. The search for such a point turns out to involve
/.(C, c), half the length of a longest segment in C that has c as its midpoint. Our main
g-version of (P2) is Theorem 4.3, which implies that if the objective function is
g-convex or g-quasiconvex in an appropriate sense, and if attains a maximum on
C, then q attains a maximum at a point q C such that so(C, q)_-< gp(C), where

p(C) sup {so(C, c)/tz(C, c): nonextreme c C}.
By way of illustration, suppose that X is a Euclidean disk of unit radius centered

at a point p. When an interior point x of X is at distance r from p, it is true that
(X, x) 1 r, /z(X, x) (1 rE) 1/2, and p(X, x) ((1 r)/(1 + r))l/2; hence p(X)
p(X, p)= 1. If Y is an equilateral triangle inscribed in X, then p(Y)= p(Y, p)= x/.
However, the supremum p(C) appears to be difficult to compute for most choices of
C and of the underlying Minkowski space E, and because of p’s role in the extension
of (P2) this leads to interest in estimating the quantity

p(E) sup {p(C): body C c E}
for various choices of E. It is proved here that p(E) <- d for all d-dimensional E (this
bound is attained), while d- _-< p(E) <- d when E has the "max" norm and

d
x/-d <-_ p E <-

d .l X/
when E is Euclidean. Also,

p(Euclidean plane) x/.
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Our section headings are as follows: 1. Some global versions of convexity; 2.
Minima; 3. Qualitative properties of p(C, c); 4. Maxima; 5. Estimation of p(E).

1. Some global versions of convexity. With respect to optimization, some important
properties of convex functions extend to quasiconvex functions. A function q is
quasiconvex if its domain is a convex set and

(3) o(y)_ max {o(x), o(z)}

whenever (2) holds. We "globalize" the notions of convexity and quasiconvexity by
saying (for 8 _0) that a function o is 8-convex (respectively, 8.quasiconvex) if it is
real-valued, its domain is a convex set C in a normed (real) vector space, and the
inequality (1) (respectively, (3)) holds for all x, y, z, and h that satisfy both (2) and

(4) [[x- yl[ >- 8/2 and Ilz- yll >- 8/2.

In other words, the function o behaves "convexly" or "quasiconvexly" on collinear
triples that are sufficiently dispersed. Note that the 0-convex functions are precisely
those that are convex in the usual sense; similarly for the 0-quasiconvex functions.
However, as is suggested by Fig. 1, small blips are permitted in the function’s local
behavior when 8 > 0.

A function 0 is strictly 8-convex (respectively, strictly 8-quasiconvex) if it is
real-valued, its domain is convex, and strict inequality holds in (1) (respectively, (3))
for all x, y, z, and A that satisfy both (2) and (4). Actually, it suffices for present

f(x)

FG.
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purposes to require that (1) or (3) holds for all x, y, and z that satisfy (2) and (4) with
h 1/2. This amounts to requiring that

 (1/2x +1/2z) z

or

(6) q(1/2x +1/2z) max {q(x), q(z)}

whenever x- z . These weak notions are called midpoint 6.convexity and midpoint
6-quasiconvexity, respectively, and the related strict notions are defined in the obvious
way.

The following remark provides some insight into the notions just defined.
THEO,EM 1.1. For a convex subset C of a normed linear space, and for > O, let

C a (respectively, C) denote the set of all points c e C such that c is not the midpoint
(respectively, not an endpoint) of any line segment of length 8 in C. Suppose that tt, and
to are real.valued functions on C such that

q,(c)_O forallce C a, q,(c)=0 forallcft C,
to(c)_O forallce Cn, to(c)=O forallcft Ca.

Then whenever a function q on C has any of the ,.convexity properties defined above,
the function o + q,-to has the same property.

Proof If c e C, then (because of (4)) c cannot appear as the y in any of the
defining inequalities (1) or (3). When c appears as the x or z in any of these inequalities,
increasing the value of q(c) (by adding q,(c) when q,(c) > 0) merely serves to strengthen
the inequality. Similarly, if c e C then c cannot appear as x or z, and when c appears
as y, reducing the value of 0(c) (by subtracting to(c) when to(c)> 0) strengthens the
inequality. [3

When the domain C is of diameter less than 6, every real-valued function on C
is strictly 6-convex because no triple (x, y, z) of points of C satisfies condition (4).
Thus it is clear that for the 6-convexity of an objective function to be useful in practice,
the value of 6 must be appropriately related to the geometry of the domain C. Even
when the domain is in all senses large with respect to 6, the above 8.notions permit
much wilder behavior (at least near extreme points of the domain) than will be
encountered in practice. Nevertheless, we are able to establish sharp 8-versions of (P1)
and (P2) for functions that are midpoint 6-convex or midpoint t-quasiconvex. It does
not seem that sharper conclusions could be obtained by adding local smoothing
conditions such as continuity, and in any ease we would not want to assume continuity
because it is lacking in some important applications such as the fixed.charge problem
of Hirsch and Dantzig [7].

If we wanted to augment the 6-requirement by a weak global smoothing condition
to limit the wildest behavior of the function q to the extreme points of its domain,
the following assumption might be appropriate, where Ix, z[ (respectively, Ix, z])
denotes the open (respectively, closed) line segment whose ends are x and z.

(7) For each triple of distinct points x, y, and z of C such that y e Ix, z[, the
segment Ix, z] is contained in a segment [x’,z’] in C for which (y)
max {o(x’), (z’)}.

We shall see that the property (P2) follows from (7) alone, without the intervention
of any t-requirement. However, (7) has no effect on (P1).
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Note that if q (with convex domain C) satisfies condition (7), then without
destroying this property the function may be redefined at all extreme points of C
by assigning arbitrary new values that are not less than the original values. However,
we do not want to rule out this aspect, because the same is true of the usual notion
of convexity.

If a function q has any of the convexity or quasiconvexity properties defined
above, the same is true of each positive multiple of q. The convexity properties are
also preserved under addition of functions, but that is not true of the quasiconvexity
properties or of (7). For example, let q and " both have [0, 1] as domain, with

q(x) r(x) 0 for 0 < x < 1,

(0) ’(1) 1, q(1) (0) =-2.

Then q and r are both quasiconvex and hence also satisfy condition (7). However,
the function q + " does not satisfy (7) and it is 8-quasiconvex only for 8 < 1/2. This
example is easily modified to produce one in which the functions are continuous.

The next two theorems deal with an example that was chosen to illustrate the
extent to which midpoint 8-convexity and midpoint 8-quasiconvexity are weaker than
the usual notions or convexity and quasiconvexity.

THEOREM 1.2. Suppose that rl is a positive constant, and let

q (t) r/t2 + cos for all [.

Then the following three conditions are equivalent: q is convex; q is quasiconvex; rl >= 1/2.
Proof. For equivalence of the first and third condition, observe that q"(t)=

2r/- cos t, whence the second derivative q" is everywhere nonnegative if and only if
7 => 1/2. To complete the proof, note that the following is a corollary of the next result:
if is midpoint quasiconvex, then r/_-> 1/2.

To simplify the notation in the next statement and proof, we define

sin2 8
(8)-

2 82 for 0< 8 <2r,

whence of course 0(8)--)1/2 as 8--) 0. It follows from l’HOpital’s rule that as 8-) 0,

and hence

and 0(1/48)---1/2-682.
THEOREM 1.3. Suppose that rl is a positive constant, and let

(t) r/t2 + cos for all R.

Suppose that 0 < 8 < 27r. Then
(i) is midpoint 8-convex if and only if rl >= t#(1/48);
(ii) q is midpoint 8-quasiconvex if and only if q >= 0(1/28).
Proof. Let us first consider (i). The function q is midpoint -convex if and only

if (5) holds whenever x + 8 <= z. Writing h z x >= 0 and setting

g(x, h) 2 cos (x +1/2h)-cos x-cos (x + h),

we see that the desired condition is

(8) 2g(x,h)<-_-h for h_-> 8.
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To obtain a more useful expression for g(x, h), apply the trigonometric addition
formulas to see that

g(x, h)-cos x[2(cos 1/2h- 1)+ 1 -cos hi +sin x(sin h -2 sin 1/2h),

then apply the half-angle formulas and regroup to obtain

g(x, h) 4(sin 1/4h) 2 cos (x+1/2h).

Thus in terms of the function 0 defined earlier, the desired condition (8) becomes

(9) (3) cos (x +1/2h) -< r/ for h _-> 3.

Now recall that in the range 0 < 0 -< r/2, sin 0/0 is a decreasing function of 0 and hence

2 sin 0

7r 0

Since

sin 1/4h 2
1.

_-- whenh->_2-tr,
-f/4. 7/"

it follows that the maximum value of O(]h) for ]hi=> 3 is attained when h 3. Hence
the condition

(10)

is sufficient for (9). On the other hand, for each given h there exists an x for which
cos (x+1/2h)= 1, and hence the condition (10) is necessary as well as sufficient for the
desired midpoint 3-convexity.

We turn now to (ii). The function q is midpoint 3-quasiconvex if and only if

q(x)_-<max{q(x-h),q(x+h)} for all h >-_ 3

(and we are concerned here only with 0_-< 3 _-< 7r). Thus the desired condition is that,
with + or -, it should be true that

r/x2 + cos x<_- r/(x + h) +cos (x +/- h),

or, equivalently,

(11+) +2 sin sin x+/- <=+rlh(2x+/-h).

Now let us suppose (without loss of generality) that x _-> 0 and h _-> 0, and consider the
inequalities

sin (h/2) sin ((h/2)+/-x)
(12+)

Elementary manipulation shows that (11+) is equivalent to (12+), while (11-) is
equivalent to (12-) when 2x- h < 0 and to

(13)
1 sin (h/2) sin ((h/2)+/-x)
2 hi2 (h/2)+/-x

when 2x- h > 0.
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To deal with the case in which x < h/2, note that (sin 0)/0 is a concave function
on [-rr, rr], whence

sin ((h/2)-x) sin ((h/2)+x) h
t- -< 2 sin-

(h/Z)-x (h/Z)+x 2’
and thus at least one of the summands is at most

Hence requiring that

will guarantee that

sin (h/2)
h/2

sin (6/2)
6/2

(sin (h/2))
2

and thus assure that (12+) holds. Furthermore, by taking x 0 and h 6 we see that
this is the best possible lower bound for r/ when x < h/2.

Only the case in which x> h/2 remains. For this case, (12-) or (13) must be
established, and we show in fact that (12-) holds. Indeed, if the number y is defined
by the condition that

h
x+-=y+-

2 2’
then (12-) becomes

sin (y+ 6/2) <sin (33/2)
y + 33/2 33/2

and this holds for all y => 0.

2. Minima. When 33 > 0 and q is a function with domain C, we say that q attains
a 33-local minimum (respectively, strict 33-local minimum) at a point q e C if q(q)_-< (e)
(respectively, q(q)< q(e)) for all points c e C\{q} at distance less than 33 from the
point q.

THEOREM 2.1. If 33>0 and q is a midpoint 33-convex or strictly midpoint (3-

quasiconvex function that attains a 33-local minimum at a point q of its domain, then the
global minimum of q is attained at q.

THEOREM 2.2. If 33 > 0 and q is a midpoint 33-quasiconvex function that attains a
33-local strict minimum at a point q of its domain, then the strict global minimum of q is
attained at q.

Proofs. As stated, the above theorems’fail when 33 0 and thus they do not cover
the classical cases of convex and quasiconvex functions. To cover these cases as well,
simply replace the 33-local minima by e-local minima for some positive e >= & The
proofs below are phrased in terms of this e.

If the conclusion of Theorem 2.1 (respectively, 2.2) fails, there is a point zl C\{q}
such that q(zl)< q(q) (respectively, =<q(q)). Of course, IIz-q[[ >-e, and hence with
Z2 1/2(Z -- q) it is true that IIZ1- Z211 e/2 and [q z21 e/2. For Theorem 2.1, it follows
from the midpoint 33-convexity of q that

33 33
( (Z2)----< (Zl) -t-" q(q)< q(q),
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or from the strict midpoint 6-quasiconvexity of q that

q(z2) < max {q(zl), q(q)} --< p(q).

For Theorem 2.2 it follows from the midpoint 6-quasiconvexity of q that

q (z2) -< max {q (zl), q(q)} --< q (q).

But then zz q >- e, so with z3=1/2(zz+q)we have q(z3)< q(q)in Theorem 2.1 and
q(z3) _-< q(q) in Theorem 2.2. Continuing in this manner, we form a sequence zl, z2,

in C\{q} such that always q(zi)<q(q) (respectively, =<q(q)). Since the sequence
converges to q, we have reached a contradiction that completes the proof. F]

Theorems 2.1 and 2.2 are sharp in the following two senses:
(a) In Theorem 2.1, the Colditions on q cannot be replaced by 6-quasiconvexity.
(b) In Theorems 2.1 and 2.2, the conclusions may fail if q is 6-convex but the

6-local conditions are replaced by 6’-local conditions with 6’< 6.
To obtain examples in support of (a) and (b), suppose that a </3 < y. For (a),

let be constant with value r on the closed interval [a,/3] and constant with value

7 > cr on the half-open interval ]/3, y]. Then is quasiconvex and each point of its
domain [a, y] provides a local minimum for q. However, the points of ]/3, y] actually
provide global maxima rather than global minima. For (b), note that if y- a < 6 then
every real-valued function on a, y] is (trivially) 6-convex. If, in addition, y -/3 6’ < 6,
there are many functions on [a, 3’] for which y provides a 6’-local strict minimum but
either there is no global minimum or the global minimum is attained only in [a,/3].

For another example in support of (b), let C [-1, 2[ and let the function q on
C be such that

q(-1)=l, q(t)=0 for-l<t<l, q(t)>=t forl_-<t<2.

Then q is strictly 2-convex, and for 0< 6’< 2 it has a 6’-local minimum at the point
6’-1 but does not have a global minimum there. If q is modified to give it the value

6’- at the point -1, then q is still strictly 2-convex and now has a 6’-local strict
minimum at 6’-1.

3. Qualitative properties of p(C, c). For the results of 2, the convex domain C
need not be closed and it may lie in an arbitrary normed linear space. However, from
now on its convenient to work with the following.

STANDING HYPOTHESES. E is a finite-dimensional normed vector space and C is a

body in E, meaning that C is closed, convex, has nonempty interior, and does not contain

any line. The sets of extreme and nonextreme points of C are denoted, respectively, by Ce
and C,.

It is known that Ce is nonempty, and in fact C is the convex hull of the union
of its extreme points and extreme rays [10]. For each c C, let

(C, c)=inf {llc-pl]: pc C},

the distance from the point c to the set Ce. This is a measure of how close the point
c comes to being an extreme point of C. Another such measure is given by/(C, c),
defined as zero when c Ce and defined for c C,, as half the length of a longest
segment in C that has c as its midpoint. (The existence of such a segment follows
from an easy argument using the compactness of E’s unit sphere, the closedness of
C, and the fact that C contains no line.) Note that (C, c) is the smallest number cr

such that each line L in E through c includes an endpoint of L f3 C at distance at
most r from e.
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When C is fixed, the function (C, C)[cC will be denoted by (C,.); similarly
for the functions z(C, c)]cc and p(C, c)[cc.... where

(C,c)
p(C,c)=.

(c, c)

Of course, p(C, )= 1 when C is one-dimensional, but in general the two measures of
near-extremeness are different and the behavior of the function p(C,. is of interest.
As was explained in the Introduction, the extreme value

p(C) sup {p(C, c): c e Cm}

plays an essential role in Theorem 4.3’s extension of property (P2) to 5-convex
functions. Hence the extreme value

p(E) =sup {p(C): body Cc E}

is also of interest, and it is estimated in 5.
It would be of interest, under various assumptions concerning the body C, to

know the complexity of computing so(C, c),/z(C, c), p(C, c), and p(C) and also, when
C is bounded, the complexity of computing

:(C)=sup{:(C,c):cC} and /(C)=sup{/z(C,c):cC}.

Of course, (C)<-_1/26(C) and p(C)<-1/26(C), where 6(C) is C’s diameter. When C is
a polytope presented in terms of its vertices, (C) and :(C, c) are easy to compute
but computation of the other numbers appears to be difficult. For a polytope presented
in terms of its bounding hyperplanes, the computation of 6(C) is NP-hard in/P-spaces
with 1 -< p < [6], and the same may well be true of the other numbers.

The remainder of the present section is devoted to some qualitative properties of
the functions :(C,. ), (C,. ), and p(C, ). For these properties, it suffices to deal with
the usual Euclidean norm for Re, since each norm for Re is caught between two positive
multiples of the Euclidean norm. However, the quantitative details in 4 and 5 depend
on the choice of norm.

THEOREM 3.1. For each body C, the function ( C, is everywhere continuous and
the function tz C, is everywhere upper semicontinuous.

Proof Routine use of the triangle inequality shows that ]:(C, x)-((C, y)[_-<
IIx-yll, whence of course (C,. is continuous. The upper semicontinuity of/z(C,.
follows from a simple argument based on the closedness of C and the compactness
of the unit sphere in the containing space. U

For each d_-> 3, there exists a compact body C c Ea whose set Ce of extreme
points is not closed. (For example, let C be the convex hull of the union of a

(d-1)-dimensional spherical ball B and a segment S that is orthogonal to B’s
hyperplane and is centered at a point p in the boundary A of B. Then p C,, but
A\{p} Ce.) Clearly the function (C,. is discontinuous at each point p of Cm that
belongs to the closure of C, and in fact the restriction of z (C,.) to Cm kJ {p} is also
discontinuous at p.

Although the function (C,. need not be everywhere continuous, continuity at
certain points can be established. The following lemma is useful for that purpose. (As
the terms are used here, a polyhedron is a set that is the intersection of a finite number
of closed halfspaces: a polytope is a bounded polyhedron.)

LEMMA 3.2. Suppose that C is a body in Ea, the origin 0 is the midpoint ofan open
segment ]-q, q[ in C, and H is the hyperplane through 0 orthogonal to the segment. If
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C is a polyhedron or the origin is interior to C, thenfor each A ]0, there is a neighborhood
U of 0 in C (] H such that the vector sum

U+A]-q,q[={u+Aq: u

is a neighborhood of 0 in C.
Proof. The case in which 0 int C is left to the reader. In the remaining case,

there is a representation of C in the form C fq i"=1 Ki, where each Ki is a closed
halfspace with bounding hyperplane J and where, for some rn-> 1, 0 fq 1 Ji and
0 int 71 i,,+ Ki. By a well-known theorem [5], [11], the polyhedron K f) 7-- K is
the direct sum of the subspace J fq m__ ji and the polyhedral cone K J+/-, where J+/-
is the orthogonal complement of J. Of course, [-q, q] c J, whence J+/-c H. Since the
segment [-Aq, Aq] is interior to the intersection fq 7--m+ Ki, there is a positive r/ such
that this intersection contains the vector sum of the segment [-Aq, Aq] and the
r/- neighborhood V of the origin in d. Then the set U V0 C (q H is the desired
neighborhood of 0 in C

THEOREM 3.3. The function tx(C," is continuous at each interior point of C, and
if C is polyhdral then i( C," is continuous everywhere.

Proof By Theorem 3.1, the function/x (C, is everywhere upper semicontinuous.
To complete the proof, we show that if p is interior to C, or p C and C is polyhedral,
then (C,. is lower semicontinuous at p. This is obvious when /x(C, p)= 0 for the
function /x is nonnegative. Suppose then that /x(C,p)> 0, assume without loss of
generality that p 0, and let [-q, q] be a longest segment in C that has 0 as midpoint.
Now consider an arbitrary A ]0, 1[, and let U be as in Lemma 3.2. Then for each
e ]0, A [, the set W U + e]- q, q[ is a neighborhood of 0 in C, and for each w W
it is true that

w+(A-e]-q,q[c U+A]-q,q[C

and hence tz(C, w) >= (a e)llqll. This shows that the function (c, .)is lower semi-
continuous at p. [3

LEMMA 3.4. If the body C is a pointed cone, then the function p( C,.) attains a
positive minimum on C. If C is a pointed polyhedral cone, then p( C,.) also attains a
maximum on C.

Proof We assume without loss of generality that the origin is the apex of C,
whence there is a hyperplane H that misses the origin and there is a compact body B
in H such that C [0, [ B. Since C is a cone, Cm C\{0}, and for each c C,, and
A > 0 it is true that so(C, Ac)= A(C, c) and/x(C, Ac)= A/x(C, c). Hence the range of
the function p(C,.) on Cm is equal to its range on B.

On the set B, the functions (C,.) and /x(C,. are both positive. By Theorem
3.1, (C,. is continuous and/z(C, .) is upper semicontinuous. Hence their quotient
p(C,.), being lower semicontinuous and positive on the compact set B, attains a
positive minimum on B.

If C is polyhedral then, by Theorem 3.3, the function/x (C, is actually continuous
on C, whence p(C,.) is continuous and hence attains a maximum on the compact
set B. [3

LEMMA 3.5. If the body C is unbounded and its set Ce ofextreme points is bounded,
then

lim sup (,o(C, c): c Cm, Ilcll n} .
Proof We may assume without loss of generality that the origin 0 belongs to the

bounded set Ce. Let K denote the union of all rays that issue from the origin 0 and are
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contained in C, and let B denote the closed convex hull of Ce. Then K is a pointed
closed convex cone, B is a compact convex set, and C B + K. Let/3 sup {lib]l: b B}.
Since 0 Ce, it is true for each point ce C that (C, c)<_-Ilcll. Each point c C\B has
at least one representation in the form c b+ k with b B and k K\{0}. For each
such representation, it is true that b+2k C, whence e C,, with /(C, c) -> Ilkll and
hence

p(C,

From this it Follows that

lim sup {R(C, ): c C,, I1 11->- n-<_ 1.

When the point c K\B belongs to R, [0, 2c] is the unique longest segment in C
that has c as its midpoint, and hence

This implies that

lim sup {p(C, c): c Cm, I111 - n} 1.

THEOREM 3.6. If the body C is a polyhedron, then the function p(C,.) attains a
maximum p C >- 1.

Proof Consider an arbitrary edge or extreme ray R of C, and an endpoint p of
R. Then pc Ce and the set Ce is finite, so for each point e R\{p} sufficiently close
to p it is true that c Cm and

(c, c)- Ilc-p[[- (c, c).

This implies that the function p(C,. attains the value 1.
Now suppose that the function p(C,. does not attain a maximum on Cm, and let

cl, c2," be a sequence in C,, such that

p( C, c,)- p( C) as n-c.

If IIc, II--> o, then p(C)=< by Lemma 3.5, and the desired conclusion follows from the
preceding paragraph.

In the remaining case, we may assume that the sequence cl, c2," ", converges
to a point p C. If p C,, then p(C, c) p(C) by Theorem 3.3. If p Cm, then p
It is not hard to verify that the values of p(C, e) attained when the point e Cm belongs
to a sufficiently small neighborhood of the extreme point p are precisely the values
attained by the function p(K,. where K is the cone consisting of all rays that issue
from p and pass through the various points of C. When C is a polyhedron, this cone
K is also polyhedral and the function p(K,. attains a maximum by Lemma 3.4.

To end this section, we note that for each two-dimensional body C, the following
four conditions are equivalent: (a) C is a polyhedron; (b) the set Ce is finite; (c) the
function p(C, attains a minimum; (d) the infimum of p(C, is positive. Of course,
(a) implies (b)-(d) in any dimension. However, for bodies in 3, (b) & (c) & (d) does
not imply (a), (c) does not imply (b) or (d), and some other questions about implications
among these conditions are unsettled. In particular, we do not know whether (d)
implies (c) nor whether (d) implies (b).

4. Maxima. The following remark illustrates the manner in which the quantity
p(C) enters into the 6-version of (P2).
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LEMMA 4.1. If is a midpoint strictly 8-quasiconvex function on a body C, and q
is a point of C at which attains its maximum, then there is an extreme point x of C
such that q x - 8p(C).

Proof. It suffices to show that/ (C, q) 8, for then

( C, q) t( C, q)p( C, q) < 8p( C, q).

In the contrary case, q is the midpoint of a segment [p, r] in C of length exceeding
& But then, by the definition of midpoint strict 8-quasiconvexity, (p) < (q) or
q(r) > q(q). This contradicts the assumed maximizing property of q.

Our main tool for dealing with maxima is the following lemma from [12].
LEMMA 4.2. Suppose that K is a convex set and the partial ordering -< on K is

defined as follows: v < w if and only if, for the line L through v and w, it is true that v
is an inner point and w is an endpoint of the intersection L f-) K. (Intuitively, w can see
beyond v in K, but v cannot see beyond w.) With respect to this ordering, each linearly
ordered subset of K is affinely independent.

This lemma yields a quick proof of the theorem of Hirsch and Hottman [8]
(essentially (P2) of the Introduction) asserting that if a convex function attains its
maximum on a finite-dimensional line-free closed convex set, then it does so at an
extreme point. As we now show, it also yields extensions of this result to functions
that are globally convex or quasiconvex.

THEOREM 4.3. Suppose that q is a real.valued function defined on the body C.
Suppose also that q is midpoint 8-quasiconvex and C is compact, or that q is midpoint
8-convex and is bounded above on each ray in C. Then for each value a of q there are
points q and x of C such that q (q) >- a, x is an extreme point of C, and

Proof In terms of the ordering < described in Lemma 4.2, we define a second
ordering << by saying that v<< w provided that v < w and q(v)_-< q(w). Every set that
is linearly ordered by << is also linearly ordered by <, and hence by Lemma 4.2 is of
cardinality at most d + where d is the dimension of C. Now consider an arbitrary
point c C such that q(c)= a, and let

(14) c= CO<< C << "<< Ck

be a <<-ordered sequence that starts with the point c and cannot be extended. Set
q Ck, whence of course q(q)=> a. To complete the proof it suffices to show that
/x (C, q) < 8, for then q Ce or we have

(C,q)=
(C’q)
tx( C, q- p( C, q) p( C, q)tx( C, q) < p( C)8.

Suppose that/x (C, q) _-> 8, let p and r be the endpoints of a longest segment in C
that has q as a midpoint, and let L denote the line through p and r. At least one of p
and r must be an endpoint of the intersection L fq C, and we may assume that p is
such an endpoint. If the intersection Lf-)C is a segment [p, s] (where of course
r[p, s]), it follows from the midpoint 8-quasiconvexity of q that q(p)>-q(q) or
q(s) > q(q). Then the sequence (14) can be extended by adding p or s at the end, and
the assumed maximality of the sequence is contradicted.

In the remaining case, the intersection L C is a ray R that issues from p and
passes through r. This ray includes the point rk =q + k(q-p) for each integer k->-1.
From the midpoint 8-convexity of q it follows that for each k_-> 1,

q (r) _--> q (r_,)+ (q(r_,) q (r,_:)),
and k successive applications of this inequality lead to the conclusion that

q( rk >- k + 1)q (ro)- kq (r_l) q(q)+ k(q( q q( p ).



1038 T.C. HU, V. KLEE, AND D. LARMAN

Since, by hypothesis, q is bounded above on the ray R, it follows that q(p)_-> q(q).
But then the sequence (14) can be extended by adding p, and the contradiction completes
the proof. [3

Now suppose that the function p(C, attains a maximum on C at a point c C,.
(By Theorem 3.6, this occurs whenever C is a polytope.) Let 6 =/x(C, c), whence of
course :(C, c)= 6p(C). Then Theorem 4.3 is sharp for C in the following sense.

For each 7 > there exists a continuous ,?-convex function q on C such that the
maximum of p is attained only at c. Hence is the largest "modulus ofglobal convexity"
e such that the e-convexity of a continuous q ensures the existence of an extreme
point of C within p(C) of c.

To construct the desired function q, start from an arbitrary continuous convex
function that is bounded above on C. Then let p ff + r, where

’(x) 1- for Ilx-cll < n-

and " 0 elsewhere.
In the Introduction, we have mentioned a possible smoothing condition (7). A

weakened form of this condition appears as a hypothesis in the following theorem.
THEOREM 4.4. Suppose that the body C is compact and thefunction q on C satisfies

the following condition: each point y Cm is an inner point of a segment Ix, z] in C such
that q(y) =<max {q(x), q(z)}. Then for each value a of q there is an extreme point x of
C such that p(x)>= a. In particular, if q attains a maximum on C then it does so at an

extreme point.
Proof The proof follows the first two paragraphs ofthe proof ofTheorem 4.3. [3

5. Estimation of p(E).
LEMMA 5.1. For each c C,, there exists a ball B centered at c such that p( C, c)=

p(C CI B, c).
Proof. Let x be an extreme point of C, and let p, r] have maximum length among

the segments that are centered at c and contained in C. Let B be any ball that is
centered at c and contains x, p, and r. Then of course /x(C f’l B, c)= Ix(C, c). Also,
sc(C f’] B, c)= (C, c), because each point of (C f3 B)e\Ce belongs to the boundary of
B and hence is at distance at least IIx-cll from c.

LEMMA 5.2. If C is bounded and c Cn, there exists a d-simplex S such that c S
and the vertices of S are extreme points of C. For each such S, it is true that c Sm and
p( C, c) <- t)(S, c).

Proof Since C con Ce, the existence of S follows from Carath6odory’s Theorem
[2]. It is obvious that c S,,, (C, c)<_-(S, c), and/x(C, c)>_-/x(S, c). [3

THEOREM 5.3. For each d-dimensional E, p(E)<-_ d.
Proof In view of Lemmas 5.1 and 5.2, it suffices to show that if the origin 0

belongs to a d-simplex S with vertices Vo,"’, Vd, and if [[v[[ => 1 for all i, then S
contains a segment of length at least 2/d centered at the origin.

Since 0 e S, there are numbers -> 0 such that
d d

Ai =1 and Avi=O.
=0 =0

Then hi >--1/(d + 1) for at least one value of i, and we may assume without loss of
generality that this is ho. From the fact that -hoVo a=l hivi, it follows that the point

0
p

-ho
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is a convex combination of {v,..., re} and hence pe S. But then S contains the
segment [p, Vo], and hence contains the segment [-p,p] centered at 0. Since Ao ->

/ (d + 1), it is true that

Ao 1/(d+l) 1
Ilpll__> IlVoll _>

1-Ao 1-1/(d+l) d
d denote the space Ra withFor each positive integer d, and for =<p < , let Rp

the norm of

x=(x,, ,xa)e

given by

[Ixll- Ix;I p (1-<p<)
i=1

Let Re denote the space Na with the norm

Ilxll =max{Ix,I,...,
THEOREM 5.4. If is the d-dimensional subspace of consisting of all points

for which the sum of the coordinates is zero, then p()= d.
Proof Let S denote the d-simplex in R+ consisting of all points x=

(x,..., xe+) such that 2 x= 1 and x0 for all i. Then p(S)Nd by Theorem
5.3. To complete the proof of Theorem 5.4, we show that p(S, e) d for the centroid
e of S. Since the distance from c to each extreme point of S is d/(d + 1), we want to
show that whenever p is a point of the space such that c+p S and c-p S, then
I]P N 1/(d + 1). But that is obvious, for if some coordinate of p exceeds 1/(d + 1) in
absolute value, then e +p or c-p has a negative coordinate and hence does not belong
to S.

In the d-dimensional space of Theorem 5.4, the unit ball is a hyperplane section
of a (d + 1)-cube. When d 2, it is a regular hexagon. In the general case, it is of the
form T-T, where T is a d-simplex whose centroid is the origin. Theorem 5.4
establishes the sharpness of Theorem 5.3 in the sense that for each d there exists a
d-dimensional E for which p(E)= d. However, it is also of interest to determine (or
at least find sharp estimates for) p(E) for the "standard" spaces p(1p). The
following lemma is useful in dealing with the case p

LMMA 5.5. If is a subspaee ofF, then p() p(F).
Proof It suffices to consider the case in which is a hyperplane through the

origin in F. Let p FN. For each < p(), there exists a compact convex body C
in and a point e C such that p(C, e) > . For each I > 0, let C C + [-I, I ]p,
a compact convex body in F. Since it is clear that

lim p(C, c) p(C, c),
A0

the desired conclusion follows.
COROLLARY 5.6. For each d,

d-l <-_p(ld)<-d.

Proof To prove the corollary we use Theorems 5.3 and 5.4 and Lemma 5.5.
Before turning to the case of Euclidean d-space R, we establish one more

geometric lemma that applies to all spaces and is of some interest in itself.
LEMMA 5.7. For each r < p(E), there exists in E a d-simplex S such that the origin

is interior to S, each vertex of S is at distance from the origin, and rl < p(S, 0).
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Proof By the definition of p(E) in conjunction with Lemmas 5.1 and 5.2, there
exists a d-simplex T c E and a point Tm such that p( T, p) > r/. By an easy continuity
argument, p(T, s)> r/ for each interior point s of T sufficiently close to t. Now with
s fixed, let x be an extreme point of T closest to s. We may assume without loss of
generality that s =0 and ]]xll 1. Then for each vertex v of T, let

=] T,

and let S be the simplex whose vertices are the ’s. It is clear that the pair (S, O) has
the stated properties. [3

LEMMA 5.8. If S is a regular Euclidean d-simplex and s is the centroid of S, then

xf-d when d is odd,
p(S, s)

v’d + 1 when d is even.

Proof With Uo, Ud denoting the standard unit basis vectors for IEl)d+l..a2 let

1 d

Y u, and S=con{uo--C,...,Ud--C}.C-d+li=o
Then S is a regular Euclidean d-simplex with centroid s- 0, and

so(S, s)
+
d

1

we want to compute /z(S, s), which is half of the maximum of the norm on the set
SN-S.

The points x of S n -S are characterized by the existence of nonnegative numbers
Ao,’" ", Ad with sum 1 and nonnegative numbers r/o,’’ ", r/d with sum 1 such that

d d

2 ,(u,- c) x 2 n,(c- u,).
i=0 i=0

d

i=0

From this it follows that

and by linear independence of the u,’s that

2
A0 + T]0 A1 + ’Y]I Ad + r/d d + 1

Note also that since the origin is the orthogonal projection of the point c onto the
hyperplane aft S, maximizing IIx[I over x S VI -S is equivalent to maximizing [Ix- cl] 2

d
over x 6 S -S. And for x Y,=o rhu, as described,

d

Ilx- cl] 2= Y, 7/2.
i=0

We claim that for any x that maximizes []xl] 2 over S f3-S, there is at most one
index for which the numbers and r/ are both positive. For suppose there are two
such indices, say and 2 with r/ => r/2. Then for a sufficiently small positive e we may
increase r/ and A2 by e and decrease r/2 and , by e without violating the above
conditions, and since

d d d

(’1 q- G)2 (T}2 E) E T]-- 2 n2,+26(., "r/aq-e)> T]=X--[[]] 2,
=0 =0 ---0
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the maximizing property of x is contradicted. It follows, therefore, that for each index
with at most one exception, either Ai =0 and r/i 2/(d + 1) or A 2/(d + 1) and

r/ 0. And since
d
=o r/ 1, no more than halfofthe d + 1 r/i s can be equal to 2/(d + 1).

From the above observations we see that when d is oddNsay d 2n + 1--the
maximum of vii for v S f3-S is attained by setting

/) d._t_ b/i
i=o

Then Ilvll 1/x/2n -2= /d + and p(S, s)= (S, )/llvll /-.
When d is even.--say d 2n--there is a maximizing x such that for some r < n,

2 for0i<r and r/=0 forr<i<-d.rli-d + 1

From the fact that

2r 2
-t- r/r 1 and 0 < r/r -<-------
d+l d+l’

it follows that 2r->_ d- 1, whence r n and rtr 1/d. Hence the point

,-1 1 )2
ui+ u, -cw= d+l i=0 d+l

is a point of S -S farthest from the origin, and we have

4Uff ,/3 S, s
Ilwll- 2n +i- d + 1

and p(S, s)
[[w[[

v/d + 1.

dFor each dimension d, Lemma 5.8 provides a lower bound for P([2) and it may
be that this bound is sharp. We are able to show that it is sharp for d_-<2 (i.e.,
p(z2) --x/), and for d => 3 to establish an upper bound that is no more than x/ times
the lower bound. It follows from Lemma 5.7 that in seeking an upper bound for p(zd),
we may confine our attention to the ratio p(Z, 0), where Z satisfies the conditions of
the following lemma. Under these conditions, so(Z, 0)= and we seek a lower bound
on/x(Z, 0).

LEMMA 5.9. With d >-2, suppose that the origin in [ is interior to a d-simplex Z
whose vertices Zo, , Zd are all of unit norm, and that the positive numbers A are such
that

d d

A 1 and 1iZi O.
=0 =0

Let

S=con{z,... ,zd}
/0

and s zo S.
1 -Ao

Then the following statements are true:

(i) S is the facet ofZ opposite Zo;

(ii) s belongs to the interior of S relative to the hyperplane aft S;
(iii) for each i, A <
(iv) Sfq-Z(1-2Ao)((S-s)f-I(s-S))+s.
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(Thus the intersection S f3 -Z contains a contraction in the ratio 1 2o of the reflection
of the set S in the point s.)

Proof The assertion (i) is obvious, and (ii) follows from the fact that

1-ho 1-Ao i=l i=

For (iii), note that i <. denotes the usual inner product, then

ao ao(zo, Zo (Zo,
i=1 i=1

d d

2 al(o, 2 a ao.
i=1 i=1

From this it follows that 1oN, with Ic= only if each of the points z,..., ze is
equal to -zo. Equality is excluded by the assumption that the origin is interior to Z.

Now let T S-s. To establish (iv), we observe that

s -z
(r+ s ((-o(-r+ sl

(( aor (( ao(-r+ s

=( -ao)(S- s) (s- s)+ s.

The first or follows from the fact that S T+ s and

( ao(- r- s + Zo Zo ( aol(-s + (ao(-o
con ((-s) U {-zo}) -z

For the second, use the fact that s=(-o/(1-1o))Zo. The third, fifth, and sixth are
obvious. For the fourth, note that since 0< 1-21o < by (iii), and since the set T is
convex and includes the origin, it is true that T

(Actually,

s -z (r+ s) (( ao)(- T) + s,
but we do not use this fact.)
To 5.10. 0()=.
Proo Let the notation be as in Lemma 5.9. With p denoting the foot of the

perpendicular from the origin to the line aft S through . and z, let the z’s and 1’s
be relabeled to obtain p . (t is easy to see that this is possible.) With

(1 -Ilpll) 1/- Ix -PlI,
the situation is as shown in Fig. 2, and it follows from (iv) of Lemma 5.9 that there
exists q S-Z such that

Let us define y IIx-Pll and r= IIPlI, whence Ilsll (+ r)/ and it follows that

(y+r)/o +(y+ r)l/"
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FIG. 2

Hence the lower bound on IIq-Pll may be written as

( 2 -Y- -+- -r)-i(-g(Y) Y + 1-1+ (y2 + r2)l/2]((1- r2) 1/2-y)

2( y2 + r2),/2y ( _2( .y_Z_+_ r2)_/y
r2) 1/2.

+ y2 + r2) 1/2 + 1
+ y2 + r2) 1/2] 1

We claim that for each fixed r->_ 5, the value of g(y) is minimized by setting y 0. Since

l’( y2 + r2) 1/2( + r) + r y2 + r2) 1/2)( 1 r2) 1/2

(g(y)- g(0)) =
( + r)( + (y+ r:) 1/:)

it will suffice to show that f(y)>=f(O) for all y >= 0, where

f(y) (y( + r) -( r2)/e)(y + re) 1/2.

Now

f’(y) (1 + r)(y2+ r2)’/2+ y(ye+ r2)-l/2(y(1 + r)-(1-r2) 1/2)
--(2(1 + r)y2-y(1- r2)/2+ (1 + r)r2)(y2+ r2) -1/2

and since the discriminant (1- r2)-8(1 + r)2r2 is positive when r_-> 1/2 it follows that
f’(y) >- 0 for all y >_- 0. But then f(y) >- O, and from this it follows that

(l--r)3/2
g(y)>= g(0)

(1 + r) 1/e"

Recalling the relevant definitions, we see that there is a point q of S (-I-Z such
that IIq-Pll--> g(0), whence by the Pythagorean Theorem the squared norm of q is at
least

(l-r)
h(r)=+re.

l+r
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Now

4
h’(r) + r)-------- r2 + 2r ),

and this is positive when r >1/2 Hence for r >l

h(r) >(1/2) 1 1

=3/2 4 3’

whence the half-length of the segment [-q, q] Z f3-Z is at least 1/,,/-. This implies
that p(Z, 0)_-<,/, whence p(N)-</. The reverse inequality appears in Lemma
5.8.

In preparation for the next.result, we require a computational lemma.
LEMMA 5.11. If the sequence y, T2, is defined by the condition that y 1 and

1 (d-l)4

d--d2 d2(d+l)2Yd-’
for d 2, then

1 d4 2=sa(a+)2(3 +Sd-2d +5d+2) 1-

Proof Let ad dZd, SO that a and

d- + + a-2d=l+ d+ d

2(:
1

(2dZ(d + 1) + (d- 1)2(d-Z)Z+(d-2)Z(d-3)2a_)
d(d+)

=de(d+l)22d2(d2 +1)+=22 i2( +1)2

A straightforward induction shows that

i2(i + 1)2
= = n(n+ l)(n+2)(3n2+6n+ l).

With d n- 2 this yields

d 15d(d+l)2
3d4 + 15d3 +2d+ 15d +2)

and hence

1 3
Od -- O/ >

lSd3(d
__

1)2 (3da-6d2+3) 15d3(d + 1)2 (d + 1)2(d 1)

5d3
(d-l)2=- 1-

THEOREM 5.12. If d 2, then

d-1 +1 for even d.
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Proof The lower bounds and + come from Lemma 5.8. To justify the
upper bound, it is more convenient to work with/3a 1/p(E). We already know that
/31 1 and/32 1/x/. To prove

d-1

for a given d >_-2, it will suffice, in view of Lemma 5.11, to show that

1 (k-l)4

/3 _-> 5+ k2(k + 1 )2/3k-1
for all k <-d. This will be accomplished by induction on d.

With the notation as in Lemma 5.9, let the zi’s and Ai’s be relabeled to obtain

Ao--> 1/(d + 1), let p denote the orthogonal projection of the origin on the hyperplane
aft S, and let

6 (1-IIpll2) 1/2- ]Is

Of course,

(S,s)

and with the aid of (iv) of Lemma 5.9 we see that

/(S0 -Z, s) -> (1 2Ao)(S, s).

For 1-<_j-<_ d it follows from the Pythagorean Theorem that

IIP-Vll + IlPll 2= IIvll 2= 1

and from the triangle inequality that

lip- viii--< lip- sII / IIs- viii.
Hence s(S, s)=> 6 and we have

(s-z, s)-> (-2Xo)(s,

That is, the set S I"l-Z contains a segment that is centered at s and has half-length at
least (1-2Ao)fla-l& For at least one end of this segment, the squared distance from
p is at least

lip- sll=/ (a-2*o)=t5-162
and from the origin it is at least

Q--IIp-211/ <1- 2,o)2_12/ Ilpll ,
To prove Theorem 5.12 it will suffice, in view of Lemmas 5.7 and 5.11 and the fact
that s(Z, 0)- 1, to show that

(d-)"
Q>=-dS+dZ(d + l)Z d-1

For notational convenience, we write

y=]]s]]- Ao and r=]]p{I <y <1
l-A0 d
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Then ho y/(1 + y), and Q becomes

( 2Y)2
_

1/2 y2 /2)/3 1((1-r2) -( -r2)h(y)= y2+ 1 i
y2 + (1 y)4/3t_1((1 r2) /2 + (y2_ r2)1/2)-2.

For each fixed y, the value of h(y) decreases with decreasing Jr[. Hence h(y)->f(y),
where

(1 _y)4
f(y) y2 +(i + Y) ]-

and

f’(y)=(l+y)-(2y(l+y) 4(1 y)(l+y)]_ 2(1 y)]=
1

(1 + y)-(2y(1 + y) -6_) when 2 y 1.

With fla_l/(d-1 and yl/d, we have f’(y)0 and hence

(1 1/d5f(Y) =+(1 + lid
For bodies C lying in certain Minkowski spaces E, Theorems 5.3, 5.4, 5.10, and

5.12 bound the number p(C) from above. Because of the relevance of p(C) to the
maximization of -convex functions, it is also of interest to know how small p(C) can
be for bodies C c E. It is easy to see that whenever dim E 2, there are pointed
polyhedral cones K c E that have arbitrarily small values for p(K). (Simply let K
have a "large opening.") However, the situation for bounded bodies is much less
obvious, and hence the following observation seems worth including.

THEOREM 5.13. For each d 2, the set {p(C)" bounded body C } is equal to
the interval ]0, p(g)]. In particular, when d 2 it is the interval ]0, ].

Proo We first show that if e > 0, and if C is the lens in the xy-plane formed by
intersecting the disks of radius R (1 + e)/(2e) centered at the points (-R + e, 0) and
(R-e, 0), then p(C) e. Consider an arbitrary point p=(x, y) C with x, y0. The
point q of0C nearest to p is the radial extension to OC ofp from the point (-R + e, 0).
At q, 0C has a tangent line L, and we consider the cap D that contains the point q
and is cut from C by the line M parallel to L and passing through the point z (0, 1).
Let r denote the point at which M intersects the segment joining the point (-R + e, 0)
to q. We consider separately the two possibilities: p It, q]; r [p, q].

Suppose first that p [r, q], and let p-q [[. The there is a chord of C that
passes through p, is centered at p, and is of length 22R-. Hence

(C,p) v .
2R-

Now suppose that r [p, q], and note that if the lens subtends an angle 0 at z,
then tan 0 1/(-e). Consequently, if is as before, then + where = p- r,

r-q, and

lip- rll iiz- r[[(tan O)= (g )//(R ).
Now C contains the chord [z, p- z] centered at p, and the square of half the length
of this chord is given by

P rll - rll - rll 2R .
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As r/= + 05, we have

n <- 4) +(R4) 4,)’//(R 4)).

For small e,

dp >= Rdp d/)2) l/2/ R
and consequently b _-> r//2. Thus C contains a chord centered at p of half-length at
least Rr/-1/4r/2, and it follows that

p(C) =< (R -’ )’/ <= .
That completes the discussion of the case d 2.

Now for d-> 3, write [a =R2ZxNa-2 in the usual way, so that each point p N2a

can be written as p= (p’, p") with p"N and p,, a-2. Let /x be the gauge-function
of the body C c N2, let 1]. denote the Euclidean norm for Rd-2, and define

K {p: (/x(p’))2+ Ilp"ll2_-< 1}.
Then K is a body in N d, and it is not hard to verify that p(K)<-e. (When d 3, K
is obtained by rotating the set C. about its axis of symmetry.)

To complete the proof, note that by a simple continuity argument, it is true for
each space E that the set

{p(C)" bounded body C c E}

is a connected subset of .
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APPLICATIONS OF OPTIMAL MULTIPROCESSES*
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Abstract. In a previous paper a theory of necessary conditions for optimal multiprocess problems was
supplied, that is, problems in dynamic optimization involving a collection of control systems coupled through
constraints on the endpoints of the trajectories and the cost functions. Here the scope of the new theory is
illustrated by application to optimization problems in investment planning, impulse control, optics, robotics,
and renewable resources.

Key words, optimal control, necessary conditions, differential inclusions
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1. Introduction. Optimal multiprocess problems are dynamic optimization prob-
lems involving a collection of control systems, coupled through constraints in the
endpoints of the constituent state trajectories and through the cost function. Such
problems arise, for example, in flight mechanics (optimal control of multistage rockets
11 ]), optimal investment [21], routing problems over variable domains 13], 16], and
plasma control [22]. To date, necessary conditions of optimality and minimization
algorithms for these problems have been studied, for the most part, by ad hoc techniques
on a case-by-case basis.

Our earlier paper provided a unified theory of necessary conditions for optimal
multiprocess problems. The present paper is a companion piece in which we explore
applications of the theory. On the one hand, we deduce from the general theory
necessary conditions of optimality for certain special classes of problems of interest.
On the other hand, we use the theory to study specific problems in detail and to
determine the optimal multiprocesses involved.

in selecting problems for inclusion in this paper, our object has not been exclusively
to give instances where established methods fail and we must have recourse to the
theory of optimal multiprocesses. Indeed both the free time investment problem of 4
and the robot arm problem of 7 can be solved by traditional "two stage" techniques
in which we freeze certain choice parameters, thereby reducing the problems to ones
that can be solved by application of the classical Pontryagin maximum principle; we
then minimize a value function (the minimum cost as a function of the frozen parameter
values) to determine the optimum parameter values. The emphasis is rather on interpre-
tation of conditions in the optimal multiprocess maximum principle. A recurring theme
is that the "extra" conditions in our maximum principle correspond to stationarity of
the value function.

Necessary conditions in optimization, in addition to providing the basis for solution
of certain problems by analytical means, serve as inspiration for optimization algorithms
and give information concerning asymptotic properties of sequences generated by these
algorithms. These aspects of necessary conditions are illustrated, in the context of
optimal control theory, in, for example, [15] and [25]. We expect that the optimal
multiprocess maximum principle will also be the source of optimization algorithms,
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in the case of optimal multiprocess problems. Now outside the simplest cases we
cannot reasonably expect convenient formulae for the appropriate value functions to
be available to us. It is significant therefore that the optimal multiprocess maximum
principle makes no explicit reference to value functions, and implementation of
optimization procedures associated with it will not depend on availability of such
formulae in any way.

An important feature of our theory is that it treats dynamic optimization problems
where the data is merely measurable in the time variable. Our purpose in treating the
investment problem of 4 is in part to illustrate a free time problem where we can
expect the optimal free time to coincide with a point of discontinuity of the data, and
that the optimal multiprocess maximum principle can provide useful information in
such instances. When the data is. discontinuous in the time variable, the standard
boundary condition on the maximized Hamiltonian function is replaced by an inclusion
involving the "essential values" of this function. On the face of it the essential value
condition is rather weak, and it is somewhat surprising that it can supply quite precise
information about solutions to dynamic optimization problems. It does so in the
problem in 4, for example. Drawing an analogy with convex optimization is helpful
here. The condition "0 Of(x)," where 0 denotes the subditterential, appears a meager
condition for x to be a minimizer of the convex function f: Nn

_
N. But on the contrary

it is necessary and sufficient. The point is that if the convex function f has a discon-
tinuous derivative at a point x, then x is a rather likely location for a minimizer, and
this is reflected in Of(x) being set-valued and the optimality condition being somewhat
unrestrictive. Likewise for free time dynamic optimization problems, a time at which
the cost integral and/or dynamics are discontinuous is a likely location for the optimal
free time, and an optimality condition in the form of an inclusion is not inappropriate.

The form this paper takes is such as to make it a convenient reference in further
applications of the theory of optimal multiprocesses. It includes a number of useful
results for computing the normal cones typically encountered. The optimal multiprocess
maximum principle of [6] has been recast to include the kind of integral cost terms
that often arise, and a slightly weaker version of the transversality condition than that
in [6] is given, but one which is more convenient for many applications.

2. Preliminaries. Frequent reference is made to generalized gradients and normal
cones. These are understood in the sense of Clarke [4].

DEFINITION 2.1. Let N be an open subset of Nk, let x be a point in N, and let

f: NN be a locally Lipschitz continuous function. Then the generalized gradient
Of(x) of f at x is the set

Of(x) E-d { limi Vf(x,)[ X "--) X, f(xi) exists for i= 1, 2,’’ "}.
Given a closed set S c k, dc:k._.> denotes the Euclidean distance function

dc(x)=minly-x].
yC

DEFINITION 2.2. Let C c k be a closed subset of k and x a point in C. Then
the normal cone to C at x, written Nc(x), is

(2.1) Nc(x)=cl { Ux_>__oh Odc(x)}.
Application of the theory of optimal multiprocesses usually involves analysis of
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generalized gradients and normal cones. The following identities and estimates will
be useful in this regard.

Ploposrnoy 2.1. (i) Foranyclosedsubset C kxandpoint (a, b) C, wehave

N(x.x,y)l(x,y)c’ ((a, a, b)) {(p, q, r)[(p + q, r) Nc((a, b))}.

(ii) For any closed subset C [Rk x [R and point (a, b, c) such that (a b, c) C,
we have

N(,,y,)l()_),,z)C.i((a b, c))c {(p,-p, r)] (p, r) Nc((a, b))}.

(iii) For closed sets C1 c Nk and C2 Nl, and points x C and y C2 we have

Ncc(x, y)= Nc,(X) Nc(y).

(iv) Let" kx R be a given locally Lipschitz continuous function and take a point
(a, b, c)ex. Definef’[x- to be

f(x,y,z)=(x-y,z).

Then

Of((a, b, c))= ((p,-p, q)l(P, q)Of((a-b, c))}.

Properties (i) and (ii) follow from Theorem 2.5.6 of [4]. For (iii) see page 54 of
[4]; Property (iv) is a consequence of the chain rule [4, Thm. 2.3.10].

We also call upon the concept of "essential values," introduced in [6].
DFyn-oy 2.3. Let I = be an open interval and let g:I--> be a measurable

function. Take a point L Then the set of essential values of g at t, written ess,_t g(s),
comprises the points x k such that, for any e > 0, the set

has positive measure.
We remark that if the function g has finite left and right limits at (written g(t-)

and g(t+)), then

ess g(s) {g(t-), g(t+)}
S-->t

and so, in particular, if g is continuous, then

ess g(s) (g(t)}.
S-->t

3. A maximum principle for optimal multiprocesses. The following data is given:

positive integers k and hi, mi, i= 1,. ., k,

functions 6i" X n, X mi "-> ni,

subsets U of E mi, 1, , k,

and subsets X of x ,, 1, , k.

We recall a notational device from [6]. A point ((a, b,...), (a2, b2,’. "),.’’
(a, b,. .)) is written { ai, hi," "}.
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A multiprocess is a k-tuple {’, ’il, Yi(" ), wi(. )} each element in which comprises
left and right endpoints ’, ’ of a closed interval, an absolutely continuous function
y(. ).[ ., .il]

_
,i, and a measurable function w(. )’[ ’, .i] _. ,i such that

Yi(t) dpi(t, yi(t), wi(t)),

wi( t) U
yi(t) 6Xi

(Here X denotes {x" (t, x) e X}, etc.)

a.e. [-r), "rill,

a.e. [’r, "r],

for all e [-, .i1].

The individual elements are called component processes, the yi(.)’s component
trajectories, the w(.)’s component control functions, and the intervals [’, ’s com-
ponent time intervals.

Now let

Li’Xlnixm’, i=1,’’ .,k,

f’E IR

be given functions, in which E Hi (E x E x E", x E",), and let

Ac {{-, -, y;,y}6 Elf’ r, i= 1,..’, k}

be a given closed set. The optimal multiprocess problem is"

minimize f({, , y(), Y(’)})+2 (t, y(, w()
(p

over multiprocesses {r, , y(. ), w(. )} satisfying {;, , Y(,o), Y(r)} A.

Define , L], i= 1,. ., k. We invoke the following hypotheses.

(H1) For each xN, (.,x,.) is (x N)-measurable for i= 1,..., k. Here
denotes the Lebesgue subsets in N and N, the Borel subsets in

(H2) U is a Borel measurable set for i= 1,. ., k.

(H3) There exists a constant K such that, for i=l,...,k, I(t,y, w)lNK
whenever (t, y, w) x X x U and

(H4) i( t, y, w) ,( t, y’, w) Kl y y’l
whenever (t, y, w), (t, y’, w) N x X, x U,.

(H5) f is locally Lipschitz continuous.

We now state a version ofthe optimal multiprocess maximum principle particularly
suited to the applications to follow. Here, the functions Hi, i= 1,..., k are the
Hamiltonian functions

H( t, x, u, p, A := p ( t, x, u) ALi( t, x, u).

THEOREM 3.1. Let {T, T, xi(" ), ui(" )} be an optimal multiprocess. Suppose that

graph {x(. )} interior {X},

for i= 1,’.., k, and that hypotheses (H1)-(HS) are satisfied. en there exist a real
number A equal to zero or one, real numbers h, h 1, i= 1,..., k, and absolutely continuous
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functions p,( )’[ To, Ti] ---> n,, 1,’" ", k, such that A +, IPi( Til)I > O,

-p( t) OxHi( t, xi( t), u( t), pi( t), a ), a.e. T, T],
H(t, x(t), u(t), p,(t), A) max H(t, x(t), w, p(t), A), a.e. T, T],

wU

hco ess /sup. Hi(t, xi( T), w, pi( T), I,
heco ess sup H(,x(r), ,p(r),a)

for i= 1,... and

{-h h

e normal cone NA and the generalized gradient Of are evaluated at the point
{ T, T’l, x(T), x( T’)}.

Theorem 3.2 of [6] addresses optimal multiprocess problems with no integral cost
terms and it incorporates a transversality condition expressed in terms ofthe generalized
gradient of the distance function from A, OdA. The Maximum Principle, Theorem 3.1,
is derived from Theorem 3.2 of [6] by a componentwise application of the standard
state augmentation techniques of optimal control theory, and by noting the inclusion

U Od N,
0

which follows from (2.1).
We conclude this section with a result that extends to multiprocesses the fact

(familiar in the single process case) that for autonomous problems the Hamiltonian
is constant. The problem (P) is autonomous when the functions & and L have no
dependence on t, and when the control set U is the same set U for all t.

COROLLARY 3.1. Under the hypotheses of eorem 3.1, when in addition (P) is

autonomous, then the conclusions of the theorem can be spplemented by the following.
i=hi=hiFor each i, there is a constant h such that ho and

h’= sup. H,(x,(t), w,p,(t),a) fo a tin ITS,
U

We shall merely sketch the proof, which parallels closely that of Theorem 3.6.1
of [4]. We introduce new (additional) control variables v (joining w) and state variables

z (joining y) (i= l, 2,..., k), together with the following modified dynamics", ( + ,)e,(y,, w,), , ( + ,).

The control components v are constrained to [-e, el, where e is a small positive
number. With the help of these additional variables we define a new multiprocess
problem (P) in terms of states (z, y) and controls (vi, w) for which each of the k
components evolves on the fixed time interval T, T], and in which the quantity

is to be minimized. The corresponding endpoint constraint set is given by
iA ((,, ,,, o, yo, z,, y,}. ,o To, , T, (Zo, z,, yo, y,} A}.

We note that the state-control components

are admissible for the new problem (P). In fact, a standard use of the "Erdmann
transformation" (see [4, 3.6]) shows that (for e small) this new multiprocess is optimal
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for (’). On applying Theorem 3.1, we deduce the existence of certain adjoint variables
(qi, Pi), where the qi are (scalar) constants and where the Pi satisfy the required adjoint
equation. The maximization condition is seen to assert that, almost everywhere, the
function

(v, w)-->(l +v){Hi(xi(t), w, pi(t),h)+qi}

is maximized over [-e, e]x U at (v, w)= (0, ui(t)). It follows that for all t[T, T]
we have

-qi max Hi(xi( t) w, Pi( t), ),
U

and that the constant h in the statement of the corollary may be taken to be -qi. The
transversality conditions for (P) translate directly to the requisite ones for (P). Finally,
we need to confirm that if A is zero, then Ei [[p,(T’)ll is not. Suppose to the contrary
that both vanish. It follows then from the equation above that qi is zero for each i,
contradicting the known fact that (when A =0) Ei II(Pi(Til), qi)ll is positive.

.4. The free time optimal control problem. In the case that the integer k 1, the
optimal multiprocess problem can be expressed as follows:

I v
minimize L(t,x(t), u(t)) dt+f(a, b,x(a),x(b))

subject to

(El) (t) b(t, x(t), u(t))
u(t)U,

x(t)Xt
(a,b,x(a),x(b))C.

(We have written L in place of L1, etc.)

a.e. t[a, b],
a.e. t[a, b],

for all [a, b],

Here we recognize a version of the free time optimal control problem. Necessary
conditions for solutions to free time optimal control problems date back-to the work
of Pontryagin and his associates in the 1950s 18], their applicability has been extended
by a number of authors [9], [24], 17], [4] and they feature in many expository accounts
of optimal control theory. In these optimality conditions, the maximum principle for
the fixed time problem is supplemented by a boundary condition on the Hamiltonian
function H := p. & AL evaluated along the optimal process (x*(.), u*(. )) and costate
function:

max H(t, x*(t), w, p(t), h ).
U

The hypotheses under which this extra condition has been proved require, at the very
least, the Hamiltonian function to be continuous in some sense at the optimal endtimes.
(See, e.g., [2] or [7].) Now optimal control problems arise where, possibly as a result
of an instantaneous change in an exogeneous input, the data is discontinuous in the
time variable. This accounts for developments in fixed time optimal control theory in
which the smoothness hypotheses in [18], regarding time dependence, are relaxed to
measurability (see, e.g., [2], [9], [4]). The reasons for treating free time problems with
data merely measurable in the time variable are as cogent, yet a maximum principle
for a general class of problems having this feature has until now been lacking. This
omission is remedied by the following theorem. As usual H denotes the Hamiltonian
function

H(t,x, u,p,h)=p" th(t, x, u)-hL(t,x, u).
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THEOREM 4.1. Let (a*, b*, x*(. ), u*(. )) solveproblem (El). Assume thefollowing"
For each y n, qb (., y, is measurable.
U " is Borel measurable.

There exists a constant K such that
lob(t, y, w)l <- K whenever (t, y, w) Xt Ut, and
[4,(t, y, w)-4(t,y’, w)l<=K]y-y ’] wheneer (t,y, w), (t, y’, w)X, U,,

and

graph {x*(. )} interior {X}.
Then there exist real numbers h0, hi, and A (A 0 or 1) and an absolutely continuous

function p(. )" [a*, b*]E" such that A +[p(b*)[> 0,

-lJ(t)OxH(t,x*(t), u*(t),p(t),A) a.e. t[a*, b*],
H(t,x*(t),u*(t),p(t),)=maxH(t,x*(t), w,p(t),A) a.e. t[a*,b*],

U

hoco ess Isup H(t,x(a*), w,p(a*),) ],ta* Ut

hlco ess [sup H(t,x(b*), w,p(b*),A)],
tb* U

(-ho, h, p(a*), -p(b*)) Nc + A of,
where the normal cone Nc and the generalized gradient Of are evaluated at
(a*, b*, x(a*), x(b*)).

Example. A problem in production planning illustrates application of the new
maximum principle for free time problems:

Iominimize -g(T, x(T))+ o(t)u(t) dt

subject to

(E)’ (t) -x(t) + u(t) a.e. [0, T],

x(0) =0,

u(t) 6 [0, a.e. 6 [0, T].
Here g’[ is a given continuously differentiable function and the function
is taken to be

0.5 if0_<-t_<-2,
ce(t) c if 2< t.

The termination time T is a choice variable, constrained to satisfy 0_-< T-< T. (T> 2
is a given constant.)

An interpretation of this problem is as follows. Money is borrowed and invested
in production. The sum borrowed at time t, u(t), is constrained: 0_-< u(t)<= 1. The
interest rate is a(t)=0.5 up to time t--2, when it jumps to the punitive level c. x(t)
represents the amount of product available for sale at time t. Production is terminated
at time T, and a gross profit g(T, x(T)) is realised. We aim to maximize net profit
over the class of borrowing policies {u(t)" 0-< < T}. Net profit is clearly expressible
as the negative of the cost function. The purpose of the high interest rate c is to
discourage borrowing after time 2. We might ask then how high must c be set to
make production unprofitable after time 2? Theorem 4.1 supplies a condition on
the value of c for T 2 to be an optimal termination time. To state this we define a
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process {(x(t), u(t)), O<- t<- T} to be .an extremal on [0, T] when there exists an
absolutely continuous function p(.) on [0, T] such that

(t)=-x(t)+u(t)
x(0)-0,
p(t) =p(t)

p(T)=gx(T,x(T)),

a.e. t6[0, T],

a.e. t6[0, T],

if p(t) cr(t) > 0

otherwise.

a.e. t[0, T],

In applying Theorem 4.1 we have in the present case

f(zo, z,, Xo, x,) -g(z,, x,), C {0} x [0, T] x {0} x [.

It is a simple matter to deduce the following proposition.
PROPOSITION 4.2. Suppose there exists a minimizing process for problem (El)’ with

termination time T=2. Then there exists an extremal {(x(t), u(t)), 0<= t=<2} on [0,2]
such that

(4.1) gxx(2)--gT6[O, o0)(’1 [g- c/, g 0.5].
In this last inclusion the partial derivatives gT and g are evaluated at (T, x) (2, x(2)).
Condition (4.1) is the new information provided by Theorem 4.1 beyond the content
of the classical maximum principle; it corresponds to the part of the transversality
condition involving the essential value h.

It is of interest to examine how closely the inclusion (4.1) captures the range of
c/ values for which T 2 is an optimal termination point. To do this we specialize
somewhat and consider a particular function g(T, x):

(4.2) g(T, x)= Tx for all T_>0, xeR.

For each T->0, let us denote by E(T) a variant of (E)’ in which T is treated as a
fixed parameter. For each T _>- 0 we can determine the process that satisfies the necessary
conditions for optimality of the fixed time maximum principle (there is just one such
process). But E(T) can be shown to have a solution and consequently the process
so derived actually solves it. Substituting back into the cost function we obtain a
formula for the value function 7(T), relative to T, namely

/(T) min E’(T), T=> 0.

We find the following:
(a) If c/>2 and IT-2[ is small enough

j T e-(T-z) + 0.5[ 1 In (0.5/T)] 0.5( T 2)
T)

T+0.5[1 -In (0.5/T)]
(b) If c7 <-2 and ]T-2[ is small enough

/(T) {-T+0.5[ln (0.5/T)]+(-O.5)(T-2)
-T+0.5[1-1n (0.5/T)]

for T>2,
for T<-2.

for T > 2,
for T<-2.

The value function / has left and right derivatives of all orders at T= 2. These are
easily calculated. Of interest are the following:

D-rI( T= 2) -O.75

-0.75 if ff > 2,D+’r/(T=2)=
-1.25+a if if<-2,

(D+)2(T= 2) -0.25 if c/= 1.25.
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It is clear from these values that T 2 is a local minimum of rl if and only if c > 1.25.
We return now to the condition on 8 provided by the free time maximum principle.

If {x(t), u(t); 0 =< _-< 2} is the extremal on [0, 2] of Proposition 4.2, then it is easy to
show that x(2) 0.75.

The inclusion now becomes 1.5 -0.75 [0, ) fq [2- c, 2- 0.5], i.e., 2 8 =< 0.75 -<

1.5 or c >_- 1.25.
Comparing this inequality with our findings from calculating the value function,

we see that the free time maximum principle provides a rather precise estimate, namely
[1.25, c), of the set (1.25, ) of c values for which borrowing a short time after time

2 is unprofitable. It fails to catch the point 8 1.25 since if c 1.25 profits can be
increased by overrunning the time 2 can be ascertained only from second-order
properties of the value function, and the maximum principle is a first-order optimality
condition.

This example draws attention to the fact that even if data associated with a class
of free time problems is discontinuous in the time variable at just one point, instances
when this point is the optimal termination time are hardly anomalous. Indeed this is
the case for a whole range of values of c. We see also that the information supplied
by the new free time maximum principle can be rather precise in such circumstances.

Suppose there is an optimal process for problem (E)’, with termination time
T 2. Limiting attention to the particularly simple terminal cost term (4.2), we find
that information present in the free time maximum principle regarding the optimal
free time amounts to

(4.3) 0 0r/(T 2),

i.e., T= 2 is a stationary point of the value function. We emphasize however that
condition (4.1) from the free time maximum principle supplies information about
optimal processes even when we cannot derive a convenient formula for the value
function and use inclusion (4.3) directly.

5. Impulse control. In this section we derive from Theorem 3.1 a maximum
principle for optimal impulse control problems of the following form:

+), Iominimize g(a,x(a), r,x(r-),x( b,x(b))+ L(t,x(t), u(t)) dt

(E2)

subject to

2(t)=ch(t,x(t), u(t)) a.e. t[a, b],

u(t) U, a.e. t[a, b],

x(t)X, for all t[a, b],

(a, x(a), "r, x(’r-), x(r+), b, x(b)) C.

Here, L:RxR"xRm-->R, :RxRnxRm--->R" and g:(RxR")x(RxR"xR")x
(RxR")-R are given functions and UcRxR", XcRxR and Cc
{((/l, X1), (t2, x;,x-), (t3,x3))]t, <- t2<=/3} are given sets.

Minimization is conducted over elements

{a, ’r, b, x(. [a, b]-R", u(.):[a,

in which a, r and b are numbers that satisfy a_-< r_-< b, x(.) is a function whose
restrictions to [a, -) and (r, b] are absolutely continuous, and u(.) is a measurable
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function. The state x(t) is permitted to jump at time r. The departure and arrival
states are denoted by x(r-), x(r+)

and

if->a,
x(’-) :=

x(a) if -= a,

lim,+,x(s) ifr<b,
x(b) if ’=b.

We write H =p. 4- )tL.

THEOREM 5.1. Let {a*, o-, b*, x*(.), u*(’)} solve problem (E2). Assume that
hypotheses (H1)-(H4) of 3 are satisfied when we substitute oh, L, U and X in place of
ch i, L U and X. Suppose also that g is locally Lipschitz continuous, C is closed, and
there exists e > 0 such that

graph {x*(. )} + eB c X.

Then there exist numbers a, fi-, fl +, y, and A (A > O) and a function p(. )’[ a*, b*]->
such that the restrictions of p(.) to [a*, o’) and (r, b*] are absolutely continuous,

* 0,

-[(t)eOxH(t,x*(t), u*(t),p(t),,) a.e. te[a*, b*],

H(t,x*(t),u*(t),p(t),)t)=maxH(t,x*(t),u*(t), w,p(t),) a.e. te[a*,b*],
U

c e co ess (t, x*(a*), p(a*)), /-e co ess (t, x*(o--), p(cr-)),
t->a*

/3 + co ess (t,x*(r+),p(cr+)), yco ess ,(t,x*(b*),p(b*)),
t- t- b

(-a, p(a*), -(+ -), -p(r-), p( +cr ), y, -p(b*)) Nc + Og.

Here ( t, x, p) := sup t, H t, x, w, p, ). The normal cone Nc and generalized gradient
Og are evaluated at

(a*, x*(a*), or, x*(o’-), x*(r+), b*, x*(b*)).

Observe that problem (E2) can be reformulated as an optimal multiprocess problem
as in 3. Two component processes are involved, associated with the restrictions of
the control function and state trajectory to either side of the jump time ’. The dynamics
and state and control constraints are the same as those in problem (E2) for both
component processes. The fact that the component processes are concatenated is taken
account of by choosing the set A in problem (P) of 3 to be

xl}]-’= - and (r, x, -, x, Xo2, -, x2) C}.(5.1) A {{, , x0,

The assertions of Theorem 5.1 follow now from application of Theorem 3.1, in which
the optimal multiprocess considered is that associated with {a*, r, b*, x*(" ), u*(. )}.
Bearing in mind the special structure of A (see (5.1)), we obtain the transversality
condition by an application of Proposition 2.1(i), and by observing that the function
g in the cost function can be assumed to have values that do not depend on the -11
variable.

Let us consider a special case, where the conditions in Theorem 5.1 simplify
considerably. The problem in question is one where the underlying time interval a, b],
is fixed and where it is the jump vector, x(’+)-x(r-), rather than the departure and
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arrival states of the jump, x(z+) and x(r-), which feature explicitly in the cost and
constraints:

minimize gl(x(a), x(b))+ (z, x(z+)-x(z-)) + L(t, x(t), u(t)) dt

(E) subject to 2 , u(t) Ut, x(t) Xt,

(x(a), x(b)) C1, (7", x(’r+)- x("/’-)) C2, a<=.r<_b.

Let {z o-, x*(. ), u*(. )} solve problem (E3). It is assumed that the data of problem
(E3) satisfies the hypotheses of Theorem 5.1, when viewed as a special case of problem
(E:).

Applying Theorem 5.1, and taking note of Proposition 2.1(ii), we can show the
following corollary.

COROLLARY 5.2. Take {z=cr, x*( ), u*(" )} as above. Then, under the stated
hypotheses, there exists an absolutely continuous function p(. [a, b] --> Nn and , >- 0
(, + p(1)[[ 0) such that

(5.4)

(5.5)

where

-p(t)OxH(t,x*(t),u*(t),p(t),h) a.e.,

H(t, x*(t), u*(t), p(t), a max H(t, x*(t), v, p(t), h a.e.,
Ut

(p(a),-p(b)) Nc,(x*(a),x*(b))+h Og(x*(a),x*(b)),

(fl+-fl-, p(o’)) Nc2(o’, x*(cr+)- x*(cr-))+ h 0(o’, x*(o-+) x*(cr-))

fl-co ess A( t, x*( cr-), p( cr) and /3+co ess A(t,x*(r+),p(cr)).
t->o" t-

(H and A were defined in, and preceding, the statement of Theorem 5.1).
We recognize in these optimality conditions the assertions of the standard

maximum principle for fixed time problems involving an absolutely continuous costate
function p(.): [a, b]-->", namely (5.2)-(5.4), supplemented by certain information
concerning the jump, namely (5.5). In the case that the function ,4 is continuous,
C2 x " and Y’--0, for instance, this takes the form

and

p() =0

sup H(cr, p(o’), x*(cr+), w, h sup H(o’, p(cr), x*(cr-), w, A ).

For simplicity of exposition so far we have considered impulse control problems
involving at most one jump. As a simple corollary of Theorem 5.1 we also obtain
optimality conditions for a problem similar to (E2) but where we permit jumps at (at
most) k times zi, i= 1,..., k. These jump times are choice variables that, along with
the endpoints of the state trajectories and their values near the jump times, are
constrained according to

z, )}, b,x(b)) (:(a, x(a), {zi, x(zT), x( +

and enter into the cost through a term:

(a, x(a), {Ti, X(TT), X(ZT)}, b, x(b)).
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(Note that cases where there are less than k jumps are accommodated since we permit

--= -- for some i.) We will call such problems general impulse control problems. Let
(a a*, b b*, {’ o-}, x(. ), u(. )) solve the general impulse control problem. Then
conditions are satisfied similar to those in Theorem 5.1, except that now the costate
function p(. may jump at times -, 1,. , k and the transversality condition takes
the form

(-a,p(a*), {-(/-fl:,),-p(r:,),p(r)}, %-p(b*)) N+A 0:
in which

/3-co ess (t,x*(r,),p(r:,)) and /3-co ess (t,x*(cr/),p(r/)), i=1," ",k.
t--> t-->

Impulse control problems of the type studied here arise in, for example, operations
research and production planning (see [10]) and have been the subject of earlier
research. Previous work has been directed for the most part at characterization of
optimal processes in terms of solutions to a Hamilton-Jacobi equation [1] and [10].
By contrast, we provide necessary conditions of optimality in the form of a maximum
principle.

It is true that there is an existing necessary conditions literature for optimal control
problems where the state trajectories are permitted to be functions ofbounded variation.
This is an outgrowth of certain problems in flight mechanics and investment planning.
The state trajectories in question are associated with generalized control functions that
are measures (see, e.g., [19], [20], [23] and [24]). The formulation employed in such
work is suited to problems where the number ofjumps is unbounded and the cost and
constraints are expressed in terms of such quantities as the total variation of the jumps.
If specialized to apply to the kinds of problems addressed by Theorem 5.1 (and its
multiple jump analogues), stringent additional hypotheses need to be made. We require
the a priori information that the constraint on the number ofjumps is nonbinding and
the measures involved has no continuous singular component, and we also require
that the cost on the jumps is expressible in terms of a positively homogeneous function
of the jump vector.

Derivations of certain special cases of Theorem 5.1 and of its multiple jump
counterpart, together with some heuristic calculations, are to be found in [21] and
[22] and the references therein. Recently Frankowska [8] has given necessary conditions
for a class of multiple jump impulse control problems, in which the data is assumed
continuous in the time variable.

6. Laws of reflection and refraction. Fermat’s principle in optics identifies the path
of a ray of light with an arc, joining the endpoints in question, along which light travels
in minimum time. In the case of reflection, the minimum is with respect to arcs which
visit the reflecting surface.

It is well known (see, e.g., [12]) that Fermat’s principle predicts Snell’s laws of
reflection and refraction; namely, for reflection,

0 0,

where 0 is the angle of incidence and 0 is the angle of reflection, and for refraction,

g sin 01 g sin 02
where g is the refractive index of the medium of the incident ray, 01 is the angle of
incidence, g is the refractive index of the medium of the refracted ray and 02 is the
angle of refraction.
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The traditional approach is to obtain a formula for the path that satisfies Fermat’s
principle and then to check Snell’s laws directly. The minimization is carried out in
two phases. Initially the point of incidence is fixed at an arbitrary value. The transit
time is subsequently minimized over points of incidence. This approach, dependent
as it is on obtaining a formula for the minimizing path, is very restrictive as far as
permitted geometry of the boundary and variation of refractive index in the media is
concerned.

The problem of predicting Snell’s laws fits neatly into optimal multiprocess theory.
We have here a dynamic optimization problem that breaks into two regimes connected
at the point of incidence.

We shall find that optimal multiprocess theory predicts a version of Snell’s law
for a very large class of inhomogeneous media, and for interfaces E which are required
to be merely closed sets.

The following data is given:

functions gl :n
_ , g2 :n - ,a closed set E and points Xo, xl in ". It is assumed that g and g2 are locally Lipschitz

continuous, and have values everywhere greater than zero.
Consider the following optimization problem:

minimize gl(Y(o.)) do" + gz(Y(o")) do"

(E4) subject to 0 =< " =< T,

))(o")eS a.e. o"e[0, T],

y(o) Xo, y(T) x, y() x.
Here the numbers z and T, and the Lipschitz continuous function y:[0, T]- [" are
the choice variables. S is the surface of the unit ball in

In this problem we interpret the independent variable o" as arclength. Keeping in
mind that the refractive index is the reciprocal of the speed of light, we recognize the
cost function as the transit time through two adjoining media. The constraint ".9(o") S"
simply corresponds to the well-known relationship between increments of the coordin-
ate values and arclength along a curve, namely

y o
\do-/

A version of Fermat’s principle then is that the path of a ray of light is a minimizer
for this problem. There is the implicit assumption in our formulation that if we fix the
point of incidence at a minimizing value, then the segments of the path on the first
and second sides are governed entirely by g and g2, respectively.

THEOREM 6.1. Let ((y:[0, T]--->n), 7", T) be a solution to (E4) and suppose that
0 <-_ " < T. Then y(. is continuously differentiable on [0, z) and (z, T), and j(. has left
and right limits p(z-) and j:(-+) at ’. We have, either

g(y(z))= g2(y(z)) and 3(--)=9)(-+),
or there exists some nonzero vector d Nx(y(’)) such that both conditions (i) and (ii)
below are satisfied:

(i) .9(’+) span {.9(’-), d},

(ii) gl(Y(’)) sin 01-- g2(Y(’)) sin 02,
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where

d f;(z-)
and 02 COS

-1

In this theorem, 01 (respectively, 02) will be recognized as the angle between the tangent
vector to the incoming (respectively, outgoing) ray at the point of incidence and the
normal vector d.

When we treat refraction, we view gl(g2) as the refractive index in the interior of
the medium through which the incident (refracted) ray travels. The theorem also covers
the phenomenon of reflection. Here we set gl g2( =: g). Since g is positive-valued,
condition (ii) simply becomes

01 02

Proof We may identify (E4) with a multiprocess problem in which the two
components are the state arc y(.) of (E4) restricted to [0, ] and to [, T], and in
which A is the set

{[0, z, Xo, y, , T, y, Xl]: 0 a T, y E}.

Now apply the corollary to Theorem 3.1. Since the component processes are concate-
nated, the necessary conditions can be considered as expressed in terms of a cost
multiplier h 0 and a single function p(. [0, T] N", both of which do not vanish.
We see that the following conditions are satisfied:

(6.1)
p(t)[[-hg(y(t))=O, tN < z,

]]p(t)][-Agz(y(t))=O, <t T,

(6.2) p(t).u(t)=max{p(t).v[[vll=l} a.e. t[0, T]

(both (6.1) and (6.2) follow from the "maximization of the Hamiltonian" condition
and the fact that h is zero)

(6.3) ((-p(-), p(+)) u(y(), y())

(the transversality condition). Here p(z-) and p(z+) are the limits of the function p(.
from the left and the right, respectively. The set is

:={(a,a)’aE}.
We must have h 0 since otherwise p(. 0 by (6.1) in violation of the nontriviality
of the multipliers. Then we are permitted to set h 1. By hypothesis, g,g e for
some e>0. In view of (6.1), ]p(t)[]e a.e. By continuity then, p(z-),p(z+) and
p(t), [0, T]{z} are all nonzero.

From (6.2)

u(t)=p(t)/[p(t)[[ a.e. t[0, T].

Since the function.on the right-hand side is continuous at all points in [0, TIer and
has left and right limits at z, and since y(-) is Lipschitz continuous and satisfies
(t) u(t) almost everywhere, it follows that y(.) is continuously differentiable on
[0, z) and (z, T], and that (. has left and right limits, (z-) and (z+), at z given by

(6.4) (z-)=
lip(z-)[[

and (z+)= lip(z+)[[.
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By (6.3) and Proposition 2.1(i) however

(6.5) -p(’r-) + p(’r+) d

for some d Ns(y(z)).
We deduce from (6.1) and the continuity properties of y, p, g and g2 that

IIp(--)[[ g(y(’r)) and lip(z+)[] gz(y(’r)).

It now follows from (6.4) and (6.5) that

(6.6) gz(y(z)).9(z+)- gl(y(’r)).9(z-) d.

Since gz > 0 by hypothesis, we deduce that

,9(z+) span {)(z-), d}.

It is now convenient to consider two cases.
First suppose d =0. Taking norms across (6.6) we deduce gz(y(’r))= g(y(’)). A

further appeal to (6.6) yields the information p(z+) p(z-), in accordance with the
theorem.

The remaining case is d # 0. We deduce from (6.6).that

i.e.,

(6.7) g(y(z))r-= g2(y(z)),n"+

where zr- and zr+ are the projections of the vectors ))(z-) and .9(z+), respectively, onto
the subspace in " orthogonal to the vector d. Since )(z-) and )(z+) have unit length

I[zr-[[ =sin 01 and IIr+l] =sin 02

where

0=cs-
))(z-). d

and 02=cos- ,9(z+) d

These identities and (6.?) combine to complete the proof of the theorem.

7. Miimtm time control for a rolot arm. We pursue our investigations with a
detailed analysis of a dynamic optimization problem in which the dynamical equations
change at some time ’, where " is a choice variable. The example is representative of
a number of optimization problems having this feature that arise, for example, in the
area of multistage rocket control ill], optimal investment [21], and plasma control
[22]. We have chosen a relatively simple problem, and one for which an explicit
solution may be found by other means, simply to illustrate the nature of the information
that the theory of optimal multiprocesses supplies. The example of the next section
(taken from renewable resource theory) is one in which explicit two-stage optimization
is not available.

The problem is to control a robot arm so that it transfers an object from one
location to another as quickly as possible. The mass of the object is comparable with
that of the arm, with the result that different dynamical equations apply depending
on whether or not the object is being carried.
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We adopt a simple mathematical model, involving one spatial variable. The unit
(the arm or the arm carrying the load) is initially at rest at the origin. It must be guided
to location x-- L, where it changes mass, and then back to rest at the origin again. A
precise formulation is as follows (as usual z- and z+ will denote limits from the left
and right a the point z)"

minimize T

subject to

-U(t)
5(t) m

mu(t),

(Es) u(t) [-1; +1]

O<=z<-T,

(z+) K(z-),

x(z)=L,

z<t<_T

a.e. t[O, T],

x(0) (0) x(T) (T) 0.

a.e. t[0, T],

Minimization is conducted over control policies that, in this instance, are taken to
mean triples (u(.), z, T) in which z, T are nonnegative numbers such that 0-< z_-< T
and u(. is a measurable function on [0, T] taking values almost everywhere in [- 1, + ].
The solution of the differential equation that satisfies the left-hand boundary condition
is called the corresponding state trajectory. In this program, K, m, m2 and L are
positive constants. We shall treat the general problem but special cases of interest are
the following:

Dropoff. m > m2, K 1. A load is carried to location x L and dropped.
Hard pickup, m < m2, K m/m2. A load is picked up at location x L. The

load is at rest prior to pick up and the instantaneous change in velocity v of the unit
is governed by the principle of conservation of momentum,

m,v(z-) mzv(z+).

Soft pickup, m < m2, K 1. This is the same as the hard pickup case, except that
the load may be moving prior to pickup and we are free to choose its velocity at
pickup, provided it is the same as that of the robot arm at that instant.

Concerning the solution of this problem, we have Proposition 7.1.
PROPOSITION 7.1. There is a unique minimizing control policy (u*(.), z, T) for

problem (Es). Let v= *(-), where x*(.) is the state trajectory corresponding to this
control policy. Then v is the unique solution of the equation

mv (Kmz)Zv
22KZv2)/z= m-Km2,(7.1) (mL+1/2mzlv2) /2 - (m,L+-mand (u*(.), z, T) is expressed in terms of v according to

1/2 lm22K2v2)l/2(7.2) T= (Km2- m)v+ 2(mL+-mv + 2(m2L+

(7.3) z -m, v + 2( m,L+mv2)/2,

(7.4)
0=<t-<t.

u*(t) -1, t < < t2,

+1, t2=< t=< T.
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In the formula for u*(. ), the switching times, t and t, are

2D2)1/2(7.5) tl (mlL+1/2rnl

2K2v2)l/2(7.6) t (Km rnl)v+2(mlL+1/2m21v)l/2+(m2L+m
We note that, in the dropott case, the object is dropped on the outward journey, when
the velocity of the arm is positive. In the hard pickup case, the arm has zero velocity
at pick up (thus, while impact with the object is permitted, it does not occur). Finally,
for soft pickup, the arm picks up the object on the return journey to its starting position,
when the velocity is negative.

Proof of Proposition 7.1. Following introduction of the state vector y with com-
ponents (x, v), where x and v are the position and velocity of the arm, the problem
takes the following form:

minimize T

Here,

subject to

a.e. t[0, z),
ay(t) + b2u(t), a.e. [z, T],

u(t)e[-1,+l] a.e. t[0, T],

O<_,r<__ T,

x(0) v(0) x(r) v(r) 0,

x(+) x(-),

v(+) Kv(--).

A= bl= mT b2 m-
The problem is readily expressible as an optimal multiprocess problem, in which the
component control functions are obtained by restricting the function u(. in problem
(Es)’ to the intervals [0, z] and [z, T], and so on. Let {u*(.), z, T} be an optimal
control policy, and let y*(. (x*(.), v*(. )) be the corresponding trajectory. Enlisting
the help of Proposition 2.1(i), in computing the normal cone, we make the following
deductions from Theorem 3.1. There exist scalar valued functions p(. and q(. and
a number A _-> 0, not all zero, such that the restrictions of p(. and q(. to the intervals
[0, z) and (z, T] are Lipschitz continuous,

(7.7)
q(t)u*(t)= max q(t)u, a.e. t[0, T],

u[--1,+l]

(7.8)

/i(t) O, O(t) -p(t) a.e. [0, T],

p(--)v(z-)+ mT’lq(--)l=p(r+)v(-+)+ m;-’lq(z+)[,
q(z+)=K-’q(z-),

Before we move on to examine the implications of these conditions, it is convenient
to draw attention to certain features of feasible controls, i.e., ones which together with
their corresponding trajectories satisfy the constraints of the problem.
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We say a control policy (u(.), -, T) is a bang-bang policy (with k switches) if
there is a finite partition 0 (= ro)< rl <’’" < O’k < T(= O’k/l) of the interval [0, T]
such that u(. restricted to [ri, ri/] either takes value +1 almost everywhere, or takes
value -1 almost everywhere, for i= 0,. ., k. The o-’s are the switching times. A little
study of the phase plane portraits for (x, ) corresponding to u(. 1 and to u(. -1
reveals the following lemma.

LEMMA. (i) For any feasible bang-bang control policy there must be at least two

switching times.
(ii) For any feasible bang-bang control policy with two switching times, the control

function must assume values in the sequence +1, -1, +1.
Returning now to the necessary conditions, we see that p(. must be a piecewise

constant function and q(. a pie.cewise affine function. For both functions the discon-
tinuity (in value or derivative) occurs at time ’.

CLAIM. q(’-) 0. Suppose to the contrary that q(’-)=0. We can exclude the
possibility that q(. 0, for then p(. 0 and A 0, in contradiction to the nontriviality
of the multipliers. It follows either q(. is nonzero on [0, ’) or on (’, T]. Suppose first
that q(.) is nonzero on (’, T]. Then p(-/)30. Also, by (7.7), u*(.) is constant on

(-, T]. It follows that v(’/)0, for clearly the point (x, v)=(L, 0) in phase space
cannot be driven to (x, v)=(0, 0) by a constant control. But by (7.8), and since
q(--) q(-+)=0, we have p(--) 0. This means that q(. is also nonzero on [0, ’).
But then by (7.7) u*(. is constant on [0, ’). We conclude that (u*(.), ’, T) is a feasible
bang-bang control policy with at most one switch. This is impossible by the lemma.
Similar reasoning excludes the possibility that q(. is nonzero on [0, ’). The claim is
substantiated.

In view of (7.7) and part (i) of the lemma, q(.) must take value zero at two
interior points. There are then two possible configurations for q(. ). One corresponds
to a bang-bang control sequence -1, +1, -1, and is ruled out by the second part of
the lemma. The remaining configuration is illustrated in Fig. 1.

We conclude from Fig. 1 that u*(. takes the form

+l a.e. t[0, t],
(7.9) u*(t) -1 a.e. t (t, t2),

+1 a.e. t[t2, T],

for some numbers t, t2 satisfying

0< < 7< t2< T.

These are the zero crossing points in Fig. 1.

_K-__ _V
FIG. 1. Robot arm problem: graph of the costate function q(. ).
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Now write v for v(r-). On the interval [0, r] the control function u*(.) drives
the unit, which has mass ml, from the origin to the point (x--L, : v) in the phase
plane. Then on the interval (z, T] it drives the unit, now with mass m2, from (x L,

Kv) back to the origin. A straightforward analysis of phase plane portraits for
responses to mlY + and m25 + reveals that

-(2L/rn) 1/ < v < +(2L/rn) 1/2

and tl, t2, r and T are determined by the formulae (7.2)-(7.6), once v is found.
What do the optimality conditions say about v? We deduce from the graph of

q(. that

q(r-)=-a,q(r+)=-K -1,

p(r-)(=-dl(r-))=(r-tl)-l=[(rnL+-rnl -rnlv]

p(r+)( -0(r+))-- _K-l(t2_r)-l= K-l[(m2L+1/2mKv2)’/2+ rn2Kv] -1.

It follows now from (7.8) that

+ =(Km2)-l-ml2U2)1/2 2 2U2 1/2(mL+sml rnlv (mL+srnK + mKv
Multiplying across the equation by Kmm2(-mlv)(52+ m2Kv) where

l=(mlL+1/2m2v2) 1/2 and =(m2L+1/2mZ)K2v2)/

and cancelling terms, we obtain the equation

((Km2)2+’1 + ml.F2)v (ml- Km2)c12,

which implies
2

mlv (Km2)2v
2 1/2 1" 222K2192)1/2-- ml- m2K.(mlL+-mlv (m2L+-m

This is (7.1).
But the left-hand side of (7.1) defines a function of v which is strictly monotone

increasing and assumes all values in the interval

(--x/’( ml + Km2), x/-(m + Km2)).

There is therefore a unique number v satisfying the equation.
We have shown that there is at most one control policy/satisfying the necessary

conditions, and such a control policy is determined by the formulae in the proposition.
We deduce from the existence of feasible control policies (as defined by (7.2)-(7.6)
when v --0, for instance) and standard compactness arguments that an optimal control
policy exists. There must then be a unique optimal control policy, and it is the one
satisfying the necessary conditions. The proposition is proved. For purposes of com-
parison, we sketch a solution to problem (Es) by traditional techniques. With every
w e we associate an optimization problem Es(w), a modification of problem (Es) in
which we add a constraint

"x(-) w."

Let J(. denote corresponding value function,

J(w):=infEs(w) for all w.
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For each w , problem Es(w) decouples into two standard optimal control problems
("time optimal transfer of a double integrator plant with amplitude bounded controls
between two fixed points in the phase plane"). A traditional approach is to find v (the
minimizing velocity) such that

J(v)<=J(w) for all wen

and then to determine the optimal control policy as a solution to Es(v).
Define J: N N to be

2W2)1/2 2K2w2)l/2(w):=(mzK-ml)w+2(miL+-m +2(mzL+-m2

Some lengthy but routine calculations along the lines ofthose in 14] yield the following
explicit formula for J(. )"

(m2K+m,)w+2(-m,L+1/2m 1/2w +2(m2L+1/2mK2w2) 1/ if w->_V,
J(w)= .(w) if_V<w<+17,

2 2 1/2 1., 2r..,-2. 2-1/2-(m2K-ml)w+2(mlL+mlw +2( if w= V.ttt21 -ttt21 W <

Here,

Q:= (2L/m)/2 and _V:= -(2L/K:Zm2) I/:z.

We mention that for each w , Es(w) has a unique optimal control policy, which is
a bang-bang policy. For w (_V, V) the values of the control functions involved switch
twice, and for w [_V, V] they switch three times. Relevant phase trajectories are shown
in Fig. 2. Note that in solving the problem through multiprocess theory, it was
unnecessary to consider controls involving more than two switches.

It can be shown that

(7.10) J(w)>-.(w) for all w.

Of course we have

(7.11) J(w)=J(w) for w(_V, V).

Now it is easy to show that (. is a strictly convex, continuously differentiable function
that achieves its minimum value over [ at some point in (_V, V). It follows from
properties (7.10) and (7.11) that J(. has a unique minimizer v over and it coincides
with that for J(. ). This minimizer v is the unique solution of the equation

(7.12) V.(v) =0.

We calculate

VJ(w)=m2K--ml+ mlW (Km2)w
mzL +1/2mK2we) ’/2"(mlL+1/2m2w 1/2

Thus the optimal control policy for the original problem is that for problem Es(v),
where v satisfies (7.12).

It is interesting to note that condition (7.1) in Proposition 7.1 determining the
optimum velocity v at dropott or pickup, which was previously derived from the
optimal multiprocess maximum principle, can be interpreted as a statement that the
gradient of the function . (related to the value function) vanishes at v.



1068 F.H. CLARKE AND R. B. VINTER

FIG. 2. Robot arm problem: optimalphaseplane trajectory when w isfixed two switches). ((2L/K2m) 1/2 >=
w >= -(2L/K2m2) /2, m 1/2m, K 1/2). (b) Robot arm problem: optimal phase plane trajectory when w isfixed
(three switches). (w>(2L/KZm) /2, m2=1/2m K=1/2).

Of course our success in solving problem (Es) by traditional "two stage" optimiz-
ation techniques very much depended on availability of a simple explicit formula for
the value function. (It would be difficult to use these techniques when we refined the
model, say to include damping and higher-order dynamics.) By contrast the theory of
optimal multiprocesses would provide conditions on the solutions, even in the absence
of such a formula.

Another point in favour of the theory of optimal multiprocesses as it bears on
problem (Es), is that it gives us certain information, prior to detailed analysis, about
the number of switches in the optimal control policy (there are at most two of them).
The two stage approach required us to consider the possibility of three switches, if
only later to reject it, with consequent extra burden of analysis.

8. A problem in renewable resources. The most widely used tool in the theory of
renewable resources is the Gordon-Schaefer model and its many variations (see, e.g.,
[3], [5]). Before giving the variation which constitutes our present example, we
recapitulate the basic model. A population whose size x varies over time evolves
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according to the law

2( t) F(x( t)) o’x( t)u( t),

where F is a given (natural growth) function, u represents harvesting effort by the
exploiter of the resource, and 0- is a positive constant. Effort u is constrained to a
given interval [0, E]. The initial value x(0)- Xo is known. The exploiter’s net return
over a given interval of time [0, T] is given in present value terms by

e- x(t)-c}u(t) dt,

where 6 is the discount rate, r the unit resource price, and the unit effort cost. The
problem is to choose the effort prbfile u(. to maximize this quantity.

Under standard hypotheses that we omit, the solution to the problem is known
to be of"turnpike" type. Specifically, there is a certain population level x* (the formula
for which we omit) in terms of which the solution may be described as follows (for
definiteness, let us suppose that Xo exceeds x*). Initially maximum effort is applied
(u- E) until x(t) is driven down to x*, at time s (say). Then x(t) is kept at the
value x* (by the appropriate effort) until 82. And between 82 and T there is another
period of maximum effort (u- E). If the horizon T is too short, the intermediate
(turnpike) portion of the solution may be absent.

The switching times 81,82 are determined implicitly by certain boundary-value
problems associated to the data of the model (in fact, 82 is characterized in terms of
the adjoint equation of the maximum principle together with the standard transversality
condition).

Suppose now that a further possibility is open to the exploiter, that of shifting
the operation from the initial population (which we shall now designate Xl, with data
x, F, 0-1, rl, c) to a different population x2 (with data Xo, F2, 0"2, 37"2, C2). The shift,
which can occur at any chosen time -, and that will be assumed instantaneous for
simplicity, entails a lump cost 4o (at time ’). The problem then becomes that of
minimizing

dpo e-- e-a’{rlx- C1}U dt- e-at{2x C2}U dt

over the admissible controls u(. on [0, T] and shift times - in [0, T]. The dynamics
are the initial ones on [0, ’), and those corresponding to the second population on

[-, T]. Note that the initial condition appropriate to the dynamics on [r, T] is given
by xz(’)= z(-), where z(. is the solution to

(8.1) ’(t) F2(z(t)), z(O) x.
We shall proceed to analyse the problem, assuming for simplicity that x and Xo are
relatively large (i.e., exceed x* and x*, respectively).

It is clear that the problem is one of multiprocesses, with k 2, n rt m m2
1. The set A and function f are given by

{[0, ,x,x, , T,z(),y]. [0, T],x,yff},, , x,, x)= o e-’f(7", "r ], Xo, x,

We suppose that the solution to the problem incorporates a shift at " in (0, T). At any
point (-, -, z)in the set {[-, ’, z(’)]" 0 -< ’=< T} having 0 < -< T, the normal cone(space)
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is spanned by the vector [1,-1, 0] and [1, 0,-(’)]. With this in mind, it can be seen
that the transversality condition of Theorem 3.1 yields in the present case"

(8.2) hoz= hl +p2(’)(’) + &ho e-’,
(8.3) p (’r) p2( T) O.

The latter conclusion (8.3) is familiar and expected from the original single-process
problem, and expresses the fact that the imputed shadow price p is zero at the end of
the planning period. This remains so for pl and P2 because of the fact that (xl, u) is
optimal for the original problem restricted to [0, -], while (x2, u) is optimal for the
second population studied on [’, T].

Let us now examine (8.2), which constitutes the essential new information. From
the single-process case it is known that (regardless of the lengths of the intervals [0, -]
and [-, T]) u(t)= E on some interval to the left of r and also on some interval to the
right of ’. Thus we have

h=p2(7")[F2(z(’r))-o’2z(7")E]q e-a[2z(,r)-c2]E, hi= e-’[r,x,(’r)-c]E
(where we have used Pl(’)=0). Substituting these expressions into (8.2) along with
!(r) F2(z(’)), we arrive at

(8.4)

This condition, which determines the shift time -, can be given an economic interpreta-
tion. The (rate of) marginal revenue at " from harvesting xl is given by [rx- c]E.
The condition above states that when the shift occurs, the corresponding value for x2,

i.e., [rzX2-e2]E, must equal that for xl plus a term corresponding to the (marginal)
cost of making the shift (i.e., 64o), plus a term (e’pz(’)O’zXz(’)E) which is the (current)
shadow value of the increased potential revenue from x2 if x2 were continued to be
left to grow instead of being harvested.

Just as in the original single-process problem, the solution is completely but
implicitly defined by the necessary conditions. In fact, much the same ingredients are
involved in (8.4). For example, x(’) is the final value of the optimal state for the
single-process problem on [0, -]. This is known to coincide with max [y(’), xs], where
y(. satisfies

f;(t) F(y( t))- rEy(t), y(0) x
and where xs is a certain constant determined by the data. Thus x(r) is accessible,
as is the adjoint value P2(’), although in this case it is a certain two-dimensional
state-adjoint system that determines it. Finally, the value x2(’) in (8.4) is simply given
by (8.1). In summary then, (8.4) permits us to determine the shift time -. We remark
that in this example it does not appear to be practical to solve the problem in a
two-stage fashion, in view of the absence of explicit formulae for the appropriate value
functions. On the other hand, the multiprocess necessary conditions have led directly
to a characterization of the solution.
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This paper is dedicated to the memory of E. J. McShane.

Abstract. A theory of necessary conditions for optimal multiprocesses is presented. Optimal multipro-
cesses are solutions to dynamic optimization problems described by families of control systems coupled
through the boundary conditions and cost functions. The theory treats in a unified fashion a wide range of
nonstandard dynamic optimization problems, and in many cases provides new optimality conditions. These
include problems arising in impulse control, robotics, and optimal investment. Even when specialized to
the (single process) free time optimal control problem, the theory improves on known necessary conditions.
Detailed analysis of a number of applications and special cases appears in a companion paper.

Key words, optimal control, necessary conditions, differential inclusions
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1. Introduction. The theory presented in this paper originates in the authors’ efforts
in recent years to solve a variety of nonstandard problems in dynamic optimization.
It became increasingly apparent in this earlier work that, although the problems
considered were at first sight distinct, the task of finding good first-order conditions
of optimality in each case called for development of similar analytical techniques. It
was natural then to study these problems in a single comprehensive framework. We
refer to this framework as multiprocesses.

Our companion paper [5], in which we analyse in detail a number of specific
optimal multiprocess problems and special cases, testifies to the scope of the theory.
The common feature of these problems is a family of dynamical equations with control
term, coupled by a constraint on the boundary values ofthe constituent state trajectories
and also by a function of these boundary values in the cost. We briefly describe some
examples.

Consider the problem of determining an optimal control strategy for a multistage
rocket, when the stage ejection times are included in the choice variables. (See, e.g.,
[8].) Standard optimality conditions of control theory, which accommodate changes
in the dynamics only at fixed times, cannot be applied directly to such problems. It is
true that we can sometimes overcome these difficulties by means of ad hoc techniques
where, to begin with, we solve a family of problems involving fixed ejection times and
then minimize over the ejection times ("two stage" optimization) or, alternatively,
where we reduce the free ejection times to fixed ones by transformation of the time
variable. To carry out two-stage optimization however we require tractable formulae
describing the value function relative to the ejection times; unfortunately we cannot
expect to derive such formulae for complicated problems. As for time transformation
techniques, these are typically applicable only when certain regularity conditions are
imposed on the data and this rules out certain significant applications. But if we view
trajectory segments between ejection times as component trajectories, we arrive at an
optimal multiprocess problem, for which our new theory supplies optimality conditions
under very mild hypotheses.
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Next we consider a modification of the standard optimal control problem in which
state trajectories are permitted to be discontinuous at a finite number of times, and
the jump times are choice variables. The jump times, as well as the end states of the
jumps, appear in the cost and are constrained to lie in some closed set. There is also
a constraint on the number ofjumps. Problems such as this arise in optimal investment
and inventory control, and have been called "impulse control" problems. Necessary
conditions of optimality are available (see, e.g., [11]-[15]) but these are limited to
only a narrow class of cost functions and constraints, as far as the jumps are concerned,
and apply only when the constraint on the number of jumps is inactive. We can view
these impulse control problems as another instance of an optimal multiprocess problem,
however. Here we interpret restrictions of trajectories (in the original problem) to
intervals between jumps as component trajectories (in the optimal multiprocess prob-
lem). We thereby obtain necessary conditions of optimality when restrictions in the
earlier theory, on the manner in which the jumps are included in the cost and constraints,
are lifted.

An example of a variational problem to which our theory is applicable is the
derivation of Snell’s law of refraction from Fermat’s principle of least time. If the two
media involved are homogeneous we derive a simple formula for the minimum time
as a function of the point of incidence, and deduce Snell’s law by setting the gradient
to zero. For inhomogeneous media this "two stage" approach is no longer available
to us outside the simplest cases. However we can proceed alternatively by regarding
the light ray as solving an optimal multiprocess problem: the component trajectories
are the path segments in each medium and the constraint on the boundary values is
that the path segments match at the interface. We can thereby validate Snell’s Law in
a very general setting.

It is remarkable that, even when we specialize the theory to treatment of the
standard optimal control problem, significant advances on known results ensue. For
free time optimal control problems the Pontryagin maximum principle provides a
boundary condition on the maximized Hamiltonian, evaluated along .the optimal
trajectory. The boundary condition has previously been proved only under the assump-
tion that the data is continuous in the time variable. Multiprocess theory, by contrast,
yields a version of the boundary condition when the data is merely measurable in the
time variable.

There is a long tradition of research whose aim is unification of optimality
conditions for as wide a range of optimization problems as possible (in mathematical
programming, control, and the calculus of variations), within a single general theory.
Notable contributions here are Neustadt’s abstract variational theory [10] and the
general multiplier rules of Warga 14] and Iotte [9]. The price paid for the comprehen-
siveness of these theories is the labour involved in checking hypotheses (most notably
in applications to optimal control) and, in the case of Neustadt’s theory, the ingenuity
required in devising certain approximating sets. The theory of optimal multiprocesses
is a general theory and so must be considered as partly in this tradition.. But it is a
departure too, since it is targeted specifically at problems in dynamic optimization.
Consequently, for such problems, checking hypotheses is usually a trivial task. Our
applications in [5] illustrate that generating optimality conditions for specific classes
of problems is usually a routine matter of calculating normal cones.

We make some comments concerning the analytical techniques employed in this
paper. These follow the lead of a number of recent publications in which optimality
conditions are proved by considering limits of normal vectors to the epigraph of a
suitable value function. This approach ("proximal normal analysis"), which was first



1074 F.H. CLARKE AND R. B. VINTER

adopted in [2], besides being useful for proving necessary conditions, provides new
interpretations of the Lagrange multipliers involved in terms of sensitivity of the
minimum cost to data perturbations. Interpretations of this kind have been obtained
by other methods in mathematical programming (see, e.g., [7], [12]) and via proximal
normal analysis by Clarke and Loewen [3] for optimal control problems. The proofs
of this paper illustrate the power of proximal normal analysis to also generate new
optimality conditions.

Our results admit extensions in various directions. These will be the subject of
future work. In particular, a similar but more intricate analysis leads to a maximum
principle when unilateral state constraints are introduced in the optimal multiprocess
problem. Under more stringent assumptions we can also provide an accompanying
sensitivity analysis.

Finally we mention that a simple proof can be given of a restricted form of the
optimal multiprocess maximum principle when the data is smooth in time. This is
based on a reduction of the optimal multiprocess problem to a standard optimal control
problem by transformation of the time variable. The restricted form of the principle
is inadequate, however, for certain applications (see [5]).

2. Essential values. For free time dynamic optimization problems, such as those
studied here, we can expect optimality conditions to incorporate conditions on boun-
dary values of functions constructed from the costate variables. When the data is
merely measurable in the time variable, the elementary definition of boundary value,
namely evaluation at a point, cannot be adopted, basically because it is not robust
under the limiting arguments employed in derivation of optimality conditions. Instead
we must interpret boundary values as "essential values."

Let S [ be an open set, T a point in S, and q:S-k a measurable function.
The set of essential values of q at T, denoted ess,_-q(t), is defined as follows, sr

belongs to this set if and only if, for any positive number e > 0, the following set has
positive Lebesgue measure:

{t:T-e<t<T+e,]-4,(t)l<e}.
If a point lies in co ess,_-q(t) we say it is a convex essential value of 0 at T.

It is clearly the case that if q is continuous at T then

ess
t-’. T

i.e., the essential value is merely the value of the function.
Given a set D t and a multifunction A D k, we say that A is closed if, for

any convergent subsequences {yi}= D and {ai}=k (we write the limits y and a,
respectively) such that a Ay for 1, 2, and y D, we have a Ay. The following
closedness property of the multifunction obtained by applying the operation of taking
essential values of a function accounts for its significance in optimization theory.

LEMMA 2.1. Let P, Q be open subsets of , ", respectively, and let h P Q-
be a given function. Suppose

x - h (t, x) is continuous, uniformly in t, and- h (t, x) is measurable for every x Q.
Then the multifunction G: P Q defined by G(t, x) esss_, h(s, x) is closed. If in
addition we have

sup ess lh(s, x)[ < o,
xGP s-t

then t, x) co G( t, x) is also a closed multifunetion. Here "co" denotes convex hull
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Proof Consider the first assertion. Let ti- t, xi- x and r- r where P, x Q,
and r ess._,,, h(s, x) for each i, P, and x Q. We must show that r esss_, h(s, x).
Choose e > 0 and define

S;={s6(t-e/2, t+e/2)tP]lh(s,x,)-rl<e/2}.
By definition of essential values, the set $7 has positive measure. But for sufficiently
large ]ti-tl<e/2 and ]h(s, xi)-h(s,x)[+]r-r]<e/2 for all sP by uniform con-
tinuity. It follows that

SSi c

where

S={s(t-e, t+e)YlPllh(s,x)-rl<e}.
The set S then has positive measure. Since e is arbitrary, re esss_., h(s, t). A simple
compactness argument, and application of Caratheodory’s Theorem, now give the
second assertion.

3. A maximum principle for optimal multiprocesses. Frequent reference is made
to points in product spaces, and to products of product spaces. In this connection, a
point ((a, b,. ), (a2, b2," )," ", (ak, bk,. )) is denoted by {a, b,. }/k=l or,
briefly, {ai, bi, }.

The following data are given"

positive integers k, and n, m, i= 1,..., k,
functions ti" X ni X [] mi "--)[ tli, i: 1,. ., k,
subsets U of x ’,, 1, , k,
subsets X ofxn;, i=l,...,k.

We term multiprocess a point {z, z, xi(" ), wi(" )} comprising left and right endpoints
Zo, z of a closed subinterval of, absolutely continuous functions xi(" )" [Zo, zl]-
and measurable functions wi( )" z), zi] ", such that

i(t)=chi(t, xi(t), wi(t)) a.e. t6[z, zil],

wi( t) U,, a.e. [Zo, T1],

for all [z z],xi(t)GXt,

for i=l k. Here U is the set {u[( t, u) Ui} andX is likewise defined
It is assumed that the data satisfies the following hypotheses.

(HI) For each x";, 4/(’, x,.) is measurable (where is the class of
Lebesgue subsets of and , the class of Borel subsets of m,.) for i=
1,...,k.

(H2) U is a Borel measurable set for i= 1,..., k.

There exists a constant K with the following properties.

(H3) [d/)i(t,y, w)[<=K whenever (t,y, w)NxX

(H4) [4(t, y, w)-chi(t,y’, w)[ <- K[ y- y’[ whenever (t,y, w),

t, y’, W [ x X X Ut
We aim to give optimality conditions for an optimization problem posed over multipro-
cesses. However, as is common, we approach the optimization problem via analysis
of boundary points of a reachable set.
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Let C be a given closed set in

and let @:", x. x nk
_
d be a given Lipschitz continuous function. We define the

reachable set (with respect to C and 0), written o,c, to be

+,c, := {q’({Yi(Zi)})[{ro, ril, Yi(" ), wi(" )]} is a multiprocess

such that {r r l, y,()} c}.

We say that a multiprocess {z z1, Y(" ), w(. )} is a boundary multiprocess relative to
and C if

1, Yi(Zo)} e C and ({yi(’ril)}) a?4,,c

(0 denotes boundary). Define the unmaximized Hamiltonian function Hi to be

Hg(t,x, u,p):=p" dpi(t,x, u), i= l, k.

The following theorem is a necessary condition that a multiprocess be associated with
a boundary point of the reachable set.

THEOREM 3.1. Let { To, T, xi(. ), u(. )} be a boundary multiprocess (with respect
to C and ). Assume that

graph {xi(" )} c interior

for i= 1,..., k and that hypotheses (H1)-(H4) are satisfied. Then there exists a vector
and absolutely continuous functions p(. )’[ T rl] - [R n,-v of unit length, numbers h, h

for i= 1,-.., k, and a number c (whose magnitude is governed by the constant K in
hypotheses (H3) and (H4) together with the Lipschitz rank of O restricted to some

T’)}),neighbourhood of {x( with the following properties

-Pi(t) OxHi(t, xi(t), ui(t), pi(t)) a.e. Tio, ril],

t-L(t,x(t), u(t),p(t))=maxHi(t, xi(t), w,p(t)) a.e. tE[T, T]],
U

hco ess. [sup. Hi( t, xi( T)), w, pi( T))]
hleco ess sup Hi(t,x(T), w,p(T))

fori=l,. .,k,
{p,( Til)} O0({xi(Tl)}) v

and

Here OxHg denotes the partial generalized gradient in the second variable and Oq* is the
transpose of the generalized Jacobian of O. (Generalized gradients and Jacobians are
understood in the sense of Clarke [2]). The operation of taking essential values "ess"
has been defined in 2. dc is the Euclidean distance function from the set C.

The theorem is proved in 6.
Let

f: l-[ xxl’li Xi’li) "--)’
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be a given locally Lipschitz continuous function and let

iAc 1-I {(3-, 3-il,ao, al)[3-o, 3-1E[, ao, al E[ ’, 7"o--3-1}

be a given closed set.
We now pose the optimal multiprocess problem:

minimizef({3-, 3-1, Yi(3-o), Yi(3-1)}) over multiprocesses {3-0, 3-1, Yi(3-o), Yi(3-1)}
(P)

that satisfy {3-, 7"1, Yi(3-o), yi(3-1)} C A.

In 7 we shall derive from Theorem 3.1 the following maximum principle for solutions
to the optimal multiprocess problem.

THEOREM 3.2. Let { T, T, xi(" ), ui(" )} be a solution to (P). Assume that

graph {Xi( )} interior {X i}

for i= 1,..., k and that hypotheses (H1)-(H4) are satisfied. Then there exists a real
h and absolutely continuousfunctionspi(.)’[T Till’-’>number A >- O, real numbers ho, 1,, for i-- 1,..., k, and a constant c (whose magnitude is determined by the constant K

of hypotheses (H3) and (H4) together with the Lipschitz rank off in a neighbourhood
of { T, Til, Xi( T), xi( Til)}) such that A + Ei IPi( Til)l 1 and we have

(3.1) -Pi(t) EOxHi(t, xi(t), ui(t),pi(t)) a.e. t6[Tio, Til],

Hi(t, xi(t), ui(t), pi(t)) max Hi(t, xi(t), w, pi(t)) a.e. T), Til],
u

[(3.2) ho co ess sup. Hi(t, xi(Tio), w, pi(Tio))
t--> T U’,

E co ess sup. Hi(t, xi(Til), w, pi(T))

for i= 1,..., k, and

(3.3) {-h h 1, Pi(To), -Pi( T1)} c OdA + AOf
where the generalized gradients Oda and Of are evaluated at { Tio, Til xi( T), xi( Til)}.

Note that all the ingredients of the traditional maximum principle, namely costate
functions p(.), costate differential inclusions (3.1), and maximization of the Hamil-
tonian (3.2), are present in the multiprocess maximum principle. The costate differential
inclusions and the Hamiltonian maximizing properties separate out into statements
about the individual component processes. The fact that the component processes in
the optimal multiprocess problem are coupled through an endpoint constraint and the
cost function gives rise to a corresponding coupling ofthe component costate functions,
the Pi(" )’s, through their endpoints via the multiprocess transversality condition (3.3).

Our formulation of the optimization problem (P) incorporates the constraints
"yi(t) XI" mainly for the purpose of hypothesis refinement. A consequence of our
theorem is that the assertions remain valid if {T, Ti, xi(" ), ui(" )} is merely a local
solution to (P), in the sense that it is minimizing with respect to all multiprocesses
{3-i0, 3-il, Yi(" ), Wi(" )} that satisfy

graph {Yi(" )} c graph {xi(" )} + eB

for some e > 0 (B denotes the open unit ball). It follows also that the boundedness
and uniform Lipschitz continuity hypotheses ((H3) and (H4)) need to be checked only
on neighbourhoods of the graphs of the minimizing xi(" )’s. (For confirmation we have
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only to replace each X; by its intersection with the relevant neighbourhood of graph {xi
and apply the original theorem.) In the event that xi(’) strikes the boundary of the
set Xi for some i, the hypotheses of Theorem 3.2 are violated; in such circumstances
necessary conditions of optimality, which involve possible discontinuous component
costate functions {Pi(’)}, may be derived. We do not pursue such extensions here.

4. Coupled dynamic optimization problems: a differential inclusion formulation. It
is well known that we may choose a variety of starting points for derivation of conditions
on solutions to dynamic optimization problems over a single time interval. Two notable
instances are, first, that where the dynamics are modeled by a differential equation
with control and, second, that involving a differential inclusion. The first-order optimal-
ity conditions derivable for each of these formulations are distinct; examples of
problems are known where the differential equations conditions give more information
about solutions than the differential inclusions conditions, and vice versa.

Equally, distinct sets of necessary conditions for solutions to coupled dynamic
optimization problems over a family of time intervals result, according to whether the
dynamics are described by differential equations or differential inclusions. We have
already given necessary conditions in the differential equations case. In this section
we do the same for differential inclusions.

Our necessary conditions on solutions to coupled dynamic optimization problems
in a differential inclusions context, in addition to providing independent information
about solutions in certain cases, will be important here as constituting the first step in
our proof of the maximum principle governing optimal multiprocesses.

The following data are given:

positive integers k, and ni, 1,. ., k,

a function g: 1-I
i=l

multifunctions Fi :1 ", -- ",,
sets FiC [n’, i= 1,.’., k,

and a subset M of

i=1,...,k,

k
< T.I-I {(z, z, ao, a),Zo, r, ao, al and Zo=

i-----1

Now consider the following problem:

minimize g({z, zl,yi(Zo),

subject to

(Q) Yi(t)Fi(t, yi(t)) a.e. t[zo, zl],

3i(t) F a.e. Zo,

{7", 7"1, yi(7"o) y,(zl)} M.

The underlying elements in the minimization problem here are k-tuples {rio, "r, yi(" )}/:
in which ’ and zi are, respectively, left and right endpoints of a closed subinterval
of , and Yi(’) is an absolutely continuous n vector valued function on
i--1,...,k.

The hypotheses invoked will be as follows:
(I1) g is locally Lipschitz continuous.

(I2) M is closed.
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(13) For each i, Fi takes values closed, convex sets, and given any point x Rn’

and closed set D c Nn,, the set {tl D f-I Fi(t, x)} is Lebesgue measurable.
There exists a constant K such that we have the following:

(14) Iv[-<_ K whenever v Fi(t, x), (t, x) F i, 1, k.

(15) dist {Fi( t, x), Fi( t, y)} <= K[x- y[, whenever (t,x), (t,y)Fi, i=l,...,k
("dist" is the Hausdorff distance function).

We define the Hamiltonian functions 2t Fix Nn, to be

Wi(t,x,p): sup p.e, i=l,...,k.
eFi(t,x)

TrzOeZM 4.1. Let {T, Ti, xi(.)} solve problem (Q). Assume that

graph {xi(" )}

for i= 1,’", k, and that hypotheses (11)-(15) are satisfied. Then there exists a real
number A >= O, real numbers h, h absolutely continuous functions Pi( )’[ T, Til] Nn,,

1,..., k, and a constant c (whose magnitude is determined by the constant K of
hypotheses (I4) and (I5) together with the Lipschitz rank of g in a neighbourhood of
{ T, Ti, xi(T), xi(T)}), such that A +, [p,(Ti)] 1 and we have

(-1}i(t),2i(t))Ox,pi(t, xi(t),pi(t)) a.e. t[To, T],
hoe co ess 2(i(t, xi(Tio), Pi(Tio)), h, co ess 2(/(t, xi(T), p,(Til))

,-.r
hifor 1, , k, and {-ho, , Pi(To), -Pi(r)} c Od4 + , Og. Here Ox,p2(i denotes the

partial generalized gradient of i in the second and third variables. The generalized
gradients Odc and og are evaluated at { To, Til, xi( Tio), x(

Theorem 4.1 is proved in 5.

5. Proof of Theorem 4.1.
A special case. Our strategy is first to prove the theorem in the presence of two

supplementary hypotheses. These will be disposed of at a later stage. For the time
being then we impose the following hypotheses.

(IU) {(Tio, T, xi(" )} is the unique solution to (Q).

(IL) g is a linear function of the form g ({’, -, y, y}) =/k_-i gi

is a given vector in ’, i= 1,. ., k.
The proof hinges on an introduction of a family of problems Q ({p p

generated by perturbations to the constraint set M. Choose e > 0 (this will remain
fixed) with the property

graph {xi( )) + 2eB F i, 1, , k,

and define the closed sets ,i, i-- 1,... k to be

i :_ graph {x(. )} + e/.

For each vector {po, p, cro, rl}eI-li (I xN xI; x[ ’) problem Q({po,p, Cro, o’}) is
taken to be the following"

minimize g({r, ’,yi(-o),yi(’l)})

subject to

fei(t)Fi(t, yi(t)) a.e.t[-, .i],
fei(t) =0 a.e. t Ii\[7"io, T/I],
graph {Yi(" )}
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for 1,. ., k and

{ 3- 3- y 3- y 3- } M + { p pi, O’o,i o’}.i

In the above, set Ii is the fixed time interval

Ii T;- e, Ti + e],

i= 1,..., k. Minimization is conducted over k-tuples of elements {r, 3-,Yi(’)}---1
comprising Lipschitz continuous functions Yi(" )’Ii - R and endpoints r, 3- of closed
intervals satisfying [r, r] c Ii. A k-tuple of such elements satisfying the constraints
of the problem, with the possible exception of (5.1), is called a trajectory. In the event
(5.1) is satisfied as well, the trajectory is said to be admissible (for Q({po, pi, ro,o’}).i
Problem Q({0, 0, 0, 0}) will be recognized as a refinement of problem (Q) in which the
constraint set F is replaced by the closed subset ,i. Clearly the point { T, Til, xi(’)}
remains a solution to Q({0, 0, 0, 0}).

We denote by V the value function associated with these perturbations of problem
tril}) is taken to(Q)" given {po, pl, cro, o’}I]/([2xNxRn;xR ’) then V({p,p, cro,

be the infimum cost of problem Q({p pi1, ro, o’}). (The infimum cost is interpreted
as ’"+" if no admissible trajectory exists.)

Standard sequential compactness arguments of existence theory (see, e.g., [2, Thm.
3.1.7]) together with (IU) yield the fact that Q({p, p, Cro, o’}) has a solution if there
is an admissible trajectory, along with the following information.

LEMMA 51 (i) Let {-i -i
Oo, , ro, #} represent terms in a sequence converging to

{pio p’
_ _,

cro o’,} andlet { g,(.)} bea solution to Q({fi -i -,
7’1TO p, cro c? }) Then,following

replacement of the original sequence by a subsequence if necessary, we have that -i
TO --> TO

-i for each i, and i(" )- Yi(" uniformly for each where {rio zil Yi(" )} is an3-1 "-) 3"1
admissible trajectory for Q({po, pl, Oo, o’1}).

rl} {O, O, O, O} and also V({ - -i(ii) If in part (i) {p pi Oo po,#,,o,#})-’
V{0, 0, 0, 0} then {3"o 3"i,, Yi(" )} To, T,, xi(" )}.

(iii) The epigraph of V, epi V, is closed.
We now proceed to an analysis of proximal normals to epi V at a point

[{p,,p’ ’o1, 0"0, 0"1}, V({p Pl, O’o, o"1}) ’11- 6]

(with 6 => 0). Recall that a nonzero vector sr is a proximal normal to a closed set S c q
at one of its points s provided that, for some m >= O, we have

(5.2) -.s’+mls’-sla>--.s for all s’ S.

In the present analysis the role of S is played by epi V and the only fact required
about proximal normals is that a dense subset of points s in the boundary of S admit
a proximal normal (or perpendicular [2, p. 66]).

LEMMA 5.2. Let [{h,-hil,-so, sl},-A] be a proximal normal to epi V at the
point [{p 0 l, O’o, o’1}, V({po, Pl, Cro, o’1})+ 6]. Let {3", 3"1, zi(" )} solve
Q({p pi1, Cro, cril}) and suppose that graph {zi(.)" [3"0, 3"1] ->R } is interior to ,i for

1,’’’ k. Let a a zi (3"D), zi(3"i1, 70, Yl} be the point in M such that {3"0, 3"1, 1)}
{ao, al, Yo, 3’ +{po, pl, O-o, Crl}. Then for i= 1,... ,k there exists an absolutely con-

tinuous function Pi( ):/ - [2n’ such that
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t, zi( t), pi( t))
(5.3) (-li(t), i(t))

(0, O)

(5.4) p,(z) So,

(5.5) pi(7"il) S1-- Agi,

(5.6) h co ess i(t, Zi(l’), pi(7")),

(5.7) h, co ess i(t, zi(zl), pi(z,)).

Furthermore,

a.e. on [(z T1]),
a.e. Ii\[(’ro, zil]),

__hi __hi(5.8) {ho, 1,--So, sil}l{ho, ,,--So, S,}lOdM({oo, Cll, ’)/0, ’)/il})"
-iProof Let {to, t,y(.)} be an arbitrary trajectory. Let {60, c7, Yo, } be any

point in M and any nonnegative number. Observe that, by definition of the epigraph,
the point

to- ao tl- 1 yi(t)- -i
Yo, yi(t) }, g yi(t) +

lies in epi V; we use this in the proximal normal inequality (5.2). The role of s is
played by

which equals

{__il__i ]1,Zi(O)--o, Zi(T1)--l},gizi(T1)+

and is of course [{h,-hi,-So, Sl},-hi.
Substitution into (5.2) leads to the following conclusions:

y i__ i(til__i-h(t-8o ro+o)+h r+a)

(5.9) +So" (yi(t)- -’ i__Zi(T1)+Vlo z,(o)+V)-s, (y,()-

Here m is some nonnegative number and

= Zgi" y,(t,)+6-Egi" zi(zl)-6

i -i -i -i+E(lto o o+ol +lt,-,-,,+’l)

+E (I Y,(t) -io- zi( ,o) + l + yi( t’l) _i

1- i(,i,) + , ).

In (5.9) we set

{to, t,, Yi(" )}= {7o, 7",, Zi(" )}
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to derive

i__ i__ i__ -iY(-ho(Ceo-ff)+hi(al d)+s(3’o /)-s(yl T1))+A(3-6)

+ gl l>0
\

/

-ifor all 0 and points (8o, 8, Yo, ) in M. We conclude from this inequality, along
with [2, Props. 2.3.2, 2.4.2], that A 0 and the inclusion (5.8) holds.

We now return to (5.9). Set (8, 8, {, 9)= (a{, a, y{, y{), t{= and t{= [
for all j, 1 j k, and set 6 8. Select an integer i, 1 k, and set y;(. z;(. for
all j # i. We deduce that zs(. solves the free-endpoint, fixed time problem of minimizing

+ m[Ig," y(’,)-

over component trajectories y(. )’[, ]
Suppose first that # . Since graph {z(. )} is assumed to be interior to P we

can apply known necessary conditions [2, Thm. 3.2.6] to this problem, and conclude
existence of an absolutely continuous function p(. satisfying (5.3), (5.4), and (5.5).

iIf (=: s), the minimizing property of zs(. implies that Ag + So s 0. Otherwise
expressed, there exists a vector that we write as p(), such that ps()= So and

s-Ag. Thus (5.4) and (5.5) are verified. In this case (5.3) is trivially satisfied.
There remains (5.6) and (5.7). Select an integer i, 1 i k. It is convenient to

separate the cases in which the time interval [, ] is degenerate and nondegenerate.
Suppose first that > . Since z is assumed to have graph interior to s, we may
choose t e I such that t> . We proceed to extend z(.)].] to [o, t] thereby
defining a component trajectory ys(.). The hypotheses are satisfied under which
Aumann’s Selection Theorem (see [1]) applies to yield an absolutely continuous
function (: [, t] ", suchthat ()= z(s) and whose derivative has the following
selection property"

,( t) Fi( t, zi(7. 1)) El(t) a.e.

Here

Ei(t)= {elp,(ril) e=max [pi(ril) e’[e’ 6 Fi(t, zi(7.)]}.

Then

(5.10) pi(7"i,) (/)-- ai(l,g(7.1),pi(7"l)) a.e. t[7.,,

It now follows from Theorem [2] of 3.1.6 and the hypotheses on F(.,.) that there
exists an absolutely continuous function 1, t]* for which the following is
true:

6(t)6F(t,(t)) a.e. [7.], t],

(5.11) (t’,)

[t -1 i(s)_(s)1--7"1]
r;

Note that this bound has limit zero as
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Now examine inequality (5.9) in the following situation. We take 6 6 and
{cT,d{,c/,{}={a,a{,y,),{} for all j, l<jNk. For ji take (t,t{,y(.))=
(r, r, z(" )). Take also to ro and define y(. )’[r, t]-E", to be

y( t)
zi( t) fort

(t) for 6 r, t].
and divide across by e’. There resultsWrite e’= t r

h-(s-Ig) (e’)- (s) ds +(e’)-’mO.

Since p(r)= Sl-gi, and by (5.10),

-hi +(e

<(e’)-’ma+(e’)-’p,(,’ Id<s)-<s)l ds.

Because of the bound on F we have ) z()l K[t o1, from which it follows
that /e’ 0 as e’10. The second term on the right-hand side is zero in the limit, by
(5.11). It follows that

lim sup (e’)- [(t, z(rl) p(r

This means that

(5.12) h c ess i(t, Zi(Til), pi(7,)) +[0,

since otherwise Ygi hi>0 almost everywhere on some neighbourhood of , in
contradiction of the inequality. Similar reasoning, but where we now choose
produces

lim inf (e’)- i( t, Zi( Til), pi( ri) h ] dtO

from which it follows that

(5.13) h c ess i(t, zi(’l) pi(’T1))-IL -00, 0]o
t-r

The two inclusions (5.12) and (5.13) imply

h, co ess ffi(t, zi(’rl), pi(71)).

The same arguments applied to the left endtime ’ of the ith component trajectory
xi(" yield

h0 co ess i(t, Zi(T) pi(T)).

We have proved (5.6) and (5.7) in the case 7 > . To deal with the remaining case
we suppose that (=: ). Those aspects of earlier reasoning concerned with
extending component trajectories to left or right remain valid in the degenerate case
and yield the inequalities

im sup (’)- [X(,z(),p())-h,] dO,
e’O

lim inf (e’)- ( t, z(r), p()) h] dt O.
e’O
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We will be able to conclude the desired inclusions (5.6) and (5.7) from these inequalities
provided we can show that h i= ho. To this end we return to inequality (5.9). We set
g= 6, and, for j # i, {c7, c7, /, {} {a, c{, y, y{} and y(. )= zj(. ). We also set

t + e for some small nonzero e and Yi(" ) Zi( ). Dividing across by e’ and
iopassing to the limit as e’ O, both from above and below, we obtain 0 -ho+ hi=

i.e., h o, as required. Proof of the lemma is complete.
_hThe next step ofthe proof is to regard the proximal normal [{ho, 1, -So, Sl}, -A

of Lemma 5.2, and its base point [{p pi, o, l}, V({po, p, o, })+6] in epi V,
as general terms in sequences such that

{p pi i}{O O, O, O} and V({p pi

Let {z, zil, zi(" )} be a solution t’o Q({po, p, g0, gl}). We can arrange by subsequence
extraction that z T, zi T and z(. ) x(. uniformly, and also that the graph of
zi(" is interior to pi along the sequence. Now apply Lemma 5.1. It follows from (5.4),
(5.6), and (5.8) and hypotheses (I4) and (I5) that

,pi(zo),-pi(zl)}AOg+c ]pi(Tl)[+h od.

Here 0g and Odh are evaluated at the point

{_p pi,, ,(o) o, =i(,) ,}.

The magnitude of the number c is determined solely by the constant K of
hypotheses (I4) and (I5) and by i [gi[. We readily deduce from the fact that the

iproximal normal vector [{ho, ,-So, S},-A] is nonzero that [i]Pi(mi)+A] is
nonzero. Replace {Pi(" )} and A by scaled versions, and so arrange that[ p(m)[ + A
1. We thereby render the Pi(’)’s elements in uniformly bounded and equicontinuous
families of functions. By subsequence extraction we can then arrange that each Pi("
has uniform limit a Lipschitz continuous function on Ii. We can also arrange that each
x(. has uniform limit xi(" (we appeal to Lemma 5.1 at this point) and.the bounded
sequences with general terms h, h and A have limits also

The differential inclusion (5.3) is preserved in the limit (see [2, Thin. 3.1.7]) along
with the transversality condition (5.14) (by the upper semicontinuity properties of
generalized gradients), in which component processes zi(" are replaced by xi(" and
the generalized gradients Og and Od are evaluated at {T, T, x(T, x(T)}. Clearly
w have IS, I,,(i,) +*]= in th imit. FinaUy we note that, sinoe =i(i,) xi(Ti,) and
pi(m) converges to the value of the limiting costate function at T and in view of
Lemma 2.1, the interpretation (5.6) and (5.7) of the ho s and h s as convex essential
values continue to hold good in the limit. This concludes proof of Theorem 4.1 in the
presence of the supplementary hypotheses (IU) and (IL).

Removal of (IL). We next prove the special case of Theorem 4.1 in which the
data is assumed to satisfy hypotheses (I1)-(I5) and (IU), but possibly not (IL).

We add an additional scalar-valued component trajectory z(. and supplement
the former dynamical equations as follows"

giFi(t,y,) a.e.o[, ,]

for i= 1,..., k, and

# e {0}, a.e. on [o, ,].

The endpoints of the trajectories are constrained to satisfy

({ i,, yi(o), yi(,)}, (o, ,, Z(o), z(,)) M.
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The set M is taken to be

M :- {(a, 0, 1, Zo, z)la , Zo>= g(a, 0, 1, z)}

in which ge is the extension of to 1-[ - (E .E Eni En;) (E E E) defined by

ge(a, (O’o, rl, zl))= g(a).

(Note in particular that the endtimes of the new component trajectory are fixed at
t--0 and and its value at the right endtime is unconstrained.) The new objective
function is

g(a, (tro, tr,, Zo, z,))= z,.

It is a simple matter to see that this modified problem continues to satisfy the hypotheses
(I1)-(I5) as well as (IU) and that it has a solution

({ T, T, x,(. )}, (0, 1, y(. ))--- g({ T, T, xi(T), Xi(Til)})).

Since, in addition, the problem clearly satisfies (IL), the conclusions of the theorem
for this problem are available to us. These are seen to imply existence of a number
h > 0, numbers a,/3, and q, and functions Pi(" and numbers ho, h for i= 1,..., k,

isuch that [i Ip(T)I + q/ A]- 1, the Hamiltonian inclusions are satisfied, the ha, hi s
are convex essential values of the Hamiltonian functions, and

(5.15) {-ho, hl,pi(T),-p(T1)},(a,,-q,q)6cOd;4+h[O,(O, , 0, 1)].

Here c is a number whose magnitude is governed by the constant K of hypotheses
(I4) and (I5). Od;4 is evaluated at (8,(0,1, g(8),g(8))) in which denotes
{ T, TI, x,(T), x,(T)}.

We pause to take note of the following estimate on points in the generalized
gradient of a distance function (see [4, Lemma 4.1]).

LEMMA 5.3. Let S be a closed set and take a point S. Suppose there is a
constant ,5 > 0 and a function 1" + ,SB - such that is Lipschitz continuous of rank at
most K on + ,SB. Then for all R >= (1 + K) 1/: we have

0depi(/+e.,. (, l()) c {(", -E)l " E P_,Ol(ff) + R ads(g), s >- 0}.

Here s(S) equals zero if s S, +oo otherwise.
Appealing to this lemma, and also to the fact that

(5.16) 0dM{O}{1}R c OdM X B X B x {0}

(see [2, Thm. 2.5.6]), we deduce from (5.15) that q- A and

{-hio, hi, Pi(Tio), -Pi( Til)} / g -- c(1 -Jr- g2)1/20dM.

Here K is an upper bound on the Lipschitz rank of g on a neighbourhood of
{T, TI, xi(T), xi(Ti)}. It remains to replace the Pi(’)’s and A by scaled versions
which have the property that Jp(T’)l + , 1, as is possible since A q. The Hamil-
tonian inclusions are unaffected. As for the transversality condition, this is clearly valid
provided c(1 +/2)/2 is replaced by 2c(1 +/2)1/, a number whose magnitude is
governed by the constant K of hypotheses (14) and (15) and by K.

Removal of (IU). Suppose finally that the data of the problem satisfy hypotheses
(I1)-(I5), but possibly not (IU). As usual {T, T, xi(" )} is the solution to (P) under
consideration.
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Consider a modified version of the problem in which each component trajectory
has its state dimension increased by one and is now governed by the dynamics

,i=(yi-xi(t))2 a.e. t[-, -],

i-Fi(t, yi) a.e. G [’r,
The objective functional is now taken to be ."

i__(, 1, 0, yo, ,y) g(o, , yo,y+Z
and the original constraint set M is replaced by M"

i__M={{7-,zi,(z0, yio),(zl,y)}l{Zo, z,yo, y’}M andz0 0fori=l,...,k}.

Note that {T, T, (z(.)=0, x(.))} is a solution to this problem, and furthermore
this solution is unique because we have arranged that deviations from it are penalized.
It is clear that the modified problem satisfies (IU) in addition to hypotheses (I1)-(I5).
We are permitted then to apply the special case of the theorem already proved. The
conclusions of the theorem for the original problem are seen to follow. (Presence of
squared terms in the modified problem ensures that the additional dynamics and
perturbations to the objective functional do not impinge on the necessary conditions.)

6. Proof of Theorem 3.1. Our proof of Theorem 3.1, by application of Theorem
4.1 to an auxiliary problem, has much in common with the proof of the maximum
principle of Clarke for boundary points of the attainable set [2, pp. 201-209]. We enter
into the details of the argument only when there is a significant departure, most notably
in the setting up of the auxiliary problem.

Choose e > 0 such that

graph {x(. )} + 2eU X i, 1, k,

and define the sets 3 , i= 1,... k, to be

2=graph {x(.)}+ eB-, i= 1,..., k.

Now let I denote the interval ro e, ri + el, i= 1,.’., k.
A point of terminology: An "extended multiprocess" is just a multiprocess

{’, ’I,Y(’), wg(.)} with [r, -] I and graph {y(.)}c J, i= 1,..., k, in all
respects except y(. is viewed as a function with domain L, obtained from the original
multiprocess by constant extrapolation to left and right, and w(.) is now taken to
represent an equivalence class of functions equal almost everywhere, i= 1,..., k.
Denote by W the set of extended processes that satisfy {r, ’1, y(’o)} C. Let A. W x
W- be the function

A({,’/-, ,-/-il, Yi(), Wi( )}, {-i
i

+ ?-meas {t e [r/v ?, rl ^ ?{][wi(t) i,i(t)}].

Here a v b, a ^ b denote the maximum and minimum of a and b, respectively. Simple
modifications of the proof of Lemma 1 of [2, p. 202] establish the following lemma.

LEMMA 6.1. The function A is a metric on W, and (W, A) is a complete metric
space. Let {r, r, yi(.), w(.)} represent the general term in a sequence of points in
W, A) converging to a point { to, ?, 37(. ), #i(" )}. Then lim sup,,, [y(t)-(t)[ =O, for
i=l,...,k.
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Let n be a positive integer and let r be a point in 0({xi(T)})+ n-2B such that
sr +.c, and define the function F’(W, A)- to be

F({7., 7.i,, yi(" ), ui(" )}):--1’- O({Y,(7.])})].
By Lemma 6.1, F is a continuous function. We have

F({T, Til,x(.), u(.)})< inf F(e)+n -2.
eW

(There is a minor abuse of notation here that we shall repeat. The same symbols are
used for the solution { T, TI, xi(" ), u(. )} and the corresponding extended multipro-
cess.) The hypotheses are met under which Ekeland’s Theorem [6] is applicable. This
tells us that there exists a point ,={57, ],i(’), ai(.)} in W such that, writing
e { To, T, xi(" ), ui(. )}, we have

(6.1) A(e, ?) =< n -1

(6.2) F()<-F(e’)+n-lA(e’, ) forall e’ W.

In view of (6.1), we may arrange that

graph{g(.)}+(e/Z)Bc i, i=1, k

by choosing n sufficiently large. The following lemma is then a consequence of the
minimizing property (6.2) of .

LEMMA 6.2. Let {r, rl, y(" ), wi(" )} be any multiprocess such that
{7., 7.’1, Y,(7.)} C and

sup yi( t) i( t)l
t

for l, k. Then

I’- 0({Yi(7.{)})] ,t_ rt-1 /. ({(7.- ]) v 0]-k-[( {- 7-{) v 0]-+-I Y(7.)

Here

i( t’ w) := ( lo otherwise.if C: T’ Til] r w C g( t)’

We proceed to interpret Lemma 6.2 in such a way that Theorem 4.1 becomes
applicable. This requires us to consider new component state vectors Y (z, y) and
associated differential inclusions with right-hand sides

Fi(t, Y/):= {[i(t, w), dp(t,y, w)]lwE Uit}.
We take the endpoint constraint set A to be

1, 1, Y,)}l{’o, l, Y} C Zo 0, i= 1,..., k}

and the function g to be

-i -i+n-12(z+(o To)v0+(T1 ,)v0+[y-g(To)[)

in which V= (z, yo) and vil (z, yil).
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It is a simple matter to deduce from Lemma 6.2 that (, ,((t)-=
.’o (s, a(s)) ds, if(. ))) is a solution to the following optimization problem, which we
label (P(n))"

minimize g({’, ’1, Y(’o), Y(’)})
(P(n))

(6.3)

subject to

i(t) c= Fi( t, Yi(t)) a.e. [r, rill,

graph{Yi(.)}cE(graph{(.)}+(e/2)B), i=1,...,k,

(6.4) {., ., y(.), y(.il)} A.

From this point the proof follows closely from [2, pp. 205-209] and we merely outline
what is involved. We impose for the time being the following supplementary hypothesis.

(HF) UI is a finite set, for E, 1, , k.

Observe that condition (6.4) leaves { ()} unconstrained. We deduce by means of
standard arguments (see, e.g., [2, p. 117]) that elements { (. )] in problem (P(n)) that
satisfy (6.3) and (6.4) can be approximated uniformly by elements associated with the
differential inclusions

(6.5) (t)co F(t, (t)) a.e. t[r, r],
which satisfy (6.4). (Hypothesis (HF) is significant at this point, since it ensures that
F has closed values.) Because g is a continuous function, we can conclude that
{, , (.),(.)} is also a solution to a new problem, denoted by co (P(n)), in
which condition (6.3) in (P(n)) is replaced by its convexification (6.5).

Problem co (P(n)) meets the requirements for application of Theorem 4.1. Arguing
as in [2], we show that for each n sufficiently large there exist functions {p(. )"
(which are uniformly bounded and equicontinuous with respect to the index n), a
vector v of unit length and measurable sets A(n) T, T] such that

-meas{ai(n)}T-T asn,
(6.6)

p,() 00"(.{,()})v

and for all Ai( n

(6.7) -i( t) OH( t, ffi( t), u( t), pi( t))

(6.8) H(t,(t), u(t),p(t))max {H(t,(t), w, pi(t))}-n -1.
U’

(The hypothesis (HF) is once again involved.)
We can also show that

(6.9) {-h,h,p()}KOc({, , ff()}) + n-B
h} that satisfyfor some elements {ho,

(6.10) h co ess (t, ( -i -i -1To), pi(T,)) + n B,
tT

(6.11) hco ess (t,(),p())+n-B.
tT

Here K is a number whose magnitude is governed by the constant K of hypotheses
(H3) and (H4) and by the Lipschitz rank of in a neighbourhood of {xi( The
function is

gi(t, x, p):- max Hi(t, x, w, p).
U
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ho s, hiWe now extract subsequences to ensure that the i, i’s and v have limits and
hthe Pi(" )’s have uniform limits as n (we retain the symbols ho, i, v, Pi(" for the

limits), and that

A:= LJ f3 Ai(m)
nrn

has measure Til T. The )i(’)’s converge uniformly to xi(’) by (6.1), as n-,.

Appealing to Theorem 3.1.7 of [2] and the upper semicontinuity properties of general-
ized gradients, we can take the limit, n - c, in (6.7) and (6.8) for all A, and in (6.6)
and (6.7). Passing to the limit in (6.10) and (6.11) is justified by Lemma 2.1. There
result the assertions of Theorem 3.1.

We recall that the theorem has been proved under the supplementary hypothesis
(HF); this is disposed of by a componentwise application of techniques on p. 207 of
[2].

Proof of Theorem 3.2. Let {T, Til,xi(.),ui(.)} solve (P). Consider multi-
processes with state vectors ((Yl,’’’,Yk), (Yl,,Yk),Z)(nlX’’’X[[nk) x
(n, X X n,,) X R. The dynamical equations and associated constraints are now taken
to be

ui( t) U
yi(t)X,

i(t) {0}

fori=l,...,k, and

w(t) {0}

a.e. [z, rill,
a.e. [z, zil],
for all [z,
a.e. [O-o, o-1],

a.e. [Oo, o1],

a.e. ro, cr 1],

a.e. o-, cr 1].

The endpoints constraint of interest is

({’, 7", y/(’)}, {o’, o’, y/(O’)}, {0"0, 0"1, Z(O’o)}) C+

where C+ is the set

C+ :-- S1 ] S2

in which

S :: {({’F, ,’/’il, x)}, {0, 1, )}, (0, 1, Zo))l{zo,i ’Tl,i X0,i );}e A},
-i -i$2: {({-, z, x}, {r, o’, Xo}, (ro, rl, Zo))[({z, zl,Xo, Xo},Zo)epif}.

Now consider the mapping

OH-: (n, X" XRnk X ([ nl X" X[nk X[ --’> ([ nl X" X[n/< X[

defined by

O+({Xi}, {)i}, Z) ({X .i}, Z).

It can be shown by means of a simple contradiction argument that

({ T, T, xi( ), bli( )}, {0, 1, .i( =- xi( Ti,), (ti( 0},

(0, 1, Z(" --=f({ T, Til, xi(T, xi(Til)}), w(. 0))

is a boundary multiprocess with respect to C+ and 0+.
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All hypotheses are satisfied under which Theorem 3.1 is applicable. Accordingly
h -i -ithere exist real numbers q, do, dl and ho, 1, ho, h for i= 1,..., k, vectors

i= 1,. ., k, absolutely continuous functions pi(. )’[ T, T]-* ",, i= 1,. ., k, vectors
{s}, a number h, and a positive number K whose magnitude is governed solely by the
constant K of hypothesis (H3) and (H4) such that

-lki( 6 OxHi, H(t,x(t), ui(t),p(t))=max Hi(t,x(t), w,p(t)).
Uil

-h and h are convex essential values of the Hamiltonian functions, for almost
everywhere T, Till, 1, , k,

(7.1)
ho h -i -iro)},{-h0,1,pi( h /i} (-do, dl q)K0dc+({To T’l xi(To)},

{0, 1, x,(Tl)}, (0, 1,/))

where f is evaluated at e := { T, Tl, x,(T), x(Tl)},
(7.2) ({-p(rl), -/i}, -q) ({si, -si}, A ),

and

(7.3)

Keeping in mind Lemma 5.3 and inclusion (5.16), we deduce from (7.1) that q=<0 and

h{-h0, 1, p(To), i} -qOf+ K(1 + K)I/2odA.
Here KI is the Lipschitz rank of f in a neighbourhood of e. We conclude from this
inclusion, from (7.2), and from (7.3) that A _->0, and the pi’s and A can be scaled so that

{-hio, hl,pi(Tio),-pi(T1)}AOf+COdA Zlpi(Til)l+A= l.

Here c 23/2/(1 +/2)1/2, a number whose magnitude is governed by the constant K
of hypotheses (H3) and (H4) and by the Lipschitz rank of f in a neighbourhood of
e. Surveying these relationships, we see that the elements {p(.)} and A have all the
properties of the component costate functions and the cost multiplier listed in Theorem
3.2. This concludes the proof.
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Abstract. This paper concerns optimal control of a family of nondegenerate diffusions evolving on a

compact manifold. Feedback controls based on complete observations are used. The controlled process is
constructed by the horizontal lifting technique of Eells and Elworthy, and a minimum principle is derived
from a dynamic programming argument. It is shown that the adjoint variable appearing in the minimum
principle, which here is a one-form valued stochastic process, can be evaluated by solving a "heat equation"
on the manifold.

Key words, stochastic control, dynamic programming, minimum principle, stochastic differential
equation, diffusion on manifolds

AMS(MOS) subject classifications. 93 E20, 60H 10

1. Introduction. Stochastic versions of the Pontryagin minimum principle of
optimal control theory have been a topic of interest since the pioneering work of
Kushner 13] in the mid-1960s. In the case of controlled nondegenerate diffusions, the
subject is best approached via dynamic programming; the Bellman equation is a
quasilinear second-order parabolic partial differential equation that has much smoother
solutions than the first-order equation arising in deterministic control theory. A
complete treatment is given by Fleming and Rishel [8]. The adjoint variable in the
stochastic minimum principle is seen to be Pt :-- 0 V(t, xt)/Ox, where V(t, x) is the value
function and xt the state of the controlled process. Pt can be characterized further by
using a result from stochastic flow theory, namely, that the solution x,,,(x) of a stochastic
differential equation (SDE) with initial point x.,,(x)=x depends (almost surely)
smoothly on x. If the cost function is the terminal cost E[O(Xl,.,.(x))] and :* denotes
expectation with respect to the measure of the optimally controlled process, then
V(s, x) E*[ O(xl,,(x))] and hence

V(s,x) -*[yoO ]Xil,s(X)
OX i,j 0xi 0xj

Since Oxil,.(x)/Ox is computed from the "linearized equations" corresponding to the
controlled SDE, this shows that the stochastic adjoint variable Pt is just the conditional
expectation, given the information available at time t, of its deterministic counterpart.
There is a slight modification in the formulation of the linearized equations due to the
fact that feedback rather than "open loop" controls are being used. All of this is
explained by Haussmann [9], [10].

In [3] a pathwise solution for the nonlinear filtering problem of a diffusion process
xt specified by its generator on a manifold has been derived using the horizontal lifting
technique of Eells and Elworthy [6]. Motivated by this technique we. formulate the
completely observable stochastic control problem in the setting of controlled diffusions
on manifolds specified by their generators. There are two reasons for doing so. First,

Received by the editors January 5, 1987; accepted for publication (in revised form) January 13, 1989.
t Department of Electrical Engineering, Imperial College, London SW7 2BT, United Kingdom.
Division of Dynamics and Control, Strathclyde University, Glasgow G1 1XS, Scotland.
Vinter [17] gives an up-to-date discussion of the deterministic case.
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there are important problems, such as controlling the orientation of a rigid body, that
are naturally formulated in this way, and indeed it seems surprising that use ofgeometric
methods in control theory has so far largely been restricted to qualitative questions
such as controllability. Second, we obtain a new interpretation of the adjoint variable
0 V/Ox: it satisfies a form of the so-called "heat equation for tensor fields" involving
an intrinsic operator on tensor fields known as the de Rham-Kodaira Laplacian.

There is some related work by Duncan [5]. Duncan defines the solutions of
stochastic systems in Riemannian manifolds in virtually the same way as we do
here--and independently of Eells and Elworthy [6]mand treats stochastic control by
martingale methods in the manner of Davis and Varaiya [4]. This however leaves the
adjoint variable only as an implicitly-defined object.

The paper is organized as follows. Section 2 is a preliminary section giving some
geometric notions and outlining tle construction of Brownian motion on a manifold
by "horizontal lifting." The control problem is formulated in 3 and the dynamic
programming results that in a are the same as those of Fleming and Rishel [8] are
given in 4. The last two sections, 5 and 6, are devoted to obtaining the characteriz-
ation of the adjoint variable mentioned above. This is the main result of the paper,
and is stated as Theorem 6.6. Appendix A gives the proof of a technical result concerning
the Bellman equation on manifolds.

2. Preliminaries. All of the following information can be found in Boothby [1]
and Ikeda and Watanabe 11, Chap. 5]. Throughout the paper the summation conven-
tion over repeated indices is used. The Stratonovich and It6 stochastic integrals are

denoted/3 dw and/3 dw, respectively.
Let M be a compact2 C manifold of dimension d. Denote by Tx(M) and T*(M),

respectively, the tangent and cotangent spaces at x M. The tangent bundle is TM
{(x, v): x M, v Tx (M)} and the bundle of linear frames is

GL(M)={r=(x, e): x M, e=[e,,..., ea],

ei Tx(M) and [el,"" ", ea] is a basis for Tx(M)}.

A Riemannian metric is a C field = {x, x M} of positive-definite symmetric
bilinear forms on TM. Then defines an inner product on Tx(M). The orthonormal

frame bundle O(M) is defined as

O(M) {r= (x, e) GL(M): x(ei, ej) ij, i,j 1 d}.

Both GL(M) and O(M) are themselves C manifolds. Let Y(M) denote the set of
vector fields on M, i.e., the set of functions X :xX(x) T(M) such that Xf(x) is
a C function for each f C(M). A Riemannian or Levi-Civita connection is a
mapping X7 :Y(M) x Y(M) - Y(M), written (X, Y)VxY such that (i) VxY is bilinear
in X, Y; (ii) ’fX+gY=f’x d- gVv (iii) Vx(fY)=fVxY+(Xf) Y (here f, g C(M));
(iv) VxY-VvX=XY-YX; and (v) X@(Y,Z)=(VxY, Z)+(Y, VxZ), There is
a uniquely determined Riemannian connection corresponding to each Riemannian
metric. In local coordinates, with X(x) aio/ox i, Y(x) iO/oxi we have @x(X, Y)
aij(x)crifl for some positive definite symmetric matrix [a0(x) and

vo,o r x
Undoubtedly, all results in this paper will extend to noncompact manifolds if some uniform non-

explosion condition is imposed.
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where the coefficients 1-’k (the Christoffel symbols) are given by

o - am nu aim ai a
OX OX

([ak’] [ak.,]-l). An element v6 T(O(M)) takes the form

Ox

where r (x, e) O(M) and ei eO/Oxj.

The connection defines a d-dimensional horizontal subspace Hr of Tr(O(M)) as
follows"

Hr { i
0 (x-r )e. ’(oe )eR

We denote by ’O(M)M the projection map r=x. If Y T(M), then Y
T(O(M)) is the horizontal lift of Y if x= r, Hr, and T= Y, where Tf(r)=
(fo )(r). Any X (M), X X(x)(O/Ox), has a unique horizontal lift to a vector
field X (O(M)) defined by

(. X(x, e= X(x o _r,X(xe oeOx

For each m 1,..., d there is a vector field L (O(M)) such that Lm(r) is the
horizontal lift of e, where r=(x, el, ", e). L is given by (2.1) with X: e.
(L,..., La) is the system of canonical horizontal vector fields. The horizontal lift
given in (2.1) of an arbitrary vector field X can be expressed as (see [3, Lemma 2.2])

(. 2
where

(2.3) x(r)=[e- ]X(x)
and (e-) denotes the inverse of the matrix (e). It is easily shown that ,..., a
are intrinsic functions on O(M), i.e., independent of choice of local coordinates.

Let (, , (,), P, w) be the canonical d-dimensional Wiener space and consider
the Stratonovich stochastic differential equation (SDE) on O(M)

f(r, f(r, , f c(M,
(.4

ro r O(M).

This equation has a unique solution that defines a diffusion process r(t) evolving in
O(M). By writing (2.4) in terms of the It6 integral, we find that the generator of r(t)
is Bochner’s horizontal Laplacian L. Define x(t, r, w)= r(t) (r is the starting
point). It is not hard to show that x(t, r, w) has the following property:

(.5 x(, rr, wl x(, r,

where A is any orthogonal d x d matrix, r=(x, e), and Tr=(x, ,..., e) with

e A{e. However, d-dimensional Brownian motion is rotation invariant, so Aw is
another Brownian motion and (2.5) shows that the law of x(t, r, w) for r=(x, e)
depends only on x, not on e. Hence x(t, r, w) is a diffusion process on M. Its generator
is the Laplace-Beltrami operator on M:

(2.6) a
Of Of

a FOxOx Ox"
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For this reason x(t, r, w) is known as Brownian motion on M. This construction is due
to Eells and Elworthy [6].

3. Problem formulation. Let M be as above and U be a compact metric space.
Consider a family of second-order differential operators given in local coordinates by

Ay iJ(x
0 0

=-a +bi(x,y) xM, y U.
2 OX OX OX

We assume that a iJ is positive definite" a(x)i>O for :d, :30, and that
C2(M), b CI"(M U), i,j= 1,..., d. We denote by Lt the set of feedback controls

1t= {u" [0, 1] M--> U, u Borel measurable}.

For each u 1t we have a time varying family of differential operators, denoted by
slight abuse of notation Au, defined by

(3.1) A"
1 ii 0 0

=-2 a (x) Ox, +Ox bi(x’ u(t, x))
Ox

We want to regard A as the differential generator of a diffusion process (x’) on M
over the time interval [0, 1] and then to pose the optimal control problem of finding
u* 1t such that

(3.2) z[O(x"*)] min :[ O(x, )]
uel!

where 0 CZ(M) is a given function and z denotes expected value. We could have
more general forms of cost function, but we stick to the terminal cost (3.2) for simplicity.

By considering how the coefficients a i behave under coordinate transformations
we can show that the inverse matrix % [a]-1, which is also symmetric and positive
definite, defines a Riemannian metric on M. We can now construct Brownian motion
on M as outlined in 2, i.e., by solving the SDE

(3.3) df(rt)-- Ljf(rt) dw, f6 C(O(M))
where Lj are the canonical horizontal vector fields and w, is Brownian motion in .
Then r, (xt, et) is an O(M)-valued process whose "downstairs" component xt rrt
is an M-valued diffusion with generator (2.6). To obtain the required generator (3.1)
we use the Girsanov transformation. Let

(3.4) /(x, y) b’(x, y) +aiJ(x)F(x), x M, y U.

For each y U,/7( y) defines a vector field X on M (i.e., the/ transform correctly
under coordinate changes). The horizontal lift L of X is then given as in (2.3) by

(3.5) L= ceJ(r, y)Lj
where

ceJ(r, y) [e-libel(x, y).

Now take u 1I and define a probability measure P" on by

dP ( (fo "21/ol dt-exp oi(r, u(t, x)) dwi, --_ (oi(r, u(t, x)))2

dP i=1

where (r,) is the solution of (3.3). Under measure P", the process w’ given by
idwT’=dw, c (r,, u(t,x,)) dt

is Brownian motion, and we can rewrite (3.3) as

(3.6) df (r,) Lgf(r,) dt+ Lf(r,) aw7,, f C(O(M))
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where

Lg:= a)(r, u(t,x))Lj.

The generator of r(t) is/u L +1/2 d 2Li. By takingf C(M) and defining f=fo
we find that/uf= AUf, i.e.,

Mft := f(x,)- A’f(s, xs) ds

is a martingale on (12, (,), P"), where A is given by (3.1), and hence (xt) is, under
Pu, a diffusion process with extended generator A", in accordance with the "martingale
problem" formulation of diffusion theory [14], [16]. The cost associated with u 1;t is
now defined as J(0, x, u) where

(3.7) J(s, x, u)=-s,x[O(x)]
and :’. denotes expectation with respect to the measure P, on path space
C([s, 1], O(M)) generated by the solution of (3.6) with initial condition r (x, e) (e
arbitrary). We now have the precisely defined optimal control problem of choosing
u H so as to minimize J(0, x, u).

For technical reasons it is necessary to introduce another class of controls, the
so-called nonanticipative controls. An admissible system is a collection

(3.8) u {.., (, ((,),[o,], z, (fit, u,)t[o,,]}
where (..,(, ((t),z) is a filtered probability space and t(()u((), .. are

predictable processes taking values in Na, U, respectively, such that (fl,) is a (t-
Brownian motion. Denote by the set of admissible systems; we call (ut) a nonanticipa-
tire control if it is the control process of some u . For any admissible system u

the SDE

(3.9) df(rt) Lgf(rt) at + L,f(r,)

has a unique strong (It6) solution starting at r (x, e), where

(3.10) := cJ(r, u,())Lj.

(We will consistently use the "hacek" notation to denote a vector field depending
on a control which enters as a "random parameter.") Now define

K(s, x, ,)= j’=_ O(x,())l(d)
and note that again this does not depend on the initial frame e, since property (2.5)
still holds. Of course, (r,) and (x,) are not generally Markov processes. We have the
inclusion 1t= in that each ult defines the admissible system P,=
{12,, (,),", (w/, u,=u(t,x,))}, and K(s,x, ,)=J(s,x, u). Thus

inf K(s, x, ,) <= inf J(s, x, u).
)t ull

4. Dynamic programming. The control problem as formulated in the previous
section is to minimize J(0, x, u) given by (3.7) over the class It of feedback controls
subject to the dynamic constraint (3.6). The Bellman equation for this problem, to be
solved for a function V" [0, 1] x M-* , is

OV
(t,x)+min[aYV(t,x)]=O, (t, x) [0, 1)xM,
Ot yU

(4.1)
V(1, x)=O(x), xeM.



CONTROLLED DIFFUSIONS ON MANIFOLDS 1097

THEOREM 4.1. Suppose that a(x) CI(M), bi(x, u) CI’I(M x U) and 0
C2(M). Then equation (4.1) has a unique solution in C1’2([0, 1]x M). There is Borel
function u* [0, 1 x M - U such that

min [AYV(t, x)] Au* V(t, x).
yU

The proof of this result is given in Appendix A. It is proved by a patching technique"
we use the corresponding result for diffusions in bounded regions of [d (Theorem
VI.6.1 of Fleming and Rishel [8]) in regions covered by a single coordinate chart, and
obtain compatability of boundary conditions by a fixed-point argument.

THEOREM 4.2. Let u*, V be as in Theorem 4.1. Then u*6 1I is optimal in the class
of nonanticipative controls, and

V(s, x)=min J(s, x, u) =min K(s, x, ,).

us V is the value function for the control problem.
Proo This is the conventional "verification theorem" (cf. Theorem VI.4.1 of [8]).

Take any u t as in (3.8) and let r, (x,, e,) be the corresponding solution of (3.9).
Define V’[s, 1]xO(M)E by V(t,r)= V(I, r). Then from (3.9) applying the It3
rule and using the fact that V C’2(M) we find that for t[s, 1],

v(,x,- V(s,x= v(,x,+av(,x, &+ P(,r,

From (4.1) the integrand in the first term on the right is nonnegative, and the second
term is a martingale (M is compact and the integrand is bounded). Thus the process
t V(t, x,) is a -submartingale, and hence

(4.2) V(s, x) < ,.x[ V(1, Xl) s,x[ 0(Xl)] K (s, x, p)

(we have used the boundary condition from (4.1)). When u u*, inequality is replaced
by equality in (4.2). The result follows. U

The Bellman equation (4.1) implies that the optimal control u* satisfies the
minimum principle

(4.3) L* V t, x min L V t, x
yU

where L is given by (3.5), or, in local coordinates, from (3.4),

OV Ohi(x, u*(t,x)) Ox(t,x)=min bi(x, y)
Ox

(t, x).

Denote by (]X) the pairing between a 1-form T(M) and a tangent vector
X T(M), and recall that forf C(M), dfis the 1-form defined by (dfX) Xf(x).
We can then write (4.3) as

dV(t)]L*)x min (dV(t) L).
yU

This shows that the "adjoint variable" is the 1-form valued process p, defined by

(4.4) p, dV(t, x,),

in that the optimal control u* minimizes the Hamiltonian functional (p, L), at each
almost surely when p, is given by (4.4). To characterize p further, we need to introduce

the derivative or linearized system equations. These are discussed in the next section,
and we then return to a characterization of p, in 6.
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5. Derivative systems of SDEs. We will first discuss derivative systems in the
context of SDEs evolving on M. For Xo,’’’, Xd (M) the SDE

(5.1) df(x,) Xof(x,) dt + X,f(x,) dw, f C(M)

has an almost surely unique solution x,(x) and, furthermore, almost surely the map
x->x,(x) is a diffeomorphism for each =>0 (see [11], [14]). The It6 version of (5.1) is

E Xf(x,) dt+Xf(xt) dw,dr(x,) Xof(x,)+- ,=,

which shows that x, is a diffusion process with generator Xo+1/2Y X2. This is a
second-order operator that in local coordinates is similar to (3.1). Let X e 3(M) and
denote by ,(x) the integral Curve of x, i.e., the solution of the ordinary differential
equation

d
-tf(b,(x)) Xf(b,(x)), f6 Coo(M),

Co(X) x.

The derivative vector field 6X is a vector field on GL(M) defined by

d
(6X)f(r)=--tf(,(x), ,,e)l,=o r=(x, e)GL(M), f6 C(GL(M)).

Here ,,e =[,,e,..., ,,e] and ,, denotes the derivative map

(,,v)g(x) v(go ,)(7’(x)), g e Coo(M).

Now consider the following SDE on GL(M):

df(r,) 8Xof(r,) dt + 8Xf(r,)o dwl, fe C(GL(M)),
(5.2)

ro r (x, e) e GL(M).

Again, this has an almost surely unique solution, and we can show that

(5.3) r,(r) (x,(x), x,,(e)).
Taking (x, v)e TM, i.e., v e T(M), we can also think of (5.2) as defining the flow
(x, v)->(x,(x), x,,(v)) on the tangent bundle. When M =a, (5.2) is equivalent to the
usual system of "linearized equations" written in matrix form. In 6 below we need
to consider the evolution of functionals of the form (W(t, x,)[v,) where W(t, x) is a
time-varying 1-form field and (x,, v,) denotes the solution of (5.2) thought of as a flow
on the tangent bundle TM. The following lemma will be useful.

LeMMA 5.1. Let d(x) be a 1-form field defined in a neighborhood of x M, and
take v T, M and X M). Then

and

(, (x)lYnX) ((VX) v).

Here V denotes the covariant derivative, and (VX)o5 := VX(oS,. ), where VX denotes

for ooithe (1, 1) tensor field given in local coordinates by (d, v) ujooil) dxi, v
v(a/ax) with

,= a X’(x)+rX(x).u.j
Ox--7
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These formulas can be checked directly from the definitions (see Elworthy [7,
Lemma VII.9C]). By repeated application of Lemma 5.1 we obtain the following.

dCOROLLARY 5.2. (tXo+2i= (tXi)2)((x) v) (B(x) v), where the operator B
on 1-forms is defined by

d

,a(x) V,,o,a + (VXo),a + 2
i=1

We now introduce the notion of the "heat equation for 1-forms." Theorem 5.3
below gives the probabilistic representation for the solution of the heat equation (5.4).
While this result is not subsequently used in exactly the form stated here, it needs to
be understood since the idea behind it underpins all the developments in 6. We
consider the following equation for a time-varying 1-form field oS(t, x), where 0
C2(M) is a given function:

0
o3( t, x) + Bo3( t, x) 0, t, x) [0, 1[ X M,

Ot
(5.4)

(1, x)=dO(x), x6M.

THEOREM 5.3. Suppose rS(t, x) satisfies (5.4). Then

(5.5) (, (s, x) lv)
where r, (x,, v,) is the solution of (5.2) on TMfor s, with r (x, v).

Proof Let o3(t, x) satisfy (5.4) and define a function f on [0, 1Ix TM by

f(t, r) (o3(t, x) v), r (x, v).

Writing (5.2) in It6 form we have

df(t, r’)= [Of+ sxf
0 - ]8Xi)2f dt + 8Xifdw i,

(5.6)

--((t+B)(t,x)lv,) dt+SXifdw i.

In view of (5.4) the first term vanishes, and the second term is a martingale. Thus

(g)(s, x)lv)= [Es,(x.v)(a5 (1, Xl) D1).

Invoking the boundary condition in (5.4), we obtain (5.5).

6. A characterization of the adjoint process. Let us now return to the control
problem of 3 and 4. We cannot directly define the derivative system of the SDE
(3.6) under the optimal control u* since u* is only known to be a Borel function and
the "drift" bi*(t,x): bi(x, u*(t,x)) may fail to be ditterentiable in x. This is where
the nonanticipative controls come in. First, we have the following simple lemma.

LEMMA 6.1. (cf. [10, Lemma VI.7.3]). Suppose f, ge CI(M) are such that f(x) >-

g x for allx Mandf() g() at some M. Then df() dg sc) equality in T’ M ).
Fix (s, s) [0, 1[ x M and consider the control problem on the time interval [s, 1

with initial condition x sZ Let u*(s,x) be the optimal control and t,:= u*( t, x,) the
control process in the corresponding admissible system . Then from Theorem 4.2,

V(s, )= J(s, , u*)= K(s, , ).
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The same control process , used from another initial state x will be possibly suboptimal,
so we have

V(s, x) <-_ K(s, x, ), x e M.

Applying Lemma 6.1 with f= K(s,., ) and g V(s,’ we see that

(6.0) dV(s, )= dK(s, , ).

We thus need to calculate dK. We will henceforth write 5, - for "*, :"* and fig for
w ’"*. As a general point of notation, we define (r)= 0 7r(r) and similarly for other
functions on M. We then have for r (x, e) O(M),

K(s, x, v)= I(s, r, v)=-[(rl,s(r))]
where rl,s(r) denotes the solution of (3.9) at time 1 with rs--r. Take v Tx(M) and
let v’ be any element of TrO(M) such that Tv’= v. Then, with K(s) :-- K(s,., ,),

(6.1) (dK(s)lv)=(dI(s)lV’)r=_[(r,,,v’)g(r)]=:(dlrl,s,V’),.
The derivative system of (.9) is the SDE

df(p,) 6of(p,) dt + Lif(p,) d/31, f C(GL(O(M))),
(6.2)

(r, e’)

evolving in the frame bundle GL(O(M)) where (r, e’) is a frame in TO(M), with
solution

,=(r,,,(r),r,.,(e’)).
(Recall that in (6.2) fi, appears as a "random parameter," as in (.10), and our notational
convention of using to denote a vector field containing a control as random
parameter.) System (6.2) also defines a flow (r, v’)-(r,,(r),r,,,(v’)) in the tangent
bundle TO(M).

Comparing (5.5) with (6.1) we see that the expressions are the same, except that
(6.1) involves the O(M)-valued process r,, with derivative system (6.2) in GL(O(M))
in place of the M-valued process x, with derivative system (5.2) in GL(M). Thus we
can get a representation for dK by reformulating Theorem 5. on O(M). The remainder
of this paragraph is devoted to showing that there is a characterization for the value
function as a solution of a "heat equation" for 1-form fields.

To consider the heat equation for 1-forms the Laplacian of de Rham-Kodaira is
introduced (for more detail see [11]). Define by A(M) the totality of all p-forms on
M. An inner product is defined on Av(M) denoted as
Ap_(M) is defined by

(dw,/3)p (co, )p-1, (.0 Av_,(M), fl Ap(M)

where dto is the exterior derivative of the form w. The de Rham-Kodaira Laplacian
V "Ap(M)-> Ap(M) is defined by

F-] -(d6 + 6d ).

The action of this operator on a 1-form o3 w(x) dx is given in local coordinates by

(6.3) (03) (Ao3) +

The exterior derivative dw of a p-form w is a (p + 1)-form defined by (dw)(x) (O/Oxi)wi, i2...i;(x) dx ^
dxi ^ dxi2 ^ dxi,,.
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where A is the Laplace-Beltrami operator [1 1, p. 270], and

R aRJi.
Here

0
R

0
F tj F kj-t- F j Fim Fr.)jkl

OXk OX

are the components of the curvature tensor. Relation (6.3) is a special case of Weitzen-
b6ck’s formula for differential forms [1 1, p. 286].

For a 1-form field 05 on M we define a function f" TO(M)-, by

(6.4) f(r, v)=( r(r)lT=v), rO(M), V TrO(M),

and consider the It6 formula (5.6) with and Li replacing Xo, Xi, respectively. Now
g is the horizontal lift of aX, so from Lemma 5.1 we have

(6.5) 6aof(r, v) ((Vx+ (V2oa))05 r(r)lT,v>
where due to the form of the function f(r, v) only the "downstairs" parts of the vector
fields remain (see [15]). On the other hand Li is a canonical horizontal vector field,
and from Theorem VII.12.D of [4] we have the following result.

LEMMA 6.2. Suppose 05(x) is a closed -form, i.e., d05 O, andfis given by (6.4). Then

d

(6.6) 2 (Li)2f( r, V)--([-’]050 (r)l Tv).
i=1

From relations (6.5) and (6.6) we get the following corollary.
COROLLARY 6.3. Suppose 05(x) is a closed 1-form. Then

1
E (Li) o r(r)l

where the operator E on 1-forms is defined by

(x) (x) + (v+(V2o)) (x).

Next consider the following lemma that will be used below.
LEMMA 6.4. For XY(M), suppose that (t,x) satisfies the following PDE for

1-forms

O-- (t,x)=7-]qb(t,x)+Vxdp(t,x)+(VX)dp(t,x), (t,x)]O, l[M,
Ot

(6.7)
(O,x)=

where b is a given 1-form. Then (t,. is a closed form for each t<=l if is closed.
Proof First we remark that the Laplacian of de Rham-Kodaira satisfies

d4, =d.
Indeed, since d (d (.)) 0,

d d6 + d dd + d6d + 6dd d6 + 6d d.

Next we remark that
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Thus,

0 db_ d
04, db+dd(Vld,b) db, db(O) O.

ot ot

Since zero is the unique solution of this equation in 1-forms [11, V.5], this shows
that d4--0, i.e., 4(t) is a closed form.

Now consider the following heat equation for a time varying 1-form field W(t, x).
We write ’o in place of X* (i.e., o is given in local coordinates by (3.4) with
y=u*(t,x)):

0 1
(6.8) W(t,x)+-[W(t,x)+fyoW(t,x)+(fXo)W(t,x)=O (t,x)[O,l[M,

(6.9) W(1, x) dO(x).

THEOREM 6.5. Equation (6.8), (6.9) has a unique solution W(t, x) such that We
W1"2([0, 1 0) for any open set M covered by a single coordinate chart, and

W(t,x)=dV(t,x).

Proof Equation (6.8) does not have a C ’2 solution since o is not a smooth
function of x. But an argument identical to that of Haussmann [9, Thm. 5.5] shows
(see 15]) that it has a unique solution that is (on any coordinate chart) in the Sobolev
space W’2 (first derivatives in t, and first and second derivatives in x i, square integrable).
The proof of Lemma 6.4 goes through when (6.7) is solved in W’. Hence we conclude
that the solution W(t, of (6.8), (6.9) is a closed 1-form for each [0, 1]. (Note that
dO is closed.) In the following argument, Krylov’s extended It8 formula for W1’

functions [12, Thm. 2.10.1] replaces the usual It8 formula.
Take arbitraryM and T(M), denote ?=(, ), and let =(, t) be any

element of TO(M) such that x r and T. For (t, X) [0, 1] TO(M), X (r, v),
define

f( t, X) W( t, rr)] T=v).

Writing (6.2) in It8 form as the equation for a flow X, (r,, v,) on TO(M) starting at

X. , and using Corollary 6.3, we have

df(t, X,)= Of+f+ (L)f dt + LfdOt -E W(t,’r,) Lv, dt+Lfd

In view of (6.8) the first term vanishes, and the second term is a martingale. Thus,
using the boundary condition (6.9) and the properties of the derivative system (6.2)
we see that

(6.10)

We thus see from (6.1) and (6.10) that

(dK (s)l) W(s,
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Since this holds for arbitrary (2, 3), dK(s)= W(s, 2), and from (6.0),

dV(s, .)= W(s, ).

This completes the proof. [3

We can now summarize our results, and state the stochastic minimum principle
as follows.

THEOREM 6.6. Let u* II be an optimal control for the problem (3.6), (3.7). Then
there exists a unique solution W(t, x) to the heat equation (6.8), (6.9) as described in
Theorem 6.5. Let Xo(x, y):= X(x) denote the vector field defined by (3.4). Then for
almost all t, x) [0, 1 M,

(6.11) (W(t,x)lXo(x, u*(t,x)))--min(W(t,x)lXo(x,y)).
yoU

If W is expressed in local coordinates as W( t, x) toi( t, x) dx then (6.11) becomes

o)i(t,x)bi(x, u*(t,x))--min o2i(t, x)b’(x, y)
ycU

where b are the coefficients appearing in (3.1). The "adjoint process" as defined in (4.4)
is thus

p, := W(t, x,).

Appendix A. This Appendix is devoted to the proof of Theorem 4.1, i.e., showing
that the Bellman equation (4.1) has a C l’) solution. Throughout, we shall use a specific
system of charts on M constructed as follows. (A similar system was used by Clark
[2].) We take an atlas {(Ui, gi), i= 1,..., k} of coordinate charts covering M such
that for each i, g( Ui) B1 (the ball of radius one in Rd) and such that {E, 1, , k}
also covers M, where E := gSl(B3/4). Set D1 := E1 and D := Ei\U< E for i> 1. Then
the Di are disjoint and cover M.

First we need the following lemmas concerning PDEs in Rd.
LEMMA A1. Fix {1,"" ", k}. Then with the atlas described above g( U)= B

UD where D g(D U). Denote Q := [0, x BI and Q := [0, 1 x D. Consider the
following PDE to hold in Q:

(A1)

with boundary data

Here

O.+A(s)b+A(s, y)=O

b(s, y)=(s, y),

b(1, y)= O(y),

(s,y)o*Q=[O, 1) xOB,,

yB.

A(s)q 1/2a2(y)by,y,+ b’(s, y)tpy, + c(s, y)d/.

The coefficients of the PDE (A1) are supposed to satisfy the following conditions:
(a) a i, b i, c, A satisfy a Hiilder condition on Q; a i2 a2 and there exists 3’ > 0 such

that a2(s, Y)qiq2 >- ’lq[ for all q R d.
(b) O(y) is C on B1 and (s, y) (s, y) for <-_ s < 1, y OB1, for somefunction

(s, y)" Q-, R such that [Q2 is C2, j= 1,..., k.
Then (A1) has a unique solution d/ such that tp CI’2(Q’) for any open set Q’ with O’ c Q.

Remark. This is the result of Fleming and Rishel [8, Appendix E, first paragraph,
p. 208] except that here the boundary data is "piecewise C2’’ as opposed to
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everywhere C2 in [8]. The strategy of the proof is to smooth out the boundary data
by convolution of with a mollifying function, apply the result of [8, Appendix E]
and then use a limiting argument. The details, which are lengthy but standard, are
omitted here. A complete proof is given in [15].

COROLLARY A2. Let Q, be as in Lemma A1 and consider data satisfying the
following conditions:

(a) U is compact;
(b) aiJ(x) is of class C’(Q), and bi(x) is of class C"(Q U) and the generator

A is nondegenerate.
Then the following PDE (dynamic programming equation) in d

with boundary data

OV(t,x) - min AYV 0
at yU

V(s, y)=(s, y), (s, y)o*Q,

v(1, y) 0(y), y B1
has a unique solution in Q’ such that V is in C1’2((’), O’c Q, where Q’ is any open
subset of Q.

Proof This result is the same as Theorem VI.6.1 of Fleming and Rishel [8] except
for the conditions on the boundary data , which is now only piecewise C2. The proof
given in [8, pp. 208-209] goes through unchanged, since Lemma A1 above shows that
the statements of [8, first Paragraph, p. 208] are still valid under our wider conditions.

ProofofTheorem 4.1. Let the sets Ui, Di, 1, , k be as defined at the beginning
of this Appendix. As is customary we will not distinguish notationally between Ui M
and gi(U) d. Fix and in U consider the following PDE:

ovi(t,x)
--+minAYV(t,x)=O, (t,x)6[O,l[U,

Ot yU

(A2) vi(t,x)-dp(t,x), 0-<-t-_l, xOUi,

V’(1, x)- O(x), x Ui

where th(t, x)=[0, 1]M is a given C2 function. For each (t,x) define

Lib(t, x):-- vi(t, x), x Di.

From results for PDEs in [ [5] we know that

Lob(t, x) 6 C1’2([0, 1 Vi)

but Lob(t, x) is "piecewise-continuous" on ([0, 1] M) since in each Di a "different"
PDE is considered. Clearly for every choice of initial point (t, x) [0, 1) D

Lob(t, x) min [E t",x[ 0(xl)I1-, + 4 (rx.) I1>i]
ull

where 1a is the characteristic function of A and tr denotes the first hitting time of
([O, 1]OUi)U({1} Ui) by the controlled system of 3 starting at x,=x. We will
define T1 tr when x D. We now define Lth L(Lck) by replacing h by Lth in (A2)
i.e., solving the PDE (A2) with the following boundary conditions:

vi(t, x)- Lcfl(t,x), 0 <- t<= 1, x6OUi,

vi( t, x)= 0(x), x Ui.
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These are the boundary conditions considered in Lemma A1. Then for such
(t, x) [0, 1)Di

L2dp(t,x) :: L(Lch)(t,x): vi(t,x)

1I

from which is follows that for x Di

L26(t, x) min :,".x[ O(x) I1= T2 + 6( T2, XT2)I> T]

where T2 is defined by

T2 := 1 ^ inf { > O" X 0 Ui(x,i )}
and i(. is the indicator function i(sc) =j if sc Dj. From Corollary A2 it follows that
L:ch(t,x) is in Cl’2([0,1)xDi), but again "piecewise-continuous" on [0,1]M.
Similarly, for each (t, x)

L"ch(t, x)=min-t.x[O(xl)I=T,,+ ch(Tn XT,,)I>r,,]
ull

where Tn is an exit time defined by

Tn := ^ inf > Tn_ x, 0 Ui,T,,_,)].
Now V"(t, x) == L"b(t, x) is the value of a control problem stopped at T,. The sequence
of exit times T, is strictly increasing by the construction of the disjoint sets Dj and
the nondegeneracy of our problem. It has been proved by Clark [2] that sup, T, o
so by the above construction L"4,(t, x) is defined for all n. We will show below that
as n-o, V"(t, x) converges to the value function of the unstopped problem (4.1).
The space C([0, 1] M) is a Banach space with the norm

I1 11-- sup I (t,x)l.
(x,t)M[O,1]

Next we shall show that the map L is a contraction, and hence that IILb- VII- 0,
where V is a fixed point of L. Indeed, in D

Lb( t, x)- Lqt( t, x) min [E,.x[ O(x1)Ii=cr,-’}- (J)(O’i, Xcr.)II>cr,]
II

-min .t".x[ O(x,)I=, + d/( o’,,
ull

_--< *[ O(x,) I1: ,) + i, X Is
-"*[ O(x)I,=,,,+ @(i, Xi)II’]

where u* is the control that minimizes

,x{O(x,)I=,+ @(,, x,)Ii>,].
This can be constructed by a selection theorem as in Fleming and Rishel (see [8,
Lemma VI.6.1]). It follows that

Interchanging the roles of b and @ we conclude that

]t(t,x)-L@(t,x)[[[-@[,,x[il], xPi,
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and hence that L L, p - II, where p max, pi and

pi sup P ,,x[ o’i < 1 ].
Di

Since (Di) is a finite partition, the contraction property is established once we show
that p < for each i. First, since D c int { U}, it is a standard result for nondegenerate
diffusions that

P ,,x[ o’i 1 > 0 for each x Di, [0, 1 ].

Next we remark that 0(t, x)= Pt,x[o’i 1] is the solution of the following PDE on U"

0(1, x) 1, x e Ui,

(, x) 0, (, x)e [0, [xou.

Hence O(t, x) is continuous and by the above argument O(t, x)> 0 for each x. Thus
on the compact set D c U

ri := min P,,x[ ri > 0
D

and thus

p sup P ,.x[ o’ < < 1.
D

This shows that L is a contraction mapping and hence has a unique fixed point V. We
now show that the function V is independent of the construction of the disjoint sets
D and the defined sequence of stopping times T. Indeed, the probabilistic formula
for L" gives

L’ =min_,,x[O(Xl)Ii=r.+ (T. xr,,)Ir <l]-
ull

We observe that as n--> ce we have T,-. oe almost surely and

L" --> min :,.,[ 0(Xl) V
ul!

since

supl,.x[(O(x)+(T.,xr,,))I,,<]l[lO/ll supP,.x[Tn <1]-0 as n-->oo.
ul| ul!

The above argument essentially means that the probability to pay a penalty b(Tn, xr,,)
at T, as n- ce is negligible. Therefore the fixed point of the map L is equal to the
value function V of the unstopped problem and does not depend on the construction
of the disjoint set Di.

For any x D1 we know by a standard dynamic programming argument that V
satisfies

V(t,x)=min_,,x[O(Xl)I=l + V(t,x.)I.<l]
ull
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where z:= 1 ^inf{s=> t" x. OD1}. This is a control.problem on a~ single coordinate
chart, and we know from results of[8] that V(t, x) V(t, x) where V(t, x) is the unique
cl’2([0, 1[ D1) solution of the Bellman equation

OV
(t, x) + min [aYl?(t, x)] 0, (t, x) [0, 1[ D1,

Ot yU

V( t, x) V(t, x), (t, x) [0, 1[ x OD1,

/( t, x) O(x), x D1.
Thus V is C 1’2 at any [t, x]e [0, 1[ int {Dl}. Since D was arbitrary, this shows that
in fact Ve C’([0, 1]x M).
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Abstract. With probability one convergence results are obtained for stochastic recursive approximation
algorithms under very general conditions. The gain sequence {a,,} can go to zero very slowly and state-
dependent noise, discontinuous dynamical equations, and the projected or constrained algorithm are all
treated. The basic technique is the theory of large deviations. Prior results obtained via this theory are

extended in many directions. Let 2 b(x) denote the "mean" equation for the algorithm, let > 0 be given,
and let G(O) be a neighborhood of a stable point 0 of that ordinary differential equation. Then, asymptotic
upper bounds to aN log P{X,,_ G(O), n>= NIIXN-O[<=3} are obtained. These are often more informative
than the usual classical rate of convergence results (that use a "local linearization") and, furthermore, are
obtained for the constrained and nonsmooth cases, for which there are no "rate of convergence" results.
The methods are also used to extend currently available upper bounds for algorithms with constant gains,
with simpler proofs.

Key words, stochastic approximation, large deviations, recursive algorithms, errors for tracking systems

AMS(MOS) subject classifications. 60F10, 62L20, 93E10, 93E12

1. Introduction. We obtain with probability one (w.p.1) convergence results as
well as useful (nonclassical) estimates of "rate of convergence" for fairly general
stochastic approximation (SA) processes such as (1.1), via the theory of large deviations
(R Euclidean r-space)
(1.1) Xn+l=Xn+anbn(Xn,n), XnER r, O%an’->O, .an=OO n>=O.

We also treat the projection algorithm (1.2), where ro denotes the nearest point of a
compact and not necessarily convex set G:

(1.2) Xn+l rro(Xn + anbn(X, n)).
Such algorithms have been the subject of considerable attention 1 ]-[4], [8], [28], [29],
[31 ], under a great variety of conditions. They appear in various guises in many places
in control and communication theory.

In (1.1), the {n} is a random process that might be state dependent itself in the
sense that P{sC,+l E A I,, x,, <-- n} # P{n+l A I,, <--_ n}. The b,, might simply be a
function of X,, (,. The formulation allows {bn} to be a sequence of vector-valued (R r)
mutually independent, but not necessarily stationary, random fields parametrized by
X,, sen. In this case b, is characterized by the distribution function (which will depend
on n in the nonstationary case)
(1.3) P{b, BIXi, i, b,_, iN n}= P{b, BIx, }.
The actual model used includes these as special cases and is defined at the beginning
of 2. There are many applications where the random field notation is useful since it
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is awkward or difficult to express explicitly all the random variables that might be
involved (e.g., the Xn, n might determine other random variables that are used, in
turn, to calculate Xn+l from Xn). For example, consider an adaptive routing problem,
where Xn denotes the routing parameter and , the (vector) buffer occupancies at time
n. Then bn might be a random variable that depends on, e.g., arrivals, completed
services, and on acceptances of arrivals, at time n, and each of these might be related
to X,, ( only statistically--but the exact relation is either too complicated to write
(perhaps involving a sum of indicator functions of various possible events) or not
necessary to write.

If b, is simply a function of X,, ,, (b, b(X,, ,)), then we call it a deterministic
random field. Even in this case, the :, might be state dependent, correlated, or b(.)
might be discontinuous. If {b,} is a deterministic random field, we write it simply as
b(X,, ). Of course, since {(,} is a random sequence, {b(X,, (,)} is not deterministic,
in the usual sense.

Perhaps the weak convergence-based methods [3], [5], [6] are the most powerful
general methods for dealing with the asymptotic properties of (1.1) or (1.2). The
conditions for the validity of such methods are often readily verifiable. One common
approach is to derive an ordinary differential equation (ODE) for the "mean" dynamics
: b(x)= Eb(x, sc) (where this is well defined) and to show that the asymptotic path
of {Xn} is arbitrarily close to that of the asymptotic solutions to b(x) in the sense
of the weak convergence theory. Typically, under some stability property of the ODE,
this method locates the points (or point) near which {X,} spends "nearly all of its
time." Nevertheless, there is still considerable interest in actual w.p.1 convergence. A
powerful method would use a weak convergence approach to find the "asymptotic"
points or sets, and then use a "local" method to show w.p.1 convergence of {Xn} to
an appropriate stable point of the ODE, under the usual condition that some compact
set in its domain of attraction is entered infinitely often (that would itself often be
shown by a weak convergence-based method).

Among methods that can be used to prove w.p.1 convergence, those based on the
theory of large deviations have a number of advantages. The methods developed here
yield a fairly unified approach for problems with state-dependent noise and discon-
tinuous dynamics as well as for constrained problems. These facts imply the availability
of a rather powerful technique for getting w.p.1 convergence. The state-dependent
noise model used here is more general than allowed in [3] and [7], and is essentially
the same as that in [28], [29], and [31]. The mathematical development here seems to
be no more complicated than the powerful "martingale" based methods of [4], [8],
[28], and [29]. Particularly in view of the fact that once certain basic general results
are proved, we do not need to treat the various special cases independently. We can
handle more slowly (and erratically) converging gains, the constrained case, the random
field model, and get a very informative estimate of the rate of convergence even when
the classical "local" smoothness conditions are violated. This latter point is-particularly
important. Although we do not do so here, the basic theorems can also be used to
obtain results for models with random gains. The underlying idea is relatively simple.
The proof of w.p.1 convergence reduces to showing the differentiability of a certain
function defined in terms of conditional expectations taken with respect to the process
itself. We show this readily for the usual cases covering the bulk of work in the
literature, as well as for some new cases. New cases appearing in future applications
can be dealt with in the same way. Our methods can have difficulty with problems
where the qth moments of the (, or b,(x, ) grow too fast as q (say, faster than
those for b, Gaussian), but this rarely seems to be a serious problem in applications.
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Typically, the large deviations estimates involve both an upper and a lower bound
for a (suitably normalized) probability of a "rare" event (say the event that the stochastic
approximation (asymptotically) escapes from a small neighborhood of a stable point
of b(x)). To get the w.p.1 convergence here, only an upper bound is needed, and
this allows a result under weaker conditions than would be required if both bounds
were desired. The upper bound serves as a useful indicator of the rate of convergence,
perhaps even more useful than that obtained by the classical methods. It is obtainable
for constrained problems and is often obtainable even for nonstationary problems, in
contrast to the classical "rate" results.

The "rate" calculated by the classical methods is just the asymptotic variance of
(Xn- 0)/aln/2, where 0 is the limit point. Its derivation requires a certain "regularity"
in the way an - 0, and a local expansion of the dynamics about 0. Assuming appropriate
smoothness (usually twice differentiability of b(x, ) at x 0, which is not needed by
the large deviations method) of b for x near 0, the classical rate depends only on the
gradient of Eb(x, ) for x 0 and on the statistics of {b(O, :n)}. In many applications,
we are more interested in an (suitably normalized) estimate of the probability that the
path {Xn,> n_-> N} will escape from some given neighborhood of 0 for large N.
This would involve the full stabilizing effect of the dynamics and "destabilizing" effect
of the noise in that interval, and such a useful estimate is obtainable from our results.

Our rate estimate takes the following form. Let D denote a compact set in the
domain of attraction of a stable point 0 of the ODE =/7(x) and with 0 D, the
interior of D. Let > 0 be given. Let AD(T) denote the set of continuous functions
b(’) with 14(0)-01_-<3 and h(t) D for some < T. We will exhibit a function
/5(4, , t) => 0 that is zero if and only if -=/7(4) and a function (x, T, 4)"

(x, T, b)= (d(s), b(s), s) ds (for 4 absolutely continuous, with b(O)= x),

(otherwise),

such that

(1.4) lim anlogP{X,,V:D, some m>-_nllX,-O[<-,}<= q(,(0), T,,)<0.inf
dAD( T)
T>O

The right-hand side of (1.4) can yield estimates that are very useful for a "rate" of
convergence, and for the dependence of this rate on the behavior of the algorithm in
the set of interest D, as well as for the comparison of algorithms.

In [9]-[ 11 ], sharp upper and lower bounds have been obtained for SA algorithms
by the methods of large deviations theory, and a great deal of useful information has
been presented concerning the bounds and the structure of the H and L-functionals.
These references require that a, 0 in special ways, the noise is "exogenous," and the
dynamical term b is a smooth function of x. The methods are unable to handle the
constrained problems. Strictly speaking, the results in these references are not w.p.1
convergence results. They deal with sequences of sequences {X,, rn _-> 0}, n 1, 2, ,
defined by X+=X,+an+mb(X,, ,+,), X =x. Although the analysis of such
processes is basic to the convergence result, in this paper we deal with the actual
process itself. Also, since we are concerned with upper (large deviations) bounds only,
we use lim to define the various functionals, rather than lim, as illustrated in the sequel.
This allows a result under weaker conditions on the {an, n, bn}, as will be seen below.

To obtain the general results, we proceed as follows. First, a general and somewhat
abstract assumption (Assumption 2.1 in 2) is made. Under this (and some more
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readily verifiable and reasonable) assumptions, the w.p.1 convergence theorem and
the rate of convergence estimates are obtained ( 3). In 4, we show that all parts of
Assumption 2.1 (except for part (i)) hold for the case of bounded dynamical terms.
The extension to the unbounded case is disposed of in 7. Then, to get the large
deviation upper bound (and hence the w.p.1 result) for specific examples, we need
only verify that a certain H(x, c, t)-functional, defined in 4, has an c-derivative at
c 0. This is done in 5 for models covering the bulk of cases dealt with in the
literature, and a general method for verification is discussed. (It is worth noting that
the c-differentiability requirement is in a certain sense necessary and sufficient for a
stochastic process to possess a nontrivial large deviation upper bound. The sufficiency
is the point of Theorems 4.1 and 7.1, while the necessity can be shown to follow (under
weak assumptions on the process) from the application of a theorem of Varadhan’s
[21] to the problem of evaluating (4.1).) Section 6 treats the constrained case, basically
by showing how a "continuity" theorem for large deviations estimates can be used to
carry the "unconstrained" result over to the constrained case. There are numerous
advantages to our method, in comparison with existing methods. A more detailed
comparison is given in 8.

The key to the entire development is the result of 4, obtaining an upper bound
in a very quick and efficient way, without using the usually complicated sequence of
estimates for special cases often associated with large deviations bounds. This method
applies equally well to the case where the gains {an} are constant. For this case, we
obtain large deviations upper bounds for stochastic difference equations of the type
in [27], but with weaker conditions and an easier proof, and the same "action
functional." See, in particular, 5.1.a and Example 7.1.

2. Background and assumptions. In this section, we introduce some rather detailed
assumptions that will be used to prove the main convergence theorem and the rate
estimate in 3. The basic large deviation upper bound given in Assumption 2.1(iv) is
of course not simple to verify, but is used simply to facilitate the proofs in 3. We
give some examples of processes that satisfy these assumptions at the end of this
section as well as in 5 and 7, where we give readily verifiable sufficient conditions
that cover a wide variety of applications.

Assume that our algorithm is given by

(2.1) Xn+l=Xn+anFn.

Define

n-1

(2.2) tn ai to O.
0

We define a continuous parameter interpolated version of {Xn} by

(2.3) X(t)=[(t--tn)Xn+l+(tn+l--t)Xn]/a,, t6[tn, tn+l],

and the interpolated version starting at time N by

(2.4) XN(t):X(t+tN).

When we say that limnfn -<-f uniformly in a parameter a for some sequence {fn}
and some f, we mean that for each e >0, there is n < such that supn__>nfn <=f+ e

for all a. For a set or point A, we use Nh(A) for the h-neighborhood of A. Let C[0, T]
denote the set of Rr-valued functions on [0, T] with the sup-norm topology.
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ASSUMVnON 2.1. There exists a family of or-algebras n o’(Xi, inn), and a
functional S(x, T, oh) defined for xER r, r>o, and b(.)E C[0, T] with the following
properties:

(i) There exists kT(x) such that (x, T, 4)=0 if and only if =/(4’) almost
surely, b(0) x;

(ii) S(x, T, oh) >= 0;
(iii) Given compact FoRr, r>0, and s[0, ee), the set {4’4(0)

F, S(4(0), T, b)_-< s} is compact;
(iv) Given compact F c R r, T> 0, h > 0 and s [0, oe), li--n an log P{Xn(.

: Nh((Xn (O), T, s)) n} <--s, uniformly in Xn(O)F, and w (w.p.1), where
(I)(x, T, s)= {4’" S(x, T, 4,)-< s}.

Remarks. (1) By part (iii) above, the functional S(., T, is lower semicontinuous
(1.s.c.).

(2) We consider Xn(.) in part (iv) as restricted to [0, T].
(3) A weaker form of (iv) is actually sufficient for our needs below. If we assume

that given M1 <oo we can prove the lim sup is uniform save on a set of w’s with
probability less than exp-M/an, then the conclusions of 3 may still be obtained,
since the sets where the uniformity fails are negligible from the point of view of the
large deviations estimates. We refer to this extended assumption as Assumption 2.1 e.
Let us mention an example where these considerations are useful. If Fn takes the form
b(Xn)+o-(Xn)n, where the n are obtained as the solution of a stable linear system
driven by independently and identically distributed (i.i.d.) and zero mean Gaussian
noise, then for b(.) and r(.) Lipschitz we obtain Assumption 2.1(iv) only with the
weaker uniformity described above, but this is enough to obtain the w.p. 1 convergence.
We will return to this example at the end of this section.

(4) In 4, 5, and 7 we prove Assumption 2.1 for many interesting cases, and
indicate the connection between the statistics of the process {Xn} and the functions
b(x) and S(x, T, 4)). We note at this time that Assumption 2.1 implies that the
conditional distribution of Xn( given XN(0) x converges weakly to the measure
concentrated at the point 4(" ), where 6(4), 4(0)= x (if this solution is unique),
and that the probability that xn(.) deviates from 4(" by more than y > 0 on any
interval [0, T] (in the sup-norm sense) decays as does exp-,5/an, for some ,5 > 0.

(5) From Assumption 2.1(iv) we may obtain the following [15, Thm. 3.3]. Let
compact F c Rr, T > 0, ,5 > 0 and s _>- 0 be given. Then there is No < oo such that for
any x E F, any closed set A c C[0, T] satisfying inf+a S(x, T, 4)) >- s, and any N _-> No,
we have

(2.5) aN logP{Xn(’)eAln, Xn(O)=x}<=-s+6 a.s.

(6) The uniformity of the estimates in Assumption 2.1(iv) with respect to o) imply
that (2.5) continues to hold if we replace N by any stopping time M _-> No almost surely.

(7) The t-dependence of S occurs owing to the fact that an are not constant. See,
e.g., Example 2.1, and the results in 5.

The Limit ODE. To get any sort of useful convergence for {Xn}, the ODE

(2.6) 2= b(x)

must have at least one stable point. We assume the following.
Assus4vnoy 2.2. The ODE (2.6) has a unique solution for each initial condition

and there is a point 0 that is asymptotically (not necessarily globally) stable in the
sense of Lyapunov, with domain of attraction A.
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Assumption 2.2 implies that for any compact G A and 6 > 0 there is T < such
that all solutions originating in G are in N(0), a 8-neighborhood of 0, for t_-> T.

Finally, we state the slowest rate at which we can allow an - 0.
ASStMPTON 2.3. For every ; > 0, , exp -/a, <, and a .
For example, let a, c,/log n, with c, 0 and a, =. Then Assumption 2.3

holds. If c, does not go to zero, then there will not be convergence w.p.1. This is the
case in the "annealing" process [30].

Example 2.1. We take F, b(X,) + (X,), in (2.1), where b(. and (. are
Lipschitz and a, 1/n , 0< 7 1. We assume that ,+ A, + BO,, with {0} an i.i.d.
mean-zero Gaussian sequence, and that the roots of A are contained in the interior
of the unit circle. Then [11] Assumption 2.1 holds, with

(x, T, )=
(’ ’ s) ds if is absolutely continuous and (0)= x,

otherwise,
--I --1 --1L(x, , s) ( b(x))’[((x)(A- I) B)((x)(A- I) B)’] ( b(x))h(s)/2,

(if the indicated inverse exists) and b(x)= b(x). The function h(s) is exp s if y 1,
and if y < 1. If the indicated inverse does not exist, L takes a different form [11],
although Assumption 2.1 continues to hold with b(x) b(x). For additional examples
see [11].

The sequences {a,} and the functions b(. and (. considered above are more
"regular" than is actually needed to obtain Assumption 2.1 e. This is because the
indicated reference was concerned with both upper and lower large deviation bounds.
For the upper bound alone, which is the only part of the theory we use, much less
"regularity" is required. We shall see more of this in 5 and 7. In particular, Example
7.2 contains Example 2.1 as a special case.

3. The basic convergence theorem.
THEOREM 3.1. Suppose that Assumptions 2.1, 2.2, and 2.3 hold, and that there is

a compact neighborhood G(O) of O, with G(O) A, and such that there is (almost surely)
a (random) sequence {ni} satisfying Xni G(O). Then Xn- 0 w.p.1.

Remarks. If not all paths visit some neighborhood of 0 infinitely often (i.o.) then
we will have Xn -* 0 w.p.1 with respect to those paths that do. It is expected that the
recurrence condition would be verified by a weak convergence argument.

Proof For 6 > 0, let N(0) denote {x" 10 xl -< 6}. We will first prove that if {Xn}
visits G(O) infinitely often w.p.1, then {Xn} visits N(O) infinitely often w.p.1. We can
suppose that N(0) G(0).

Owing to the stability assumption (Assumption 2.2), there is T1 < such that if
4(’) satisfies 6(4) and h(0) =x G(O), then 4(t) NG/2(O) for t=> T1. Let h>0,
and set T T + A. Define the set of paths

A,={b(.)C[0, T]’4,(0)G(0),ch(t)gN(0) for some tG[T1, T’I]}.

We claim that there is a cl > 0 such that (/ and A denote the closure and interior,
respectively, of the set A)

(3.1) inf S(4,(0), T,, 4’) c > 0.

If (3.1) does not hold, then there is a sequence {bi(. )}c A1 such that S(chi(O), T, chi)-*
0. By Assumption 2.1(iii), the set {4(0)} is precompact. We extract a subsequence
(again indexed by i) such that {4’i(" )} converges, and denote the limit by 4*(" ). The
lower semicontinuity of S(4(0), T, 4’) implies that S(th*(0), T, 4,*)=0, which
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implies that

6": 6(*), *(0) G(o).
Since by its definition fi-1 does not contain a solution of d)=/(&), we obtain a
contradiction.

Define the events

Eln={XnG(O),X(t+tn)C_N(O) for some t[T1, r]}.
We have En {X"(.) A1}. Assumptions 2.1 and 2.3, and (3.1) then imply that

and the Borel-Cantelli Lemma gives

P{E nl occurs infinitely often} O.

Define m(t)=min{n" tn<t}. Since an-->O, we conclude that the event {X,O(O),
Xm(T+,,,): N(0)} occurs only finitely often, w.p.1. Thus, if {Xn} visits G(O) infinitely
often, w.p.1, it must visit N(O) infinitely often w.p.1 for each 6 > 0.

Next let 61 >0 be such that N,(O)c A. By the stability assumption there is

61> 62>0 such that for any xGN62(O), if 4’(’) satisfies =/7(&) and 4(0)= x, then
oh(t) N,/2(O) for => 0. By the preceding argument, we can assume that

P{Xn N(O) infinitely often} 1.

Let T2<c be such that if 05(’) satisfies t7(4) and &(0)=x N2(0), then 4(t)
N2/2(0) for all t_>- T2. Define

A2 {4(" ) C[0, Tz]" 4(0) N(O) and there is
-< T2 such that 4(t) N,(O) and/or 4(T) N(0)}.

By an argument analogous to that used to get (3.1), there is a c2 > 0 such that

inf S(&(0), T2, &) c2 > 0.

Define EZn={X,N2(O) and there is t<-T2 such that X(t+t,)eN,(O) and/or
X(T2+ t,)- N2(0)}. Then En= {X"(. ) A2}.

Let {m} denote the return times of {X,} to N:(O) and note that the 6>0 can
be made arbitrarily small. Since m <00 for all k w.p.1, to prove the theorem it is
sufficient to show that lim P{Xm,+iZ N,(O), for some < oo} =0. But this holds if we
show that (w.p.1)

(3.2) lim P{Xn+i: N,(O), for some i’oo]X Na2(0)}-- 0.

We have the obvious inclusion (letting A denote the complement of the set A)

{Xn+ N,(0), for some < oo and Xn N2(0)}
{Xi N, (O) for some m (jT2 + t, < <= m (jT2 + T2 + t,

and/or Xm(;r2+r+,,,) N(O), for some 0<--j<oo, and Xn N(0)}
m(jy2q_ln (Em(iTa+t,,)) O{X N(0)}.

Oj< i<j

It follows that

P{Xn+e N,(O), for some i<olX, N(0)}
(3.3)

Em(jTz+t,,) f (E m(iT2+t,,) (-] {X Na(O)}
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Note that for any fixed j, inclusion in the conditioning set in the jth term in the sum
implies that X,(T2+t,,) N2(O). Thus (3.2) follows from (3.3), and Assumptions 2.1
and 2.3.

To obtain our "rate" estimate, we make a weak assumption on the form of
S(x, T, 4)).

ASSUMPTION 3.1. There exists a measurable function L(x, , s)>= 0 such that

(x, T, 4)
(d, d), s) ds if 4 is absolutely continuous and 4(0)= x,

otherwise

and that as a function of t, L(x, [3, t) is nondecreasing for each pair (x, fl).
This representation of S(x, T, 4)) holds for every example of a decreasing gain"

stochastic approximation process having a large deviation upper bound known to the
authors. For the processes studied in this paper, we will define L by (4.1) and (4.2) below.

THEOREM 3.2. Assume Assumptions 2.1, 2.2, 2.3, and 3.1 hold, and, in addition,
that given e > 0 there is N < oo such that ai/ aN <= 1 + e for all >= N >= N. Then, for G(O)
a neighborhood of 0

lim aN log P{X,t G(O), for some n>= N]]XN-O[<=8}
N

(3.4)
=<- inf S(b(0), t, b)----S*

d,( t)Z G( ),somet

uniformly in o, w.p.1.
Remark. The stability assumption and the lower semicontinuity of S(., T, imply

that the right side of (3.4) is strictly negative for small enough 6 > 0.

Proof Let T > 0 be fixed and T -> T, and let N(0) c G(0). Define that set of paths

A(T) ={4" Ich(O)-Ol<=6, and either b(t) G(O) for some t-< T,

or lch( t) Ol >= 6/2 for T <- <- T}.

We claim that for large enough T,

(3.5) inf q(4(0), T, b)_->*.
qA( T)

First note that the same proof as that of (3.1) implies there are c > 0 and T < o such
that if we define A ={&" &(0) G(0), &(T) N/(O)}, then

inf S((0), T, &) >_- c.

Let equal the integer part of (T-T)! T3. Then for the paths in A(T) that do not
escape from G(0) and for which I4(t) 01 => /2 for T-< -<_ T, we have

S(6(0), T, 4’) >= ic3,

which implies (3.5) (when T is large).
Now define the stopping times zN by ro=N, z+N =inf{n=>m(ty+T)-

X, N(0)} ^inf{n-> r/" X, G(0)} and the events

E u {X,N,., G(0) or try+, t,N >= T} a {X7(.) 6 A( T)}.

We use the following estimate that is derived in the same way as (3.3).
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P{X, : G(O), for some n >= NIXN N(0)}

(3.6)
<- P Eft
j=0

(EN)cfq{XNN(O)}} (w.p.1).

Fix hi > 0. By Assumption 2.1 and (3.5), an upper bound (w.p.1) to the right-hand
side of (3.6) is given by (for any h2=> 0)

Z exp-(*-hl)/ai=(exp-(*-hz)/aN) Z exp[-(*-hl)/ai+(*-hz)/aN]
i=N i=N

when N is large. Thus (3.4) follows if we prove that given h > 0 there is hi > 0, 3 <,
and M < so that for N _-> N,

(3.7) E exp[-(S*-h)/a,+(S*-h2)/aN] <-M.
i=N

To prove (3.7), take e (h2/8,*) A 1/2, and h e*/2. Pick N large enough so that
ai/aN <-- 1 + e for >- N >_- N. Then for each such that ai/aN >- 1 e we have

[-- S* + h + (S* h2) a,/aN ]/a, <= h + eS* h2(1 e ]/a, =< [- h2/4]/a.

On the other hand, if ai/aN < 1 e, we obtain the following bound for the exponent"

[hi- eS*]/ ai [-eS*/2]/ a.

Hence (3.7) follows from Assumption 2.3. [3

4. A proof showing that Assumption 2.1(ii)-(iv) holds for bounded noise. In this
section we make the following simplifying assumption.

ASSUMPTION 4.1. The sequence {IFol} is (almost surely) bounded by K <
The main result of this section is that under this condition, the proof that

Assumption 2.1 holds reduces to verifying the existence of the derivative at a 0 of
the function H(x, a, t) defined below. In 5 we will show the existence of this derivative
for a wide variety of processes.

For q5 C[0, T] let Daub(t) b(t + A) b(t). We define the function (x, a, t) by

H(x,a,t)
(4.1)

=lim lim lim ess sup aN log E[exp (a, DaXN(s))/aNIN, XN(s)=y]/A.
A-O N y-

Although the expression defining H appears formidable, we shall see in 5 that
it simplifies greatly for "typical" classes of models. The advantage of dealing with the
definition as stated is that it yields Theorem 4.1 below under minimal assumptions.

Remark on the use of lim rather than lim in (4.1). The use of lim is somewhat
equivalent to taking a worst case. For example, let bn(x, )= b(x)+ , where {G} is a
sequence of zero-mean mutually independent Gaussian random variables with covari-
ances {En}, and let an 1/n , where y (0, 1). Since

N+nIn log E exp a, u+12 (b(x)+) =(a, b(x))+ N+I

we can prove that the lim in (4.1) is just (a, b(x))+a’Za/2, where Z is the iim of
N+,

Zi in the sense of nonnegative definite matrices. In many problems, the(l/n) 2+1
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dynamics are stable enough so that if the noise terms are multiplied by some factor
(to take, say, Zn to E) we still have the required "stability" to get the desired w.p.1
convergence. Additional examples appear in 5.

Owing to its definition, the function H(x, a, t) enjoys the following properties"
(i) The convergence in (4.1) is uniform in to (almost surely);
(ii) H(x, , t) is convex in c and is upper semicontinuous in (x, t);
(iii) H(x, 0, t)= 0 for all pairs (x, t);
(iv) I(x, a, t)<-K[a[ for all pairs (x, t), where K is an upper bound to IF, I.
Define L(x, , t) as the Legendre transform (in a) of H(x, a, t)"

(4.2) L(x,/3, t) sup [(a,/3)- H(x, a, t)].

The properties of H mentioned above imply the following properties of L"
(v) L(x, fl, t) is convex in/3 and is lower semicontinuous in (x,/3, t);
(vi) L(x, fl, t) >- 0 for all (x,/3, t);
(vii) L(x,/3, t)-+ if l/3[ > K, for all pairs (x, t).

Here (ii) ==> (v), (iii)=>(vi), (iv) :=> (vii).
Finally, we define an "action functional" in terms of L by

(4.3) (x, T, b)= (b, (b, s) as

if 4,(0)= x and b is absolutely continuous, and S(x, T, b)--o otherwise.
Remark. We refer to S as an action functional, even though it yields only upper

bounds. In the sequel we will define an action functional simply by writing an equation
like (4.3), the "absolute continuity" and 4)(0)= x qualifications being understood.

THEOREM 4.1. Assume Assumption 4.1, and define H, L, and S by (4.1), (4.2), and
(4.3), respectively. Then parts (ii)-(iv) of Assumption 2.1 hold.

Remarks. With this theorem, it is clear that as far as bounded noise is concerned,
the main task associated with any specific model is verifying Assumption 2.1(i) for a
vector field b(. with the correct stability properties. We discuss this problem at length
in 5. The proof below will yield Assumption 2.1(iv) with the same o--algebra as that
used to define H in (4.1), which is in fact open to choice. However, we want to choos.e
fin to obtain the "best" upper bound (i.e., largest L, or smallest H). Usually the
"best" choice is quite obvious. We also have flexibility with regard to the gain sequence
{ai}. If the sequence {ailFil/{ti} is bounded (almost surely), then we obviously obtain
an upper bound with normalizing sequence {ti}, although with a possibly different
functional S.

Proof of (ii) and (iii). The nonnegativity of L implies that of S. The lower
semicontinuity of L and the lower bound L(x,/3, t)= for 1/31 > K are sufficient to
prove [14] that S(b(0), T, b) is lower semicontinuous in 4)(" ). Since S(b(0), T, 4’) <
implies I(t)l -< K almost surely, Ascoli’s Theorem yields the compactness.

(iv) Fix compact F c R r, T > 0, s <, and h > 0. Let 0: [0, T] - R be continuous,
and for the remainder of the proof let y(. be a Lipschitz continuous function (with
constant K) with y(0) in F.

For y > 0, define

H(x, a, t)= sup sup H(y, a, s).
Ix-yl---v It-sl<=v

Then v is convex in a and upper semicontinuous in (x, t), and V(x, a, t) $ (x, a, t)
as 3’ --> 0. Let Lv denote the Legendre transform of He.
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For each N, set

(4.4)

G(O,y)=

Due to the definition of H,

m(tN+T)

N
(O(ti- tN), y(ti+l-- tn)-- y(ti-- tn))

m(tN+T)

N
HV(y(ti tN), O(ti-- tn), ti-- tn)ai.

fo
T folim G(O, y)>-_ (O(t), f(t)) dt- IYI2V(y(t), O(t), t) dt=- G2(O, y)

N->oo

uniformly in y(. ). For functio’ns y(. which are not Lipschitz with constant K, we set
G2v(O, y)= +. Note that G2v(O, y) is 1.s.c. in y(. for each 0(. ).

Let x F, and let e > 0 be given. By the definition (4.1), for any compact set F’
there is " > 0 such that A _<_ -, N ->_ / -, lY x[ -<_ -, and It s <_- " imply that

E[exp (a, DAxn (s))/an [ofn, XN (S) y] _--< exp (V(x, a, t) + e)A/an

(almost surely in to), whenever x F’. If we choose F’ to contain the range of XN (.)
on the interval [0, T], then

T/A--1

anlogE exp E ((a, Xn(iA+A)-XN(iA))
i=0

--Iv(Xn(iA), a, iA)A)/aN N, Xn=X] <--_ Te.

By using the continuity of 0(. and the fact that e can be made arbitrarily small, we
get

(4.5) li--- an log E[exp Gv(0, Xn )/an IN, Xn x] =< 0
N

uniformly in to (almost surely) and x F. Let closed A be given. Then, by Chebyshev’s
inequality, for each 0(. ) C([0, t]; R r)

P{Xn(’)A[n, Xn=x}

[ -inf G(O, 4,))/a o, X-x].-<E exp(G(0, Xn)
,a

We also have

li---[-infN46A
G(O, b)]--<--infA G2y(0’ t).

Combining these facts, we obtain

(4.6) lim an log P{Xn(’)Aln, Xn=x}<--inf G2v(O,
N

uniformly in to almost surely and x 6 F, for each y > 0.
Define (the set (x, T, s) is defined in Assumption 2.1(iv))

s*(y) inf sup G (0, 4’).
dp Nh((x,T,s)) O C([O,T];R")

We shall assume that for each 3’ > 0 that s*(y)< . The case s*(3,)= o requires only
obvious modifications. Let 6>0 be given. For any 4(’) Nh((x, T, s)) there is
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0(4)(’) such that G(0(b), 4) => s*(3,)- 6. The 1.s.c. of G(O, .) implies that there is
a neighborhood N(6) of 4(" (with radius less than h/2) such that for all q,(. ) N(b),
G(0(b), q,)-> s*(3’)-2& Choose bi(’), i= 1,...,I, such that the N(bi) cover the
compact set given by {b(.):cb(O)=x,[(b(t)[<=K, t<-_T, xF}. Let I(x,s)-
{i" bi(’) Nh((x, T, s))}. By (4.6) and the comments above in this paragraph,

lim aN log P{XN(’)C-Nh((x, T,s))IN, XN=x}
N

_<-li-- aN log E P{XN(’)e N(4,)l,X=x}
N il(x,s)

<=-s*(3")+28

(uniformly in x e F and in w almost surely). Since the inequality between the second
and third lines holds if only one term appeared in the sum, it holds as stated. If we
show that lim inf_o s*(3,) --> s, then (since 6 > 0 is arbitrary) we have proved Assump-
tion 2.1 (iv).

Now fix 4(’), and consider supoG(O, 4). Assume (4, c, t) dt<O. (The
case (ch,/k, t) dt c is handled similarly.) Given n <, we can find a measurable
function 0"(. such that

fo fo
r

[(O(t),b(t))-IV(c(t),O(t),t)]dt >-_ sup[(a,b(t))-IV(dp(t),a,t)]dt-1/n

’(4(, (, -/n.

Next choose a sequence of continuous functions 0(.) such that 0- 0 almost
everywhere. By dominated convergence

lim G’(O’/, )>- ’(d(t), (t), t) dt-1/n.

Therefore,

s*(3’) inf (c/)(t), (h(t), t) dr.
ch N di(x, T,s

By extracting from a minimizing sequence 4r(.) a subsequence such that v(.)
converges weakly and applying Fatou’s lemma, we obtain

lim inf s*(3’) _>- inf S(x, T, oh) >- s.
vO dE Nj,((x,T,s))

Remark. Suppose that in the definition of H (given by (4.1)) we restrict the ess sup
to to u, where limuaN log P(I)\N) =-oz. In this case the proof of Theorem 4.1
will yield parts (ii), (iii), and (iv) of Assumption 2.1e, and not Assumption 2.1. However,
as remarked below Assumption 2.1, this is sufficient for the convergence proof.

With this theorem we have proved (for the case of bounded {F,}) that for H, L,
and S defined through (4.1), (4.2), and (4.3), respectively, we obtain Assumption 2.1
parts (ii), (iii), and (iv), respectively. The only part of Assumption 2.1 not shown is
the existence of b(x) such that L(x,/3, t) 0 if and only if/3 b(x). We take this matter
up in the next section, where we consider this problem in the context of several specific
system models. We show this to be true if and only if H(x, O, t) exists, in which case
we identify b(x) as the "asymptotic mean drift" at the point x.
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5. On verifying Assumption 2.1(i) for bounded noise. In this section we consider
the problem of verifying the only part of Assumption 2.1 not covered by Theorem 4.1.
While the proof of Theorem 4.1 made no use of the properties of the noise term {Fn}
(aside from boundedness), its conclusions may well be vacuous if we do not prove
something similar to Assumption 2.1(i) as well. Suppose, for example, that we have
H(x, a, t) K la for all (x, t). In this case we obtain

(5.1) (x,/3, t) { O’

which implies S(b(0), T, b) if and only if b is Lipschitz with constant K, in which
case it is also true that S(&(0), T, b)= 0. But, then Assumption 2.1(iv) is nothing more
than the trivial statement that xN(" is Lipschitz with constant K w.p.1. For Assump-
tion 2.1 (iv) to be truly meaningful, we must at least have (x,/3, t) > 0 for some points
(x, fl, t) with Ifll < K. The proof of such a fact will clearly depend on the model chosen
for {Fn}. In this section we consider a number of interesting models, and in fact prove
that Assumption 2.1(i) holds. As a preliminary to the results on specific models, we
present two general theorems that are useful in many cases. The first theorem spells
out the relationships between the existence of a derivative (in a) of H(x, , t) at a 0,
the existence of a unique /3 such that L(x, fl, t)=0, and the "mean asymptotic"
dynamics of xN( ), given XN X.

THEOREM .l. Define H(x, , t) and L(x, fl, t) by (4.1) and (4.2), and assume that
/-(x, , t) is differentiable in a at 0 for all (x, t). Then IY-I (x, 0, t) is independent of
t, and L(x, fi, t) 0 if and only if fl H x, 0, ). Furthermore,

(5.2) (x,O,t)=lim lim limE[DXN(s)lN, XN(s)=y]/A (a.s.).
A-->0 N y

Remarks..Recall that Dx(s)= x(s+ A)-x(s). We use/(x) to denote (x, 0, t),
when it exists. The theorem provides a simple means of verifying Assumption 2.1(i).
This is clearly consistent with our previous reference to b(x) as the "mean dynamics."

Proof We make use of the following facts regarding convex functions. The proof
of (i) is straightforward, while (ii) is Theorem 24.5 of [32].

(i) Let {f(. )} be convex on R and satisfy f(0) =0. Let Of(a) denote the set of
subdifferentials of a given convex function f(.) at a. Then for f(.) defined by
f(a)=supif(a), Of(O) is the closed convex hull of i Of(O).

(ii) Let {f(. )} be a sequence of convex functions and suppose that f(a)-f(a)
in a neighborhood of a--0. Let N(y) denote the open ball of radius e around y.
Then given e >0 there is i such that for >- i, Of(O)c N(Of(O)).

We assume existence of the derivative of H(x, a, t) in a at a 0.
Fix e > 0. By using the two facts above and the definition of lim, we can obtain

o>0, No < o, and 6 > 0 such that for all 0< A < Ao, N>-No, y N(x),ands N(t),

0
O---(au log E[exp(a, D/’XU(s))/au[u, XU(s)= y]/A)[=o N(H(x, 0, t)) (a.s.).

Using properties of conditional expectation to compute the derivative we obtain (for
all such , etc.)

E[DXU(s)[u, XU(s)=y]/ N(IYt(x,O, t)) (a.s.).

By letting A 0, N , and 6- 0 through a subsequence we obtain (5.2). Owing
to the way we define Xu (.) as a shifted version of X(. ), the right-hand side of (5.2)
must be independent of (almost surely). Hence so is H(x, 0, t). Finally, we note
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that since b(x) is the unique subdifferential of H(x,., t) at a 0, H(x, a, t) -(a, fl) >-- 0
for all a if and only if fi b(x). Consequently, L(x,, t)=0 if and only if /3
b(x).

We consider the following assumption on the sequence {an}.
ASSUMPTION 5.1.

It,,-t,,,lo am

Define KN(t)=am(,+t)/aN, and K(t)=limN_KN(t). For given 8>0 there are
c(;) > 0 and N(6) < suchthat N>-_ N(3)andlt-sl<--_c(6)imply]KN(t)-KN(S)]<=6.
Thus K (.) is continuous, with 0 < K (t) < for 0 =< < .

Examples Let a,=l/n. Then m(tn+s)/n(exps)l as n-, and KN(s)-
exp -s. Let an 1/n , y(0, 1). Then m(t,+s)/(n+snr)- 1 as n- and KN(S)- 1.
if a, c/log n, then m(tn + s)/(n + s) 1 and KN(s) 1. In general, if a, is nonincreas-
ing, then K (t) _-< 1.

Even if not explicitly stated, Assumptions 4.1 and 5.1 are assumed for the rest
of5.

The next theorem shows how to simplify the calculation of H(x, a, t) under
Assumption 5.1 by justifying the replacement of {ai} by an appropriate constant
sequence (for the purposes of calculating H).

THEOREM 5.2. Suppose that Assumptions 4.1 and 5.1 hold. Then

(x, a, t) <_- K-I(t) lim lim lim ess sup
A0 N y

( m(tN+S+A)
(5.3) log E exp aK(t), E Fi

m(tN+s)
OrS, X,,(tN+s) Y]/
(m(trv + s + A)- m(tN + s)).

Proof Let 8 > 0 be given. If A is small and N is large, then Assumptions 4.1 and
5.1 imply

E exp a, aiFi aN ON, Xm(tN+s)--y
m(tN+s)

Z F au YN, Xm(tN+S YE xp m(tm+s
re(tin+s)

exp 8(m(ts +s+A)-- m(t +s)).

Hence

H(x, a, t) <-_ lim lim lim ess sup aN log E
AO Noo y-x

S--t

exp aa.,(t,,,,+s), Fi au
m(tN+S)

"N, Xm(tN+S)"-y]/A.
By differentiating

(5.4) logE[exp(aam(,N+,), m(tN+s+A) )/f aN
m(tN+s)
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with respect to am(tn+s), we see that it is convex and zero if am(tn+s) --O. Given a convex
function H(a) such that H(0)=0, the inequality H(sa’)<=sH(a ’) is valid for all
0-<s<-l, and all a’. The definition of K(.) implies the existence of CN(A) such that
cn(A) 0 if N oe and then A 0, and such that am(,+.)/aN <= K(s)+ cN(A). Combin-
ing these facts we obtain the upper bound

(5.4a)

am(tN+s)
au(K(s)+cs(A))

log E [exp (a,
for (5.4). Since

and

m(tN+S+A)., [K(s)+ cn(A)]F,
rn( tN+S)

am(,+.)(m(tN+S+A)-m(tN+S))/A

K(s)+ cN(A)-> K(t)

as s - t, N oe, and A 0, we are done. V1

Remarks. We have used the fact that Assumption 5.1 implies K)l(t) is bounded
from above uniformly in N for N large. Suppose all that is known about {ai} is that
for large the sequence is nonincreasing. If we define

a, a, v (c/log i), F, a,Fi/a

where ci tends monotonically to zero in a "regular" way (e.g., ci 1/log i), then {fii}
satisfies Assumption 5.1, with K(t)<= 1. If Assumption 2.3 holds for {ai}, then it holds
for {fii} as well. Hence we can apply Theorems 3.1 and 3.2 to analyze the process
Xi+l Xi + 8iFi. Note that the only difference is that we are now using interpolation
intervals that might be larger than the original {ai}. Application of Theorem 5.2 yields
(5.3) with F replaced by Fi aiFi/gli. If we can choose {ii} SO that {ai/li} is nonincreas-
ing, we can exploit convexity to obtain (5.3) as written (note, however, that H(x, a, t)
is now a large deviation functional for the process defined in terms of {fii} and {Fi},
and not {ai} and {F/}).

We now consider a number of concrete examples to show that Theorems 5.1 and
5.2 can be quite convenient to use.

5.1. Random vector fields.
5.1.a. The i.i.d, case. We consider a family of probability measures parametrized

by x r, denoted by xx. We assume the/Xx are weakly continuous in x. The bounded-
ness assumption implies that for every x the support of/xx is contained in NK (x). We
then consider a sequence of i.i.d, random vector fields {bn(x)} such that P{bn(x) A}
txx(A), and set Fn=bn(Xn). Define H(x,a)=logEexp(a, bn(x)) and on
or(Xi, iN n). Note that the weak continuity of/x, implies that H(.,. is continuous.
For the constant an a case, and under stronger conditions on the Zx, [27] contains
a development of both the upper and lower large deviations bounds. It follows from
our method that the same upper bound can be obtained more easily and under weaker
conditions. (See also Example 7.1.)

THEOREM 5.3. Under Assumptions 4.1 and 5.1, H(x, a, t) (defined through (4.1))
is bounded above by K-l(t)H(x,K(t)a), and Assumption 2.1(i) holds with /(x)=
Ebn(x) fltz(dfl).
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Proof By Theorem 5.2

(x, c, t)=< K-l(t) lim lim lim
A-0 N-o y

s---t

m( lN-I--sq-A

m(tN+S) Ib,(X,)

(m(tN + S+ A)-- m(tN + S)).

Using the fact that IX,-yl<=KA (almost surely) if m(tu+S)<--n<--_m(tu+S+A) and
X,.,N+s)-y, and the continuity of H(x, ), we can use the properties of conditional
expectation to compute

m(tN+t+A)
(x, c, t)<-_ K-(t)lim lim

AO Nooa m(tN_t_t)
(.)

[H(x, K(t)a)+ On(A)]/(m(tN +t+A)--m(tu + t))

where On(A)- 0 as A--> 0, uniformly in n. The conclusion of the theorem obviously
follows from this. l-1

5.1.b. The non-i.i.d, case. We consider the generalization of Section 5.1.a to the
case where the {hi(’)} are independent, but not identically distributed. We assume
that the limit of

u+. b(x)
N+I n

exists as N and n tend to infinity (for each x). Denote the limit by b(x). We also
assume that the measures induced by the hi(x) are weakly continuous in x, uniformly
in i. This implies that b(x) is continuous.

Define

N+n

H(x,a)=lim E logEexp(a,b(x)/n.
N,n N+I

Then the assumptions above imply that H(.,. is continuous and that H (x, 0) exists,
which by Theorem 5.1 must equal b(x). The proof of Theorem 5.3 yields the following.

THEOREM 5.4. Under Assumptions 4.1 and 5.1, H(x, ce, t) is bounded above by
K-(t)H(x, K (t) c ), and Assumption 2.1 (i) holds with (x) as above.

5.2. Exogenous noise. In this section we take as our model F b(X, ), where
the process {} is exogenous and takes values in a set M, i.e., for any n and Borel set
AM,

P{Al(X,i_),i<-n}=P{Al_,i<=n} (a.s.).

In this section, we always assume that b(., c) is continuous, uniformly in M.

5.2.a. Markov noise. Suppose that {c,} is a Markov chain, with state space M,
and with one-step transition function P(sc, ). Under a uniform (in the initial condition)
recurrence condition on the process {}, the following facts are proved in [24]. Let
C(M) denote the continuous real-valued functions on M and define an operator
mapping C(M)- C(M) by

(5.6) /3(x, ce)(f)(c)= f exp (ce, b(x, O))f(O)P(, dO).
M
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The eigenvalue A(x, c) of P(x, o) with the maximum modulus is real, simple, and
larger than unity for a #0. If we define H(x, c) log A(x, a), then H(x, o) is analytic
in a, and

(5.7) H(x’ a) limllg Ee exp (’n
b(x, ,)),

uniformly in =o. In this case, /(x)= b(x, )tz(d), where /z(.) is the unique
invariant measure of {,}.

The conclusion of Theorem 5.4 holds in this case as well, with a similar proof
that we now outline. Using the continuity properties of b(., ) and the bound on
IXn--y[ for m(tN+s)<=n<--_m(tN+S+A), and the fact that the convergence in (5.7) is
uniform in o, we obtain (5.5). The conclusion follows from this.

5.2.b. Stationary m-dependent noise. We consider exogenous noise where {:i} is
stationary and m-dependent, i.e., for any n, {:i, =< n} and {:, > n + m} are mutually
independent. We set (for on o-(:, _-< n))

H(x, a)= li--- ess sup
l
log E exp

/

We first prove that H(x,a) is "smooth" in a at a=0. Define Dq(x,a)=
E expZ-1 (a, b(x, i)) and Hq(x, a)=(log Dq(x, a))/(q+m). By the m-dependent
property and the stationarity,

1 kq+km
logE exp (a,b(x,))
kq + km

( k lq+q-1 )--<log [exp I,lKkm] Y E,,, exp Z (a, b(x, ))
kq + km l= lq

where q=Km/(q+m)-->O as q-->cx3. Thus, H(x,a)<:Hq(x,a)+6qlOl. At a=0, the
gradient of Hq(x, a) equals 17, 2 ql hi(x, i)/(q+ m), which converges to a limit/(x) as
q-c. Since the convex (in c) function H(x, a) is bounded above by the convex
functions Hq(x, a)+ 6qla[, and since H(x, O)= Hq(x, 0)-0, the set of subdifferentials
of H(x,.) at a =0 is contained in the set of subdifferentials of Hq(X,.)+ (ql "1 for
every q. This latter set converges to the point b(x) as q-. Hence H(x,. has b(x)
as its unique subdifferential at a =0, which implies that Ha(x, 0) exists and equals b(x).

Using these facts and the same argument as that in 5.2.a, we again obtain the
conclusion of Theorem 5.4.

5.3. State-dependent noise. To model state-dependency effects, we consider a
model of the form Fn b,(Xn, ), such that the pair (Xn, :n-1) is Markovian. We
assume the following:

(1) {hi(.,. )} is a sequence of i.i.d, random vector fields;
(2) There is a transition kernel px(:, .) such that

P{sn " [n-1-- , Xn X, i--1, Xi, < n} px(, ).

This approach to modeling state-dependent effects includes some of the models
of [28], [29], and [31] that restrict {b} to the case of a deterministic vector field. An
extensive study of lower and upper large deviations bounds for a more restricted
version of such models is in [20].
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In addition to the "true" noise process, we will make use of a fixed-x Markov
process {:’} that is simply the process generated by the kernel px(.,. ).

Let px,,(, d4,) denote the n-step transition kernel of {s:7}. Then we have the
following basic assumptions on the model.

(i) There exist no < oo and 6 > 0 (which may depend on x) such that for all Borel
AaM,

inf p",,o(:, A) -> 6 sup PX’"o(:, a).
M M

(ii) E 4 exp (a, b,(x, 4,))PX(,5, dq,) is continuous in x, uniformly in s.
Remarks. Assumption (i) implies that there is a uniform (in s) rate at which the

measures induced by :7 converge to the invariant measure, given :. There are
obviously many sets of sufficient conditions that yield (ii). It is also possible (though
notationally cumbersome) to consider a weaker form of (ii) that requires the existence
of n < oo such that

E f I I exp (a’ b"(x’ /))PX(’ dl)px’(l’ d2) PX"("’

is continuous in (x0,""", x,), uniformly in : M.
The basic method for proving that an analogue of Theorem 5.4 holds for this

model is to first show that something like (5.7) holds for the fixed-x process, and to
then use the continuity properties assumed in (ii) above. The analogue of (5.6) for
this case will be

a)(f)(,5) E / exp (a, hi(x, q,))f(q)px(, dq,).
M

Under the above assumptions, the results in [24] apply here as well, and we find that
the limit

(5.8) H(x, a)= lim log E exp (a, bi(X, ))
fl

exists uniformly in , where H(x, a) is continuous in x and analytic in a. The
assumptions also imply that for each x, the process {} has a unique invariant measure
(. ), and that

b(x) H(x, O)= E b(x, ) (d).

Proofof eorem 5.4 or thepresent ease). By (i) and (ii) above, (5.8) holds [24],
where once again (see 5.2) H(x, ) is defined as the log of an eigenvalue of the
operator P(x, ). To simplify the notation, we set n0 1. The general proof is very
similar. Let F be a fixed compact set. Using Theorem 5.2 (as was done in Theorem
5.3), it is sufficient to restrict our attention to estimates on terms of the form (5.9)
below, where [X- y[ for all 1i n. The transition kernel used to get the in
b,(X,, ,) will be pX,,(,_,. ). Then for = o,

(5.9)
Ee exp c, Z bi(Xi, ,) Ee[exp (c, b,(X,, s:,))] n-1, Xn]

i=1

b,(X,, ,)
i=1
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Under (ii) above, there is 7(6)>0 such that y(3)-0 as 6-0, and such that the
last bracketed terms are bounded above by

(5.10) exp (a, b,,(y, t.[t))PY(n_l, dO) exp

Using (5.10) in (5.9) and continuing to iterate backward to approximate all the X/by
y plus an "error," we obtain the upper bound to (5.9) of

Eexp[(’bi(y’’)l-l-nT()3"l
The proof is now essentially the same as that of Theorem 5.3 save that we use (5.8).
The or-algebra here should be fin cr(Xi, i-1, <= n).

5.4. A level-2 and level-3 large deviation approach. We have seen that when the
state process {Xn} is Markov, or when it is one component of a Markov process (such
as our "state-dependent noise" process {Xn, (n-l}) satisfying certain "uniformly recur-
rent" conditions, it is possible to prove the differentiability of H(x, c, t) for a wide
class of such processes by using analytical techniques and the characterization of the
time-independent (constant gain) version H(x, a) as the log of the eigenvalue of largest
modulus of an operator associated to the process (as in (5.6)). We again refer the
reader to [24] for details on how this approach may be used in a general setting.
However, for many of the processes arising in the study of stochastic systems, the
assumptions required by this approach do not hold. As a very common example, we
may consider the ARMA model to be discussed below.

In this section, we outline a method for proving the differentiability of H(x, a)
at a--0 (which, as we have seen, will imply that of H(x, a, t)) that is based on
well-known "level 2" and "level 3" large deviations results and that is general enough
to cover many of the non-Markov processes encountered in recursive algorithms.

In applications, we would not want to be concerned with the abstract level of
results in this section. But, they make it clear that the c-differentiability assumption
is not restrictive and can be treated in many different ways. We work only with the
exogenous noise case and F b(X, ) and with b(.,.) bounded for simplicity of
exposition. Define the sample occupation measure (over the Borel sets F) by

N

and the space as the set of probability measures on R r, endowed with the topology
of weak convergence. The LN(’, to) are in . Assume the following large deviations
estimate (x is fixed throughout):

ASSUMPTION 5.2. There is a lower-semicontinuous nonnegative functional Ix on
such that the sets {y:/(y)-<_s} are compact for s<oe, and for Borel AcE

and each to (w.p.1)

(5.11) lim --1 log P%{LN A} <-_ -inf/(v).
N N A

Sufficient conditions for this assumption and Assumption 5.3 below are contained
in many places (e.g., [22], [23]).
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ASSUMPTION 5.3. There is a unique measure Tx such that/(3x) 0.
It follows that LN(’, oo) converges (w.p.1) to 3x(" ).
Remark Instead of Assumption 5.2 we can consider a weaker version (that we

call Assumption 5..2e). Under this assumption we require that there exist 12N c 12 such
that limNaN log P(12\tqu)=-oe and such that (5.11) holds uniformly for WON.
Under Assumptions 5.2 and 5.3, the arguments below and Theorem 4.1 yield Assump-
tion 2.1 (see the remark following the proof of Theorem 4.1).

We now show that Assumptions 5.2 and 5.3 imply the desired a-differentiability.
Then an example will be given, and the approach discussed.

By Varadhan’s Theorem on the asymptotic evaluation of integrals [21] and the
boundedness and continuity of b(x,. ), the following inequality holds (w.p.1):

lim--1 log E exp a, 2 b(x, () Nsup (a, y)v(dy)- L(v)
N N

(5.2)
H*(x,).

Define H(x, a) as the left-hand side of (5.12). Obviously, H(x, a) H*(x, a). Since
both functions are convex and H(x, 0)= H*(x, 0)=0, H(x, a) is a-differentiable at

0 if H*(x, a) is.
Next note that

(5.13)

where

H*(x,a)=sup sup [I(a,y)v(dy)-I,,(v)]
3 {veM’Iyv(dy)=}

sup [(., )--*(X, )]

L*(x, fl) inf Ix(v).

Since H*(x, 0)= 0,/3* is a subditterential of H*(x, c) at a 0 if and only if

(5.14) g*(x, a)-(a,/3")>_-0 for all a.

But (5.14) holds if and only if L*(x,/3*) =0 since H* is the Legendre transform of
L*. Since H*(x,.) is convex, it is ditterentiable at c =0 if and only if the set of
subditterentials at c 0 contains only one element. By Assumption 5.3,/3* I YOx(dy)
is the unique value of/3 for which L*(x,/3)=0. Thus *=y,(dy) is the unique
subditterential, and the ce-ditterentiability is proved. Note that/3*= b(x), as defined
in Theorem 5.1.

Discussion. We have phrased our requirement in terms of the differentiability of
H(x, c) at a 0, but as shown above this is obviously equivalent to the uniqueness of
the * satisfying L(x,/3*) =0. The reason for our choice is that in most Of the work
on large deviations for dynamical systems [12], as well as the work generalizing
Cramer’s original paper [16], [24], [25], the ditterentiability of H(x, a) in a is taken
as a fundamental assumption. As a consequence, this was the condition that was
typically verified for a given noise process.

We illustrate the method with an example.
Example. Suppose that b(x,. is continuous, and that {so,} is a stationary ARMA

process with representation

Aose. +A ._ +. .+ Ad, n-d, BoO. + BYn- +" "+ BdeOn-de
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where {g,i} is a sequence of zero mean, bounded, i.i.d, random variables. For simplicity,
we assume both :i and q, take values in R r. It is also assumed that the roots of
det (Ao+ Als +" "+ Ad, s d’) lie outside of the closed unit disc.

Define S (Rr) (the space of bounded infinite sequences {q,-oo< i< oo} with
values in Rr), and consider the mapping F:S-+ S defined by (F()j denotes the jth
component)

F({s,})j b(x, pj)

where {s} and {pi} are related by

Aopn +" + Ad, Pn-d, Bos, +" + Bd2Sn-d2, -< n <.

This relation defines {Pn} uniquely in terms of {s,}. We can metrize S in such a way
that F is continuous (and in fact uniformly continuous on a subset A c S such that
{}cA (w.p.1)). (For example, for 0<a<l, use the metric d({sj},{sj})=
Yoo a I.Jl min { 1, Isj sSI}.) It is then relatively straightforward to show that Assumptions
5.2 and 5.3 follow from the (so-called "level 3") large deviations results for the process
{q,} that are given in [23], under a suitable application of the "contraction principle"
(a "continuous mapping" technique) [21, 2]. We omit all details here, since they
would take us too far afield, and the techniques are known in large deviations theory.

In general, if a given process :} can be represented as a continuous transformation
of a simpler process {4’} for which the appropriate "level 3" results exist, then we
may obtain Assumptions 5.2 and 5.3 via the "contraction principle."

Although this approach may seem abstract, it, in fact, easily yields the c-differentia-
bility for a wide variety of the noise processes of interest in stochastic systems theory,
which often do have such a representation.

6. The constrained algorithm. In this section we show that Assumption 2.1 holds
for the "constrained" (or "projected") version of any of the models considered in 5.

Let G be a bounded open set contained in Er. We define the set of exterior normals
at xeOG by

n(x) {n’ e r. ]n’] 1, ::lc > 0 such that (x y, n’} + (1/2c)[x y[2 => 0 for y e G}.

It follows that n’ e n(x) if and only if there is c > 0 such that N.(x + cn’) (q G . We
make the following assumptions on the set G.

ASSUMPTION 6.1. (1) The boundary of G is the union of a countable number of
smooth (C2) surfaces.

(2) G satisfies a "uniform exterior sphere condition"" there is Co> 0 such that for
all x e OG and all n’ e n(x), No(X + con’) (’1G (.

(3) There are 6>0 and re(0, 1] such that given any xeOG there is a unit vector
l(x) such that (l(x), n")>= r for all n"e {n’ e n(y)" y e Na(x) fhOG}.

Remarks. Part (2) is satisfied if G is convex, or if G has a piecewise smooth
boundary with "convex corners." Part (3) is Condition (B) of [17], and is implied by
a "uniform interior cone condition" (see [17]). In particular, (3) is satisfied if G is
convex and bounded, with nonempty interior.

It is well known, under these conditions on G, that to each point x in the
co-neighborhood of G we may associate a unique closest point rr(x) in G. Further-
more, if x G, then there is y=>0 and n’e n(rr(x)) such that x- rr(x) yn’.

All the models of 5 fall into either of two classes. For those processes in the
first class we have F, b, (Xn, ,), where { b, (., )} is a sequence of independent vector
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fields, and the process {sen} is exogenous. Recall that by "exogenous," we mean that
for all Borel A and integer n,

P{,, a[ xi, i--1, <= n}= P{ 6 al i_l, <= n}.

In this case the "projected" version of (2.1) is defined by

(6.1) X,+, r(X, + a,b,(X,, ,5,)).

Alternatively, we have considered models such that the {b, (., )} is as above but where
the pair (X,, so,_1) is Markov, with the distribution of , given X, x and ,-1 s
specified by the kernel px(sc ). We define the constrained version of this type of model
by defining X,+I via (6.1), and then generating sc,+ according to the kernal Px,,+,(,5,,. ).

With the "projected" version defined in this way, we use X(.) and xN(") to
denote the usual piecewise linearly interpolated and shifted versions. For each N we
also define an "unprojected" version:

n--1

(6.2) 2 Y aib (Xi, + Xv, n >= N.
N

Note that {Xi, i-> N} can be constructed from {’/, i-> N}. We let N(. denote the
piecewise linear interpolated version of this process that starts at XN at time 0,
and uses interpolation intervals {a, i_-> N}.

The method of proving that the appropriate analogue of Assumption 2.1 holds
for xN( involves first proving a large deviation upper bound for N(" ), and then
"transferring" it to X N( ). Large deviations upper bounds are obtainable from 4
and 5, since IX,+l-Xl-O(a,)-I; i+1 __/N]. To "transfer" such a bound to the
constrained algorithm, an appropriate "continuous mapping" between .N(.) and
XN(. is needed. This requires some additional definitions, but they are only inter-
mediaries in the proof.

We next define a collection of mappings {C/} on sequences {xj}, xj r. For each
N, and i>_- N, we define the function C (.) and the vectors & recursively by gN XN
C({x}), and for >= N, g+l C Ni+l({xj}) ,’i"1"3 (i---(Xi+l-Xi)). With this definition,
the sequence {X} defined by (6.2) can also be written as

)7[ + f( u + aib, C iN { fr[ff j= N,... i}),

The maps CN are obviously continuous in the following sense. Given any sequence
{xi, >= N} such that ]xi+ x[ <= Co/2 for all => N, we have (for i2 > i)

i2--1
N N(6.3) [C,l ({xj})- C Y Ixj+, xji2 ({Xj})[ B

where B is the Lipschitz constant of zr(. on the Co/2-neighborhood of G.
The appropriate definition of H(x, a, t) for this case is

H(x, a, t) lim lim lim ess sup aN
A-O N y

S-’t

log E[exp(a, Daf(N(s))/aNlN, Xm(,N+s)=y]/A.

Note that y in this expression is the value the "true" projected version takes at time
m(tN+S).

Important Remark. For any of the models of 5 the function H so defined is the
same as that of the corresponding "unprojected" version.
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This fact follows from the proofs for the "unprojected" versions, simply by making
use of (6.3). In particular, since H,(x, O, t) exists for the "unprojected" version of
each of the models of 5, it exists here as well. We define L(x, , t) as usual.

Before stating the theorem we must define the appropriate L and S functionals
for the constrained problem. For x c G, and v c r, we set

(6.4) r(x, v)= lim [(x + Av)-x]/A.
AS0

Then [26, Lemma 4.6] rr(x, v) equals v if x c Go (the interior of G) or if x c OG and
supernal,) (y, v)< 0 (i.e., where v points inward). In general, it equals v-(v, y*)y* if
x c OG, supnx)(y, v)_-> 0 and y* is a maximizer.

We now define the "constrained" L-functional by

(6.5) LG(x,/3, t)= inf L(x, v, t).
v’w(x,v)=

For x G or if the infimizing set is empty, set L(x,/3, t)= +. Then L(x, , t)=
(x,/3, t) if x c Go or if x cOG and (y,/3)<0 for all y c n(x) (i.e., /3 points to the
interior of G). If x cOG and there is y c n(x) such that (y,/3)>0 (/3 points "out" of
G), then L(x,/3, t)=. The interesting case is when sup,, (y,/3) =0; i.e.,/3 points
"along the boundary." In this case, there is a true (nontrivial) minimization. Since
L(x, , t) is 1.s.c. in/3 and L(x, , t)-0 o as I/3]-0 , the infima is attained. Define

(6.6) S-G(X, T, b)= (ck(s), (b(s), s) ds,

and the ODE for the projected mean dynamics

(6.7) =(x,b(x))
where b(. is defined by H,(x, O, t).

One of the main difficulties as well as points of interest for the constrained
algorithm is that in many applications the escape of {X,} from a neighborhood of a
stable point of (6.7) will be essentially along the boundary, and when such neighbor-
hoods are entered from the outside it is often essentially along the boundary as well.

THEOREM 6.1. Consider the "projected" form (6.1) of any of the models of 5.
Then under Assumption 6.1 on the set G, Assumption 2.1 holds, but with b(x) replaced
by r(x, b(x)), and S(x, T, d) replaced by SG(x, T,

It follows that the essential large deviation assumption required by Theorems 3.1
and 3.2 is as easy to obtain for the "projected" algorithm as for the "unprojected"
algorithm, under Assumption 6.1.

Proof Let J be the set of Lipschitz continuous (constant K) paths starting in G.
For y(.)cJ, define yU=y(ti--ts) for i>-N, and zi=CiN({y,j>-S}). Let zN(.)
denote the usual piecewise linear interpolation of {zN}, -> N, with interpolation
intervals {ai, >- N}. We make the following claim. Considered as functions on [0, T],
Nz (’)-0 z(’) uniformly, where

(6.8) r(z, 3), z(0) y(0).

We denote this relationship by z(.)= C(y(.)). Furthermore, this convergence is
uniform in y(. )c J, and C(y(. )) is continuous in y(. )c J.

Before proving this claim, we give the proof of the theorem. When we assume the
claim, the same proof as that of Theorem 4.1 (part (iv)) yields that ’(. satisfies a
large deviation upper bound (in the sense of Assumption 2.1(iv)), with functional

*(x, T, 4)= (C(ch)(s), c(s), s) ds.
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Using the claim again, we obtain

sup [XN(t)--C(f(N(’))(t)[->O
t[0,T]

uniformly, w.p.1. Since C(.) is continuous (see the comment concerning this in the
proof of the claim below), XN (.) satisfies an upper bound (in the sense of Assumption
2.1(iv)) by the Proof of Theorem 3.3.1 [15], with functional

S(x, t, b)= inf S*(x, T, ).. ,/,= c(,)

Due to our Assumption 6.1 on G, this S is exactly the same as defined by (6.5) and
(6.6) [26, Lemma 4.7].

The remaining properties given by Assumption 2.1 follow easily from the definition
of S. Part (i) is obvious, as is (ii) due to the definition of L(x, , s), while (iii) is
immediate from the continuity of C(. and the compactness of the level sets of S*.

Finally, we consider the proof of the claim. Let yu(t) y and fin (t) z/ for
[ti- tu, ti+l- tN). Then the pair ((.), fiN(. ).-yN(. )) comprise a solution of the

Skorokhod Problem (for the path yu(.) and domain G) in the sense of [17, 1]. It
follows from Theorem 4.1 of [17] that ffu(.) z(.) (where z(.) is defined by (6.8))
uniformly on [0, T], and that z(.) depends continuously on y(.). A review of the
method of proof employed in [17] also shows that the convergence is uniform for all
y(.) satisfying a common Lipschitz condition and starting in G. This completes the
proof.

7. Unbounded noise. An analogue of Theorem 4.1 holds for unbounded noise as
well, under an assumption on the "tails" of the noise.

ASSVMPTION 7.1. There exist a r-algebra n o’(Xi, =< n), 3’ > 1, and B < such
that for all n and s => 0,

(7.1) P{IFIsI}B exp-s a.s.

TJEOREM 7.1. Under Assumptions 2.3, 5.1, and 7.1, the conclusion of Theorem 4.1
holds.

Proof Assumption 2.1(ii) again follows from H(x, O, t)=0. Under Assumption
7.1, there is a fixed convex function in H(a) that takes a finite value for each a .Er,
and such that H(x, a, t)<=H(a) for all (x,t). By convex duality, L(x,, t)>=L(),
where L is the Legendre transform of H. Since H(a) is finite for each a, L(. grows
faster than linearly" L(sv)/s-+ as s-->+c, for all vee with [vie0. The lower-
semicontinuity of L and this fact are sufficient for Assumption 2.1(iii) [14].

Finally we consider part (iv). If it is demonstrated that, for each M1 <, T< c
and compact F, there is a compact set of paths J in C[0, T] such that for all x F

(7.2) P{XU(.)C:JIXu=x, 1}<-exp-M/al (a.s.)

when N is sufficiently large, then the same proof as that of Theorem 4.1 applies, since
we can effectively ignore sample paths outside of J.

To prove (7.2), we let a compact set FcE be given and define J(6), 6>0, as
the compact set of paths {b(. )} that start in F at time zero and satisfy

(7.3) sup Ib(s) 4(t)l =< e .
Is-tl_-<e
s,t[O,T]
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It follows that for x F and w.p.1,

p{xN(’)CJ(8)IXN--x, N}

=<P{[F[=>a-1, some i[N, m(tN+ T)][XN=x,
(7.4) m(T+tN

E B exp-ayt-)

NBexp-M/a exp(-a(-+Ma))
N

We are finished if we prove that the bracketed term at the end of (7.4) is bounded for
large N. Choose > 0 such that ( 1) < (this is possible since 7 > 1). By Assump-
tion 5.1, a(-2Mla for large N and for all i N. Hence the bracketed term is
obviously bounded (for large N) by Assumption 2.3.

Remarks. It is not actually necessary to use Assumption 2.3 to bound the bracketed
term, since we sum over a finite number of indices. This is important in (for example)
the constant gain analogues of the processes considered here (such as in [12]) where
a is replaced by a fixed value e > 0 and we consider the behavior of the linearly
interpolated process (with interpolation interval e) as e 0. Here m( T+ tN)- N T e,
and we are then interested in bounding

(T/e) exp (--EY(g-1)+ me-).

This quantity is obviously bounded as e 0 if we choose so that 7(6-1) <-1. If
instead of requiring (7.1) to hold almost surely we only require that it hold for all
w u and N n m(tu + T), where u is such that lim au log P(ku) -,
then we obtain the conclusion of Theorem 4.1 with Assumption 2.1 replacing Assump-
tion 2.1.

Theorem 5.1 does not require boundedness of {Fi}, and so holds here as well. The
proof of Theorem 5.2 must be modified slightly.

THEOREM 7.2. Suppose Assumptions 5.1 and 7.1 hold. en the conclusion of
eorem 5.2 follows.

Proof For > 0 define

F {F,F,/]Fil,
Fix a . Using Assumption 7.1 and the bound (under Assumption 5.1) on a/aN for
Ni m(tu + T), there is e(6) 0 as 6 0 such that for all such

(7.5) E[exp (a, aF)/au [] E[exp (a, aF)/au [] exp e(6)

and

(7.6) E[exp (aK (t), F) ] E[exp (aK (t), F) ] exp e(6)

almost surely.
Using properties of conditional expectation, we have

H(x, , t) lim lim lim ess sup a
0Nyx

logE exp a, 2 aF aN[N, XU(s)=y +C’(6)
m(tN+S)
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where

c’(6)=lim lim limaN(m(tN+s+A)-m(tl+S))C(6)/A
A-0 N

tends to zero as 6 0. Applying Theorem 5.2, we obtain

/(x, a, t) -< K-l(t) lim lim lim ess sup log E
A-O N y

s--t

(7.7) exp aK t), 2 F N, Xm(tN+S) Y
m(tN+S)

+(m(tN + S+ A)-- m(tN + s))+ c’(6).
Using (7.6), we obtain (7.7) with F replaced by Fi, and c’(6) replaced by c’(6)+ c"(6),
c"(6) K-(t)c(6). Since 6>0 is arbitrary, we obtain (5.3).

Example 7.1. We consider the extension of the model of 5.1.a to the case where
the support of/x is possibly unbounded. We assume that/x is weakly continuous in
x, and that there are 3’ > 0 and B < such that

(7.8) J I{y.lyl>=s}lzx(dy <= B exp -s r

for all x.
From Theorem 7.1 we obtain (under Assumption 5.1) parts (ii)-(iv) of Assumption

2.1. As usual, the only part left is identifying an upper bound for H(x, a, t). It is simple
to prove under (7.8) that there is M(6, A) such that for each fixed 6>0, M(6, A)-
as A- 0, and such that (for any N and s [0, T])
(7.9) P{IXN(s+7)-XN(s)I6 for some ’[O,A]}<-exp-M(6, A)/aN.
Define H(x, a)=log E exp (c, bi(x)). Using (7.9) and Theorem 7.2 (as Theorem 5.2
was used in the proof of Theorem 5.3), we obtain (with c(N, t,A)=m(ts+t+A)-
m(ts+t)

I7I(x, C, t)<-- K-(t) lim lim log(exp[(H(x, K(t)ce)+O(6))c(N,
A0

+ exp [-M(6, A)al + sup H(y, K t)ce )c( N, t, A) ]) /c(N, t, A)
Y

where O(6)- 0 as 6 0. By Assumption 5.1, a-N >= ae(N, t, A)O, for some 0> 0. Taking
limits in the order A 0, then 6 0, we obtain

t7I(x, ce, t) <- K-’(t)H(x, K(t)ce).
Example 7.2. Assume {sen} is generated as in Example 2.1, and define Fn

b(X,, n). Assume also that b( .,. is continuous and that it satisfies a linear growth
condition in sc, uniformly in x. Then Assumption 2.1e holds. The sets )N needed in
defining H and in (7.1) are easily characterized in terms of the values of I:. (see the
remarks after the proofs of Theorems 4.1 and 7.1).

The simplest method of proving the a-differentiability of H(x, a, t) at a 0 is to
combine the method used in Example 7.1 with that of 5.4, where in place of
Assumption 5.2 we use the weaker assumption (Assumption 5.2e) that requires unifor-
mity only for to fN.

8. Concluding remarks and comparison with other results. There is a great deal of
overlap in the models covered by our approach and those in [3], [8], [28], and [29].
All the methods are quite powerful. The method in [8] is similar (and seemingly
simpler) than that in [28] and [29]. It allows for nonstationary state-dependent noise
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2and nonstationary correlated non-Markov noise, but it is restricted to ai < oo and
uses faster decrease conditions on the "tails" of the noise distributions. The method
in [3] is simple, but the results for state-dependent noise or discontinuous dynamics
are not very strong. The works [28] and [29] allow for slower decrease in the "tails"
of the noise distributions than we do here, and for a slower rate of decrease in the
correlation of the (Markov) noise, but are more restrictive in the requirements on {an}.
They essentially require E a l+n <oo for some 3,>0 and that the sequence {an} is
ultimately decreasing. The latter condition is rather restrictive. They do not treat the
constrained case. In fact, the method used in [28] and [29], as set up now, essentially
requires stationarity in the noise processNor time homogeneity in the transition
function for the state-dependent noise case (due to the method of construction and
use of the solution to the Poisson equation defined in [29, p. 220]). Our upper-bounding
technique allows for considerable nonstationarity. For example, we may consider
processes driven by the noise model sn+l Asn + Bqn, where the roots of A are inside
the unit circle, the (bounded or Gaussian) , are mutually independent, zero mean,
and where the covariances En are simply bounded. The differences will probably
narrow as more work is done on both approaches.

Although we have not put the details in this paper, all the noise models can allow
a more flexible x-dependence. For example,

P{n+l alxi, <-- n + 1, , <= n} Po(Xn+, X,, X,,_, X,,_k, ,,, A)
where Po is continuous in (X,+, ., X,_), uniformly in s,, A. Similarly for models

n Cn-i(Xn, Xn-k)n-i

with appropriate rate of decrease and continuity properties of the {en(" )}. A further
extension, not currently covered under the scheme in [28] and [29] (although that
method can probably be extended to cover this case) occurs when all the components
of Fn are not available simultaneously (e.g., as in adaptive data networks where time
delays in the transmission of messages must be taken into account). For example, let
the updating of the scalar components of Xn alternate.

Another feature of our approach is that we do not require continuity of the "mean"
dynamics. (Note that the mean dynamics for the constrained case might be discon-
tinuous just because of the boundary.)

Finally, we obtain a very useful upper bound to the "tails" of the escape prob-
abilities, and have provided a setup where more general noise models can be treatedm
simply by appealing to new developments in the theory of large deviations. The use
of the "continuity" method to handle the constrained problem (in 6) illustrates how
estimates for one (relatively simple) process can be converted into estimates for a
much more complex processwsimply by finding the appropriate "continuity map."
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OPTIMAL CONTROL OF DIFFUSIONS*
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This paper is dedicated to the memory of E. J. McShane.

Abstract. An alternative to the usual dynamic programming approach to the optimal control of Markov
processes is considered. It is based on duality of convex analysis. The control problem is embedded in a

convex mathematical programming problem on a space of measures. The dual problem is to find the
supremum of smooth subsolutions to the Hamilton-Jacobi-Bellman equation.

Key words, stochastic control, diffusion processes, convex duality, weak and strong solutions
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1. Introduction. We consider Rn-valued diffusion processes governed by the
stochastic differential equation

(1.1) dxs b(s, xs, us) ds + or(s, Xs, Us) dws, x, x

with ws an Rn-valued Brownian motion and us a nonanticipative Y cc Rn.valued
control process. The objective is to minimize the expected (possibly discounted) cost

(1.2) JU(t, x):= E,., e-e(s’x’ul(s, xs, Us) ds

over all control processes u. Here T is a finite or infinite planning horizon. Additional
terminal costs could also be included.

An important feature of the present paper is that we do not make any ellipticity
assumption; the matrix r can be degenerate or even identically zero. This means the
approach covers both deterministic and stochastic control theory.

Another specialty is that the running cost (and terminal cost if present) is not
required to be bounded or continuous, but merely lower semicontinuous and of
polynomial growth. This makes it possible, among other things, to also include problems
where the objective is, e.g., to minimize the probability of the event that the state ever
leaves a closed subset of the state space or to maximize the hitting probability of a
target set; and in particular to cover the fixed endpoint problem of deterministic control
theory.

In distinction from most papers in the field, the present approach does not use
dynamic programming but is based on duality of convex analysis. We embed our
control problem into a convex mathematical programming problem on a space of
measures and consider its dual that turns out to involve the Hamilton-Jacobi-Bellman
(HJB) equation. More precisely, we find that the dual of the original minimization
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problem is to seek the supremum of all smooth subsolutions of the Hamilton-Jacobi-
Bellman equation. From the existence of an equilibrium value for the primal-dual
game it then follows, in particular, that the optimal value function of the control
problem is the upper envelope of the smooth subsolutions of the Hamilton-Jacobi-
Bellman equation.

The proof consists of two major steps. First we construct the minimization problem
on the space of measures that contains the original control problem embedded ( 3)
and apply the Fenchel-Rockafellar duality theorem [4] to arrive at the HJB equation
( 4). In the second step we prove that the embedding is actually tight; the infimum
is the same both in the original and in the extended problem ( 5-6). This second
part of the proof is based on the separation theorem and uses some analytic tools like
mollification and Sobolev estimates, that in turn are derived by control-theoretic
arguments. Roughly we could say that the separation is carried out by a sufficiently
smooth control problem.

The possibility of approaching control problems via duality theory in abstract
spaces was first demonstrated by Vinter and Lewis [6], [7] who proved similar results
for deterministic control problems. Their approach was made available for stochastic
control problems in [5] by basing it on the theory of occupation (potential and
harmonic) measures and infinitesimal operators. The present paper extends the method
to the optimal control of diffusions. Since the diffusion matrix is allowed to degenerate,
the presented results apply uniformly to both deterministic and stochastic control
problems. The novel proof of the tightness of the embedding is not only more general
but even in the classical deterministic case it is more direct than the arguments of [6].

The first application of duality theory in optimal control was the representation
of the adjoint co-state processes in terms of conjugate convex functions by Rockafellar
[9]. A similar approach to stochastic control problems is due to Bismut [8]. In both
cases the duality relationship is established in the finite-dimensional state/co-state
spaces rather than between the spaces of measures and of continuous functions.
Consequently both their methods and the nature of their results are very different from
ours.

In [3] Lions characterizes the optimal value function of stochastic control as the
largest generalized subsolution of the Hamilton-Jacobi-Bellman equation. The
approach and method of proof differs from the one followed here.

2. Formulation of the problem. Let T be the planning horizon, either a nonnegative
number or +. We take 0 =< =< T. If T < c, then the state space will be E :- [0, T] Rn,
and if T +c, then E := [0, T) Rn. We denote by E the one-point compactification
of E and introduce the notation sO: E Y and S := E Y. Note that E and S are
compact.

The coefficients o-(t, x, y) and b(t, x, y) as well as the discount rate c(t, x, y)>= 0
are assumed to be bounded continuous functions on SO such that their first partial
derivatives with respect to and second partial derivatives with respect to x exist and,
together with the functions themselves can continuously be extended to S. The running
cost is assumed to be lower semicontinuous on S and of at most polynomial growth.
The case of additional terminal costs will be considered in 8.

For simplicity we assume that either the planning horizon T is finite or that there
is a strict discounting, i.e., co=infcsoc(o)>O. The effect of the discounting will be
included into the process as an exponential killing or a jump to the fictitious isolated
cemetery state A at the killing time (R). In what follows all expectation signs E will
refer to the killed process. The only exception is the sans serif E in formula (1.2) that
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denotes the expectation of the nonkilled process, i.e.,

EdP(x,.) E(xr) l{o_>r} E(I)(xr) e-I;e(’’’u) as.
We will also use the notation " := min ((R), T) and refer to it as the lifetime of the

processes. The cost J" can then be expressed in the three equivalent forms:

JU(t, x)= EtU, e- s, Xs Us) ds

(.2’)

Et,x l(s, x,, u,) ds E ,.,, l(s, x,, u,) ds.

The assumptions about the boundedness of the coefficients, growth of the costs,
and boundedness of the expected lifetime can be substantially relaxed. In fact, the
proofs use a much less stringent but also less explicit assumption (cf. the remark
following Lemma 2.1).

The spaces of functions on SO and E that are continuously extendable to S and
E will be denoted by C(S) and C(E), respectively, and they are considered to be
Banach spaces normed by the supremum norm. In Lemma 2.1 we will introduce a
continuous positive weight function ,/" [0, T)x R -* (0, oc) associated with the control
problem under investigation. We will consider the weighted spaces

Cv(S := {f6 C(S)" f/
E,y Y

and lim If(c, y)l/r()=0}.

Cr(E) is defined analogously.

C(E):={Cr(E).(T,x)/T(T,x)=O,,,,,,.x, ECr(E Vi, j=l,...,n}.

In the subsequent expositions C2
r can always be substituted by the set of all

infinitely often differentiable functions satisfying the boundary condition
(T, x)/ y( T, x) O and with all derivatives in Cr(E). We will refer to the elements
of C as smooth functions.

(S) will denote the space of all signed Borel measures M on S for which the
norm IIMII =/ dM raM-is finite. Here M+ and M- are the positive and
negative parts of the Jordan decomposition of M. With obvious identification elements
of (S) can be considered as signed measures on S not assigning mass to {} x

If F is a positive constant then r’F(s) will denote those nonnegative measures
from (s) for which

The set of all admissible controls consists of all Y-valued control processes
which are progressively measurable with respect to the filtration of the Brownian
motion w. If u e then x denotes the solution of the stochastic differential equation
(1.1) corresponding to u, satisfying the initial condition x x and killed at rate c(. ).
The corresponding expectation operator will be denoted by E, and if no confusion
can arise, the superscript u will be omitted from x inside the expectation.

With each control u e we associate the measure M" defined on the compact
space S E x Y which is the extension of

MU(n, X nx X Sy) := e, t,,,,
(2.)

M( x ):= O.
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Here B, c [0, oe], Bx Rn, By c Y are arbitrary Borel sets and 1B denotes the
indicator function of the set B. Note that though the notation does not indicate it, the
measures M depend on the initial condition x, x in (1.1) which is considered to be
fixed. We will denote the set of all such M corresponding to some u R by -s(t, x).

Intuitively, M([ t, t’] x B, x By) measures the expected time before t’ spent by the
killed process x in the set Bx while control values from By Y were applied. In
particular, MU( ,., Y) is the potential (or occupation) measure ofthe killed time-space
process (s, x,U).

The infinitesimal operator of the killed Markov process x,y corresponding to the
constant control u, y Y is defined for each C2(E) and is given by the expression

O( t, x) + z. ai3( t, x, y)
02(t’ x) 0(t, x)

AYe( t, X) t- E bi(t,x,y)
O i,j= OX OXj i=1 OXi

c( t, X, y)( t, X)

with (aij) =1 ro- .o-. We will use this notation also for nonsmooth functions i.e., to
denote the value of the expression on the right-hand side at every point (t,.x) where
the corresponding partial derivatives exist.

To interconnect the assumptions on discounting, termination and growth as well
as to express them in a technically convenient analytic form, we prove the following
lemma.

LEMMA 2.1. There exist constants 0 < a < 6 and a twice continuously differentiable
function y: [0, T) x R --> (0, o) satisfying

(2.2) O<ay<--AYy<=y

everywhere in (0, T) x R" for all y Y.
Proof We will construct y separately for the discounted and for the finite horizon

case.
1. Discounted case. The infinitesimal operator of the exponentially killed process

is of the form A D-c with D a (possibly degenerate) second order differential
operator. We define

(2.3) y(t, x):= (cosh pt) (-I cosh pxi
i=1

with a p yet to be determined.
A straightforward calculation shows that

(2.4) -K(p)y(t, x)<- Dy(t, x)<- K(p)y(t, x)

with K(P)=2i=1 IlaijllP2 + i=, IlbillP gtPz + P Consequently,

(2.5) K(p)/llcll y<-_Ay=Dy-c, y<-_(K(p)-c), y.

If co inf c > 0, then the quadratic equation @2+/p- co 0 has exactly one
positive root Po. Choosing p from the interval (0, Po), we get that Co-K(p)> 0, and
hence (2.2) is satisfied with a := co-K(p) and

2. Finite horizon case. We define

y(t, x):= 1 + T- t)]" I cosh pxi 1 + (T- t)] yo(X).
i=1
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When we use the notation A=O/Ot+Dx a calculation analogous to that of the
discounted case yields

(2.6)
-AT(t, x)= To(X)- (1 + T- t)Dxyo(X)

_->[( + T-)-’-K(p)] ( + T-t)" ro(X).

With (1+ T) -1 in place of Co, the above argument shows that if p is chosen from
(0, po), then y satisfies (2.2) with a:=(l+T)-l-K(p)>O and 6:=l+K(p). The
proof of the lemma is complete.

We formulate some consequences of Lemma 2.1 that will be used at various places
during the subsequent expositions.

COROLLARY. (1) y dMu.<- y( t, x)/ a <+ for every m ss t, x). In other
words, the constant F:= y(t, x)/a <+ is a uniform upper bound for the expressions
E,., r y(s, x) ds for every process x/ generated by a control u all and starting from
initial state xt x.

(2) 3/( t, x) grows asymptotically not faster than an exponential function as Ixl-> ,
t---> X).

(3) For every t, x) E, 0 <= s < +o and u -tl we have

(2.7) e y-l( t, x)E ,, y(t + s, x,+s) <= 1.

Proof The proof of (1) follows from Dynkin’s formula. In fact, if T < we have

I ify dM <=- (-A"y) dM Et, (-A"y)(s, x) ds

1
=--[y(t, x)- Et,xy( T, XT)] <- y(t, X)/Ce.

Since the bound is independent of T, the inequality remains true as T- +.
The proof of (2) is immediate from the construction of y in the proof of Lemma 2.1.
(3) The left-hand side of (2.2) can be written as AUy + cey-<_ 0. Bythe Feynman-Kac

formula it follows that E,".ey(t + s, x,+s) <- y(t, x) with an a > O. Subtracting both
sides of inequality Et,y(t+s, xt+) <= e-Sy( t, x) from y(t,x), we obtain T-ET->
y(1 e-r), which proves the left-hand side of (2.7). The right-hand side is trivial since
T-ET_> 0.

Remark. The growth, discounting, and termination conditions required earlier in
this section will be used in the subsequent expositions only indirectly through the
statement of Lemma 2.1. Consequently all results of this paper remain valid under
other sets of assumptions that assure the existence of a y with property (2.2). Examples
of other possible sets of such assumptions are:

(i) Coefficients ao, b satisfy linear growth conditions, the discounting is strict,
the running cost is bounded. In this case y can be chosen asymptotically as Ixl with
p < Co and ce Co- p.

(ii) Coefficients a, bi satisfy linear growth conditions, the time horizon is finite,
the running cost is of polynomial growth. Then we can choose y(t,x)---
1 + K(T- t)] Ix] p with an appropriate K and p.

Now we return to our original control problem. Although we assumed to be
only lower semicontinuous, in 3-6 of the paper we will consider continuous running
costs. The extension of all obtained results to the general semicontinuous case will be
an additional step in 7. With the notation introduced, the control problem we will
consider in 3-6 can be formulated as the Strong Problem.
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STRONG PROBLEM For a given running cost Cv(E) and initial state (t, x) E"
Minimize f dM over all M s33s (t, x).

We can define the optimal value of the Strong Problem as a function of the
initial state

p(t, x):= inf(f ldM" M s)Js(t, x)).
3. The weak formulation of the control problem. It follows from It6’s formula, that

for arbitrary nonanticipative control process u R the generalization of the funda-
mental theorem of calculus (Dynkin’s formula) holds true. For every twice continuously
differentiable @ we have

A".(s, x.) ds(3 1) E,,x(r,x)-(t,x)= Et,

provided or-< " is a stopping time such that the expectations exist.
If we apply this formula to the terminal time - and to smooth functions

that vanish at the terminal state A, then by (-, x)= (A)=0 we find that

(3.2) -(t, x) I AY(t"x’)M"(dt" dx’, dy)

holds true for every u e OR whenever A Cy.
We introduce the notation

ff/lA(t,x):={Mdl.(S) -(t,x)=f AtdM for all C2(E)),
s))w(t,x):= lv’r(S)f3a(t,x) with F= y(t,x)/a.

Since for every ue OR the measure M e)U(t,x) is in both v’r(S) and ,/[/{a(t,x)
our original control problem, the Strong Problem is embedded in the following problem.

WEAK PROBLEM.

(3.3) Minimize f ldM over Mfw(t,x).

This is a minimization problem on the space of measures with linear objective
and convex constraints. In fact, if Cv(S), then by the Riesz Theorem dM is a
continuous linear functional on the space of signed measures . For each
relation (3.2) imposes a continuous linear restriction on M, consequently their intersec-
tion v///A(t, x) is a closed linear set in /. Finally, /v,r is a w*-compact convex subset
of v

The feasible set of the Strong Problem consists of all M"e s))qs generated by a
control u e OR via the stochastic differential equation (1.1). This set is contained in the
feasible set s))-w of the weak problem, thus the optimal value O(t,x):=
inf{ ldM" ue OR} is not less than the minimum (t, x) =inf{ ldM; MeS)28w(t,x)}
in the Weak Problem. Note that the initial state (t, x) is involved in the Strong Problem
through the initial condition (1.2) and in the Weak Problem through the definition of
lA( t, x).
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In what follows, we will first characterize the value function (t, x) of the Weak
Problem by solving its dual, a maximization problem in the function space C(E)c
C(S). More precisely, it will turn out that the dual of the minimization problem (3.3)
is to find the supremum of all smooth subsolutions to the Hamilton-Jacobi equation.

To make duality methods applicable it is convenient to bring the Weak Problem
to the Fenchel normal form. Using extended valued functions we reformulate the
convexly constrained linear problem as an unconstrained convex problem. In fact, we
introduce the functionals hi and h2" J(S)1 by

[ dM if Md//’V(S),
h M := ’(+oo otherwise,

O if M Ed/la(t x)
h2(m) :=

c otherwise.

Both hi and -h2 are convex and lower semicontinuous. It is immediate that the weak
problem is equivalent to the following problem.

FENCHEL PROBLEM. Minimize h(M)-ha(M) over all M E dd(S).

4. Duality and the Hamilton--Jaeobi problem. Recall that the space S is compact,
thus by the Riesz Theorem C*(S)= d//(S). In other words, C(S) and d//v, (S) are
spaces in duality connected by the bilinear form"

(4.1)

The norm topology of C and the weak*-topology of d , are compatible with the
pairing, the continuous linear functionals on both spaces are exactly those representable
by the bilinear form. If H and h are convex real-valued functions defined on C(S)
and tidY. (S), respectively, then their Legendre-Fenchel transforms (convex conjugates)
are defined by

(4.2) H*(/x) := sup {/chdtz-H(ch)" b C,(S)},
(4.3) h*(4,):= sup {f ckdp,-h(tx)"/x 3//. (S)}.
If the original function h or H is convex and lower semicontinuous, then it coincides
with its double conjugate, i.e., H** H, h** h. Conjugates of concave functions are
defined analogously but with inf in place of sup, and have the corresponding properties.

Now we compute the Legendre-Fenchel transforms of the functionals h and h2.
We use the quantities ,/and a as they were introduced in Lemma 2.1.

LEMMA 4.1. hl()= o -l" y(t,x)" 11(6-)/ll -’. (t,x). sup{[(cr)-/(or)]/
y(O, )" over all cr (0, , q)ES such that b(cr)-/(r) => 0}.

Proof.

h*(b) =sup {f 4, du,-hl()" e;} =sup {f (ch-l) dM: M3//r’r}
(4.4)

=sup{I [(ck-l)/y]ydM’M>=O,f dM<-r=y(t,x)/a}.
(f)+ denotes the positive part of the function f, i.e., f+(x) max {0, f(x)}.
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Since and are in Cr, the continuous function (-l)/y attains its maximum at
some point Cro (to, Xo, Yo) of the compact set S. If ( l)(to, Xo, Yo)/)’(to, Xo) > 0, then
to < co, Xo co and the sup in (3.4) can be attained by concentrating all available mass
of the measure )’dM to the point roS. We have to choose M(ds):=
)’(t, x)/(a. ),(to, Xo))6o(ds) with 6o denoting the Dirac measure assigning unit mass
to the singleton {O’o}. Then we have

(4.5) h*() )’(t,x)(qb-1)(O’o)/(a" )’(to, Xo))= t -"
provided sup ( I) > 0.

If sup th -1) <- 0, i.e., if th(o-)<l(tr) for all rS, then the maximum of the
expression (4.4) is zero and is attained for M---0. This together with (4.5) proves the
lemma.

LEMMA 4.2.

h.z()=l-lim dPi(t,x) if =limi_ooAdPi with dpi6 CZ(E),(4.6)
-co otherwise.

Proof Since h2 is concave, hz*():=inf{I dM-h2(M): M/la(t,x)}.
Let us first assume that b AO e Cv with some C2 Then, by the definitiony,

of a(t, X) for every M //A(t, X) we have dM AO dM -(t, x). Since a
is nonempty, AA2 implies l( t, x) z( t, x), and hence we have dM=
A dM -(t, x) whenever A Cv with some C.

Let us assume now that there exists a sequence k C such that -ak O.
This means that Ak/y /y uniformly on S as k . By this uniform convergence
and the finiteness of the measure y dM for every M a(t, X) we have

y dM lim
AOk

7 dM lim Ak dM= lim k t, X)
k T k

independently of the particular choice of the sequence AOk. Since -lim ok(t, X) does
not depend on M A(t, X), we have proved the first line of (4.6).

It remains to show that h()=- if is not in the v closure of the functions
AO with C. Assume o Cv is not in the closed subspace W:=
{ Cv(S)" limk [--AOkv =0 with ok C}. Then o and W can be separated
by a closed hyperplane. That is, there exists an M’(S) such that j o dM’<O
while dM’= 0 for all In particular, we have AO dM’=O for all C
and consequently, M + OM’ A(t, X) for every M A(t, X) and O R1. If denotes
an arbitrary fixed element of A(t, X), then we have

h(0) MAinf /0 dMN
o,infl fed d(+OM’)

o dM+ inf o dM’=-.

Here we used that by assumption I o dM’O and that can be arbitrary. This
completes the proof of the lemma.

The next theorem is the main result of this section. Roughly, it states that seeking
the maximal solution of the Hamilton-Jacobi-Bellman equation is the dual to the
weak problem formulated in the previous section. As under the current weak assump-
tions no smooth solutions to the Hamilton-Jacobi-Bellman equation need exist, the
precise formulation of the duality relationship is the following. The value function



1144 w.H. FLEMING AND D. VERMES

(i.e., the minimum) of the Weak Problem is the upper envelope (i.e., supremum) of
the smooth subsolutions of the Hamilton-Jacobi equation.

THEOREM 1.

(t,x):=min{f ldM" MEJ/[A(t,x)(-lJ/[ 3/’r}
=sup{rb(t,x)’CbE C2 A+/>0}.3/

Proof If applied to C*=, Rockafellar’s duality theorem [4] states that

(4.7) min{h,(M)-h2(M)" M.(S)}=sup{h*z(4))-h*(4))

whenever the set {b" h2"(4)> =-oe} contains a finite continuity point of h*. But this
condition is satisfied since h* is continuous and finite on whole C3/and hz*(b) is not
identically -ee, and hence (4.7) holds true.

Substituting the explicit expressions for h* and h* from Lemmas 4.1 and 4.2 into
(4.7) and using the fact that {A" C} is dense in {4" hz*(b) > -oe}, we obtain

q(t, x) min {h(M)- hz(M)" M M.(S)}

sup {(t, x) ce -1. 3’(t, x). ]](a +/)-I] 3/" E C}.
To conclude the proof it is sufficient to show that for every C2 there exists a

cZv such that a- + l-> 0 and -(t, x) (t, x) a-1.3’(t, x). ]](a +
Choose -:= -a-1. yll(acb + 1)-]]3/. Then by Lemma 2.1 -ay >- ay holds and con-
sequently, we have

a-+l=a+l-c- ]](a+ 1)-113/. ay>-a+l+y
A+ + y. sup [(A + t)-(t’, x’, y’)/y(t’, x’)[-> O.

(t’,x’,y’) S

The proof of the theorem is complete.
In a less compressed form Theorem 1 states that the weak value function q is the

upper envelope of all C(E) satisfying the Hamilton-Jacobi inequality"

(4.8)
@t(t,x)+min{ a(t,x,y)@x,x,(t,x)+ bi(t,x,y)*x.(t,x)

Y Y i,j=l i=1

-c(t, x, y)dP(t, x)+ l(t, x, y)) >=0.

Recall that the definition of C2 includes (T, x) 0 whenever T < +oe.
The fact that A => A2 implies <- justifies calling the functions C2

satisying (4.8) subsolutions of the Hamilton-Jacobi equation.
The results of the present paragraph remain valid under much more general

assumptions than those made in 2. In fact, we did not use either the finite dimen-
sionality of the state-space or the specific properties of diffusion processes. Besides
Rockafellar’s duality theorem, our approach was based on the validity of Dynkin’s
formula, but not even the denseness of C 3/was exploited. Since Dynkin’s formula is
a special case of the "general fundamental theorem of calculus" in semigroup theory,
all results of the present paragraph can be generalized to the case, when the state and
control spaces are locally compact separable metric spaces and C is substituted by
a linear subset of C3/(E). Of course, this latter change affects the definition of ///A
and consequently the Weak Problem itself. But still, the dual of this new "-Weak"
Problem will be the problem of finding the upper envelope of all subsolutions in
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of the Hamilton-Jacobi-Bellman equation involving the operator A. The coincidence
of the primal and dual values remain preserved too.

5. Equivalence of the strong and weak formulations. We prove the equivalence
under the assumption of a special approximation property of the value function
corresponding to smooth costs. In 6 we will show that under the assumptions of the
present paper this approximability is always true.

THEOREM 2. Let f C(S) denote an arbitrary smooth "running cost" and denote
F the corresponding (strong) value function.

Suppose that every such value function F can be approximated in the Ilk-norm by
a sequence offunctions F, each of which has first and second derivatives essentially
bounded in y-norm and satisfies AF) +f>- 0 almost everywhere as well as F)( T, x) 0
whenever T < oo. Then, for each t, x) E and as in 2 the weak and strongformulations
are equivalent; their optimal value functions coincide.

Note that Theorem 2 assumes the approximability of value functions generated
by smooth costs and makes a statement about the more general control problem that
involves general continuous or (later) even only lower semicontinuous running cost I.

Proof Assume that the statement of the theorem is false; then there exists an
initial state (to, Xo) such that( to, Xo) < ( to, Xo). This means that there exists a measure
Mo )W(to, Xo)\SZSS(to, Xo) that gives rise to a cost dMo lower than (to, Xo), the
infimum over all costs generated by controls u OR, i.e.,

(5.1) f ldMo<inf{f IdM"" u OR}.
This means that the w*-continuous linear functional dM on (S) separates

an element Mo e w from the w* convex-closure of the set s)s {M,: u R}. In
other words, w is strictly larger than the closure of s. If this is so, then Mo and
the compact sets can also be separated by a functional fdM generated by a smooth
f C(S). More precisely, since smooth functions form a dense subset in Cv there
must exist an f C such that

(5.2) I fdMo<inf{ffdMU"
(5.3)

Let us introduce the strong value function F corresponding to the running cost f

F(t, x) := inf fdM" M s(t, x) inf E f(t, x ’ u) dt.
UC/

Then, according to the assumptions of the theorem, for every e > 0 there exists
an F such that all the partial derivatives F ....;,; are defined almost
everywhere, are essentially bounded, and for every y Y the inequality

(5.4) AYF)( t, x) +f( t, x, y) >- 0

is satisfied for almost every (t, x) E and ]IF)- F]] < e.

The generalized Dynkin formula (3.2) cannot be applied directly to (5.4) because
F is not smooth" it should first be approximated by C2 functions. The details of
this approximation are presented in the next two lemmas. When we use them, the
conclusion of the proof of Theorem 2 will be straightforward.

LEMMA 5.1. For every 6 > 0 there exists an F’) C2(E) such that

(5.5)
F(:) F(’)II < ’, AF(’)II
AF(’)+f>--8. T on [8, T-f]xRnxY.
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Proof. First we extend the definition of F() from [0, T] x R" to [- T, 2 T] x R" by

F()(-s, x):= F()(O, x), s e [0, T], x e R",
(5.6)

F()( T+ s, x):= F()( T- s, x),

and the functions a, b, c, and f from [0, T] x R" x Y to [- T, 2 T] x R" x Y by reflection
over 0 and T; i.e., a(-s, x, y)= a(s,x, y) and a( T+ s, x, y) a( T- s, x, y) ifse [0, T],
x e R", y e Y, and similarly for b, e, and f

Note that

AYF()(-s,x)=-F)(s,x)+AYF()(s,x), s[O, T], xR", y Y,
(5.7)

AYF()( T+ s, x) 2F)(s, x) AYF()( T- s, x).

Moreover, because of the Lipschitz continuity of F() we have

sup IAF()/ ’l K
[-- T,2T]xR" Y

with some finite number K. (We reserve the notation ]]. ][v for sup over [0, T] x R" x Y.)
Let p(t, x) be a nonnegative symmetric C-mollifier (partition of unity) with

jSp(tr, ) &rd(= 1 and pr(tr, se)=0 if I l/l l r. If 4 C([-T, 2T]xR"), then we
define * Pr on [0, T] X R" by

(4)* Pr)(t,x)= f l ch(t+cr, x+)pr(O’,) dcrd if0<r<T.

From the second relation of (5.6) it follows that (F Pr)(T, x)= 0; moreover,
< K. Con-F), pr is infinitely often differentiable on [0, T]xR" and IIF>, Pllv=

sequently, F) p C2(E) for every 0< r < T.
Since by (5.4) AF) +f>-_ 0 holds almost everywhere on [0, T] x R x Y, it follows

that

(AF())* p+f* pr>=O on [r, T-r]xR"x Y.

We want to show that for every 8 > 0 there exists an r > 0 such that F(’a) :- F()
* p

satisfies (5.5). Clearly, we can assume r<8, i.e., [8, T-Bit[r, T-r] and thus it is
sufficient to show that

[[(AF()) * pr-A(F(), pr)[lv->0 and [[f* pr--f[[-+O.
We have

y(t, X)
[(AF() * pr-A(F() , pr)](t,x, y)

y(t, x)

+ [bi(t+o’,x+,y)-bi(t,x,y)]F()(t+o’,x+)
i=1

-[c(t + or, x + , y)- c( t, x, y)]F()( + m x + )} Pr(Cr, ) aer d

E tij(r)ll l(e) q-E )ii(r)l[F(e)[[
where u, b, denote the moduli of continuity of the corresponding coecients. Since
the coecients were assumed to be uniformly continuous and the XiX
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F(), and F) are finite by the assumption of the theorem, the right-hand side of the
inequality tends to zero as r--> 0, thus proving the lemma.

LEMMA 5.2.

(5.9) y dM (t2- tl)" y(t, x)
[t ,t2]R" Y

holds true for every M s)) w (t, x) and 0 t t2 Z
Proof Denote .X(s):=(tz-t)-olt,,,](g)dg and let Xk’[O,T]R be a

monotonely decreasing sequence of functions that is continuously differentiable in
(0, T), for which Xk(T)=O and such that Xk X and X -1,,,,] =X’ as k.

For M w(t, x) a(t, X), the generalized Dynkin formula (3.2) can be applied
to the functions k(, ) := Xk() Y(, ). Using relation

A y. AXk + Xk" Ay y. X-Y" c. Xg + X" Ay
and the fact that c. y, -Ay, and M are nonnegative, we obtain

(tz-t) y(t,x) y(t,x) X(t)= lim y(t,x) X(t)

lim (t, x) lim [ -AdM
k ko J

=limI-x’ydM+f xc’’dM+Ix(-Ay)
limf-x’vdM=l’,,’2]’vdM,.

thus proving the lemma.
Conclusion of the Proof of eorem 2. Since F(’)C(E) and Mop,W=

A(t, X), we can apply the generalized Dynkin formula and by (5.5) and (5.9) obtain

t, x) -[ AF ’ dMoF(,(
0,T]"x Y

,T-]xR" Y ,T-]xN Y

+
[0,aJ[T-a,TJ)x"x r

Since Mo wm ,v, we have 0 < s dMo < F. From Lemma 5.2 it follows that the
integral in the last term is not greater than 26. y(t, x) 26- a F and since by Lemma

< IIAF)I[ + 6, we have

(.10) F’)(t, x) J-sfdMo+ . 2(1 + IIAF)II) F.

Choosing first e then 6 sufficiently small, from [IF-F’]] e + 6 and relation (5.10)
it follows that

F t, x inf { f fdM M s] f fdMo
in contradiction to the choice (5.2) of f as a separating functional. This proves the
equivalence of the strong and weak formulations.

Remark. Assumptions on the derivatives of F() were only needed to obtain
estimate (5.8). Note that since F() is locally Lipschitzian, its first derivatives exist
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almost everywhere and are locally bounded. This fact alone is sufficient to prove the
equivalence of the Strong and Weak Problems provided the diffusion coefficients
do not depend on and x. In fact, in this case the terms [aij(t + tr, x + , y)- aij(t, x, y)]
are zero and no assumptions on the second derivatives F,,x are needed, shortcutting
the approximation by F) and the entire 6.

COROLLARY 1. Suppose that is of at most linear growth, i.e., II(t,x,y)] <
ro + rllxl + r2t. If the processes are deterministic (aj =-O) or the diffusion coefficients are
independent of time and space, then the strong and weak problems are equivalent.

Proof If is of linear growth, then 9’ can be chosen to be F. (1 +lxl+ t) with
F> max (ro, rl, r2). Consequently, f will be uniformly Lipschitzian and so will F.
Moreover, F can be represented as the sum of a concave and of a smooth function,
and hence the first and second partial derivatives of F exist almost everywhere and
the first partials are uniformly bounded. The corollary then follows from the previous
remark.

The measure Mo introduced in the proof of Theorem 2 could not be in the w*
convex closure of S(to, Xo). The argument there in fact proves the following corollary.

COROLLARY 2. w(t, x) is the w* convex closure of gdts(t, x).

6. A Sobolev approximation of the value function. To complete the proof of the
equivalence of the Strong and Weak Problems, it remains to show that the value
function generated by a smooth running cost can be approximated by a W;2 function in
the way required by the assumptions of Theorem 2. This kind of approximability of
the value function that does not use any nondegeneracy assumptions is also of
independent interest in other branches of control theory unrelated to the strong and
weak formulations. This section is devoted to the proof of the result.

THEOREM 3. Let f cZv(s) and let F be the corresponding value function defined
by (5.3). Then for every e >0 there exists a function F) C(E) with the following
properties"

(b) The partial derivatives x, x,,xj exist almost everywhere for every 1 <- i,
< K (e) with some constant K (e) wherej <-n and satisfying IIIF)III-

i=1 i---1

(c) ASF)( t, x) +f( t, x) - 0 for almost eery t, x) E, for eery y, and
F)( T, x) 0 whenever T <

1,2We denote the weighted Sobolev space of all functions satisfying (b) by Wv,.
The idea of the proof is to extend the control set of the original problem by one

additional "smoothing control" giving rise to an n-dimensional Brownian motion. The
value function of the extended problem will then have the required smoothness
properties and, by charging a sufficiently high penalty for the "smoothing," its domain
of application can be kept small and this way the smoothed value function can be
forced to remain close to the original one.

To be more precise, let us introduce one more additional control / so that the
extended control set will be Y Id /}. The process associated with /will be the standard
n-dimensional Brownian motion discounted at the lowest possible rate Co
inf,,,,y c(t, x, y) so that we have

2x(x+,)=(2rs)/ q(t + s, ) exp d=: (, *)(t, x).



OPTIMAL CONTROL OF DIFFUSIONS 1149

The infinitesimal operator corresponding to the exponentially killed Brownian
motion is

where A denotes the Laplacian. Recall that in Lemma 2.1 inequality (2.2) holds not
only for the family of operators {AY}y v but with possibly different numbers a and ff
also for the extended family {AY}yvu,. In particular, we have 0< ay-<-A’%

During the period of time when the new control r/ is applied we charge the
running cost

f(s, x, rl):= L" (-A’y)(s, x)= L. (Coy(S, x) -A/(s, x))

with some constant L to be determined later. For simplicity we only allow r/ to be
applied during at most one nonrandom interval of time. In other words, the extended
set OR, of admissible controls will be the set of all functions of the form

v(w, s) {r/ if tls<t2,
u(co, s) otherwise,

with all possible choices of 0 <- tl <- t2 <= T and u R. Note that because ofthe possibility
of killing, the processes may die before tl or t2.

The value function of the extended problem can then be written as

FL(t,x): inf E,.x [f(s,x v)lv(vs)+L" (-Ay)(S, Xs)l,(vs)] ds

inf f "f(s, u) dsE,", x,

(6.1)

_-< inf
Oil

+ E,x’;, L" (-A’y)(s, x") ds + F( t2, X2)
tl

E ,, f(s, x’, us) ds + (fit2-,, * F)( tl xtU)

+ L Y fl,2-t, * Y)( t, x,,) }
Now we show that setting the penalty L high will keep the optimal cost FL close

to F.
PROPOSITION 6.1. For every e > 0 there exists a 0 <- L < such that ]IF- F,IIv <- e.

Proof F<- F is trivial since is the value functional of the extended control
problem that contains the original problem embedded, as t2 t is permitted.

To show that F-F <= e.y, observe that since F/3/is bounded and uniformly
continuous there exists a t such that ]lF/’y--flh * (F/y)]I <-_ e/2 for all 0=< h < t. With
this t let us choose L :-3]]fll/(c" t). Now let us consider an arbitrary (t,x) E.
Since F is the pointwise infimum in (6.1), we can find an e/2-optimal triple
0 _-< 1 --< -2, i.e., such that

P(t,x):= E,, f(gs, Os)+( * F)(I g,)+L. E (-A’y)(ws) ds

<-_ F( t, x) +- y( t, x).
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We use the notation s xs and h 2-{1. Keep in mind that although tT, {1, 2 do
depend on (t, x), the numbers t and L were chosen before (t, x) was picked, hence
estimates involving only t and L will hold for every (t, x) E.

With the quantities just defined we can write

(6.2)
F(t, x) FL(t, X) [F(t, x) i(t, x)] + [#(t, x) FLu(t, X)]

<=[F(t,x)-F(t,x)]+7(t,x)" e/2

and it remains to show that F(t, x) F(t, x) -<_ 3’(t, x) e/2.
We increase the value ifwe fix t7 for the initial interval t, {) and allow minimization

only after ?"

(6.3)

F(t,x)_(t,x)<Et,x

E,,x{([F-t’ F]-L. [y-fit’ ’])(-1, X?,)}.

The expression in the first bracket under the expectation sign normalized by y can be
estimated at an arbitrary (t , x) E as

y(t’,x’)[F(t"x -(fit’ * F)(t’,x’)]= --fig’ *
F fl*F) ,)t’, x’)+ * (t’ x

Consequently, if we divide the whole expression under the expectation in (6.3) by 3’
we obtain for it

(6.4)

x(t’,x’):=
y(t’, X’)

([F-fit, * F]-L" [Y--fib * y])(t’, X’). (L -II FI[ ). flh * "Y_(t’,..X’).
v 4( t’, X’)

Now there are two possibilities: either h_-< t or h> t. If h_-< t then by the
definition of t we have IIF/7--,Sh *(F/’y)ll<--e/2. Since L>-_llfllv/a>-_llFIIv and

3’ => fit’ * Y, the last term is nonnegative; we may subtract it and we get X(t’, x’)<_-e/2
for arbitrary (t’, x’) E.

On the other hand, if h> t, then 1-e-h>-l-et; thus by Corollary 3 to
Lemma 2.1 and the choice of L, we have

(Z-IIFII )" (1 " * V(t’, x’) > 211fll
v 3(t,, ; /= c(1 e-,)

21lfll(i e -"h) >- >- 211FII.

Since both Fly and flh * (Fly) are bounded by IIFII, from (6.4) we find that
X( t’, x’) -< 0 =< e / 2 for every (t’, x’) E.

Substituting this result back in (6.3) we find by Corollary 3 to Lemma 2.1 that

F( t, x) F( t, x) <- E,, y( tl X,,) X( tl, ,,) <-_- Et,xT( tl 2t,) <=- ’y( t, X).

This, together with (6.2) gives F-FI <-_ e. y, which completes the proof of the
proposition.
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It is well known (cf., e.g., [2, Thm. 4.2]) that under the conditions of Theorem 3
the value function FL permits the decomposition FL=/3+/3/ where /C is

~Lsmooth, its partial derivatives/3,,/x, Fx,j belong to C while/3L C is concave in
x and monotone in t. In fact, for every control J" C, the infimum of continuously
parametrized family of C functions has the above decomposition property. For such
functions the generalization of Alexandrov’s Theorem 1] holds true; for almost every

L(t, x) the derivatives F, Fc,, F,.j exist and satisfy

F( + cr, x + ,) FL( t, x) + Ff( t, x) r +E Vx,( t, x),i
(6.5)

It is easy to see that Fc satisfies the Hamilton-Jacobi-Bellman inequality of the
extended problem almost everywhere. In fact, the next proposition is only a slight
modification of known results (cf. [2], [3]) that we prove here only because the easy
proof makes our exposition self-contained.

PROPOSITION 6.2. For every y Y U { rl},

(6.6) AYF(t,x)+f(t,x, y) 1w(y)+L. (-AYy)(t,x)l,(y)>-O

for almost every t, x) E.
Proof Suppose there exists a y Yo and a (to, Xo) E from the nonexceptional

set such that

AYF( to, Xo) +f( to, Xo, Yo) <- - < O.

Then, by the continuity of the underlying processes, there exists an So> 0 such that
for all s -<_ So

S YoEto.xoFt(to+S, Xs)_F(to, Xo)]+f(to, Xo,Yo)<_6/2<O.

Let u , be a 6so/3-optimal control for the initial state (to+So, ) and define

u(w,r):={Y if to_-<r<to+so,

Then this control is again in 07/, and will yield the cost

blO
to,o f(S, Xs Uo(S)) ds<-f(to, Xo, Yo) so+EYt,xo{F(to+S, Xto+so)+6o/3}

to

--< F(to, Xo) ao/6 < 0

in contradiction to the definition of FL as the infimum over all u ag. The p!oof for
Yo 7 is the same.

Conclusion of the Proof of Theorem 3. Let us choose F() :-F according to
< e. The derivatives F) F() ’() existProposition 6.1 Then we have

almost everywhere by Alexandrov’s Theorem, and Proposition 6.2 shows that the
Hmilton-Jacobi inequality holds true for every y Y and for almost every (t, x) E.
The smooth component/() and its derivatives are in Cv by Krylov’s cited result [2,
Thm. 4.2].

It remains to show that the derivatives of the concave component /3() are
essentially bounded by K (e) 3/.

Consider the first derivative in an arbitrary direction of the (t, x)-space. By the
concavity of/3() this directional derivative is monotone along each line parallel to
the chosen direction. Suppose that this (one-dimensional) derivative function exceeds
K.T for every K. Then by its monotonicity it follows that neither can its integral
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function be bounded by K1"7. But this contradicts i() C, which follows from
Proposition 6.1. Hence there must be a K2(e) such that I/$)(t, x)[ +Y.i=I [l)(t, x)[ <:-

K2(e) 3’( t, x) almost everywhere.
As for the second derivatives ’() (t, x) < K3(e) follows from the concavity ofXi" XJ

/(). To show that Iv"() I< K(e) 3’, consider inequality (6.6) of Proposition 6.2 forXiXj

y- /. This claims that

F) +1/2AF()- Co F() > L A’3" >- L 6. 3"

where the last inequality follows from the right-hand side of (2.2). Using the estimates
already obtained for F() F, ’()

--x,,xj we get

( )A()(t, x) >- -2 Col[F(>ll + IIF%>ll + IIxix, ll + Lc 3’(t, x)
ij=

-K4( e )3"( t, x).

This lower bound for the sum -x,x;, 3’ together with the upper bound for the individual
summands/() obtained from the concavity of ff( implies that [It?( < K(e) forXj

every 1 N i, j N n. This completes the proof of Theorem 3.

7. Semicontinuous costs. In the previous paragraphs, in particular in 3 and 4,
we assumed the running cost to be continuous Cv. Now we are going to remove
this assumption and allow to be lower semicontinuous and of growth less than 3’.
More precisely we denote by LCv the set of all functions satisfying the following:

(i) is lower semicontinuous;
(ii) sup(0,y)e,e II(:, Y)[/3"(:) <

(iii) lim suplel_oo l(, y)/3"()=0.
Such functions can be represented as upper envelopes of continuous functions
sup {f: fe Cv, f-< l} or even as limits of nondecreasing sequences of Cv functions.

The aim of the present paragraph is to show that all results proved for continuous
in the preceding paragraphs remain true for control problems with lower semicon-

tinuous cost functions LC,. The key tool in approximating lower semicontinuous
costs by continuous ones will be the following min-max type argument.

PROPOSITION 7.1. Suppose LC and let 27{ denote an arbitrary w*-compact subset
of. (). Then

(7.1) inf f dtx= inf sup [ fdtx= sup inf f fd.tx Y[ yg
f<= l,f C f<= l,,f Cy la, Y{

Proof Note first, that every LC defines a convex, lower w*-semicontinuous
functional on M., and hence all infima in (7.1) are attained for some elements of the
w*-compact set

The Monotone Convergence Theorem and the obvious inequality inf sup _-> sup inf
yield

Io:= inf f dlx inf sup f fdx >=
I Y{ Y( .l" f C

sup ,xinf ffdlx.f<= l,f C,

Let x r denote the measure, for which IfdxS=inf,x Ifdx. To prove the proposition
it is sufficient to show the existence of a x* 27{ for which

(7.2) sup ffd>-fld*
fl,.f C

holds true.
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Let fk denote a monotone nondecreasing sequence of continuous functions with
f, Cv(S) and f/ as k-*c. Since Y{ is sequentially compact, we can select a
subsequence ki such that 1.i :’--I.3i converge weakly* to a limit

Let us consider the following array of reals"

I( i, j) := f f,,, d, i,j=l,2,. ..
If i’ < then I(i’, j) <= I(i, j) because the sequence fi is monotone nondecreasing. The
measure tzi is by definition minimizing f,, dp and as fi,, <= l, we have

I(i’i)=Ifk’dl’z=inflfk’dlz<=infIldtz=I’c
Consequently all elements I(i, j) with i<=j (i.e., above the diagonal) are uniformly
bounded by I0. From the monotonicity of the sequence fk, it follows that the diagonal
sequence I(i, i) is monotone nondecreasing and so I:= lim_, I(i, i)<= Io exists.

Since fk, is continuous and /x*= w*-lim/zj, it follows that the sequence I(i, j)
converges for any fixed to a limit I(i, oc)=fk, dtx* as j--) c. From I( i, j) <= I(j, j)
for i<-j it follows that

I(i, oc)= lim I(i, j)=<lim I(j, j)= I.
j--,

Recall that the sequence f was chosen such that fk/ I. Consequently the monotone
convergence theorem yields

I i, ) f fk, dtx * / f d/x * <= Io sup f fdtz y.
fl,fC

In other words * satisfies (7.2) and the proof is complete.
TnORM 4. Suppose LCv. Then the (strong) value function of the stochastic

control problem formulated in 1-2 is the upper envelope of the smooth subsolutions of
the Hamilton-Jacobi-Bellman equation, i.e.,

(7.3) (t,x)=sup{@(t,x)’cC2 A@+/>0}.Y’

Proof. It was shown in 5-6 that w is the closed convex hull of )js. Since
IdM is a convex, lower w*-semicontinuous functional on . whenever LCv, it

follows that its infimum over s is the same as its minimum attained in Con-
sequently the strong and weak value functions coincide even if is only lower
semicontinuous LCv.

We know from Theorem 1 that the value function permits representation (7.3) if
is continuous (1 z Cv). Proposition 7.1 can be applied to LCv and

is a w*-cornpact set and we obtain

q( t, x) inf f dM sup inf f fdMMoj?w (t,x) f<_l,fCy M3)

sup sup{(t,x)’C2v(E),A+f>=O}
f<= l,f Cy

-<-sup {(t, x)" C2v, A+I=>0}.
The opposite inequality is immediate, since for every C with A+ => 0 and

for every M w d// (q A Dynkin’s formula yields

(t,x)=f (-AdP) dM<=f ldM.
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Taking infimum over M w, we obtain (t, x) _-< infM:Vw dM O(t, x) for every
C with A+ => 0, which completes the proof of the theorem.

8. Inclusion of terminal penalties. In this final paragraph we explain how to extend
the main results of the paper to problems where the cost function also includes an
additional terminal penalty, i.e., where the objective is to minimize the functional

(8.1) J"( t, x) E ,. 1( t, x,, m,) dt + L(xr) T <)

over all controls u . Here both and L are lower semicontinuous functions of
growth less than y at infinity. This will extend the scope of the results to include
problems like the maximization of the hitting probability of a closed target set or the
fixed endpoint problem of deterministic control theory that were beyond the reaches
of the other approaches to the Hamilton-Jacobi theory.

The key to the extension is to consider a more elaborate state space S that is
composed of So, the compactification of the "interior" of the state-space, and of So,
the compactified "terminal boundary," as two separate components. More precisely,
let S denote the compact metric space that consists ofthe two isolated subsets So := E x Y
and So := R. Note that So is the same space that was denoted by S in 2.

Every continuous function Cv() will then correspond to the pair
]So Cv(So) and ] Cv(So) where Cv(So) is Cv(S) of 2 and

(So):= C(R") sup ](x)/7(T,x)< and lim ]O(x)]/y(T,x)=O.
xa" Ixl

LCr() will denote the set of all lower semicontinuous functions on , i.e., those that
can be represented as upper envelopes of families of Cr(S) functions. The dual space
to Cr() will be the set() of all pairs of measures M (Mo, Mo) with Mo 2(So),
Mo(So) provided with the norm IIMIl=(t’,x’)lMo(dt’,dx’,dy)l+
(T,x)IMo(dx)I. The set of all nonnegative measures M(g) with IIMII

F <+ will be denoted by ,r().
Observe that the function

{l(r, , y)if = (r, , y) So,
l():=

L(x) if=xS0
is in LCv(). The measure " defined on the Borel sets B of by

MU(B) of (2.1) if B= So,"():=
P,(x B) if B= So

is in v’+r() c (). With this notation the (strong) optimal control problem with
both running and terminal costs can be formulated as follows:

(8.2) Minimize f d" over all u .
Let C() denote the set of all twice continuously differentiable functions

defined on [0, T)xR" for which , ,, ,, , are all in Cv(E) (i,j= 1,2,...,n).
The difference to the definition of C(E) in 2 is that now we do not require functions
to vanish on the exit boundary T] x R" for T <. Recall that for every C()
Dynkin’s formula

(.) ,,( r, x) -,( , x) , A",,(s, x,)
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holds true. If we introduce the operator/: C(/)- Cr(g) by

(o.)={AY(t,x) if cr=(t,x,y)ESo,
-(T,x) if=xS,

then with the above notation Dynkin’s formula can be written in the more compact form

(8.4) -(t, x)= d".

The Weak Problem corresponding to (8.2) can be formulated as follows:

Minimize f d over all ’+() d(t, x)

with x(t, x):={ ()" for which (8.4) holds for all C()}.
All the expositions of 3-7 can be repeated word by word for this extended

notation and we obtain the following theorem.
THEOREM 5. e dual to the problem (8.2) is to find the supremum of all smooth

subsolutions of the Hamilton-Jacobi-Bellman equation, and we have

O(t, x) inf , l(s, x,, u,) ds + L(xr)
u

sup {( t, x) over all C() satisfying

inf AY(r,)+l(r,,y)O if O<z<T,a
yY

and ( T, ) <= L()
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PIECEWISE MONOTONE FILTERING WITH SMALL
OBSERVATION NOISE*

W. H. FLEMING AND E. PARDOUX$

This paper is dedicated to the memory of E. J. McShane.

Abstract. Nonlinear filtering of Markov diffusion processes is considered, in the case in which a

piecewise monotone function of the state is observed with additive small observation noise. Under a certain
detectability hypothesis, statistical tests are given to discriminate among the intervals of monotonicity during
time intervals in which the state does not cross critical points of the observation function. During such time
intervals, accurate approximate finite dimensional filters can be used.

Key words, nonlinear filtering, small noise, approximate finite-dimensional filters

AMS(MOS) subject classification. 93E11

1. Introduction. There is substantial literature on the nonlinear filter model

dx, f(x, dt + g(x,)
(1.1)

dy h(xt) dt + e dvt, = 0

where x, n, Y, ! and w,, v, are independent standard Brownian motions. The
random variable Xo has distribution/o and Yo 0. Finding the mean square optimal
estimate , for x given o-{y, 0 s t} requires solving the nonlinear filter problem to
find the conditional distribution t. The dynamics of t are described by the nonlinear
filter equation, or by some partial differential equation equivalent to it (e.g., Zakai or
pathwise filter equations [2], [7]). Thus, the nonlinear filtering problem is inherently
infinite-dimensional. There are exact finite-dimensional filters only for the well-known
linear case (Kalman-Bucy) and for a few special nonlinear problems (see [5] and
[11]). Suppose that e > 0 is small. An attractive alternative to trying to solve the
nonlinear filter problem is to seek a good approximation m to ,, such that m, is
computable from the solution to a finite-dimensional system of stochastic differential
equations driven by the observation process y,. Moreover, we would like the number
of stochastic differential equations describing the approximate filter to be small if n
and are small. There are a number of results concerning the case n and h(x)
one-to-one. In this case xt is observed exactly if e 0. For small e > 0 we expect the
conditional distribution/x, to be mostly concentrated near x,. Under some additional
technical assumptions this has been shown to be correct, and good approximate filters
of dimension n or n+n2 have been found (see [6], [8a], [8b], and [12]-[14]). For
n l- 1, the simplest one-dimensional approximation m, to 2t satisfies

(1.2) drn, =/(rn,) dt+ e-l[sgn h’(mt)]g(rn,)[dy;-h(m,) dt],

with mo Exo. For _-> to > 0 this gives mt , + O(e). Certain two-dimensional approxi-
mations (m,, Rt), where R, is some approximation to the conditional variance, give
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m, =:t+0(83/2). The accuracy is better in case g(x) is constant and h(x) is linear
(see Picard [12, p. 1100]).

If h is not one-to-one there are substantial additional difficulties. For small e > 0,
h(x,) can be estimated accurately but not in general x, itself. Moreover, when l< n
there are typically multiple timescales in the filtering equations (see [9] and [16]).
However, when n, it often happens that enough information is contained in measure-
ments of h(xt) plus low-intensity white noise to accurately estimate xt, even though h
is not one-to-one. It is this question with which this paper is concerned. For simplicity
we consider scalar state x, and observation yt(n 1). Extensions to n l> 1 are
indicated in 8. We suppose that h(x) has a finite number of critical points, located
at Xl*,’’’, x*, with

h’(x*, =o, h"(x*, O, i= , .
The conditional distribution /xt may then have several peaks, located in (-co, x*),
(x*, co) and in intervals (x*, x*+) between successive critical points. This possibility
cannot always be avoided. For example, if x,= w, and h(-x)= h(x), then /x, is
symmetric about zero. However, in many instances a hypothesis test can be performed
that determines, with probability very nearly one, that x, lies in an interval ofmonotonic-
ity of h. Once this is known, either an approximate filter of type (1.2) or a more accurate
two-dimensional version of it can be used to estimate t. A similar technique is used
in [3] when h(x) is piecewise linear and g(x) is constant.

To simplify the exposition, in most of the paper the case when h(x) has a single
critical point (k 1) is considered. Extensions of the results to k > 1 are discussed in

8. Our work appears to be related to a modification of the extended Kalman filter
technique to allow for Gaussian sum approximations to conditional densities that may
have multiple peaks [1, 8.4]. We shall show that under a certain "detectability"
hypothesis (see (2.1), (5.10) or (8.1)) below, multiple peaks of the conditional density
are improbable during time intervals in which xt remains away from the set of critical
points x* of h. During such time intervals, an approximate filter of the type valid for
monotone h can be used (for example, a filter of type (1.2)). Precise versions of these
rough statements appear in the following sections.

The paper is organized as follows. We take the single critical point of h to be a
global minimum at x =0 with h(0)=0. After some introductory material in 2 and
3, two possible approximations m,+ and m[ to the conditional mean ), are introduced
in 4. These satisfy equations such as (1.2) in which h is replaced by certain functions
h+ and h_, respectively. These functions have the property that h(x)= h+(x) on a
"large" interval of {x > 0} and h(x)= h_(x) on a "large" interval of {x < 0}. Lemma
4.1 provides a test to guarantee that x, does not cross zero during a finite time interval
a _-< _-< b, with exponentially small probability of error. Next, a test based on quadratic
variations is given in 5, to decide whether x, > 0 on [a, b] or x, < 0 on a, b]. A second
test to decide between these two alternatives, based on likelihood ratios, is given in

6. If the positive alternative is chosen then mt
+ is used as an approximation to :,

and m[ is used if the negative alternative is chosen. Estimates for the error ),-m:
are given in 7. Finally, in 8 extensions to multiple critical points of h and to
dimension n > 1 are considered.

2. Assumptions; problem formulation. The following assumptions are made about
the functions f, g, h in (1.1).

(A1) f, g, h are smooth with g(x)> 0. Moreover, f’, g, g’, g-, h’, h" are bounded
on -co < x < co.
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(A2) h has a single critical point, located at x 0, with 0 h(0) h’(0) and h(x) > 0
for x 0. Moreover, Ih(x)l-->oe as Ixl - co.

(A3) There exist Yl, Y2 with 0< yl < y2 and c > 0 such that

(2.1) h(x-)= h(x+)= y, y<= y<= yz, and x-<O<x+ imply

][g(x-)h’(x-)]Z-[g(x+)h-(x+)]21 > c.

Assumptions (A1) and (A2) imply that sgn h’(x) sgn x, and that inf {Ih’(x)]: x
K } > 0 for any compact set K c -{0}. Roughly speaking, the "detectability" condi-
tion (2.1) will be needed to distinguish whether xt > 0 or xt < 0 after observing y, over
a time interval during which .no zero crossing of xs has been detected. A sufficient
condition for (2.1) is that 0’(x) 0 in some open interval containing x =0, where

[g(x)h’(x)]2

4,(x)
h(x)

If g(x)= constant, this sufficient condition holds provided h"(x)> 0 and h’"(0) 0. In
[3] the case in which h(x) is piecewise linear and g(x) =constant is considered. In
that case (2.1) is equivalent to the property that h(-x) h(x) for x 0. The need for
some condition like (2.1) is illustrated by the simple example x, w,. If h(-x)= h(x)
for all x, the conditional distribution is always symmetric about x 0.

We formulate the nonlinear filter problem on the canonical sample space fl
C(,qt+) x C(+), whose sample elements are denoted by (w, tO2) with x,(w)= oo(t),
yt(w)=OOz(t). Let o be the Borel field of fl and P a probability measure on (fl, )
such that

(2.2) x,= Xo+ f(x.) ds+ g(Xs) dw,,

(2.3) y, h(x,) ds + v;
E

where w, and v7 are two mutually independent Brownian motions. The random variable

Xo is independent of {w,, vT; _-> 0} and for some k > 0

(2.4) E[exp (kx)] < co.

Note that y, has the role of e-ly7 in (1.1). It is well known that P exists and is unique
(see, e.g., Stroock and Varadhan 17]). We define , r{y 0_-< s-< t}. The nonlinear
filter problem is to find the conditional distribution x, of x, given ,. Our aim is to
obtain an asymptotic result, as e--> 0, concerning a finite-dimensional approximation
to the nonlinear filter.

3. Approximations to h(xt). Let H be smooth for -c < x <, with

(3.1) 0 < c <= H’(x) <= c2 and H"(x) bounded.

(In 4 we shall take H- h+, where h+ is defined there.) Let m, be the solution of

(3.2) dm, =f(m,) dt + g(m,)(dy,- e-ill(m,) dt)

with mo E(xo). Note that (3.2) has the same form as (1.2), except that h is replaced
by H (recall that H’(x)>0 by (3.1)).
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LEMMA 3.1. Let 0< a < b. Then for every a >0 there exist positive eo eo(a),
K K (a), such that

Pe(sup,h(x,)-H(mt)l>ce)<-exp(--), O<e<eo.
\[a,b]

Proof. Let

t4, f(x)dp’ +1/2g2(x)c ’’,
the generator of the Markov diffusion xt. The It6 differential rule and (1.1), (3.2) imply

(3.3)

g(m,) g(mo)+ Lg(m,) ds+ (gg’)(m,)(dy,-e-lg(m)) ds.

Let

z, h(x,)- H(m,), p, (gH’)(mt),

t Lh(x,)- Lh(mt), B, (w,,, ((gh’)(x,), -(gH’)(mt)).

From (A1) and (3.1), p,=>/3>0. From (3.3) and (1.1)

lfot fo’fo’zt Zo-- psz ds + ds + dB.

We write z, z’)+ z:)+ z3), where

p ds
8

z= exp O du ds,

z3= exp o, du 0

Then

( ((3.4) R suplz’]> =<R [Zol->exp =<exp
[a,b]

for 0< e < e(c), using (2.4) and the Bienaym6-Chebyshev inequality. By the assump-
tions (A1) on f and g in 2, there exists k > 0 such that

E exp (kllllb)< o

where Ilffll,-- supto.t Isr.[. Then

Iz%21-<1111, exp _fl(t-s) ds.

(3.5) (  expP Ilz(=ll> --<P kll’llb> 3e ]

for 0< e < e2(c).
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It remains to estimate IlZ(3)llb Now Z3) satisfies the linear stochastic differential
equation

dz3) _-1 ptz3) dt+ Ot dBt, Pt >= > 0

with z(o3= 0. Moreover, by assumptions (A1) ]0t]2=< k < co. Define the linear operators
Lt by

1
12F,,(L,F(z) =-1- p,zF’(z)+ It z).

Let

F(z)=exp Az2

A-ke
Then

----AptZ2 F(z),
E

LtF+AF=-A 2+lq,,l+ 1,12- z2 F,

2 + Iq,12+ (alq,l ) z2<2+k /3 2

since p, =>/3 and hk fl -1. Thus

L,F+ AF <- 0 if Z2 e(2+ k)

which implies

h { 12 e(2+k)}L,F + AF <-_- max (2 + k + Akz)F(z) Iz <=
2 /3

L,F<--AF+NA, N=(l+)(l+exp \ 2k ]

Following Kushner [10, pp. 79-80], for 0 <_- _<- b let

W(z, t)= e’F(z)+ O(eb-e’)

where p and 0 are to be chosen. Then

OW
Ot
-t- L,W e’[pF + LtF Op

<- e’[(p A )F + NA Op].

We choose p 1/, 0 NA 1/2. Then for => 1, W(z3), t) is a nonnegative supermartin-
gale. Hence, for any d > 0

(sup W(z3), t) >- d) <= F(zo) + O(eb 1).p
\[0,b] ,]
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Since

/1 \
expz2)-<W(z,t) forO<=t<-bandF(zo)=l,

Iz()llb >sup W(z3), t)=>exp
t0,b \ 18 ]

P IIz(ll> _-<exp ][(l+Nl/2b) exp(,’/Zb)].

Since A (ke)-1 there exist K and e such that

(3.6) P ( [,z(3)llb >) <= exp (---) O<e<e

From (3.4)-(3.6) we get Lemma 3.1.

4. Two possible approximate filters. We now define m+ and m- that satisfy
equations like (1.2). A test will be given to determine whether x, is positive and bounded
away from zero on some time interval, with probability nearly one. When this test is
positive, then m,+ will be used as an approximation to t. Similarly, rn- will be used
as an approximation to :, when a corresponding test for negativity of x, applies.

We first choose 6 > 0 such that

(4.1) h(x) >= yl implies Ix _-> 26

with y > 0 as in (A3).
We also choose Y3 > Y and r>0 (y and Y2 are as in (A3)). Let

371 sup h(x), Y3- inf h(x).

By (A2),)71 < y and Y3 > Y3, provided we choose r large enough. The numbers Y3 and
r may be regarded as large cutoffs for h(x) and Ixl, respectively. They will play a role
only in 7. In earlier sections, we can take r Y3

We choose h+(x) and h_(x) such that

h+(x) h(x) if 6 _-< x_-< r,

(4.2) h_(x)=h(x) if -r<-_x<--6,

c, <-_ h’_(x) <-_ c. c <= -h’_(x) <- C2

for all x, where O< cl < c and h".(x) is bounded and continuous. Consider the following
processes m+, rnt for => O:

(4.3) dm+ =f(m+) dt + g(m+ )(dyt _.l_e h+(m+ dt),
(4.4) dm-f =f(m[) dt- g(m-[)( dy, --el h(m-f) dr)
with initial data rn:= E(xo). Note that rn: depend on e. Equations (4.3) and (4.4)
are like (1.2) with h replaced by h/ and h_, respectively.
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Lemma 3.1 provides a convenient test to determine whether xt remains in one of
the two intervals I-r, -6] or [6, r] during a time interval [a, b]. Define B:- B+/-(a, b)
and C C(a, b) by

B+={6 <-x--- rfor a =< t=< b},

(4.5) B- {-r <- x,-< -6 for a <-_ <_- b},

C {Y <= h+(m+ <- Y3 for a =< _-< b}.

In Lemma 3.1 we now take H h+, m, rn+ and a < min (y- y, Y3- Y3).
LEMMA 4.1. Let 0 < a < b. Then there exist positive eo and K such that

(4.6) P[(B+UB-)CIC]<-exp(-), 0<e<eo.

On B+, h+(x,)= h(x,) for a _<-t_-< b. Since h_-> el > 0 we also have from Lemma
3.1 the following. Given y > 0 there exist eo and K such that

(4.7) P(B+f’llsup.x,-m+,,>6})<-exp(-), 0<e<eo.
I.[a,b]

If we take a small enough in Lemma 3.1, then

P(C)>=P(Y,+a>=h(x,)>=Y3-a,a<--t<-b)-exp (-).
Hence,

(4.8) lim inf P"(C) > 0,

which implies an estimate like (4.6) for the conditional probability

Pe[(B+ U B-) C3.
5. Quadratic variation test. Next we let

(5.1) C {y, _-< h+(m+) <- Y2 for a --< _--< b}

where y and Y2 are as in (A3). Since Cc C we know from Lemma 4.1 that
P[(B+U B-)CI C] is exponentially small. Essentially the same proof as for (4.8)
shows that P(C)_-> k>0 for small e. Thus P[(B+U u-)l c] is also exponentially
small. We shall introduce a test to decide between B/ and B-. This test is based on

quadratic variations associated with the observation process y,. It will be used in the
course of justifying in 6 another test of likelihood ratio type. Let M=[e-(b-a)]
and for j=0, 1,...,M-1 define t=a+je

,,’ h(x,) ds,
(5.2) Y (y’+’ Yr.,), Sj

e

By (2.3), Y Sj + . If we consider onlyj even, then the random variables V+I-
are independent. For the quadratic variation test, we need to estimate j (Y+I- y)2
for j even. For this purpose we first estimate j (S.+I-S)2 where the sum is taken
over j even. We have

1 f:-,,’ [h(x,+)-h(x,)] ds

p dw ds + O
E t
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where Ps g(xs)h’(xs) and

with Lh f(x)h’ +1/2g2(x)h".
By assumption (A1)

j,t." Lh (xa) dA ds

(5.3)

Let us introduce the "sawtooth" function b such that, for j even,

(5.4)

(s-t

By exchanging order of integration, we get

where/ t, t+2]. Let

SJ+ Sj I
(5.5) e E 49s dws ch ds

!t. !

and define Os by

0.= 4)u dwu, s I.

The It6 differential rule implies that

e 2 , 0,49, dws 2 Os4)s dws.

LEMMA 5.1. Given d > 0 there exist positive eo and K such that

P(le]>=d)<-exp( --) 0<e<eo

Proof We have

P(lel >- d) <_- P(I1011->- El/4)-i- P(lel >-- d,

where is the sup-norm on [a, b]. Now

P(I1011-->*/4) p / sup sup 01-> 1/4/
\j /

Since ]b2[ _-< k, a standard estimate (Theorem 18 of [15, p. 54]) gives

P sup 10s[->-c _-<2exp
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We take c 61/4 to get

P(lllleel/4)exp ,/2e 2ke

By a slight modification of the argument in [15] just cited,

P(lel>=d’ II[l<el/4)-<2exp -2k(b--)
We take K <min (1/2k, d2/2k(b-a)).

We now introduce Z, on which the quadratic variation test will be based"

1
(5.6) Z Yj+I- yj)2o

b a

LEMMA 5.2. Given d > 0 there exist positive eo and K such that

(P Z 3(b-a)
(gh’)2(x,)ds-1 >d _-_exp -e-e

for 0 < e < eo.
Remark. A similar result holds for j odd. Thus, for e < e0,

2 (Y+I Y -’ (gh’)2(x,)ds -2 >2d -<2expP b a j---o

This remark is useful when quadratic variations tests are implemented numerically [4].
Proof of Lemma 5.2. We write Z F1 + Fz’k- F3, where

(Sj+I- Sj)2,F1 b a

2
F2 b a

(Vj+I- Vj) 2.1-’3 b a

The lemma will be proved if we show that, for small e

(5.7) F,-3(b_a-------- (g’)(x) ds > =<exp

(5.9)

The random variables b+ gj, j even, j=0, 1,..., M-1, are independent and
Gaussian, with the mean 0 and variance 2e. Hence (5.9) follows from a standard large
deviations theorem. We next recall (5.4) and write F1 G1 + G2+ G3, where

G1 b a

2
E 4,|G2 b a ,

1
G3 b a
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By standard estimates for stochastic differential equations, for fixed a > 0 and small e

P( sup ,xs-xu,>=a)<-_exp(-ee)
Using Lemma 5.1, we then obtain

P G1-3(b_a--- (gh xs) ds > dl _-<exp

By (5.3), [G3[ Kllxll, from which

P (Ia31 > d) P Ilxll > exp

using the fact that exp cllxll < for some c < 0. Finally, for any > 0,

1

We then obtain (5.7) by choosing suitable di < d/9, r 1, 2, 3 and A suciently small.
To obtain (5.8) we first recall (5.3) and (5.4). Then

e 2 j(+l-) > P
2

NP
K(b a)

IlXllb>2

()pe 1/4)

At the last step we used mutual independence of the processes x, v. By (2.4) and
Theorem 5.7.2 of [7], exp [111111 < for some > 0. Thus,

P 2 0(+-) > Nexp + exp Nexp
2e

for k < min (% / 8) and for small e.

Next let us write

[-, s[,.),
and consider the piecewise constant process (independent of { }) such that= dw forse.

Let ’ dye. Then N is a -martingale, and

k

2e ds + 2ee.
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Since b, is bounded, by Lemma 5.1 we have for some F, A > 0

P((N)t >- 2Fe <- exp ( -e)
We introduce the stopping time

> 2Fe},r=b^inf{te[a, b] (N},=

and let N’,= N,^. For any > 0

M, exp AN’t---(N’),
is a -martingale. Moreover, (N)-<2Fe implies Nt N’t for all t[a, hi. For a>0,
N > a, (N) =< 2Fe imply

Mb=exp ANb--(N)b _>-exp(Ace-AzFe),

P(N > ce, (N) _-<2Fe) _-<exp (-Ace + A Fe).
We take A e-0 with OF <

p Nb > a <__ exp ( k_)
A similar argument, with A replaced by -A gives, for small e,

We take ce < d/6 to obtain (5.8). This proves Lemma 5.2.
We shall now use assumption (A3) and Lernma 5.2 to describe a test for positivity

or negativity of x, on an interval [a, hi. As a function of y, x+(y) and x-(y) in (A3)
are continuous. Under (A3), (gh’)a(x+)-(gh’)a(x-) is continuous and not zero on the
interval [y, y:]. There are two possibilities" either

(5.10a) (gh’)2(x-) < (gh’)2(x+) c

for all x+>0, x-<0 satisfying h(x+)=h(x-)=y, Y<-Y<-Y2; or

(5.10b) (gh’)2(x+) < (gh’)2(x-) c

for all such x+, x-, y. We shall suppose that (5.10a) holds, the case of (5.10b) being
entirely similar with a reversal of inequality signs in (5.11). Since x. cannot itself be
observed, we must approximate (gh’)2(x) in Lemma 5.2 by quantities computable
from an observation sample path. Let

+p., (gh_)(m), p. (gh’__)(m-),

and define C:= C(a, b) by

C+= Cen le> lq- [(ps+)2q_(p-)2] Ms
6(b-a)

(5.11)

C2 C f-I Z,_-< +6(b-a------ [(P" +(p2)2] ds

Clearly C C+ U C2 and C+
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for small e.

We have

I.[a,b]

pe[B_ncen(AlnA)C]<__exp(__K)e

PIECEWISE MONOTONE FILTERING

LEMMA 5.3. There exist positive eo and K such that, for 0 < e < eo

P[(B+) n C+] <_- exp
K

P[(B-) n C-] < exp

Proof. We prove the first inequality, the second being similar. First of all,

P[(B+) n C+]_-< P[(B+ U B-) n C]+ P(B- N C+).

The first term on the right side is estimated using Lemma 4.1. It remains to bound the
last term. By (A1) and (5.10a) there exists ao>0 such that +=>0, :-<0,

Ih(x) h(:+/-)l < Co, yl- Co h(x) y2 nt- Oo,

imply + => 6, :- _-< -6 and

C
(gh’)2(s-) < (gh’)2(+) --.

Here 6 is as in (4.1). Moreover, since gh’ is bounded and Lipschitz

I(gh’)2(x)- (gh’)2(-)l K,Ix-
Since Ih’(x)l is bounded away from zero for Ix] ->

I(gh’y(x)-(gh’)(-)l <- Klh(x)- h(U)l

for x <- -, :- -< -&
We now take x x,, :+= rn.,. For a < ao consider the events

Al {(gh’)2(m-) < (gh’)2(m+ )-},
A- {l(gh’)(x)-(gh’)(m+, )l < Ko},

A {l(gh’)2(Xs) (gh’)2(m]-)l < Ka}.

We use Lemma 3.1 with H h+. For small e

\[a,b] E

P(suplh(x,)-h_(m[)l>a)<-exp(-K--).
\[a,b]

If ]h(x,)-h,(m[)l<-a and Ih(x,)-h_(m-[)l<-a, then

mt >- 6, h+(m+,) h(m+),

rn, <-6, h_(m-[)= h(m-[)
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We have on B- (q.C f3 A1 (’1A,

(gh’)2(xs) ds- (p-)2 ds <_ K2(b a)a,

(o;) cls < (o+ as-- b- a,

l fa’ +K21+ (gh’)e(x) ds < + (pl) ds
3(b-a) 3 3(b-a)

Ke c
< [(pf) + (pl)] ds.L3 12 6(b-a)

We now take, in Lemma 5.2,

d

to get for small e

c K2a c
>0 ifa<

12 3 4K2’

p B- (] C+ A f] Af < exp ( )
From these estimates we get Lemma 5.3.

The quadratic variation test now proceeds, roughly speaking, as follows. According
to Lemma 4.1 the probability that x, crosses zero during [a, b] is exponentially small,
if C(a, b). We will decide between B+(a, b) and B-(a, b) based on observing one of
the two possible events C+(a, bl) or C-(a, bm), where a < bm < b. Thus, we let

(5.12) Q+(a, b)= C(a, b)VI C+(a, bl), Q(a, b)= C(a, b) C(a, bl).

THZOREM 5.4. ere exist positive eo and K such that, for 0 < e < eo:

P(N+(a, b)lT(a, b))Nexp
K

P(B-(a, b)Q2(a, b))<exp= -P([B+(a, b) B-(a, b)] [Q:(a, b)U Q:(a, b)]) exp (-).
Proof We have

B+(a, b) QS(a, b) = [B+(a, b,) C{(a, b,)] [B+(a, b,)B+(a, b) C(a, b)].

By Lemmas 4.1 and 5.3, for small e and suitable K,

(5.13) P(B+(a,b)Q2(a,b))Nexp

By modifying arguments used in the proof of Lemma 5.3 we can easily show that

(5.14) liminfP(Q(a, b)) > 0.
0

This implies the first inequality in Theorem 5.4, and the second inequality is similar.
The third inequality is immediate from Lemma 4.1.

Remark. It can be seen that the constants K and eo are uniform with respect to
a, b, b, provided

0<a*Na, bNb*<, b-at*>0,
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where a*, b*, t* are given. The result C(a, bl) of testing on the interval [a, bl] is
then used to decide whether to use the approximate filter m+ or m- up to time b. The
accuracy of the approximate filter is discussed in 7.

In this paper we consider the length b- a of the testing interval as fixed. In fact,
an appropriate sequential decision test for positivity or negativity of xt turns out to
give a smaller mean decision time, for the same probabilities of incorrect decisions.
This is discussed in [4], which considers a discrete time analogue of the model and
in which some numerical results are reported.

6. Likelihood ratio test. Now we want to show how a decision between B+(a, b)
+and B-(a, b) can be made from the output mr, m of the two approximate filters

(4.4). For a < d < b let us define the following test statistics, based on likelihood ratio
considerations:

(6.1) L (/+-/;) dy-e [(/+)2- (/-)] ds

where/+= h+(m+), -= h_(m-). Using the representation

(6.2) dy =-1 ds + d,

where h E[h(x)]] and (the innovation) is a standard Brownian motion, L
can be rewritten in two ways. Let

(6.3+

Then

L -e d

z ds + z du +
e

z h - ds.

We will show that the first term on the right side of (6.3 dominates the other two
terms, except for events of small probability. In fact, this term is of order O(1) (see
Lemma 6.3). The sign of L will then provide a test for positivity or negativity of xt
on [a, b] (see Theorem 6.5).

Let us choose e with a < e < d < b. We need estimates for be s " /’:12 ds. These
are obtained in two steps, in Lemma 6.1 and 6.2. First, we replace h+ by a related
q,uantity /+ obtained after a change of probability measure. Second, we estimate
+ *’+h. -h.. Consider the following filtering problem:

dx, =f(x,) dt + g(x,) dw,,

dy, =-1 [h(xt)l{,<__e}+ h+(x,)l(,>e}] dt+ dv+

The change of probability argument we now describe is due essentially to Ji. Define

y,=h+(x,)-h(x,),

Z, exp )’s dv
2e 2 y2s ds e <_ <-- b,
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with Z, for 0_-< t-< e. Then vt
+ is a P+ standard Brownian motion, where

dp+

dp"
Note that P/= P+ depends on e. Let us calculate , E(Z,I 0,). We have

dZt _1 y,Zt dv dyt =-1 h x, dt + dv

The nonlinear filtering formula implies

d,, 1
[Z,h, Z,h, + v,Z,] du,

E

with h, h(x,) and with u7 the innovation. Also

Z,sr, Zd,, where r, E+(sq 0,).
We take ’, h, and sr, y, to get

dZ, + ,,] du,.

Moreover, 3, fit+ -/,, where

(6.4)

Hence,

(6.5)

By Jensen’s inequality

-og 2, -og z,.
Since log Z, and log , are continuous functions of t, and C+(a, e) is gte-measurable,
we have that for any {,}-stopping time r with e<=r<=b

E[lc+(a,e) log Z,] E[1G(a,e)log Z,],

-+ +E (h,-h,) ds;C(a,e) =-E [1c:(,e) logZ]

NE (h+- h,)2 ds" C(a, e)

We now take

(6.6) r b ^ inf >_- e" h+(m,+) [y,, Y2]}.
Then hf h+(x.)= h(x.)= h. on B+(e, r). By Cauchy-Schwartz

E (/f_/,)2 ds; C(a, e)

N E (h+-h)2, ds [P(Cf(a, e)(B+)C(e, r))] /2

+ aNK[P(C( e)O(B+)(e, r))] 1/2
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Also, on B+(a, e) fl B/(e, r) c,
sup Ih(x,)- h+(m,+)l > c
[e,b]

for some c > 0. We now apply Lemma 5.3 on the interval [a, e] and Lemma 4.1 (or
Lemma 3.1) on the interval [e, b] to obtain Lemma 6.1.

LEMMA 6.1. There exist positive eo>0 and K such that, for 0< e < eo

]E (fi-]s) ds; C+(a, e) <exp
K

We next estimate /-/+ on [e, b] where e< el <d <b. We recall that m as
defined by (4.4) is an approximate filter of the form (1.2), when h is replaced by h+
and v7 by v. By (6.4) and Picard [12, formula (5.17)] there exist eo>0 and Fq (any
q 1) such that for e < eo

(6.7) E+[] +-s flq] < Fqeq, el < s <= b.

LEMMA 6.2. For every a > O, tx > O, q >-- 1,

({if )pe 1+,- q ds >-_ ae" B+(a, b) _-<
(b a)ro eq_/

Proof We recall that P(D)= P+(D) if Dc B+(a, b). Lemma 6.2 then follows
from (6.7).

Let us return to z, =/-] in (6.3). From (4.2)-(4.4) and the It8 differential rule,

d =(Lh+)ds+p2 ds+p, du.,
E

where (Lh+/-). Lh+/-(m)and p=(gh)(m). Then

dz,,. =[(Lh+).-(Lh_),] ds+ p--z-
(6.8) e

z ds + o’2 du + o’2 ds,

cr. PL + P..

From assumptions (A1) and (4.2), -p2->/3 >0. Moreover, by (5.10a), x+>0, x-<0,
h(x+) h(x-) [Yl, Y2] imply

(gh’)(x+) + (gh’)(x-) >- 2c > O,

for some c > O.

Using the notation of the proof of Lemma 5.3, we have

B+ f"l C f-I/sup [h(x,)- h+(m+)l <- o } c A-.
k[a,b]
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By using Lemma 3.1 in the same way as in the proof of Lemma 5.3, together with
Lemma 4.1, we have

(6.9) P ({min s < c} (’l C(a’ b)) <=exp
bl

for small e.

We now define

(6.10) a+= C+(a, e) C(a, b), a-2-- CT(a, e) C(a, b)

LEMMA 6.3. There exist positive y, era, Km, m 1, 2, , such that for 0 < e <

P z ds< y n KmEra.

) 0 and (see (6.8))Proof We write z z) + z, where Ze,
()

dz p z. ds +

z, ds + Lh+ Lh_ ds + ds.

We first show that the contribution of z is small. We have

Z2=Ze, exp P exp
p du

[(Lh+)-(Lh_)]ds+(t+n,,
e g e

exp ds,
E

n,= exp
.p, u

ds.

Since pT- <0, the first term is exponentially small on [d, b]. Since (Lh) is
bounded, the second term is of order e. An argument similar to one in the proof of
Lemma 3.1 shows that it suffices to estimate , and t. Using p - < 0, bounded
and Cauchy-Schwartz

Now A+ C(a, e) and r b on A+. By Lemma 6.1, given 0 > 0

p _1 sup 0 A2 NP (,-)ads C(a,e)
g [el ,b] e

exp < em
-0e

for small e (depending on m).
To estimate we use H61der’s inequality with <p<2, p-l+q-= 1"

k(fet [it ])2/P(fet )2/q2< exp p du ds g g[q ds

Since p ;- _<- -/3 < 0,
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1 2 < k2e2/p-3 ~+ q
-r/,= [h. ds
E

[e,b]

with a kq/2 and

+ P If+ f[]q ds o B+(a, b)

/x= 3- =+1.
The same proof as for Lemma 5.3 shows that

P(B+(a, b)eA+)-<exp O<E<8o,

with a similar inequality for B- and A-.
By Lemma 6.2 we then have

[e,b]

(b-a)Fq F_,q/2-1 8,

for small e, if we choose q > 2m + 2.
It remains to consider z. Let

(6.11)
--1/2 _(1)u e ’(s-e,), ff, e Zs

Pu --Ps, ’u 0",, V 8
-1/2

Then Vu is a standard Brownian motion and

(6.12) d, -du +, dV,, u >- O, o O.

Moreover,

lid’ b- e, f ’-’ d-el b-el[z(l] ds du where U1 U-
8 U Ut 8

Since Cu =>/3 > O, to complete the proof of Lemma 6.3 it will suffice to show that, for
some e> O, there exist gm, Km such that

(6.13) P u du<g n mera, O<8<g
Ut

We write ff 6, + 6, where from (6.12) and the It6 differential rule

dO. -2u6. + 2 dV., Oo O.

Let +=A+{ > c}, with c as in (6.9)
For small e

(6.14) P(A+\fi+)--< exp (
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Since 0_-</3 -< bu --< M < c and , is bounded, elementary estimates imply that on +
2

C1 -2Mu$, _->- (1 e )=>
3M

for u U and small enough e. Thus, on +
ck,du > =c2>0 since

U b-el
(6.15)

U u, = 1- > -.

In (6.13) we take g=c2.
On the other hand,

-2 0 dv +M where M, 2 N dV.

Since , satisfies (6.12) with , bounded and > 0, standard arguments imply
that 1 is bounded on 0N u <, for each l 1. Since is bounded and Mu is a
martingale, this implies

EllMllAmUm, m=l,2,...,

for suitable A. Since , -,, and , is bounded, by taking 1= 4m we see that
E],[2 is bounded for each m. Then, for small e,

> IM ,I>
U

using Chebyshev’s inequality. From this, together with (6.14) and (6.15), we obtain
(6.13) and hence Lemma 6.3.

LEMMA 6.4. ere exist positive e, K, m 1, 2,..., such that for 0< e < e"

P({ < O} A:) K, P({ O} AT) K.
Proof Let us prove the first estimate only. Using (6.3+) we rewrite L as

2 ds + Zs dp + 2

Let us first show that the sum of the last two terms is nonnegative on A with probability
nearly one. Indeed, it is bounded below by

X ae z ds --e h, h,) ds.

The same arguments used in the proof of Lemma 6.3 to estimate , and r, show that

(I6Ia } )P (,-+) ds> (’IA+

and hence from Lemma 6.3,

P({X < 0} (3 A < K2)e

for small e. Let

M 8
-’/2 z dv.
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The sum of the first two terms is negative provided that

M+e(M) < O.

Let a < y with y as in Lemma 6.3, and let

Forh<0wehaveonD

Since E[exp (hMb-1/2h2(M)b)] 1, we have by choosing h suitable that for any k>0
and small e,

This completes the proof of Lemma 6.4.
From (5.11) and (6.10), C=A+t.JA- and AfqA-=. We then conclude from

Lemmas 4.1 and 6.4, together with (6.11), the following corollary.
COROLLARY 6.5. There exist positive e,,, K,,, rn 1, 2, , such thatfor 0 < e < era,

P({L <O}CI C(a, b) l’-] B+(a, b))< Kmera,
P({L _->0}f3 C(a, b) CI B-(a, b))< Kmera.

In much the same way as for the test Q. at the end of 5, we now introduce a
test R based on L. In (6.1) let us now write L L(d, b). We consider a < d < b < b,
and let

(6.16)
R+ (a, b) C(a, b) f3 {L(d, b,) >= O} f C(a, bl)

R-(a, b) C(a, b) f’) {L(d, b,) < O} C(a, bl).

From Lemma 4.1 and Corollary 6.5, we obtain, by the same proof as for Theorem 5.4,
the following theorem.

THEOREM 6.6. There exist positive K, 8m, Km for rn 1, 2,..., such that for

P(B+(a, b)[R+(a, b))<=Ke m, P(B-(a, b)lR(a, b))<=K,e m,

P([B+(a, b)(J B-(a, b)] f3 [R+(a, b)(.J R-(a, b)])<=exp (K)
7. Approximations to the conditional mean. In 5 and 6 we described two tests

to decide between the events B/(a, b) and B-(a, b), with small probability of error
when e is small. It remains to estimate how well the conditional mean , is approximated
by m,+ in the positive case or by m- in the negative case. Let us consider the events
O(a, b) defined by (5.12), using the quadratic variations test. The discussion with
R(a, b) defined by (6.16) is similar, except that estimates exponential in e are replaced
by estimates polynomial in e.

For brevity we write B B+/-(a, b), Q Q(a, b), etc.
LEMMA 7.1. For each q > 0 there exist positive eq, Kq such that, for 0 < e < eq

E.[[Sb m_lq; Q+fq(B+)C]=<exp (K)
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Proof. By Cauchy-Schwartz,

leftside <= (Eelb m-12q)l/2(Pe( Q+ f) (B+)C)) 1/2.

The last term is estimated by (5.13). Since Elbl2q is bounded, it remains only to
bound Elm2lzq. Let z, h(x,)-h+(m+,). Then as in the proof of Lemma 3.1,

1
dz, p,z, dt + , dt + 0," dB,

with p, =>/3 > 0, ’, and O, bounded, and B, (w,, vT) a two-dimensional Brownian
motion. This implies a bound on ElZbl2q; in fact it is of order e q. Since Elh(xb)leq

is bounded and [m2l<-_klh+(m2)l/k, we obtain the required bound for Elm2[2.
This proves Lemma 7.1.

We next make a change of probability measure, from P to P/ with

dp+

Zb,
dp % dv ds

e 2e 2

%=h+(x,)-h(x).

This is the same as in 6, except that the lower limit e is replaced by a.
LEMMA 7.2. There exist positive Co, K such that

P+((B+)c fq C) <=exp (-), 0<8<80.

This is proved in the same way as Lemma 4.1 with h replaced by h+, recalling
(4.1) and (4.2).

We use the notation &, (x,), and

(7.1) (t
As already used in the proof of Lemma 6.1,

z,4,, z,,.
LEMMA 7.3. Let be bounded and continuous and x > O. Then, for every q > 0,

there exist positive 8q, Kq such that

P({I,& 4,,,I > ,"} n Q+) =< exp _Kq

for 0 < e < eo.
Proof We recall that P(E)= P+(E) for E c B+ and that Z 1 on B+. If D is

-measurable, then

t,Zt, ,) dP chZb dP ch dP
D

ch dP+- | dpb dp.
Dfq( B+)

Let

D {Z > as q } f"l
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Using (5.13), Lemma 7.2 and Q+ c C, we have for small e and suitable Kq

P({chbZ--> aeqI Q+)<=[[dl--- [P+((B+) Q+)+ P((B+) Q+)]q

N-exp
2

Similarly, for small e,

P({bZb--b<--eq} Q)Nexp
This proves Lemma 7.3.

Lemma 7.3 holds in particular for , 1. Thus, for small e,

We then conclude from Lemma 7.3 that given 0 > 0 we have for suitable gq, Kq

(7.2) e({l-l> oeq} Q2)exp -for 0<e<go

With r as in 4, we choose bounded and continuous such that (x)= x if

Ixl r and I(x)l 121 for all x.
LEMMA 7.4. ere exist positive eo and K such that, for 0 < e < eo, and any D Q

which is b-measurable

bb b dP exp
K b dP+ < exp

D 8 D

Proof Let B {Ix,] r for a b}. Then

(-e (b--X e
D D

N (e+ Ex)l/[P(Q2 B)]/.

The first inequality then follows from Lemma 4.1, since Q+ c C and B c (B+U B-) c.
The second inequality is proved in the same way, using Lemma 7.2 and Bc (B+) c.
Next, we recall from Picard 12] that for any q > 0 there exists Nq, such that for small

(7.3) +[1 mll Ne q.

THEOREM 7.5. Let 0 < p < 1. en, for 1, 2,... there exist e, K such that

P(l-m2l> eP[Q2)Kte ’,

P(]-m]> e[QT)Ke,
Proof It suffices to prove the first inequality. We have

+ p p B+ p- p B+
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The first term on the right side is estimated from (5.13). To estimate the second term,
we write

Xb m b .b .’l,b A,b m b.

Let us choose b as in Lemma 7.4. Then

p peP (.b--Y,>e Q+)_-< (lb--/)b[>8 p" Q+)+P(b--:b>e p" Q)

+P(b--b>eP; Q+).

The first term on the right side is estimated from (7.2) with q p. The last two terms
are estimated from Lemma 7.4 with D={4b--)b>eP/6}71Q+ and D=
{)b--,b > eP/6}f3 Q. Thus, for small e and suitable kl>0

P b--Yb>-e’;Q <=exp

Similarly,

P ,b--b <-- eP; Q+ <exp

Finally, using (7.3),

2Nq e
8q 2Nqe(1-p)q <m

8
pq 2

for small e, provided q is chosen large enough that (1-p)q > 1. By combining these
inequalities and recalling (5.14) we obtain Theorem 7.5.

8. Extensions of results. Let us outline how the quadratic variations and likelihood
ratio tests can be modified to deal with more complicated situations. To begin with,
let us again consider state x, and observation y, of dimension one. Afterward we outline
an extension to state x, and observation y, of the same dimension n > 1.

Let us again assume (A1) of 2. Instead of (A2) and (A3) we assume:

(A2’) h has a finite number of critical points x*, 1, , rn with x* <. < X*m.
Moreover, Ih(x)l ee as Ix ee.

To state the next assumption (A3’) let us make the convention that Xo* =,
X*m+l +. Let

Oi=(x*i_,,x*i), i=1,’’ ", rn+l

N= {x* x*}.

(A3’) There exist 7’ > 0, c > 0 and for every <j such that h (Oi) f3 h (Oj) a
compact interval A0 with the following properties:

(i) A o c h(Oi) CI h(Oj);

(ii) 7 =< dist (h(N), Ao);

(iii) xi e Oi, xj E Oj, h(x,) h(x.i) y e A
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imply

(8.) I[g(x,)h’(x,)]=-[g(x)h’(x)]2l> c.

In previous sections we considered m 1, x* =0, h(0)=0, y Yl, A12 [Yl, Y2].
Let us first describe a test like Lemma 4.1, which will imply that, on a time interval

a_-< t_-< b, xt remains outside a neighborhood of the set of critical points with the
probability very nearly one. We choose 6 > 0 such that

(8.2) dist [h(x), h(N)]-> y implies dist (x, N) > 23.

As in 4 we introduce "cutoffs" r and Y3, such that Aij c I-Y3, Y3] for all i<j and
Y3 < Ih(x)l whenever Ixl-> r. Without loss of generality we may assume that h’(x)< 0
on O1o

Let

FI= (-r, x|*- 6),

Fi [x*_, + 6, x* 6], 2, m,

["m+, Xrn -lt- 3,

We choose hi, i= 1, m + 1, such that h"i is bounded and continuous, and

(8.3) hi(x)=h(x), xFi, O<Cl<=lh(x)l<=c.
We also define rnt for t>-0, i= 1,..., re+l, by

(8.4) dmi=f(ml) dt+(-1)ig(ml)( dyt --el hi(mit dt)
with initial data mo E (Xo). As in (4.5) we define

Bi {x, e Fi for a -< _-< b},
(8.5)

’)1 <C {]hI(m, =y3,dist(h,(m,),h(N))>=6fora-t-<-b}

for some particular I (e.g., ! m + 1). The analogue of (4.6) is now

(8.6) P Bi (’1C _-<exp
K

0<e<e0.

If h(rn,)Aij for aN t_-< b, then we need a test to discriminate between Bi and B.
An analogue of Lemma 5.3 is as follows. Suppose that in (8.1) we have, as in (5.10a),

(8.7) (gh’)2(xi) < (gh’)2(x)- c.

If the opposite inequality holds, the discussion is similar. Let us set

p,, (ghi)(m), ps (gh)(rn.,)

for a < < b}. We again define C+anddefineC=C={h(m,)Ai =C C=C
by (5.11). Then, for small e,

eijWe then define Q. Q+/- as in (5.12) and obtain, as in (5.12), for small e

((8.9) p(BilO+)<__exp
K

P(BIQ-i)<exp --e
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Similarly, given i<j we define L L as in (6.1) by

LiJe-- (-1--1) dys-G C(J)2-(]!)2] ds

where/is hi( rni)s If we again assume (8.7) then the analogue of Theorem 6.6 states
that, for small e and suitable K, m 1, 2,. .,
(8.10) P(B, IR +) < Kme, P(BjJRT) < Km8m.

Remark. There is also a "local" version of these tests in which only j i+ 1 is
considered. This version can be used to detect a crossing of the critical point x by
x,, from O to O+ or vice versa.

Extensions to dimension n > 1. Now let h:" ". We merely indicate how the
results for n can be modified, without spelling out in precise detail the results. Let
Dh(x) denote the matrix of partial derivatives and dh(x)=det Dh(x) its Jacobian
determinant. In the analogue of the (A1), the matrix g(x) is assumed to have a bounded
inverse g-l(x). Instead of (A2’) we suppose that there are disjoint open sets
O,. ., Om+ such that

" O tO" U Om+ U N,
m+l

N= U 0Oi,
i=1

and the boundary of Oi consists of pieces of finitely many smooth (n 1)-dimensional
manifolds. It is assumed that the restriction of h to each Oi is one-to-one with Jh(x) 0
on Oi. Moreover, Ih(x)l oo as Ixl oo.

Given y > 0 we again choose 6 > 0 as in (8.2) and let

r, O, {dist (x, N) >= a} ["1 {Ix]-<- r}
where r is a suitable "cutoff." We also choose hi such that hi(x) h(x) for x e Fi and
that hi satisfies the assumptions of Picard [13]. Principal among these is an analogue
of (8.3), which asserts that hi has an inverse h7 with Dh7 bounded. Let

(8.11) T(x) =trace [(Dhi)(gg*)(Dhi)*](x).

Then T2(x)->__ ki > 0. In (A3’), condition (8.1) is replaced by

(8.12) IT2,(x,) T,2.(x)l > c,

and zX 0 is the closure of some bounded, open connected set (rather than an interval).
As in Picard [13] the approximate filters ml are defined by

-1 -1(8.13) dm=f(ml) dt+[Dh(m,)] Ti(m,)(dyt-e h(ml) dt)

with mo= E (x0). We then proceed as for n 1, with evident notational changes. For
example, in the definition (5.6) we now have

, g.,+l- yl2.Z b a

Acknowledgment. We thank J. Walsh for a helpful suggestion regarding the calcula-
tion above Lemma 5.1.
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Abstract. This paper presents a general approximation framework for the computation of
optimal feedback controls in linear quadratic regulator problems for nonautonomous parabolic dis-
tributed parameter systems. This is done in the context of a theoretical framework using general
evolution systems in infinite-dimensional Hilbert spaces. The authors discuss conditions for preserva-
tion under approximation of stabilizability and detectability hypotheses on the infinite-dimensional
system. The special case of periodic systems is also treated.

Key words, evolution equations, LQR problen, feedback control, approximation techniques
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1. Introduction. In this paper we present a theoretical approximation frame-
work for the computation of optimal feedback controls in linear quadratic regulator
(LQR) problems governed by parabolic partial differential equations with time de-
pendent coefficients. Our efforts were originally motivated by the desire to develop
control strategies (distributed in nature) for insect dispersal models (see Chapter 1 of
[BK2] and the references therein) which have been shown to involve time dependent
coefficients.

The presentation below is somewhat in the spirit of that for autonomous parabolic
systems in [BK1] and [LT] in that we attempt to develop a convergence theory in
which uniform stabilizability of the original system is preserved under approximation.
It differs substantially from [BK1] and [LT] since we do not directly use sectorial
properties of the operators and resolvent and spectral set arguments to establish
preservation of stabilizability and detectability. (Indeed, the time dependent nature of
our system prevents this.) Nor do we use the Trotter-Kato theorem (which is not well
suited for use with nonautonomous control systems) in our convergence arguments.

In 2 we summarize previous results for abstract LQR problems on infinite time
intervals and formulate these in a form readily used in our subsequent discussions.
This formulation is based on the abstract frameworks found in [CP], [G], [BK1],
and IDa], [DIll, [DI2]; we rely heavily on the ideas of Da Prato and Ichikawa that
guarantee uniqueness of solutions of the associated Riccati integral equations under
certain stabilizability and detectability assumptions.

An approximation framework for abstract evolution systems in the spirit of [G]
and [BK1] is given in 3; convergence of the approximate Riccati operators (and,
of course, the corresponding controls and trajectories) is established under uniform
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stabilizability and detectability hypotheses on the approximate evolution control sys-
tems.

Our major contributions are given in 4, along with the presentations in 5 and
6, where we show how the hypotheses of 4 can be verified for rather wide classes
of problems of interest. In 4 we focus attention on parabolic systems described by
time dependent sesquilinear forms (in the spirit of the autonomous system frameworks
in [BK1], [ni1], [BI2]) and associated evolution equations. We make substantial use
of the results of Tanabe [T] to formulate our problems in a weak (Y*) sense. Our
fundamental convergence results (Theorem 4.4) for the uncontrolled systems rely on
a sesquilinear or variational formulation of the systems, strong V-ellipticity of the
prabolic evolution systems, approximation properties for the spaces approximating
the state space, and the Gronwall inequality. (Certain aspects of this approach can be
relaxed to allow us to treat weakly damped hyperbolic systemssee [BKS], [BKW].)
We are then able to reduce convergence questions for the controlled systems (e.g.,
convergence of Riccati variables, optimal controls, and feedback evolution systems)
to conditions of uniform stabilizability and uniform detectability of the approximate
systems (Theorem 4.5).

We show in 5 that we can obtain these uniform stabilizability/detectability con-
ditions by preservation under approximation of dissipative inequalities for certain
classes of evolution control systems. Sufficient conditions that are readily checked in
many examples are given and several special cases are noted.

An alternative approach is presented in 6 where we restrict our considerations
to parabolic systems for which the domain V of the generator of the evolution system
embeds compactly in the state space H. In this case, it is shown that stabilizabil-
ity/detectbility of the original system is preserved under approximation.

Finally, in 7 we give an example of a class of parabolic partial differential equation
control problems for which all the hypotheses of our theoretical framework can be
easily verified.

We have used the ideas presented in this paper to develop and test computational
packages for solving nonautonomous parabolic control problems of the type discussed
in 7. However, since our presentation here is already quite long and since a pre-
sentation of our detailed numerical findings would entail lengthy discussions, we will
not discuss the numerical examples. A separate manuscript is under preparation; the
interested reader can lso consult [W].

We believe that the present paper offers new results for time dependent infinite-
dimensional control systems. Moreover, our arguments are such that we offer an
attractive alternative approach to those found in [G], [BK1], and [LT] even in the
case of autonomous parabolic systems.

2. The abstract linear quadratic regulator problem on an infinite time
interval. In this section we formulate a linear quadratic regulator problem for evolu-
tion system dynamics in Hilbert space and present a collection of functional analytic
and control theoretic results related to such problems. The results we give in this sec-
tion are known even though in some cases we have modified the statements to present
the results in a form most suited to our purposes. The reader can easily refer to the
cited literature for proofs. In particular, we use freely results found in [CP] and [G]
nd rely heavily on recent results of Da Prto and Ichikwa IDa], [DIll, and [DI2].

We first recall results for evolutionary systems. Let H be a Hilbert space with
inner product < .,. :>. Let A(to, tf) {(t,s) to <_ s <_ t

_
tf}, /k(t0)

{(t,s)[to

_
s _< t < } and L(H)be the Banach algebra of bounded linear operators
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on H. We use B([t0, tl]; L(H)) to denote the set of strongly measurable operator
valued functions that are bounded on [to, tl]. We recall that T(., .) A(t0, tl) H L(H)
is called an evolution operator if T satisfies the following conditions" (i) T(t,s)
T(t, r)T(r, s), for to _< s _< r <_ t <_ tl; (ii) T(t, t) I, for t E [to, tl]; and (iii) T(t, s)
is strongly continuous in s on [to, t] and strongly continuous in t on [s, t]. We say
that an evolution operator has exponential growth if there exists M1 >_ 1, w > 0 such
that IlT(t,s)xll <_ MleW(t-s)llxl I, for (t,s) e A(t0),x e H. An evolution operator
is said to be uniformly exponentially stable if there exists M _> 1 and a > 0 such
that IIT(t,s)xll <_ Me-C(t-8)llxll for (t,s) Ac(t0),x H. We have the following
fundamental results of Datko which will be crucial to our presentation.

LEMMA 2.1. [Dt]. Consider an evolution operator T(., .) with exponential growth.
Then T(., .) is uniformly exponentially stable if and only if there exists an M2 such
that

c

liT(t,s)xll 2dt <_ M21lxll 2, for s >_ to, x e H.

Furthermore, we can find constants M3 >_ 1, c > 0 depending only on M1, M2, and w
for which the following estimate holds:

liT(t,  )11 _< (t, e A (to).

The original statement and proof of this theorem are due to Datko. We have
modified slightly (see Appendix A of [W]) the original proof in [Dt] to point out the
relationship between the constants Ma, a and M1, M., and w. This will be essential
for our subsequent use with approximation systems. In [W] it is shown that the
constants Ma and a can be chosen as:

M3 2M1e4M2M12w(2wM2+1)
log 2

a
4M2MI2(2wM2 + 1)"

In our discussions of control systems, perturbations of evolution operators (see
[CP]) will play an important role. Let tf < oc. Consider a uniformly bounded
evolution operator T(., .) and C(.) E Bo([to, tf]; L(H)). Then the integral equation
for S(t, s) L(H) given by

S(t, s)x T(t, s)x + T(t, 7)C(r)S(7, s)xd?, for x H,

has a unique solution S(., .) in the class of strongly continuous operator valued func-
tions. Moreover, S(., .) is an evolution operator and is called the perturbed evolution
operator corresponding to the perturbation of T(., .) by C(.). In addition, S(., .) is
also the unique solution of

S(t, s)x T(t, s)x + t S(t, )C()T(, s)xd, for x H.

We turn next to our formulation of the regulator problem for an evolution system.
We let H, U be real Hilbert spaces with inner products < .,. >H, < "," >V; H, U are
the state space and the control space, respectively. Consider an evolution operator
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T(., .) defined on A(t0). For any u E L2([to, c); U), the control system trajectories
are defined by:

(2.1) x(t) T(t, s)x(s) + T(t, v)B(v)u(T)d-, for (t, s) e A(to).

The cost functional is given by

Joe(u;to,xo) = {< W(t)x(t),x(t) >H + < R(t)u(t),u(t) >u}dt,

where x(.) is the trajectory corresponding to u with x(to) xo. For each given to, Xo,
the optimal control problem is to find a control u* which minimizes (2.2) over all
u e L2([to, ); U).

We can consider (2.2) as the limit as tk x) of

J(u;to, tk,xo) =< Gx(t),x(t) >H

+ {< W(t)x(t),z(t) >H + < R(t)(t), (t) >v} dr,

with G 0. Here we shall summarize existence results for optimal controls in the
infinite time interval, existence and uniqueness of the solutions of the Riccati integral
equation on an infinite time interval, and stability of the feedback system.

We make the following standing assumptions for all subsequent discussions of
(2.1), (2.2): (i) The evolution operator T(.,.) has exponential growth. (Thus, in
particular, T(t, s) is uniformly bounded for s, t in any bounded sub-interval of [to,
(ii) The strongly measurable operator valued function B(.)" [to, ) H L(U, H) is
uniformly bounded in [to, cx), i.e., there exists MB such that IIB(t)IIL(U,H)

_
MB

for all t [to, ); (iii) The strongly measurable operator valued function W(.)
[to, c) H L(H)is uniformly bounded in the interval [to, c), and W(t)is nonnegative
definite self-adjoint for all t [to, ); (iv) The Strongly measurable operator valued
function R(.)" [to, c) L(U) is uniformly bounded in the interval [to, c), and R(t)
is positive definite self-adjoint for all t [to, c). Furthermore, there exists a constant
r > 0 such that < R(t)u, u >v> rllull, for all u e U and t > to.

Under these assumptions, we consider the linear quadratic control problem in the
interval [to,tk] for tk < c. That is, we consider the cost functional (2.3) with our
system (2.1). Then for any bounded self-adjoint nonnegative definite linear operator
G, it is well known that for each given Xo E H, there exists a unique control u such
that

J(u; to, tk, x0) < min J(v; to, tk, Xo).
vEL2([to,tk];U)

This control u can be written in a feedback form u(t) -R-l(t)B*(t)Q(t)x(t), for
t G [to, tk], where x(.) is the corresponding trajectory and Q(.)’[to,tl] L(H), is
the unique self-adjoint solution of the Riccati integral equation (RIE)

(2.4) Q(t)x T*(tk,t)GT(tk,t)x + T*(rl, t)W(l)T(,t)xdl

ftk T* (r/, t)Q(I)B(I)R-1 (I)B* (I)Q()T(, t)xdl
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for all t E [to, tk] and x E H.
We note that in the case G 0, the above equation reduces to

tk

Q(t)x T*(,t)[W() Q()B()R-I()B*()Q()IT(,t)xd,

for all t G [to, tk] and x G H. We also note that (2.4) is equivalent to

(2.6) Q(s)x

Q(ta)x

T* (t, s)Q(t)T(t, s)x + T*(r], s)W(q)T(q, s)xdq

tT*(,s)Q()B()R-I()B*()Q()T( s)xd

Gx

for all to <_ s

_
t

_
tk and x H. Solutions of this latter equation have a rep-

resentation that is often used in control theoretic arguments. Consider any u(.)
/2(It0, tk]; U), and for x E H, define a H-valued function y(.) by

y(t) T(t, s)x + T(t, -)B(-)u(v)d-, for t e Is, tk].

If Q(.) is a self-adjoint solution of (2.6), then

< Q(s)x,x >H < Gy(tk),y(tk) :>H

+ {< W(t)y(t),y(t) >H + < R(t)u(t),u(t) >v}dt

< R(t)z(t), z(t) >u dt,

where z(t) u(t)+ R-(t)B*(t)Q(t)y(t). This can be used to show that (2.6) has a
unique self-adjoint solution.

Before continuing our discussion, let us introduce additional notation. Let

E+ {E[E L(H),E self-adjoint, nonnegative definite.}
C([to, t];r+) {K" [to,tk] H E+[K strongly continuous.}

By the uniqueness of the solution of (2.6), we can define a mapping A E+ H
(s([t0, tk]; E+) as follows: for each G E+, AG is the unique nonnegative definite
self-adjoint solution of (2.6). Under our general assumptions, it is easily seen that for
fixed G the nap A depends only on tk; if we consider the linear quadratic regulator
problem on two bounded intervals [to, tl] and [to, t2], we will use A,A2 to denote the
maps associated with each interval, respectively.

Now consider a increasing sequence {t}=l, with tk < . The map Ak associates
with each finite interval problem the Riccati equation on [to,tk]. Let G 0 and
Qk(’) AaG. For simplicity, consider a bounded interval [a, b] C [to, t], and for each
t [a, b], x E H, we assume that there exists a constant M(t, x) such that for all k

< Qk(t)x,x >H <_ M(t,x).
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The following theorem (see IDa], [G] establishes the connection between control prob-
lems on a finite time interval and problems on an infinite time interval.

THEOREM 2.1. Under the standing assumptions and (2.8), we can conclude the
following:

(i) For each E [a, b], there exists a unique operator Q(t) E+ such that Qk(t) ---+

Q(t) strongly and the convergence is uniform in [a,b]. Therefore, Q(.) is
strongly continuous, so uniformly bounded in [a, b].

(ii) As a consequence of (i), we can define the perturbed evolution systems Sk(., .),
S(.,.) corresponding to the perturbation of T(.,.) by-BR-1B*Qk and
-BR-IB*Q, respectively. We have Sk(t,s)x -. S(t,s)x, for all x H, and
a

_
s

_
t

_
b. Furthermore, the convergence is uniform in t for t Is, b]. If

T(., .) is jointly strongly continuous, then the convergence is uniform for all
a<s<t<b.

The only assumption on the sequence {tk} is that tk increase as a function of
k. In particular, the above theorem is valid when t oc, as k oc. Parallel-
ing the usual approach to finite-dimensional regulator problems, we can use these
results to establish results for the control problem on an infinite time interval. To
that end, consider a sequence {tk}=l with tk oc as k --, oc. Let Qk(’),Sk(’,’)
be defined as above. If for each t _> to we can find a constant M(t) such that
< Qk(t)x,x >H<_ M(t)llxll 2, then by Theorem 2.1, we have Q(.),S(.,.) defined on

[to, oc). Furthermore, for any (t, s) e A(t0), Q satisfies

(2.9) Q(s)x T* (t, s)Q(t)T(t, s)x + T* (, s)W()T(, s)xd

ft T*(, s)Q()B()R-()B*()Q()T(, s)xd.

Equation (2.9) is called the Riccati integral equation (RIE) for the infinite time inter-
val. We know from Theorem 2.1 that Q is strongly continuous and uniformly bounded
in any bounded interval, but Q is not necessarily uniformly bounded in the entire in-
terval [to, oc). If Q is not uniformly bounded, that implies the minimal cost for some
initial state x will tend to infinity as tk tends to infinity; that is, there is no control
yielding finite cost for the infinite time interval problem. Let us state a condition
which prohibits this situation.

DEFINITION 2.1. (W-stabilizability). We say that (2.1), (2.2) is W-stabilizable if
there exists a constant M such that for any s >_ to and x H, we can find a control
u E L2([to, oc); U) satisfying

(2.10) J(u; ,)<_ MIIxll .
One can then prove (see [DI1, Thm. 3.1]) that Q lim Qk is a uniformly bounded

solution of the Riccati integral equation (2.9)in [to, ec)if and only if (2.1), (2.2)is
W-stabilizable. In this case we have Q(t) <_ M. I for t [to, c). Furthermore, if
( is any other bounded self-adjoint solution of (2.9), we have that Q(t) <_ O(t) for
t G [t0, oc). It follows that using any sequence {tk}, with t --, oc, in the above
limiting procedure yields the same solution Q to (2.9), which we shall refer to as the
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minimal bounded nonnegative self-adjoint solution of the Riccati integral equation on

[to, oc) and denote by Qmin.
We note that if the system (2.1), (2.2) is W-stabilizable, then for any s _> to and

z E H, the unique optimal control for the infinite time interval problem is given by
u(t) -R-l(t)B*(t)Q(t)S(t, s)z.

Next we consider a uniformly bounded solution ( of (2.9) and let be the evo-
lution operator corresponding to the perturbation of T by -BR-1B*. We say that
( is a stability solution of (2.9) if (t, s)z 0 as t -- oc for all s _> to, z E H.

It is shown in [DI1] that there is at most one stability solution of (2.9). Moreover,
if ( is a stability solution satisfying ((t) _< M. I and Qk is the solution on [to, tk] with
Qk(tk) M. I, then ((t) _< Qk(t) for t [t0, tk] and Qk(t)z - ((t)z as k oc for
each x H. In addition, if Q is any uniformly bounded solution, then Q(t) <_ (t),
t [to, oc); that is, any stability solution is the maximal (uniformly bounded) solution.
Finally, if the system (2.1), (2.2) is W-stabilizable and if the minimal solution Qmin
of (2.9) is a stability solution, then it is the unique uniformly bounded solution of the
RIE (2.9).

From the above remarks, it is clear that it is desirable to have conditions that
guarantee a solution of the RIE be a stability solution. One such condition is a

detectability condition which plays a role in infinite dimensional systems that is anal-
ogous to its role in finite dimensional systems (see [R], [DIll).

DEFINITION 2.2. (W-detectability). Let V(t) v/W(t). We say that the system
(2.1), (2.2) is W-detectable if there exists a uniformly bounded function K(.) with
K(t) L(H) such that the evolution operator TKV corresponding to the perturbation
of T by KV is uniformly exponentially stable.

We then have the following result.

THEOREM 2.2. Suppose that the system (2.1), (2.2) is W-stabilizable and
W-detectable. Then the minimal solution Qmin of the RIE is the unique uniformly
bounded solution of (2.9) and the evolution operator S defined by perturbation of T by
-BR-1B*Qmin is uniformly exponentially stable. In fact,

IIS(t, s)ll -< Me-(t-8), (t,s) E Ac(t0),

where the constants M and a depend only on the bounds for B,K,R-1, Qmin, and
MKV,/3 in the bound [[Tgv(t,s)l <_ MKvexp{--/3(t--s)}.

The first part of this theorem follows from [DI1, Prop. 3.3]. That the constants
M and a depend only on the bounds indicated follows from use of the modified Datko
lemma, Lemma 2.1 above. As we shall see in the next section on approximation, this
dependence (or lack thereof) will allow us to infer a uniform exponential stability of the
approximate feedback control systems whenever we have a uniform W-detectability
condition satisfied by the approximate systems.

To conclude this section, we recall that an evolution operator is said to be 0-
periodic if for any (t, s) A(t0), we have T(t + O,s + O)x T(t,s)x, for all x
H. We note that any 0-periodic evolution operator satisfies the exponential growth
assumption that is part of our standing assumptions in this paper. It is also easily
argued (e.g., see [W]) that if the linear quadratic regulator problem is 0-periodic (i.e.,
B, W,R, and T of (2.1), (2.2) are 0-periodic), then the minimal solution and the
stability solution of the RIE are 0-periodic. Of course, we cannot argue that every
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uniformly bounded solution of the RIE is periodic under a periodicity assumption on
the problem.

We turn next to approximation results for the abstract linear regulator problem
on an infinite time interval.

3. Approximation of linear quadratic regulator problems on an infinite
time interval. Let HN and UN be families of finite-dimensional subspaces of the
original state space and control space H, U, respectively. For each N an approximate
control system is described by

(3.1) xN(t) TN(t,s)xN(s) + TN(t, rl)BN(rl)uN(rl)drl, for (t,s) A(to),

where TN( ., .)" A(to) L(HN) is an evolution operator, and BN(.) VN HN.
The cost functional is given by

(a.2) J(uN;to, Zo < wN(t)xN(t),zN(t) > dt

+ < RN (t)uN (t), uN (t) >v dt

where xN(.) satisfies (3.1) and xN(to) xNo Suppose that each of the approximate
systems and cost functionals satisfies the standing assumptions for (2.1), (2.2) given
above and that each is W-stabilizable. Then we can guarantee existence of QN(.),
the minimal uniformly bounded solution of the associated Riccati integral equation
on the infinite time interval [to, oc). Let sN( ., .) be the perturbed evolution operator
corresponding to the perturbation of Tg by --BN(RN)-IB*NQg. In this section, we
present results on the strong convergence of QN, sN.

We need to make some basic assumptions on the approximate systems. Let
{HN}_ UN-1, { }=1 be subspaces of H, U, respectively, and PHN, pV be projec-
tion operators which are assumed to satisfy IIPx- XI[H 0, IIPu- ullu 0, as
N c, for all x E H,u E U.

We note that the usual orthogonal projections of H and U onto HN, Ug respec-
tively, satisfy these assumptions if HN, UN approximate H and U in an appropriate
sense. (We shall specify approximation systems that satisfy these conditions in sub-
sequent sections.) We make the further assumptions on our approximate systems.

Hypothesis 3.1. (Uniform boundedness).
(i) There exist constants M >_ 1 and w > 0 such that

liT(t, s)[]L(H) <_ Me(t-), lITN (t, s)IIL(H <_ Me(t-)

hold for all N and (t, s) A(t0);
(ii) There exists a constant KB such that

II(t)][L(U,H) <_ KB, IIBN(t)IIL(U,H) <_

for all N and t e [to, );
(iii) There exists a constant Kw such that

[IW(t)IIL(H)

_
Kw, [IwN(t)[IL(HN)

_
Kw

for all N and t [to, oc). Furthermore, W(t), WN (t) are nonnegative definite
self-adjoint for all t [to, ).
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(iv) There exists a constant KR such that

IIR(t)IIL(U). <_ KR, IIRN(t)IIL(UN) <_ KR

for all N and t E [to, oc). In addition, R(t),RN(t) are positive definite self-
adjoint for all t E [to, oc). There exists a constant r > 0 such that R(t) >_ r. I,
RN(t) >_ r. I, for all t [to,

Hypothesis 3.2. (Pointwise convergence). The operators TN(t,s), T*N(t,s),
BN (t), B*N (t), GN, WN (t), RN (t)converge strongly to T(t, s), T*(t, s), B(t), B*(t),
G, W(t), R(t) for any to _< s _< t < oc, where G, GN are nonnegative self-adjoint op-
erators in L(H),L(HN), respectively.

From arguments in [DIll and [W], it is readily seen that W-stabilizability (i.e.,
condition (2.10)) is equivalent to the following: there exists a constant M > 0, and a
uniformly bounded feedback operator K(.)" [t0, oc) H L(H, U)such that if TK(., .)
is the perturbed evolution operator corresponding to the perturbation of T by BK,
then for any s _> to, x H, the cost of the feedback control u(t) B(t)K(t)TK(t, s)x
satisfies J(u; s,x) <_ MlIx][ 2.

To guarantee the existence of uniformly bounded solutions of the Riccati integral
equation on the infinite time interval for each of the approximate systems, we make
a uniform W-stabilizability assumption.

Hypothesis 3.3. (Uniform W-stabilizability). There exists a constant
M > 0 such that for all N, there exist uniformly bounded feedback operators KN (.)
[to, oc) H L(HN, UN) satisfying the following: for all s >_ to and xN HN, the
feedback control uN (t) BN(t)KN (t)TNK (t, S)XN has a cost satisfying

JN(uN; XN) < MIIxNII 2
It"

Now consider {tk}C=l with tk oc as k -. oc. For each N, let E+N be the set
of nonnegative self-adjoint linear operators in HN; we define the map Av E+g

Cs([t0, tk]; E+N) via the finite dimensional Riccati integral equation on [to,tk] as be-
fore. Let G G E+ and Gg E+g Define QV(.) g NAk G and Qk(’) AkG.
Let the evolution operators Sv and Sk correspond to the perturbation of TN, T by
--BN(RN)-IB*NQ and -BR-IB*Qk, respectively. The theories of the approxima-
tion of linear quadratic control problems on a finite time interval (e.g., see [G], [BK1])
guarantee that under Hypotheses 3.1 and 3.2, for each k, QV (t) and Sv (t, s) converge
strongly to Qk(t) and Sk(t,s), respectively, as N oc for every to <_ s <_ t <_ tk.
Furthermore the convergence is uniform in the interval [to, tk], if we replace Hypoth-
esis 3.2 by the following assumptions.

Hypothesis 3.4. (Continuity and uniform convergence). The operator valued
functions B(t), B*(t), W(t), R(t) are strongly piecewise continuous in t (with only a
finite number of discontinuity points in any bounded interval); the evolution operators
T, T* are jointly strongly continuous. The convergences in Hypothesis 3.2 are uniform
in t and (t, s) on any bounded interval.

From the theory of the linear quadratic control problem for the infinite time
intervals, there are two cases where QkN converges strongly as k -- oc. In the first
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case, let QmNin(t) be the minimal uniformly bounded solution of the Riccati integral
equation in HN on the infinite time interval [to, ). If G GN 0, then for any N
we have Q(t)xN -- QNmin (t)xN, as k . Furthermore the convergence is uniform
in t for t in any bounded interval [to, tf]. In the second case, we assume the following
conditions hold.

Hypothesis 3.5. Assume that there exists a stability solution Qs(’) of the Riccati
integral equation for the infinite time interval infinite-dimensional system and there
exists a stability solution QN(.) of the Riccati integral equation on the infinite time
interval for each approximate system. (Then the evolution operator SN corresponding
to the perturbation of Tg by BN(RN) ,N N iNB Q8 satisfies (t,s)x0, ast,
for s >_ to, x E HN.) Furthermore, assume that there exists a constant M such that
for each N, QN(t) <_ M. I for all t _> to. Also assume Qs(t) <_ M. I for all t >_ to.

Assuming that Hypothesis 3.5 holds, we let G GN M. I and QV, Qk be
the solutions of the RIE on [to, tk] satisfying Q(tk) GN, Qk(tk) G. Then
from our results for stability solutions given in 2, we have Q(t)xg - QN(t)xN,
Qk(t)x - Q(t)x as k c for all xg HN and x H.

We note that if sg(t,s)x 0 uniformly in N, then we have Qk(s) and Q(s)
uniformly bounded for all k and N. To see this, we consider Qk, Qs as given above.
Then we have, using the relationship in (2.7) where y(t) S(t,s)x and S is the
evolution operator corresponding to the perturbation of T by -BR-1B*Q,

< >. _< < (Qk(tk)- Q(tk))y(t),y(tk) >H
2M]]y(tk)]] 2.

Since y(tk) - O, it follows from the uniform boundedness principle that Q(s) is
uniformly bounded for all k. Repeating this argument with QV (s), QN (s) and yN (t)
sN(t, s)x, we see that the uniform (in N) decay of SN yields the claimed uniform
boundedness for QV (s).

In each of the two cases above, we have the following situation:

QV(t)Px -*- QN (t)Px
N ?N

Qk(t)x k-- Qs(t)x.

It is desirable in computations to work directly with Q and hence we seek results
which will guarantee the convergence Q Q of this diagram. To obtain such a
result, we shall make use of a uniform decay rate for the SN defined via Q.

THEOREM 3.1. Assume that Hypotheses 3.1-3.3, 3.5 hold. Further, assume that
for all s >_ to, x H, and e > O, we can find such that for all t >_ , we have
I]S(t, s)xl[ <_ and I[sg(t, s)Px[] <_ for all N. Then QN (t)PIX - Qs(t)x for all
to<t<.

Proof. Let M be the bound for Qs and QsN that are the stability solutions of
Hypothesis 3.5. Let QV and Qk be the related RIE solutions on [to, tk] satisfying
Q(tk) M. I, Qk(tk) i. I. Then for t

_
tk we have

I[QN (t)Px Q(t)x[] <_ ]](QN(t) Q(t))Px]l + [IQ(t)PNH x Q(t)x]l
+ll(Q(t) Q(t))xl[.
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Recalling that Q(t) >_ QNs(t), Qk(t) >_ Qs(t) by construction, and using the uniform
boundedness of QV and QsN following from the uniform decay rate and the arguments
above, we obtain for some 2t?/

[l(QN(t)-Q(t))Pxll <_ 2I < (Q(t)--QN (t))PNHx, Px >U
[l(Q(t)- Qa(t))xll <_ 21 < (Qa(t)- Q(t))x,x >H

Again using (2.7), we have

< (QV (t) QN (t))PHNx, Px >U
<_ < (Q(tk) QN (tk))sN(tk,t)Px, SN(tk,t)Px >H,

and

< (Qk(t)- Qs(t))x,x >H <_ < (Qk(tk)- Qs(tk))ttk,t)x,S(tk,t)x >H.

Combining the above inequalities, we obtain

IIQY (t)Px Q(t)xll: _< IIQv (t)Pix Q(t)xll
+4M(IIsv(t, t)xll + IIS(t, t)xll).

Let k be large enough so that

IIS(t,t)mll e/(12M), IISN(t,t)Pll e/(12M),
for all N. Then let N be large enough to obtain N(t)pm (t)ll e/3.
om the previous estimates we thus find IIQ(t)Pm- (t)ll which yields
the desired results.

We note that if Hypothesis 3.4 holds and the uniform decay assumption in Theo-
rem 3.1 is replaced by the following: there exists such that for any t and for any
s e [t0, t], IIS(t + s, s)xll e, IlsN(t + s, s)pxll e, for all N, then the convergence
of Theorem 3.1 is uniform in the bounded interval [t0, ty].

Theorem 3.1 is not very useful in practice, since the uniform decay assumption is
dicult to verify directly. However, it does provide some insight and suggests more re-
alistic conditions that might be verifiable. Recalling the definition of W-detectability
and our discussions following it, we are prompted to formulate the following assump-
tions.

Hypothesis 3.6. (Uniform W-detectability). The original system is detectable
and there exist constants MK, MKV, and/ > 0 such that for each N, there exists a
uniformly bounded operator valued function KN (.) HN H HN, with IlKN (t)IIL(HN)
<_ MK, for t E [t0, oc). If TKNN is the evolution operator corresponding to the

perturbation of TN by KNv/-W, then IIT (t, s)IIL(H <_ MKVe-z(t-), for (t, s) E
/(t0).

If Hypothesis 3.6 holds, then NQmin is the unique uniformly bounded solution
of the Riccati integral equation on the infinite time interval for HN. Under the
uniform W-stabilizability Hypothesis 3.3, we have NQmin(t) _< M. I, for all t [to, o).
Furthermore, by an application of Theorem 2.2, there exist constants M,c > 0
independent of N such that the evolution operator SN defined via NQmin satisfies

]ISN(t, s)] _< Mse-a(t-s), for (t, s) e /koc(t0).
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Thus by Theormn 3.1, NQmin(t) converges to Qmin(t) as N -+ oc. We summarize the
results in a major convergence theorem.

THEOREM 3.2. Assume that system (2.1), (2.2) and its approximate systems
(3.1), (3.2) satisfy Hypotheses 3.1 and 3.2 and the uniform W-stabilizability and
uniform W-detectability conditions of Hypotheses 3.3, 3.6. Then the unique uni-
formly bounded solutions QN of the approximating Riccati integral equations ((2.9)
with T, B, W, R replaced by TN, jN, WN, RN) on [to, oo) in Hy converge strongly to
the unique uniformly bounded solution Q of the Riccati integral equation (2.9) on the
infinite time interval in H. Furthermore, if Hypothesis 3.2 is replaced by Hypothe-
sis 3.4, then this convergence is uniform in t for t in any bounded interval.

We note that in the case of a periodic system, the uniform convergence in one
period implies that QN converges to Q uniformly in the entire interval [to, oc). We fur-
ther remark that the convergence of the Riccati operator guaranteed by Theorem 3.2
is sufficient (using standard arguments, see [G], INK1]) to guarantee convergence
of the optimal approximate feedback system trajectories sg(t, s)Px and optimal
approximate controls uN to the optimal system trajectories S(t, s)x and optimal con-
trols u (see Theorem 3.1 of [BK1]). Moreover, one also obtains convergence of the
system generated by using the approximate feedback gains with the original infinite-
dimensional control system (a feature that is of great practical importance), e.g., see
the related remarks in 4 of [BK1].

The hypotheses of Theorem 3.2 are much more readily verified than others guar-
anteeing convergence that can be found in the literature (e.g., see [G, Thin. 5.3],
where one is required to show that the approximate systems are uniformly stabilized
by the feedback with a uniformly bounded sequence of approximate Riccati opera-
tors). As we shall see in the later sections, there are two distinct approaches that
lead to rather easy use of our Theorem 3.2 in the event one is dealing with parabolic
evolution systems.

4. Parabolic evolution equations: control and approximation. In this
section, we formulate the linear quadratic regulator problem for an abstract parabolic
control system. We focus our attention on systems associated with a time dependent
sesquilinear form. First we review the theory of parabolic evolution equations (relying
heavily on IT]) and extend some related results in a form applicable to control prob-
lems. Then a control system is defined for which general assumptions of stabilizability
and detectability are made. A framework for approximation schemes is presented and
conditions for convergence of the operators involved are discussed under assumptions
of uniform stabilizability and uniform detectability for the approximate systems. Our
discussions here are in the spirit of the approaches taken in [BK1], [BIll, [BI2].

Let H, V be two complex separable Hilbert spaces with < .,. >H, "," >U as
inner products and I1" lIU, ll" IIv as norms, respectively. Let V* be the dual space of V
with .,. >v.,v denoting the duality pairing. The space V is assumed to be. densely
and continuously embedded in H, and thus there exists a constant c such that for all
) V, ][)I]H -- ClII[V" Since for each element of H, we can define a bounded linear
functional on V by < p, >H, for V, we have the usual embedding relationship
VcHcV*.

For each t in the interval [to, c), consider a sesquilinear form a(t;., .) defined on

V x V. We assume throughout that a has the following properties:

Hypothesis 4.1. (V-Continuity). For each bounded interval [to, tl], there exists a



1194 H. T. BANKS AND C. WANG

constant Cl such that

(4.1)

Hypothesis 4.2. (V-Ellipticity).
constants c2 > 0, m such that

For each bounded interval [to, t1], there exist

(4.2) Re a(t; qa, (p) >  211 11 mll ll /, for t e [to, tl], qa e V.

Under the above assumptions, we have a well-known ([FM], [K], IT], IS]) result:
For each t E [to, t], there exists a unique closed operator A(t): V H V* such that

(4.3) a(t; , )= < A(t)q, >v*,v, for E V.

Furthermore, if (t) is defined using the same method with a sesquilinear form a*
defined by a*(t; , ) a(t; , ), then .(t) is identical to the adjoint operator A*(t)
of A(t). Both operators A(t), A(t)* are infinitesimal generators of analytic semigroups
in V*, and an abstract parabolic evolution equation can be defined by

_d x(t) A(t)x(t), x(to) xo e V*.
dt

In order to insure the existence of an evolution operator for this equation, we must
make additional assumptions on the continuity of a with respect to t.

Hypothesis 4.3. (Smoothness in t). For each bounded interval [to, tl], there exist
constants K and a, 0 < a _< 1, such that for all t, s E [to, tl], and for all qa, V, we
have

I(t; , 0) (s; , 0)1 -< Kit slllllvIIOllv.

Under the above assumptions, there exists an evolution operator associated with
the above evolution equation. The following theorem summarizes the properties of
this evolution operator.

THEOREM 4.1. ([T, pp.127, pp.145-155]). Let Hypotheses 4.1-4.3 hold. Then
there exists a unique evolution operator 7( ., .) in V* satisfying the following condi-
tions:

(i) For any to < s < t <_ tl, the range T((t,s)) of operator (t, s) is a subset
of V.

(ii) The operator (t,s)A(s) has a unique bounded extension in L(V*), for all
to < s < t < tl; therefore, we can and will use the same expression for the
extension.

(iii) For each V*, the V*-valued function 7(t,s) is continuously differen-
tiable in t for t (s, tl], and continuously differentiable in s for s [to, t).
Furthermore, for q V*

-(t, s)qa A(t)(t, s)qa,

_sTd ~(t, s)a -(t, s)A(s).
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(iv) The restriction of (t, s) on H is strongly continuous in the H norm. For all
xo E H, the function x(t) (t,s)xo is in i2([s, tl]; V) and the derivative
it(t) A(t)(t,s)xo is in L2([s, tl]; V*). Furthermore, there exist constants
C1, C2, depending only on Cl, c2, rn, K, and a such that

(4.4) 115b(t, s)xollv <_ C (t s)-l/llxolls.

(4.5) I1( ", ’)ZOIIL2([8,I];V) Cg. IIZoII/’/

All the statements in the above theorem can be found in [T]. However, they are
organized into several sections with somewhat different notation; we therefore give a
brief argument which collects the results from the book.

Proof. Existence. Taking X V*, we let A(t) be defined as in (4.3). As indicated
in IT, p. 144], using Theorem 5.2.1 of [T], we find there exists an evolution operator

on V*. The rapge T((t,s)) is a subset of 7?(A(t)) V for all to <_ s < t _< tl.
For any V*, T(t, s) is continuously differentiable in t for t (s, t]. Now let the
sesquilinear form a* be defined by

Let A*(t) be the linear operator defined via a*; then A*(t) is the adjoint operator
of A(t). As indicated by the remarks following Lemma 5.4.6 of IT], we can use the
results of 5.2 (with S and A* replacing g and A of [T]) to construct an operator-

Avalued function S(t,s) such that for all to < s < t < t, (s)S(t,s) is a bounded
operator in V*, and for any G V*, (t, s) is continuously differentiable in s for
s G [to, t). Furthermore, for G V*

_d (t, s) -A* (s)(t, s).
ds

In fact, (t,s) can be constructed as follows.
generated by A* (s) and we define

Let exp{tA*(s)} be the semigroup

(t, s) exp{(t s)A*(t)} + W(t, s),

W(t,s) exp{(-- s)A*(v)}R(t,v)d-,

where the function R can be computed by iterative methods using

RI (rl, s)R(t, )d R(t, s),

with nl(t,s) (A*(t) A*(s))exp{(t- s)A*(t)}. Then follow_ing the same type
of arguments as in [T, p. 149], we can conclude that (t, s) T*(t, s). Therefore,
(t, s)A(s) has a unique bounded extension in V*. For all E V*, (t, s)p is strongly
differentiable in s for s [to, t).

Finally, statement (iv) of the above theorem can be found in the 5.4 and 5.5
of [T]. We note that in these sections of IT], the space X plays the role of our space
H. Let T(t,s) be the restriction of (t,s) to H; by Theorem 5.4.1 of IT], T(t,s)
is strongly continuous in the H norm. Furthermore the estimate (4.4) holds. For
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any x0 E H, let x(t) T(t, s)zo. By Lemma 5.5.2 and Proposition 5.5.1 of [T, pp.
152---153] with I 0, the function z(.) is in L([s, tl]; V) and 2.(.)is in L2([s, tl]; V*).
In addition, the estimate (4.5) holds. We note that the constants C1, C2 depend only
on the constants Cl, c, m, K, and a.

Uniqueness. By Theorem 5.2.3 of IT, p.128], we can conclude that the evolution
operator satisfying the conditions (i)--(iv) must be unique.

We remark that the same theorem holds if we use the sesquilinear form a*; there-
fore, properties (i)-(iv) hold for the adjoint evolution operator T*(., .). As a conse-
quence of (iv), the restriction T of T to H is an evolution operator in H as defined
in 2. We wish to take H as our state space since it is in this Hilbert space that our
control problems are defined and our subsequent computational considerations are
readily pursued; therefore, we" use primarily the evolution operator T in this paper.
The operator T is used in the remainder of the current section in several proofs of
uniqueness theorems. The only precaution one must take is that T(t, s) is contin-
uously differentiable with respect to t in the V* sense and the derivative of T(t, s)
is an element of V*. In particular, for each V, < T(t, s), >u is differentiable
with respect to t, and

d
d < T(t, s), >g=< A(t)T(t, s), >y.,y -a(t; T(t, s), ).

The conclusions of this theorem are very useful in defining our control system.
However, the conditions of Hypothesis 4.3 are too restrictive for our use, since we may
need to perturb the equation with nonsmooth but bounded (feedback) terms. We can
show that if a is perturbed with a sesquilinear form that is uniformly bounded in H,
then there exists an associated evolution operator TK which preserves most of the
desirable properties of the evolution operator T. In fact, let K(.) It0, ) L(H)
be a uniformly bounded operator valued measurable function. We can then define a
sesquilinear form aK in V x V as

aK(t;,) a(t;,)-- < K(t)v, >g, , V.

It is easy to see that for each bounded interval It0, t], Hypotheses 4.1 and 4.2 hold.
Therefore, we can find an operator Ag(t) defined on V such that (4.3) holds for
ag and Ag(t). Furthermore, we have by the definitions of A(t) and Ag(t) that
Ag(t) A(t) + K(t) for V and we may establish the following result.

THEOREM 4.2. Consider a sesquilinear form a satisfying Hypotheses 4.1-4.3 and
let K(.), aK be dCned as above. Then there exists a unique evolution operator TK (’, ")
in H for which the following properties hold:

(i) Th a.a n(T(t. )) of th op.to T(t. ) i ubt of V. fo al to
s<tt.

(ii) For H, the function TK(t, s)W is differentiable with respect to t in the V*
sense, and

d
TK(t, s) AK(t)TK(t, s).

(iii) For all Xo H, the function x(t) TK(t,s)xo is in L2([s,t];V) and its
derivative 2(t) is in L2([s, t]; V*). Furthermore, there exists constants C1, Ce
depending only on c, c, m, K, and such that

]TK(t, S)Xov C1 (t 8)-1/2XoH,
I]TK(’, s)xollL([,t];v) C2llxollH.
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Proof. Existence. Let TK be the unique evolution operator in H corresponding
to the perturbation of T by K. From the results on perturbations given in 2, we
have that TK satisfies for all E H

(4.6) TK(t,s)

T(t,)

T(t, s) + T(t, rl)K(?)Tg(rl, s)d,

T(t, s) + Tg(t, r/)K(r/)T(r, s)d.

Since the function K(rl)Tg(rl, s)’is uniformly bounded in H norm by some constant
C, using the estimate (4.4), we can find a constant such that for rt E Is, t]

liT(t, n)K()TK(, )llv _< 0(t n)-/llll-.

Therefore, the integral term in (4.6) converges in the V sense and hence, Tg(t, s) V
for G H.

Letting x0 e H, we define x(t) Tg(t, to)xo, and f(t) K(t)x(t). From (4.6),
the function x(t) can be written as

x(t) T(t, to)xo + T(t, rl)f(rl)drl.

By the strong continuity of TK and uniform boundedness of K, it is obvious that
f(.) e L2([to,tl];H) and hence f(.) e L2([to, tl]; V*). By Theorem 5.5.1 of IT], x(.)
is in L2([to, tl]; V), is differentiable with :b(.) in L2([to,tl]; V*) and satisfies :(t)
AK(t)x(t). Using the equality (4.6) and the boundedness of the perturbation, by
modifying the constants C1, Ce in (4.4), (4.5), we can easily obtain

IIrK(t, s)IIV _< C (t
IIrK(’, tO)llL([o,];V) <_ CllllH,

for all H.
Uniqueness. Let g satisfy the conclusions (i)-(ii) of Theorem 4.2. For all H,

consider Tg(t, s) as a V* valued function. Then we have

d(t ,):(,)
d7

Integrating both sides of the above equation from s to t, we obtain

:(t,) (t,) + (t, )K()/:(, )d,.

Since T is the restriction of to H, K is a solution of (4.6). By the uniqueness
results of 2 for perturbed evolution operators, we have K TK. Hence, the unique
solution of (4.6) is the unique evolution operator TK generated in the theorem.
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Now consider a function f(.) E L2([to, tl]; H). We can then define

z(t) T(t, to)zo + T(t, r/)f(r/)dr/.

The function z(.) is the unique solution of the following initial value problem:

(4.7) z(t) T(t,s)z(s)+ T(t,r/)f(r/)dr/, to <_ s _< t < tl.

z(to) zo.
Henceforth, we consider (4.7) as the definition of our basic evolution system. The
function z corresponds to the solution of a weaker formulation of the evolution equa-
tion.

LEMMA 4.1. (IT, Thm. 5.5.1]). The function z(.) given by (4.7) is the unique

function in L2([to, tl]; V) with derivative (.) in L2([t0, tl]; V*) for which the following
equation holds for V

(4.8) < z(t) z(t0), >H {--a(r/; z(r/), )+ < f(r/), >H} dr/,

z(to) zo.

LEMMA 4.2. ([T, Lemma 5.5.1]). For any two functions z(.), w(.) in L2([to, tl]; V)
with derivatives , (v in L2([to, tl]; V*), the following equality holds:

< z(t), (t) > < z(), ()

+ < (r/),w(r/)>v*,v +< b(r/),z(r/) >v*,v d,

for all to s t tl.

As a consequence of these lemmas, if for any x0 6 H, we let x(t) T(t, to)xo,
then

(4.9) IIx(t)l[ -I[xo[l 2 Re a(;x(),x())dy.

We note that if Hypotheses 4.1-4.3 hold, then for each bounded interval [t0,t],
we can define T(t,s) uniquely. Therefore, T(t,s) is also uniquely defined for all
t0 s t < . The equality (4.9) suggests a sufficient condition for the stability of
T.

Hypothesis 4.4. There exists a constant k > 0 such that

Rea(t;,)>_k[lll, for to<_t<, V.

THEOREM 4.3. In addition to Hypotheses 4.1-4.3, under Hypothesis 4.4, T is
uniformly exponentially stable.

Proof. For any xo e H, let x(t)= T(t, s)xo. Then by (4.9), we have



OPTIMAL FEEDBACK CONTROL 1199

for all to _< s <_ t < . This implies

IIT(t, s)IIL(H) <_ 1, [IT(r, S)XolI2H <_ IlXoll.

Therefore, by Lemma 2.1, T is uniformly exponentially stable. Note, moreover, that
by Lemma 2.1, under Hypothesis 4.4, we can find M, a > 0 depending only on k such
that

IIT(t, s)IIL(H) <-- Me
We can now use these considerations to define an evolution equation control sys-

tem of the form (4.7) via a sesquilinear form. The space H will serve as our state space,
with subspace V and the sesquilinear form a defined as above and Hypotheses 4.1-4.3
holding. Let the control space U be a Hilbert space, and let B(.) :[to, oc) H L(U, H)
be a strongly measurable operator-valued function. We assume that there exists a
constant MB such that

IIB(t)[IL(u,H) <_ MB, for t e [to, oc).

For any control u(.) "[to, oc) H U, belonging to L2([t0, oc); U), the corresponding
trajectories satisfy for E V

(4.10) < z(t) )- < dv,

for all (t,s) e Ao(to). Let T(.,.) be the evolution operator defined via
Lemma 4.1, an equivalent form of (4.10) is given by

By

(4.11) z(t) T(t, s)z(s) + T(t, rl)B(rl)u(r)drl, for (t, s) e Ao(to).

Let zo H be the initial state of the system at to and let the cost for control u(.) be
given by

(4.12) J(u; zo, to) < W(t)z(t), z(t) >H + < n(t)u(t), u(t) >v dt,

where W(.)" [t0, oc) L(H), n(.)" [to, oc) L(U) are strongly measurable. The
operators W(t),R(t) are assumed to be self-adjoint nonnegative definite operators,
uniformly bounded in the entire interval [to, oc). Furthermore, there exists a constant
r > 0 such that

< R(t)v,v >u >_ rllvllr, fort_>t0, veU.

Recalling the discussions of 2, we note that the standing assumptions of that
section hold. Therefore, for a given nonnegative definite self-adjoint operator G on
H, the Riccati integral equation in each finite time interval [to,

T*(tk, s)GT(tk, s)x

+ T* (, s) [W() Qk(I)B(])R-l(r)B* (q)Qk(q)] T(rl, s)xdq
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has a unique self-adjoint solution
For the control problem in the infinite time interval [to, oo), we need stabiliz-

ability and detectability conditions to assure existence and uniqueness of a uniformly
bounded solution of the Riccati integral equation.

Hypothesis 4.5. (Detectability). There exists a strongly measurable uniformly
bounded operator valued function (’)" It0, oo) L(H), such that if we denote by
S the evolution operator corresponding to the perturbation of T by (.)W1/2(.), the
following estimate holds for z E H:

for some constants M, co > O.

Hypothesis 4.6. (Stabilizability). There exists a strongly measurable uniformly
bounded operator valued function K(.): [to, oo) L(H, U), such that if we denote
by SK the evolution operator corresponding to the perturbation of T by B(.)K(.),
the following estimate holds for x E H:

IISK(t, S)mll, _<

for some constants M, co > O.

We remark that Hypothesis 4.6 is stronger than "W-stabilizability’; however,
under Hypothesis 4.5, by Theorem 2.2, these two types of stabilizability assumption
are equivalent.

To this point we have defined a control system using an abstract parabolic evo-
lution equation that fits into the general framework of 3. Under Hypotheses 4.5
and 4.6, we may apply the theory of the previous sections to establish the following
results for our control problem:

(i) The Riccati integral equation in the infinite time interval [to, oc) has a unique
uniformly bounded solution Q(.).

(ii) Let SQ be the evolution operator corresponding to the perturbation of T(., .)
by -BR-1B*Q(.). For each initial state z0, the unique optimal trajectory is

given by SQ (t, to) zo.
We turn next to giving results for finite-dimensional approximations of our control

system. As in 3, let {HN}__I be a sequence of finite-dimensional subspaces of
V C H. Let PHN be the orthogonal projection operator from H onto HN. Since HN

is an approximation of H, we assume that for every qo H, [[PHNqo- qO]]H ---+ 0, aS

N ---+ c. In addition, we require that HN is an approximation of V as well, so that for
all qo V, [[Pro- o][v ---+ 0, as N + oo. We note that in fact this latter convergence
implies the convergence in H for qo H since V is continuously and densely embedded
in H.

Let {vN}=l be a sequence of finite-dimensional subspaces of U. Let PuN be the
orthogonal projection operator from U onto UN. We assume Um approximates U in
the following sense: for v

For each N, we define a sesquilinear form rN as the restriction of (r to HN HN

and define a linear operator AN (t) HN -+ HN by

< AN(t)N, cN >H aN (t; N, ?/)N), for N, ?/)N HN.
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By continuity of a with respect to t, the operator valued function AN (t) is continuous
in time. As a consequence, there exists a unique differentiable evolution operator
TN( ., .) in HN generated by AN(t); that is, for N E HN we have

dTN (t, s)N AN (t)TN (t s)N
dt

Note immediately that the aN’s satisfy Hypotheses 4.1--4.3 with the same constants
Cl, c2, m, a, and K; therefore, for each fixed interval [t0, tl], there exist constants
C1, C2 independent of N such that for all N HN,

(4.13)
(4.14)

The approximation properties of the evolution operator TN are summarized by the
the following convergence theorem.

THEOREM 4.4. Let Hypotheses 4.1- 4.3 hold and let T(., .) and TN(., .) be defined
as above where IIP- lly -- 0 as N x for e V; then the following properties
hold:

(i) There exist constants MT and w such that for all N,

][TN(t, S)]IL(HN) <_ MTe(t-8), I]T(t,s)IIL(H) < MTe(t-8), to <_ s <_ t < .
(ii) For any finite interval [a, b] C [to, ) and any e H, we have

IITN(t,s)P- T(t,s)I]H O, as N - , a <_ s <_ t <_ b.

Furthermore, the convergence is uniform for all a <_ s <_ t <_ b.

Proof. (i) By Lemma 4.2 and (4.9), for every e HN we have

lITN (t, s)p]I2H 1III2H 2 ft Re (r
N (; TN (rl, s), TN (1, s))d7.

Under Hypothesis 4.2,

Using Gronwall’s inequality, we obtain

I]TN (t, s)cll2H < IIll/elml(t-).

Noting that the same estimates hold for T(t, s), we obtain (i).
(ii) Let G H, define w(t) T(t, s)p and wN (t) TN (t, s)Pff p, .and let zN (t)

w(t)- wN(t). We note that zN(t) is not an element of HN; in fact

(4.15) zN (t) PzN (t) w(t) Piw(t).

Since w(t) is differentiable it tim V* sense, wN(t) is differentiable, and both flmc-
tions are in L2([a, bJ; V) witt derivatives in L2([a, b]; V*). By (4.9), Lemlna 4.2, and
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definitions of the operators A(t), AN(t), we obtain

IlzU(t)llH

IlzN(O)l15 / 2 Re < A(7)w(rl) AN(7)wN(v), zg(rl) >y.,y

]lzg(0)][5 2 Re {cr(;w(7),zg(7))--aY(l;wg(rl),Pizg(l))}d

-2 < AN (V)wN (1), zN (V) PzN (rl) >v’,v dl.

Since the duality pairing reduces to the H-inner product on H H, we have

< AN(q)wN(7),zN(r])- PtzU(r]) >V*,V
=< AN()wN (’I), zN (7) PzN(]) >H

Moreover, P is the orthogonal projection operator and hence the last term in the
above equation equals to zero. Using the definition of aN, the sesquilinearity of a and
(4.15), we find

IIzN(t)ll I[p PN’II 2 Re o(; w(]), zN (T]) PizN (l))dl

--2 Re a(;w(),PzN())d

+2 Re N(; WN (), pffzN())d

I1- Pffll 2 Re a(; w(), w()- Pffw())d

Since P is the orthogonal projection, we find < Pz, w Pw >- O, so that
from (4.1)

IIPz(t)ll IIzg()ll I1() P()llH"

Combining this with the previous equation, we have

where ON(t, 8) is given by

oN(t,S)
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Using the V-ellipticity of O"N, we find

(4.16) IlPzN (t)ll2H ION (t, 8)1 + 2lml IlPI zN ()l]/d.

To use Gronwall’s inequality to conclude convergence of P_IZN, it suffices to show
that ]oN(t,s)l goes to zero uniformly for all a _< s

_
t

_
b. By the continuity and

uniform boundedness of T, the term liT(t, s)- PIT(t, s)][ goes to zero uniformly
for all a _< s _< t _< b. Using the V-continuity of a, the two integrals in O can be
bounded by

"t

2Cl {llPw() W()IIvIIPHzN()IlV + I[w()IIvllPIW() w()llv} dr/

Using the inequalities (4.5) and (4.14), we observe that the functions w, wN are in
a bounded subset of L2([a, b]; V). By dominated convergence arguments, the above
integral converges to zero. Furthermore, by taking t b, s a, we obtain that this
convergence is uniform for all a _< s <_ t <_ b. Therefore, IoN(t, s)l converges to zero
uniformly for all a

_
s <_ t <_ b. Finally, from (4.15), we have

[[T(t s) TN(t s)P]]2H ][PizN(t)][2H + ]lw(t) Pw(t)[I 2
H,

and the uniform convergence of PNHzN(t in t implies TN(t,s)pN converges to
T(t, s) uniformly for all a _< s _< t _< b.

Since we can define operators A*(t), A*N, T*(t, s) and T*(t, s) by using the sesquilin-
ear form a* as we indicated after (4.3), the convergence of T*N(t, s) to T*(t, s) can
be shown using the same arguments as in the proof of the above theorem.

Having defined our approximate (uncontrolled) system and established the con-
vergence of Theorem 4.4, we return to the control problem for (4.10)-(4.12). Approx-
imations of functions B, W, R are defined as follows"

BN (.)" [to, x) - L(UN, HN),
wN(.) [to, x)H L(HN),
Rg(.) [to, c) L(uN),

BN(t)vN PNH t(t)vN
WN (t)99N PNHW(t)99N
RN (t)vN PuNR(t)vN,

VN E uN;
N HN;
VN UN.

Let G be the nonnegative self-adjoint operator in the finite interval cost functional
associated in the usual manner with (4.12) for our control system in H. Let GN

prG and zv przo.
In each subspace HN, a finite-dimensional control system is thus defined by

(4.17) zN (t) TN (t, 8)zN (8) + fs TN (t, rl)BN (rl)uN

with ug(.) e L2([to, oc);UN) and zg(to) z.
ated finite time interval problens are given by

The cost functionals for the associ-

(4.18) JN(uN;zoN, to, tk)--< GNzN(tk),zN(tk) >H

+ {< wN(t)zN(t),zN(t) >. + < RN(t)uN(t),uN(t) >U} dr,
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while the cost functional for the infinite time interval problem is given by

(4.19) zg to

tt) { < WN (t)zN (t), zN (t) + < RN (t)ttN (t), tt
N (t) } dt.>H >U

To obtain the uniform convergence of the operator valued functions, we make
additional assumptions on the continuity of B, W, R.

Hypothesis 4.7. (Parameter smoothness). The operator valued functions B, W, R
are piecewise strongly continuous functions on [to, ).

LEMMA 4.3. Under Hypothesis 4.7, the following convergence is uniform in t for
t in any bounded interval:

vEU;
EH;
H;
vU,

as N ---. x The operator GNPN also converges strongly to G as N cxH

Proof. We only prove the uniform convergence of BN; the remainder of the
arguments are similar. For simplicity, we without loss of generality assume that
the function t H B(t) is strongly continuous. For a given v U, the pointwise
convergence of the functions BN(t)Pv to B(t)v is given by our assumptions on the
approximation properties of the spaces HN, UN. To conclude uniform convergence
in t, it is enough to show that the functions BN(t)PuNV are equicontinuous. That
is, for any e > 0, there exists 5 > 0 such that for all N, if It- s <_ 6, we have
[]BN(t)Pv- BN(S)PuNVlIH <_ e. By definition of BN, we have

lIBN(t)Pv N(,)PuN vllH B( )P vlIH
IIB(t)(PuNv- v)IIH + [IB(t)v-  ( )vllH
/IIB( )(P v v)IIH

< 2MBIIPvNv vlIu / II/ (t)v  ( )VlIH.

By continuity of B, we conclude that BN(t)Pv are equicontinuous functions of t in
a bounded interval. Hence the convergence is uniform in any bounded interval.

It is easy to verify that BN, WN, RN are uniformly bounded and WN, RN are
nonnegative self-adjoint operators. In addition, there exists a constant r > 0 such
that for all N,

< RN(t)vN, vN >U

__
rllvNIl, for t e [to, 00), V

N e UN.

Consider any finite time interval [to, tk], and let Qk,Q be the unique self-adjoint
solutions of the Riccati integral equations in H and HN associated with the control
systems (4.11), (4.17), respectively. Then it follows from Theorem 4.4 and the dis-
cussions of 3 (in particular, see Hypotheses 3.1, 3.2, and the remarks just prior to
Hypothesis a.4) that for each k, Q(t) converges to Qk(t) strongly and the conver-
gence is uniform in for E [to, tk].



OPTIMAL FEEDBACK CONTROL 1205

We assumed above (Hypotheses 4.5, 4.6) that the control system (4.10)-(4.12) in
H is detectable and stabilizable. Therefore, there exists a unique uniformly bounded
solution Q of the Riccati integral equation on the infinite time interval [to, oc). In order
to approximate Q by a uniformly bounded solution of the Riccati integral equation in
HN, we show that the approximate control systems defined here are also detectable
and stabilizable. More importantly, recalling the results (e.g., see Theorem 3.2) of 3,
to apply our results, we need uniform detectability and uniform stabilizability for the
approximate systems (4.17), (4.19).

Based on the stabilizability and detectability properties of the original system,
for a given approximation scheme, we would like to show that the following conditions
hold.

Condition US (Uniform stabilizability). There exist constants MK, M, w > 0
independent of N such that for each of the approximate systems, we can find a
uniformly bounded operator valued function KN (.) :[to, oc) H L(HN, UN) such that

[[KN(t)[IL(HN,UN) <_ MK,

and ifTKN is the evolution operator corresponding to the perturbation of TN by
BNKN (.), then

[IT(t,s)IIL(HN) <_ Me-"(t-8), for (t,s) e A(to).

Condition UD (Uniform detectability). There exist constants M, M, w > 0 inde-
pendent of N such that for each of the approximation systems, we can find a uniformly
bounded operator valued function N(.): [to, oc) H L(HN) such that

IIN (t)IIL(HN <_ M,

and if rv is the evolution operator corresponding to the perturbation of TN by
N(wN)I/2(.), then

IITN (t, S)IIL(H <_ Me-w(t-s), for (t, s) e Aoc(to).

We may summarize our findings as follows.

THEOREM 4.5. Under Hypotheses 4.1-4.3, 4.5-4.7, the conditions IIPNH --]IV --*
0 for E V, IlP-vllv 0 for v e U, and the Conditions US and UD, there exists
a unique uniformly bounded solution QN of the Riccati integral equation on the infinite
time interval [to, oc) for each approximate system in Hg. Furthermore, the sequence
Qg(t)pff converges strongly to Q(t) and the convergence is uniform in t for t in any
bounded interval.

These results follow from Theorem 3.2 and our discussions above. We have thus
reduced our problem of ensuring convergence of the Riccati variables to one of guar-
anteeing uniform stabilizability and detectability of the approximate systems. In the
following two sections, two different approaches to obtaining uniform detectability
(Condition UD) and stabilizability (Condition US) are presented.
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5. Dissipativity and uniform stabilizability / detectability. The original
control system (4.10) defined in 4 was assumed to be stabilizable and detectable (i.e.,
we assumed Hypotheses 4.5, 4.6 held). For a given evolution system, often an easy
way to ascertain stability is using the dissipativity of the system. In particular, if
a system satisfies Hypothesis 4.4, by Theorem 4.3 the associated evolution operator
is uniformly exponentially stable. This naturally suggests a sufficient condition for
stabilizability of a control system.

Hypothesis 5.1. There exists a uniformly bounded function K(.) [to, ) H

L(H, U) and a constant k > 0 such that for all E V,

a(t; , )+ < B(t)K(t), >H

__
k[l(fl[[/, for t E [to, oc).

LEMMA 5.1. Under Hypothesis 5.1, the control system defined by (4.10)-(4.12) is
stabilizable. In fact if TK is the evolution operator corresponding to the perturbation
of the evolution operator T by -BK, we can find constants M, a > 0 such that

[ITK(t, S)IIL(H <_ Me-(t-s), for (t, s) A(to).

As a consequence, there exists a constant C such that for all xo H, we can find a
control u(.) L2([s, ); U) with a cost

J(; xo,) Clloll, yo [to, ).

Proof. Let K(.) be the operator valued function in Hypothesis 5.1. Define the
perturbed sesquilinear form aK(t; , P) a(t; , p)+ < B(t)K(t)a, p >U. Then TK
is associated with crK as in Theorem 4.2 with -B(t)K(t) as the perturbation term.
Under our assumptions, by Theorem 4.3, there exist M, c > 0 such that

IIT(t, s)IIL(H) <_ Me-(t-s), for (t,s) A(to).

For any x0 E H, let v(t) -K(t)TK(t, s)x0; it is easy to see that the correspond-
ing trajectory is x(t) TK(t, S)Xo.

By our standing assumptions, the operator valued functions W(.),R(.), B(.) are
uniformly bounded in the entire interval [to, oc). We choose C such that

Then

C >_ (lIW(t)IIL(,) + IIK*(t)R(t)K(t)llL(I-I))M2/2a, for t >_ to.

{< W(t)x(t),x(t) >H + < R(t)K(t)x(t),K(t)x(t) >u}dt

< {]IW(t)I[L(H) + IIK*(t)R(t)K(t)I[L(H)} M2-2(t-)l[xol[dt
_< Cll:ollL.

Similarly, a sufficient condition for detectability can be stated as follows.

Hypothesis 5.2. There exists a uniformly bounded operator valued function (.)
[to, oc) H L(H), and constant A > 0 such that

(t; o, o)+ < (t)w1/2 (t)o, >, >_ ;lloll, o w.
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LEMMA 5.2.
is detectable.

Under Hypothesis 5.2, the control system defined by (4.10)- (4.12)

In the remainder of the current section, we assume that Hypotheses 5.1, 5.2 hold
for our control system in H. The strict H-dissipativity Hypotheses 5.1, 5.2 on the
evolution systems are stronger than the usual stabilizability and detectability hy-
potheses; however, they are in general easy to verify for a wide class of problems.
Moreover, the constants M and the decay rates a depend only on the values of k and
A (which, of course, are dependent on K and ). Thus, this type of approach suggests
that approximate systems which preserve the H-dissipativity might be uniformly sta-
bilizable and uniformly detectable. Pursuing this type of argument, we shall try to
show that the following conditions are implied by Hypothesis 5.1, 5.2. (As in the
discussions of 4 surrounding (4.17)-(4.19), we assume that Bg(t) PffB(t) and
WN(t) PffW(t).)

Condition 5.1. There exists a constant k > 0 such that for every N, there exists
a uniformly bounded operator valued function Kg (’)’[to, c) H L(HN, UN) so that

(5.1) aN(t; oN qoN)+ < BN(t)KN(t)qoN q0
N >H > lloNIIn

holds for all N E HN.

Condition 5.2. There exists a constant > 0 such that for every N, there exists
a uniformly bounded operator valued function @g(.)" It0, oc) - L(HN) so that

(5.2) aN(t; 0N, oN)+ < N(t)(wN(t))1/2oN, 0N >H > XIIoNII
holds for all N HN.

Note that if the original system satisfies Hypotheses 5.1 and 5.2, by the definition
of aN we have

(5.3) crN(t; N oN)+ < PffB(t)K(t)oN oN >H > kll NII 2
H

(5.4) aN(t;oN, qoN)+ < PIff(t)W1/2(t)qoN, qoN >H > ,XlI oNII .

Let us compare inequality (5.3) to (5.1); if we could take KN(t) K(t) in (5.1),
then Condition 5.1 holds trivially. However, a careful examination of inequalities
(5.3) and (5.4) reveals that they do not provide stabilizability and detectability of
the approximate system. In the case of (5.3) vs. (5.1) we observe that the range of
the operator K(.) hypothesized in Hypothesis 5.1 is not necessarily in UN, and K(.)
cannot be used as a stability operator for the control system in HN, UN as required
in Condition 5.1. Comparing (5.4) and (5.2) and recalling that wN(t) PffW(t),
we see that the the choice N pffpff would suffice only in the case where
P(PW(t))I/2= W/2(t).

Before we state additional conditions for the approximate systems, let us consider
several interesting cases for which stabilizability and detectability are preserved.

Case I. Dissipative systems. Suppose that Hypotheses 5.1, 5.2 hold for K(t) 0
and (t) 0; then by definition of the sesq.ilinear form aN, Conditions 5.1, 5.2 hold
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with KN(t) =_ 0 and N(t) 0. This is the case when the homogeneous system is
itself dissipative.

Case II. Finite-dimensional control. Suppose the control space U is finite-dimen-
sional. Taking UN U, we can use KN (t) K(t) and the approximate systems are
uniformly stabilizable.

Case III. Special stability operators. Consider the inequalities in Hypotheses 5.1,
5.2 again. We can assume that these inequalities hold where B(t)K(t) and (t)W1/2(t)
are nonnegative definite self-adjoint operators. Suppose that there exist scalar func-
tions (t) >_ 0 and #(t) _> 0 such that

B(t)K(t) (t)B(t)B*(t), (t)W/(t) (t)W(t).

Then taking K(t) (t)B*(t) nnd (t) (t)W/(t), we find Hypotheses 5.1 and
5.2 also hold. If we modify slightly the definition of the sesquilinear form aN by

&g(t; g, cY) aN(t; Y, cg)+ < B(t)[I P]K(t)N, cN >
+ < (t)[I P]W(t)N, cg >,

the sesquilinear form N satisfies Conditions 5.1 and 5.2. Indeed, we note that the
perturbation terms satisfy

< B(t)[I P]g{t)N, g >
(t) < [I- PIB*(t)N, [I- P]B*(t)y >v O,

< (t)[ P]w/, >
p(t) < [I- P]W1/2(t)N, [I- P]W/2(t)N >H O.

Thus by taking KN(t) PK(t), N(t) PffO(t), Conditions 5.1, 5.2 hold for N.
On the other hand, the perturbation terms go to zero as N goes to . Therefore if
we use 5N as the sesquilinear form for the approximate control system in HN, the
corresponding evolution operator N should also converge to T.

The three cases above motivate us to consider the following modifications of
the sesquilinear form in HN. Let the operator valued functions K(.), (.) be as
in Hypotheses 5.1 and 5.2; define 5N as"

(t;.) (t;.)+ < B(t)[I Pg]K(t), >
+ < (t)[I P]W(t), >.

for all N,N HN. Let N(t) HN HN be defined by

< A(t), >.= (t;.). . e U.
Let N(., .) be the evolution operator generated by N(t).

We can repeat the arguments in the proof of Theorem 4.4 using N in place of
TN. In the arguments, there is an extra term

Re < 1()w(), z() >u a

on the right side of the inequalities, where A() G L(H) is given by

A(t) PB(t)[I- P]K(t) + P(t)[I- P]W1/(t).
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There exists a constant C independent of N (the projections PHN and PuN are conver-
gent) such that

and, furthermore,

I]AN(r/)I]L(HN < C, /e [a,b],

IIAN(r/)PHNII, --, 0, for 99 E H.

cning u -u n ,i,g (4.15), w v wu - u P# Pu.
We thus find (suppressing the argument throughout)

Re < AUwU,zN >H ]< AN(pffw-PffzN),PffzN >HI
< IIANpw][HIIPzNIIH + CllpzNll 2

n
1 AN 1_< -t12 Pffwll + (C + 7)[IPffzN[I2H.

The integrM (with respect to ) of the first term in this lst expression 0 uniformly
in t, s and can be added to the term O (t, s) in (4.16), while the integral of the second
term can be included with the integral term in the right side of (4.16). We thus have
the following argument.

THEOREM 5.1. Under Hypotheses 5.1, 5.2, the conclusions (i), (ii) of Theorem 4.4
hold for N.

Now consider 7N as the evolution operator for our approximate control systems
in HN; the convergence of the solutions of the Riccati integral equation in any finite
time interval still holds. To generalize the arguments in the three special cases I-III
above, we make the following additional assumptions.

Hypothesis 5.3. Consider K(.), (.) as in Hypotheses 5.1, 5.2 and assume there
exist constants/ < k, < A and such that for all N >

< (I puN)K(t)N (I Pff)B*(t)N > > -kllNIIn
< (I PNH)W1/2 (t)7N, (I P)ffg*(t)qN > _> --,IINII,

for all N HN.

LEMMA 5.3. Under Hypotheses 5.1-5.3, the approzimate control systems are
uniformly stabilizable and detectable.

Pro@^ We assume without loss of generality that 1. Let / k and, A-A. By Hypothesis 5.3, > 0 and A > 0. Take KN(t) PK(t) and
tgN(t) PHN(t); then with this choice of KN, N, Conditions 5.1, 5.2 hold for
5N. Let IbN, N be evolution operators corresponding to the perturbations of N
by BNKN and N(wN)I/2, respectively. By Theorem 4.3, there exist constants
M, a > 0 depending on/c, only such that

II(t,)IIL(HN) M-(t-), [I(t,)IIL(HN) M-(t-).

By the general framework of 3, there exists a unique,solution (N of the Riccati
equation on the infinite time interval for each control system in HN. The operator
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N(t)PNH converges strongly to the unique solution Q(t) of the Riccati integral equa-
tion for the original system in H as N --. oc. The convergence is uniform in t for t in
any bounded interval.

We summarize the results for our dissipativity approach to uniform stabilizability
and detectability in the following theorem.

THEOREM 5.2. Consider the parabolic control system defined by (4.10)- (4.12)
under Hypotheses 4.1-4.3, 4.5--4.7, and the corresponding approximate systems as

defined via N g as above where pNH ---* I strongly in V and PuN I strongly in U.
Under the "H-dissipativity" Hypotheses 5.1, 5.2 and the consistency Hypothesis 5.3,
the following conclusions hold:

(i) There exist unique un’iformly bounded solutions (N, Q of the Riccati integral
equations in the infinite time interval [to, oc) for each of the approximate
control systems and the original system, respectively. There exists a constant
M such that for all t E [to, oc) and all N

II(N(t)[IL(HN) <_ M, IIQ(t)IIL(H) <_ M.

(ii) Let g, S be the perturbed evolution operator corresponding to the pertur-
bations of N, T by -BN(RN)-IB*N(N and -BR-1BQ, respectively; then
there exist constants M and a > 0 independent of N such that

I1N (t, S)IIL(HN <_ Me-a(t-s), IIS(t, S)IIL(H <_ Me-a(t-s),

for all (t,s) e /k(to).
(iii) As N - oc, ON, N converge to Q, S in the following sense: for all p H

II0 (t)eg 0,

(t, s(t, 0.

The convergence is uniform in (t, s) in any bounded interval.

The advantage of using the dissipativity approach outlined above is that the
hypotheses are readily checked. The H-dissipativity can sometimes be replaced by
even weaker dissipativity conditions for which one can obtain an exponential decay
rate (e.g., see [Ch], [La]). For parabolic systems with strict V-ellipticity, we can
avoid use of this type of argument as we shall see in the next section. However these
results might be useful for systems without strict V-ellipticity or possibly even some
hyperbolic systems (e.g., see [BKS], [BKW]).

6. Periodic systems: compactness and uniform stabilizability/detect-
ability. One of the special features of parabolic evolution systems as defined in 4
is that the evolution operator T(t, s) is also a bounded linear operator from H to
V. Since often the space V is compactly embedded in H, T(t,s) is thus a com-
pact operator. Using this fact, we can show that the convergence of the sequence
of operators rV(t, s) to r(t, s) is in a stronger sense. In this section, by combining
periodicity and compactness of the evolution operators TN and T, we can show that
the approximation schemes discussed in 4 preserve detectability and stabilizability.

The fundamental ideas on the stability of periodic evolution operators used in our
arguments here can be found in [HI], [H2]. The use of compact embedding ideas for
the proof of operator norm convergence can be found in [BI2] The authors gratefiflly
acknowledge K. Ito for fruitful discussions regarding this approach).
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In this section we make a periodicity assumption for our control system:

Hypothesis 6.1. There exists a constant 0 > 0 such that
(i) The sesquilinear form a is 0-periodic in time;
(ii) The operator valued functions B, R, W are periodic in time with period 0.

LEMMA 6.1. Under the above assumption, the evolution operator T(.,.) of the
corresponding homogeneous evolution equation is O-periodic.

Proof. For any s _< t, and all , E V, we have

< T(t + O, s + 0), >H
t+o

< >, +
Js+O

< + 0, +

By the uniqueness of the solution of the weak form of our evolution equation, we have
T(t + O, s + 0) T(t, s), for e H.

Under the periodicity Hypothesis 6.1, the continuity assumptions and the uniform
boundedness assumptions of the control system need only to be verified in the bounded
interval [0, ]. The above lemma shows that the periodicity of the evolution operator
is given by the periodicity of the corresponding sesquilinear form a. The following
theorem plays a very important role in the study of periodic systems. We give its
proof in order to remind the reader of the dependency of certain bounds involved.

THEOREM 6.1. ([H1], [H2]) Let T(.,.) be a O-periodic evolution operator. Then
T(., .) is uniformly exponentially stable if and only if there exist an integer n and a
constant < 1 such that

(6.1) liT(nO, 0)IlL(H) _< /3.

Pro@ a) Let T(., .) be uniformly exponentially stable; that is, there exist con-
stants M, co > 0 such that

liT(t, S)I]L(H <_ Me-(t-8), (t, s) e A(0).

Therefore, if we take n large enough such that Mexp{-wnO} < 1, and let /3
M exp{-wn0}, we have that (6.1) holds.

b) Suppose (6.1) holds. Let C be a constant such that for all 0 <_ s <_ t <_ nO,
liT(t, s)] _< C. Now for any 0 <_ s <_ t < and t- s > 0, we can find integers k and
m such that

tin8
k<_

nO
<_k+l, (m-1)O<_s<_mO.

Therefore, by the semigroup property of T(., .), we get

T(t, s) T(t, (nk + m)O)T((nk + re)O, mO)T(rnO, s).

By definition of k and m, we have mO s <_ nO and t (nk + rn)O <_ nO; then by
(6.1), we have

IIT(t,s)IIL(H) <_ Ce <_ C2eklg.
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Since/ < 1, we have log/ < 0; therefore we find

liT(t, s)[IL(H) <_ C2e- ogZ e(a+l)og <_ Me-(t-8)

with M C2/ and w -log 13/nO.
Since the evolution operator T is also nO-periodic, we can therefore assume with-

out loss of generality that lIT(O, O)]IL(H <_ /3 < 1. The following lemma is an inter-
esting consequence of the above theorem.

LEMMA 6.2. For a periodic system, if the stabilizability and the detectability
assumptions are satisfied, then there exist O-periodic operator valued functions I(.)
and (.) such that the evolution operatorg and corresponding to the perturbation
of the evolution operator T by B[, W1/ are also uniformly exponentially stable.

Proof. Suppose K, are operator valued functions in the stabilizability and
detectability assumptions. Let TK,T, be the evolution operators corresponding to
perturbation of T by BK and q2W1/2 respectively. Without lost of generality, we can
assume that there exists a constant < 1 such that

(6.2) IITK(O, 0)11
(6.3) IIT (0, 0)11

Now define 0-periodic operator valued functions/, as/(t) =^K(t), (t) (t),
for t E [0, 0), and extend periodically for t _> 0. Then we have TK(O, O) TK(O, 0),
(0, O) Tv(O, 0); therefore (6.?), (6.3) still hold for the new evolution systems. By
Theorem 6.1, we conclude that TK, Tv are also uniformly exponentially stable.

As a consequence of this lemma, we can assume without loss of generality that
the operator valued functions K, in Hypotheses 4.5 and 4.6 are 0-periodic. In fact
we can make the following equivalent assumptions.

Hypothesis 6.2. There exist a constant < 1 and 0-periodic operator valued
functions K, , such that if TK, Tv are the evolution operators corresponding to the
perturbation of the evolution operator T by BK,W/2, respectively, then

I1  (o, o)11 < IIT, (0, 0)11 <

For the remainder of this section, we shall assume Hypotheses 6.1 and 6.2 hold
and we focus on the uniform stabilizability and the uniform detectability of the ap-
proximate control systems. Let gg (t) PuNK(t), g(t) PNH q2 and T,Tg be
the evolution operators corresponding to the perturbations of TN by BNKN and
N(wN)I/2, respectively. As we have seen in the proof of the Theorem 6.1, the con-
stant M and decay rate w depend only on the uniform bound of T and constant .
We already know (use the arguments of Theorem 4.4 and uniform boundedness of the
perturbations) that [ITNK (t, 8)IIL(HN and IITN(t, 8)]IL(HN can be uniformly bounded
by a constant C independent of N for all 0 _< s _< t _< 0; therefore, to obtain uniform
stabilizability and uniform detectability, we only have to show (see b) of the proof of
Theorem 6.1) that we can find ) < 1 and No such that for all N >_ No, we have

(6.4) IIT (O, <_

(6.5) IIT((O, <_
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If, on the other hand, the convergence of Tt(t,s)P to TK(t,s) (TN(t,s)pNH to
Tv(t, s)) is in the operator norm, then we can readily establish that (6.4), (6.5) hold
for N large enough. The following theorem is very useful in the proof of this desired
convergence.

THEOREM 6.2. Let H, V be Hilbert spaces as defined in with V compactly
embedded in H. Consider a sequence of bounded linear operators TN defined on H
and bounded linear operator 7- defined on H. Suppose the range of TN and 7" are in
V, and the following conditions hold:

(i) There exists a constant C such that

(ii) For any E H, we have

Then the convergence of the sequence of operators TN to 7" is in the operator norm,
that is, I]7"N TIlL(H) --+ O, as N .

Before we give the proof of this theorem, let us state a useful lemma.

LEMMA 6.3. Consider a nonincreasing sequence of compact sets Ek C H, Ek D_
E+I, k 1, 2, 3, If we have =1 E {0}, then for each > O, we can find ko
large enough such that for all k >_ ko, E is a subset of a ball B(0, e) in H defined by

Proof. Suppose there exists e > 0 such that for every k, we can find 9 E Ek,
such that I[[[H > . Since the sequence {9} is in E1 which is compact, we can
assume that converges to an element in El. Obviously [[9[[H > e/2. On the
other hand, T must be in E for all k, therefore o is also in the set E k=l E.
But since E {0}, this is a contradiction.

Proof of Theorem 6.2. i) By definition of the operator norm, we have

TN TIlL(H) sup { lITNg Tg[IH (P (Z H, I[1[ 1}.
Now let us define the set F as

F U {7"NP- T(P P (E H, IIlIH 1}.
N=k

Let Ek be the H closure of F. The sequence of operators 7"N converges to 7" in
operator norm if and only if for all e > 0, we can find k0 such that for all k _> k0, we
have E C_ B(0, e).

ii) We observe that E is a closed set in H and hence in V, and by our assumption
E C V is bounded in V norm, in fact

Ek c {1 v, IIllv 2C}.

Therefore, Ek is a compact set. By definition of Ek, we know that {Ek} is a nonin-
creasing sequence of compact sets.
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iii) Let us define E =1 Ek. Suppose o G E; since o is in the closure of Fk
for all k, we can find a sequence 7

N with [[,),N [[H _< 1, such that N (TN T)TN
converges to o. Therefore, for any H, we have

<o,>/4 lim
N---oo

lira < 7N, (7*N- 7") >H.

Since 7
N is uniformly bounded in N and (T*N T*) goes to zero as N --. , we

have < W, >H--0 for all H, and therefore 0.
Using the previous lemma and i), we obtain lITg TIlL(H) + 0, aS N + .
Now recall the definition of the approximate control systems defined in 4, and

consider Tg TKN(0, 0)PHN, T TK(, 0). By the results in 4, we can easily verify
that the assumptions of Theorem 6.2 are satisfied. Therefore, we have

[ITff-(0, O)PHN T(O, 0)IlL(H) --+ o,

as N + . Now let / be the constant in Hypothesis 6.2; letting e 1-/, we can
find No large enough such that for all N _> No we have

2"

Therefore, for all N _> No, we have

IIT,(O, O)ll/(u) + IIT (o, o)P TK(O, o)11()
< 1

2

We summarize our discussion in the following theorem.

THEOREM 6.3. Let H, V be the Hilbert spaces used in the 4 and assume that V
is compactly embedded in H. Suppose that Hypotheses 4.1-4.3, 4.7, and 6.1, 6.2 hold.
Let HN C V be the finite dimensional approximation spaces and let the approximate
control system be defined as in . Then there exists No large enough such that for
all N >_ No, the approximate control systems are uniformly stabilizable and uniformly
detectable. As a consequence, if QN, Q are the unique solutions of the Riccati integral
equations on the infinite time interval in HN, H, respectively, and SN, S are the evo-
lution operators corresponding to the perturbations ofTN, T by--BN(RN)-IB*NQN,
-BR-1B*Q, respectively, then we have:

IIQ(t)P Q(t)ll. o. lls’(t, ,)P,7 s(t. )ll(.) - 0.

The convergences are uniform in [0, 0] and for (t, s) e A(0, 0), respec-

We remark that an autonomous system is a particular case of a periodic system;
therefore, the approach used here can also be applied to time invariant systems as
considered in [BK1]. In the case of parabolic systems with strict V-ellipticity where V
is compactly embedded in H, the arguments in this section offer an alternative (and
more succinct) approach to uniform stabilizability/detectability from the dissipativity
approach of 5.
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7. Parabolic partial differential equation control systems: An example.
In this section we consider control systems governed by second-order parabolic partial
differential equations with distributed scalar control. We indicate briefly how one
formulates the associated control and approximate problems in the framework of
4. For this class of systems we show that one can, under standard assumptions,
readily verify the conditions for continuity, ellipticity, stabilizability and detectability
required in 4. For Galerkin-type approximation schemes based on spline subspaces,
Conditions US and UD are readily established.

Let Ft be a bounded open subset of n with an infinitely differentiable boundary
F given by a variety of dimension n- 1 and consider the following homogeneous
second-order parabolic partial differential equation (ILl], [L2, p. 100]):

(7.1) -z(t,) i,,jl"= -i ai,j(t,)-jz(t,) + Ei=l bi(t’)-iz(t’)
+c(t, )z(t, ), t > O, E Ft,

where (1,’", n) E n. Generic boundary conditions are given by

0
(7.2) Y() E ai,j(t,)-jz(t,)i() + (t,)z(t,) 0, t > 0, e F,

i,j=l

where r]() (1(),"’, ,()) is the outward unit normal vector at a point on the
boundary F of Ft. Note that for all F, if ,() 0, we can divide (7.2) by
therefore, we can assume without loss of generality that 7 takes only values 0 or 1.
We choose as our state space H L2(Ft); the appropriate choice for V depends on
the boundary conditions and we consider several special cases.

(i) Consider the case y() =_ 0, /3(t, ) 1, and thus equation (7.2) specifies the
usual Dirichlet boundary condition. We then define V H0(Ft), and a sesquilinear
form 0" by

a

0 0
0"l(t; , ?) E ai,j(t, )j()-/()d

i,j=l

+ ,(t,
i--1

(ii) If we consider the case for 3’() -= 1, /(t,) 0, we obtain a Neumann
boundary condition. We then choose V HI(f) and note that the integrals in the
definition of 0"1 above are also defined for any functions , in HI(Ft). Therefore,
the sesquilinear form 0"2 for Neumann boundary conditions can be taken as the same
as for Dirichlet conditions,0"2 0"1, and thus only the spaces V are changed.

(iii) Consider the case 3’() 1 and/(t, ) it 0 which results in Robin or mixed
boundary conditions. We again choose V HI(t), and define a sesquilinear form 0"3
by

0"3(t; 99, ) 0"2(t; q, ) + j ](t, )q()()d.

By taking 3’() 0 on a part F1 of the boundary and 7(c) 1 on F- F1, we
can obtain other mixed boundary conditions. The choice of space V should also be
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modified accordingly. In all the cases above, let V be the appropriate choice of Sobolev
space (either H or H1), and let a denote the corresponding sesquilinear form defined
on V V. Then a solution z(t) of (7.1) and (7.2) satisfies

d
(7.3) d- < z(t), >H-- --a(t; z(t), ), for all E V.

As usual, (7.3) is called the weak form of (7.1) and (7.2); see (4.7), (4.8), and (4.10),
(4.11) of 4.

The continuity and the ellipticity conditions for the sesquilinear forms ai can
be characterized by properties of the coefficients ai,j,bi,c, and . The standard
assumptions ([L2, p.100]) for V-continuity and Hblder continuity of the sesquilin-
ear forms ai are as follows: or each fixed t, the functions ai5(t,.), bi(t,.), c(t,.)
are elements of L(t), while the function/(t, .) is an element of L(F). Further-
more, for each bounded interval [a, b], there exist constants C > 0 and 0 < ")’ _< 1,
such that each of the coefficients aid, bi, c, satisfy the bounds IIf(t, ")IIL <_ C and
Ill(t,.)- f(s,.)llL <_ CIt- sl for t,s in [a,b], where L is L() or L(F) as
appropriate.

It is easily seen that under these assumptions, the V-continuity and V-Hblder
continuity Hypotheses 4.1 and 4.3 hold for al and a2 defined above. In the case of
a boundary integral is involved; but under our assumptions on the smoothness of the
boundary, the following estimates hold (see [L2, p.17, Thm. 3.2, p.23])" For any ,
HI(), the restrictions of , to the boundary F belong to L2(F). Furthermore, there
exists a constant C such that

Furthermore, for all e > 0, there exists constant C(e) such that

II+ll :<r) <  ll+ll l(r,) + c( )ll+ll L2 (Ft)

With these estimates, it is readily argued that a3 also satisfies the Hypotheses 4.1
and 4.3 of 4.

To assure V-ellipticity we again make standard assumptions: for any
bounded interval [a, b], there exists a constant > 0 such that for all t [a, b]
and t,

n n

E <- E ai,i(t,)ii,
i--1 i,j--1

for all (,..., ) n. Under this assumption, it is readily seen that for each
bounded time interval [a, b], there exist constants c2 > 0 and m, such that

Re ai(t; , ) >_  ,.11+11  11, 11 ,
for all V and t [a,b]. That is, each of the sesquilinear forms ai, 1,2,3,
defined above satisfies Hypothesis 4.2.

In the remaining part of the this section, let H, V be the spaces of functions
appropriate for a specific problem, and let cr be the sesquilinear form defined for that
problem as above. For the control space U, we choose U L2(Ft), with the control
system being defined by (see (4.10)-(4.12))

(7.4)
d
,--; < z(t), >H --a(t; z(t), )+ < B(t)u(t), >H,
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for all in V. We choose the cost functional given by (4.12). Here we define the
operators B(t), W(t),R(t) by the following

[B(t)v] () b(t, )v(),
[W(t)] () (t, )(),
[R(t)v] () r(t, )v(),

for v E L2(Ft),
for E L2(f/),
for v G L2(ft),

where b, w, r are scalar valued functions on [to, oo) 2. In this case, the uniform
boundedness and the positivity of the corresponding operators can be readily char-
acterized by conditions on the functions b, w, and r. We assume that for each fixed
t, b(t, .), w(t, .), and r(t, .) are elements of L(Ft). As L(Ft) valued functions of t,
these functions are assumed continuous. Furthermore, assume there exists a constant
C such that for all t e [to, oo), the functions b(t, .), w(t, .),r(t, .) satisfy the bound
Ill(t, ")IIL() <_ C. The functions w, r are assumed to be nonnegative and, indeed,
we assume there exists a constant ro > 0 such that r(t, ) >_ to, almost everywhere in
ft, for t >_ to.

Under these assumptions, the operator valued functions B, W, R satisfy the stand-
ing assumptions of 2 and 4. It remains to consider Hypotheses 4.5 and 4.6 (stabiliz-
ability and detectability of the original system) as well as Conditions US and UD once
we have introduced approximations. For the problems considered here, we can use the
definition of the sesquilinear forms to give sufficient conditions for Hypotheses 5.1 and
5.2 (and hence Hypotheses 4.5 and 4.6) to hold. To this end, we assume that there
exist constants # > 0 and p > 0 such that for t e [to, oo), Ib(t, )1 >- #, Iw(t, )1 >- P,
ahnost everywhere in Ft.

Under this assumption, it is readily seen that there exists constants >_ 0 and
k > 0, such that each of the sesquilinear forms ai satisfies for G V

a(t; , ) + < B(t)B*(t), >H >_ 1[11,

and

+ < >H > kll oll H"

Thus, Hypotheses 5.1 and 5.2 hold with K(t) lB*(t) and (t) 1wl/2(t).
For our approximate systems, we choose approximation spaces Hg and Ug as in

3 and 4 generated by finite element or spline basis elements chosen so that HN C V
and UN C U yield the desired convergence properties for PHN and pV respectively
(see [C, Chaps. 2, 3], [B], [Sc]). The approximating systems are then defined as in

5. It follows immediately that Hypothesis 5.3 holds and hence the conclusions of
Theorem 5.2 are valid for the class of examples considered in this section.

We note that under periodicity assumptions we could have applied the alternative
approach of 6 to these examples since (see [A]) both V HI(/) and Y H0(Ft)
embed compactly in H L2(ft).

In some of our related efforts, we have numerically tested the ideas presented
in this paper on one-dimensional versions of the example of this section. In these
examples gt (0, 1) and we have to date used either linear or cubic B-splines to
generate the approximation spaces HN and UN. (In fact, when ft is a parallelepiped,
the above theory still is applicable and tensor products of one dimensional elements are
a good choice for approximation elements.) We have considered several examples with
time dependent periodic coefficients; for these examples we could use eigendirection
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analysis (see [W]) to give an analytic analysis for the feedback control problems. The
resulting analytical solutions were used for comparison with the numerical solutions
obtained using software implementations based on the theory developed in this paper.
Quite satisfactory results were obtained and, as noted in the Introduction, these are
being detailed in a separate manuscript under preparation.

In conclusion we note that the theory in this paper is also applicable to higher
order parabolic systems (as well as to some boundary damped hyperbolic systems
[BKS], [BKW]). In particular, one-dimensional Euler-Bernoulli beam models with
Kelvin-Voigt damping satisfy (see [BI1]) the strong ellipticity assumptions needed in
the theory developed above. While boundary control (as treated in [BI2]) for such
models constitute an obvious class of problems, distributed control as treated in this
paper is essential in cases where nonuniform piezoelectric layers along the beam are
used to implement the feedback controls.
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of continuous trading which have been made possible thanks to the methodologies of
stochastic analysis. All the questions treated here are formulated in the context of a
financial market which includes a risk-free asset called the bond, and several risky
assets called stocks; the prices of these latter are driven by an equal number of
independent Brownian motions, which model the exogenous forces of uncertainty that
influence the market. The interest rate of the bond, the appreciation rates of the stocks
as well as their volatilities, constitute the coefficients of the market model; we allow
them to be arbitrary bounded measurable processes, adapted to the Brownian filtration,
but require that a certain nondegeneracy (or "completeness") condition (2.3) be
satisfied.

The questions that we address include the following:
(i) A general treatment of the pricing of contingent claims such as options, both

European (to be exercised only at maturity) and American (which can be exercised
any time before or at maturity);

(ii) The resolution of consumption problems for a "small investor"
(i.e., an economic agent whose actions cannot influence the market prices) with quite
general utility functions; and

(iii) The associated study of equilibrium models. These are formulated in the
context of an economy with several small investors and one commodity, whose price
is determined by the joint optimal actions of all these agents in a way that "clears"
the markets (i.e., equates supply and demand for the commodity at all times).

Instrumental in the approach that we adopt are two fundamental results of
stochastic analysis: the Girsanov change ofprobability measure and the representation

of Brownian martingales as stochastic integrals. The former constructs processes that
are independent Brownian motions under a new, equivalent probability measure which,
roughly speaking, "equates the appreciation rates of all the stocks to the interest rate
of the bond." The latter of these results provides the "right portfolios" (investment
strategies) for the investors in the above-mentioned problems. We assume that the
reader is familiar with both these results; they are discussed in several monographs
and texts dealing with stochastic analysis, such as Ikeda and Watanabe (1981) and
Karatzas and Shreve (1987).

Here is an outline of the paper. Sections 2 and 3 set up the model for the financial
market and for the small investor, respectively; the latter has at his disposal the choice
of a portfolio (investment strategy) and a consumption strategy, which determine
the evolution of his wealth. The notion of admissible portfolio/consumption
strategies, which avoid negative terminal wealth with probability one, is introduced
and expounded on in 4, which can be regarded as the cornerstone of the paper.

Based on the results of 4, we treat the pricing of European contingent claims in
5; we provide the fair price and the subsequent values for such instruments, and

derive the celebrated Black and Scholes (1973) formula for European call options as
a special case of these results. The analogous problems for American contingent claims
are taken up in 6; predictably, their treatment requires notions and results from the
theory of optimal stopping.

Sections 7-11 are concerned with optimization problems for a small investor. We
introduce the concept of utility function in 7, and treat first a problem in which utility
is derived only from consumption ( 8); based on the methodology of 4, we provide
quite explicit expressions for the optimal consumption and wealth processes, as well
as for the associated value Vl(x) of this problem, as a function of the initial wealth
x > 0. The "dual" situation, with utility derived only from terminal wealth, is discussed
in 9; again, explicit expressions are obtained for the above-mentioned quantities,
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including the new value function V2(x). As a byproduct of this analysis, we obtain an
explicit computation of the portfolio that maximizes the growth rate from investment,
and an equally explicit expression for the maximal capital growth rate ( 9.6).

We combine the two problems in 10, where we take up the more realistic case
of utility coming from both consumption and terminal wealth; it is shown then that a
reasonable "compromise" between the two competing objectives can be achieved in
the following fashion. At time 0, we let the investor divide his initial capital x > 0
into two parts x > 0, X2 > 0, X -" X2 --X; for the initial capital x (respectively, x2) he
faces, from then on, a problem in which utility comes only from consumption (respec-
tively, only from terminal wealth). It is shown that this simple procedure, in the form
of the superposition of his actions for the two individual problems, yields optimal
strategies for the composite problem, provided that x and x. are chosen so that
V(Xl)- V(x2). Again, explicit expressions are provided for the optimal consumption
and wealth processes, and for the resulting value function V(x)- V(x)+ V(x2).

This type of analysis provides in general no information about the optimal portfolio
strategy for the problem of 10, except for guaranteeing its existence. To amend this
drawback, in 11, we specialize the problem to the case of constant coefficients, and
reduce the associated Hamilton-Jacobi-Bellman equation to a system of two linear
parabolic partial differential equations. With the help of the Feynman-Kac theorem
and the Black and Scholes formula, we obtain the solutions of these equations in
closed form, and from them the value function V(x) by composition; we also derive
very explicit expressions for the optimal portfolio and investment strategies, in feedback
form on the current level of wealth.

In 12 we apply the theory of 8 to the study of an equilibrium model. We consider
an economy with several agents, who can invest in the financial market and receive
continuously endowment streams in units of a certain commodity (consumption good);
this latter is traded in the market at a spot price (.). It is shown that the optimal
actions of these small investors determine, in principle, the price according to the
law of "supply and demand," which mandates that the commodity be consumed
entirely as it enters the economy and that the net demand for each financial asset be zero.

2. The financial market model. We shall deal exclusively in this paper with a
financial market in which d + 1 assets (or "securities") can be traded continuously.
One of them is a non-risky asset, called the bond, with price Po(t) given by

(2.1) dPo( t) Po( t)r( t) dt, Po(0) 1.

The remaining d assets are risky; we shall refer to them as stocks, and assume that
the price Pi(t) per share of the ith stock is governed by the linear stochastic differential
equation

(2.2) dP,( t) P,( t) b,( t) dt + , tr,( t) dW( t) P,(O) p,, 1, 2,’", d.
j=l

In this model, W(t)= (Wl(t)," , Wd(t))* is a Brownian motion in 5 d, whose
components represent the external, independent sources of uncertainty in the market;
with this interpretation, the volatility coefficient tro(. in (2.2) models the instantaneous
intensity with which the jth source of uncertainty influences the price of the ith stock.
Notice that in this model there are as many stocks as there are sources of uncertainty.

The probabilistic setting will be as follows" the Brownian motion W will be defined
on the complete probability space (, , P), and we shall denote by {t} the P-
augmentation of the natural filtration

,W=r(W(s);O<=s<=t), 0-<_ t<o.
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The interest rate process r(t), 0 -<_ < o of the bond, the appreciation rate vector process
b(t)=(bl(t),..., bd(t))*, 0<= t<c of the stocks, and the volatility matrix-valued
process o-(t) {o’0(t)}l=i.j_d, 0-- <, will all be progressively measurable with respect
to {t}, and bounded uniformly in (t, to) [0, c) xf, We shall also assume that the
covariance matrix process a(t)= o’(t)cr*(t) is strongly nondegenerate: i.e. there exists
a number e > 0 such that

(2.3) :*r(t,o)r*(t,,o):->ell:ll 2 VEd, (t, to)[O,)D.,.

We shall refer to r(. ), b(. ), or(. collectively as the coefficients of the market model,

It follows easily from (2.3) that the inverses of both matrices r(t, to) and cr*(t, to)
exist and are bounded, i.e.,

1
(2.4) v

1 d(2.5)

for every (t, to) [0, oo) x 1.
The nondegeneracy condition (2.3) will allow us to introduce an auxiliary probabil-

ity measure P, equivalent to P, which is going to be the "catalyst" for all future
developments in this paper. To this end, let us introduce the d-valued process

(2.6) 0(t) (o’(t))-l[b(t) r(t)l]

which is bounded, measurable, and adapted to {t} thanks to our assumptions, as
well as the exponential martingale

(2.7) Z(t)=exp O*(s) dW(s)- II0(s)ll =ds

We fix, from now on, a finite time-horizon [0, T] on which we are going to treat
almost all our problems. The auxiliary probability measure is defined then on
(, T) by

(2.8) (A) E[Z( T).I A],

and according to the Girsanov theorem the process

(2.9) I(t) W(t)+ O(s) ds, 0 <- t<= T

is an a-valued Brownian motion under (cf. Girsanov (1960) or Karatzas and Shreve
(1987, 3.5)).

In order to understand the significance of the auxiliary probability measure [, let
us rewrite (2.2) with the help of (2.6), (2.9) as

(2.10) dP,(t) P,(t) r(t) dt + , o-j(t) dW(t) 1,..., d.
j=l

Comparin.g (2.10) with (2.2), and recalling that I7 is a 15-Brownian motion, we can
say that P is the "risk-neutral" probability measure of the market model" it equates
the appreciation rates of all the stocks to the interest rate of the bond. Equivalently, we

The only exceptions are the problems that we discuss in 6.7 and in 9.6.
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can solve the equations (2.10), and observe that the discounted stock prices 3(t)P(t)
with

(2.11) 3(t)- po(,t)=exp r(s) ds

are given as

(2.12) (t)P(t) = p.exp cr*(s) dlYV(s)-- [[tr,(s)ll 2 ds

where Cri(t -’(O’il(t),’’’, cria(t))*. In particular, it follows from (2.12) that the dis-
counted stock prices Pi are martingales under .

Remark 2.1. The existence of a probability measure P with the above properties
will guarantee that the model is free of "arbitrage," i.e., of opportunities to make some
,money out of nothing (cf, Remark 4.8); on the other hand, the uniqueness of such a
P will guarantee that all the risk in the market, generated by the sources of uncertainty
(W1,’", Wa), can be "hedged against" by skillful trading in the financial assets
(Theorem 4.6 and Proposition 4.7).

These are precisely the features that will allow us to solve the option pricing
( 5, 6) and consumption/investment problems ( 8-11) in the generality of the
present model.

3. A "small investor." Let us consider now an economic agent, who invests in
the various securities and whose decisions cannot affect the prices in the market (a
"small investor"). We shall denote by X(t) the wealth of this agent at time t, by r(t)
the amount that he invests in the ith stock at that time (1

_
d), and by c(t) the rate

at which he withdraws funds for consumption.
Notice that we allow here any cry(t), 1

_
=< d to become negative, which amounts

to selling the ith stock short. Similarly, the amount of money

d

X(t)- E 7ri(t)
i=1

invested in the bond at any particular time, may also become negative; this is to be
interpreted as borrowing at the interest rate r(t).

DEFINITION 3.1. A portfolio process r(t)=(zrl(t),’’ ", rd(t))*, O<---- t<---- T is an
Y d-valued process, which is progressively measurable with respect to {,} and satisfies

(3.1) liar(t)[[ 2 dt<c a.s.

DEFINITION 3.2. A consumption rate process c(t), 0<_-t<_-T is nonnegative, pro-
gressively measurable with respect to {t}, and satisfies

T

(3.2) c(t) dt< a.s.
o

The adaptivity condition in Definitions 3.1 and 3.2 means of course that the
investor cannot anticipate the future values of the prices; that is, "insider trading" is
excluded.
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With the above interpretations and notation, we obtain the following equation
for the wealth X(t) of the agent:

(3.3)
j--1

+ x( 2 ( r( .
The three terms on the right-hand side of (3.3) account, respectively, for: (a)

capital gains or losses from investments in stocks, (b) the decrease in wealth due to
consumption, and (c) capital gains or losses from money invested in bonds.

With the help of (2.6), (2.9) we can re-cast the wealth equation (3.3) in its vector
form

dX(t) [r(t)X(t)- c(t)] dt + r*(t)[b(t)- r(t)l] dr+ -*(t)o’(t) dW(t)
(3.4)

=[r(t)X(t)-c(t)] dt+Tr*(t)o’(t) dW(t).

The solution of (3.4) with initial wealth X(0)= x->_ 0 is easily seen to be given, in the
notation of (2.11), by

(3.5) (t)X(t)= x- (s)c(s) ds+ (s)Tr*(s)r(s) dW(s), 0 <- < T.

Remark 3.3. It is easily seen from (3.5) that the process

(3.6) M(t)=fl(t)X(t)+ (s)c(s) ds, O<=t<= T,

consisting of current discounted wealth plus total discounted consumption to-date, is
a continuous local martingale under . Let us introduce now the process

(3.7) (t)=(t)Z(t),

which modifies the discount factor of (2.11) in order to take into account the presence
of the financial market. From Remark 3.3, and with the help of the "Bayes rule"

(3.8) [ YI] E[ YZ(t)lffs]
Z(s)

which is valid for 0 =< s < -< T for every o%-measurable, P-integrable random variable
Y (cf. Karatzas and Shreve (1987, p. 193)), we can deduce that the process

(3.9) N(t)= (t)X( t) + (s)c(s) ds, 0 < <= T

is a continuous local martingale under P, and that N is a P-supermartingale, if and
only ifM is a -supermartingale.

Remark 3.4. The process " of (3.7) will play a fundamental role in the sequel.
We shall see that it acts as a deflator," in the sense that multiplication by ’(t) converts
wealth held at time to the equivalent amount of wealth held at time zero.

It is interesting to note that (3.7), (2.11), and (2.7) lead to the linear stochastic
differential equation

(3.10) d’(t) =-(t)[r(t) at+ o*(t) dW(t)]

for the process r.
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4. Admissible strategies. We shall single out those pairs (Tr, c) for which the
investor avoids negative wealth at the terminal time, with probability one.

DEFINITION 4.1. A pair (Tr, c) of portfolio and consumption rate processes is
called admissible for the initial capital x => 0, if the corresponding wealth process X
of (3.5) satisfies

(4.1) X(T)>-_O and (t)X(t)>--K, V O<-_t<= T

almost surely, for some nonnegative and P-integrable random variable K K(Tr, c).
The class of such pairs is denoted by M(x).
For every (Tr, c) M(x), the continuous, P-local martingale N of (3.9) is bounded

from below; an application of Fatou’s lemma shows then that N is a supermartingal.e
under P, and therefore that the process M of (3.6) is a supermartingale under P.
Consequently, with 6eu, denoting the class of {t}-stopping times with values in the
interval [u, v], we have by the optional sampling theorem the equivalent inequalities

(4.2) E (’r)X(’r)+ (s)c(s) ds <-x,

(4.3)

for every - ’0,T"
Remark 4.2. With the interpretation of the process sr as a "deflator," the inequality

(4.2) acquires the significance of a budget constraint; it mandates that "the expected
total value of current wealth and consumption-to-date, both deflated down to t-0,
does not exceed the initial capital."

DEFINITION 4.3. For every given number x => 0, denote by
(i) (x) the class of consumption rate processes c which satisfy

1
T

(4.4) E (s)c(s) ds <-_ x,
o

and by

(ii) (x) the class of nonnegative, r-measurable random variables B which
satisfy

(4.5) E[fl(T)B]x.
From the inequality (4.3) we deduce

(4.6) (, c)(x) c (x), X(T)(x).
In the next two theorems, we discuss the extent to which the opposite implications
are true.

THEOREM 4.4. For every c C(x), there exists a porolio process such that
(mc)(x).

Proo Given c (x), introduce the random variable D fl(s)c(s) ds and the
({,}, )-maaingale
(4.7) u(t):(Dl,)-D, Ot

The fundamental maingale representation theorem (e.g., Ikeda and Watanabe (1981,
p. 80) or Karatzas and Shreve (1987, pp. 184, 375)) shows that u can be written as a
stochastic integral with respect to if, i.e.,
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for some {t}-progressively measurable, d-valued process
almost surely. Finally, defining 7r(t)=Po(t)(cr*(t))-lck(t), we see that (4.8) is
equivalently rewritten as

(4.9) u()= ,(s)r*(s)o’(s) dW(s)

and that is a pofolio process (i.e., (3.1) is satisfied).
The wealth process X corresponding to the pair (, c) is given by

(t)X( t) x (s)c(s) ds + u( t)

(4.10)

= (s)c(s)ds , +x-D, OtT

thanks to (3.5), (4.9), and (4.7). It is easily seen that this process has continuous,
nonnegative paths with X(T) (x-D)Po(T) O, almost surely. In other words, the
pair (m c) is admissible.

We shall say that two measurable stochastic processes A, B on [0, T] are equivalent,
if A(t, w) B(t, w) holds for

Here, stands for Lebesgue measure.
PROPOSITION 4.5. For every consumption rate process c in the class

(4.11) (x)= c(x);E (s)c(s)ds=x

we have the following:
(i) e portfolio of eorem 4.4 is unique up to equivalence.
(ii) e corresponding wealth process X saisfies X( T)= O, almost surely.
(iii) e process M of (3.6) is a P-martingale. In particular,

(x() (sc(s s

Proo For a given c e N(x), and any portfolio such that (m c)e (x), we have
from (4.3) the inequality

[(rx(rl x (sc(s as o,

which justifies (ii), as well as

M(

which establishes (iii) by showing that the supermaingale M of (3.6) has constant
expectation.

Now for any two pofolios , such that (, c)e (x) and (, c)e (x),
let X, X represent the corresponding wealth processes and M, M the corresponding
-maingales of (3.6). The maingale

(M-M(= (s((s-(s*(s (s, 0
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is identically zero, because MI(T) M2(T) oT (s)c(s) ds. Therefore,

(M,-M2)(t)= ds=O, 0<= <- T,

which shows that r, 7r2 are equivalent.
The following "controllability" result is analogous to Theorem 4.4, and character-

izes the levels of wealth attainable by an initial capital X(O)= x.
THEOREM 4.6. For every B f(x), there exists a pair (Tr, c) (x) such that the

corresponding wealth process X satisfies X(T)= B, almost surely.
Proof. By analogy with the proof of Theorem 4.4, introduce the P-martingale

(4.12) v(t)=[B(T)I@,]-[B(T)] O<-_t<= T

and conclude that it can be represented in the form (4.9), i.e.,

v( t) 19(s)’rr*(s)o’(s) d(s),

for a suitable portfolio . Now the continuous process X defined by

(4.13) (t)X(t)=x-pt+v(t), O<-_t<= T

and p (x-[B/3(T)])/T, represents the wealth corresponding to the pair (Tr, c) with
c(t) pPo(t). But then it follows from (4.12), (4.13) that

(4.14) fl(t)X(t)= [Bfl( T)[t] + (x- [B/3 (T)]). (1--).
We deduce from (4.5) and (4.14) that X is nonnegative, so that in particular the pair
(Tr, c) is admissible, and X(T)= B almost surely.

We can also establish an analogue of Proposition 4.5; we omit the easy proof.
PROPOSITION 4.7. For any random variable B in the class

(4.15) 3//(x) {B (x); E[Bfl( T)] x}
we have the following"

(i) The pair (Tr, c) of Theorem 4.6 is unique and c =--O, up to equivalence.
(ii) The corresponding wealth process X is given by

(4.16) fl(t)X(t)=[Bfl(T)[t], O<=t<- T.

Remark 4.8. Let us define an arbitrage opportunity as a portfolio 7r such that
(i) (Tr, 0) /(0), and
(ii) The wealth process X, which corresponds to (Tr, 0) and the initial capital

x 0, satisfies P[X(T) > 0] > 0.
In other words, an arbitrage opportunity is an investment strategy that achieves,

with zero initial capital, an amount of terminal wealth which is almost surely nonnega-
tive and positive with positive probability. It is also sometimes called a "free lunch,"
for obvious reasons.

Our model excludes arbitrage opportunities; indeed, the necessary condition for
admissibility (4.3) yields with x=0 and c-=0: [fl(T)X(T)]<-O, leading to X(T) 0,
almost surely.

Remark 4.9. Theorem 4.6 and Proposition 4.7 still hold, if T is replaced by a
positive stopping time r 50,T and B by a nonnegative, ore-measurable random variable
(recall (4.3)). We would have to replace (4.14) by

fl t)X t) ,[ Bfl ’)lt] + (x [B/3 (r)])(1- t___’)
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and take c(t) 0, 7r(t) -= 0 for z <_- <_- T. The rest of the argument goes through without
change.

5. The lricing of European options. Suppose that at time 0 we sign a contract
which gives us the option to buy, at the specified time T (maturity, expiration date),
one share of the stock 1 at a specified price q (the contractual "exercise price").
At maturity, if the price PI(T) of the share is below the exercise price, the contract is
worthless to us; on the other hand, if PI(T)> q, we can exercise our option at t- T,
buy one share ofthe stock at the pre-assigned price q, and then sell the share immediately
in the market for PI(T).

Thus, this contract is equivalent to a payment of (PI(T)- q)/ at maturity; it is
called a European option, in contradistinction with "American options" which can be
exercised at any stopping time in [0, T] (cf, 6).

The following definition generalizes the concept of European option.
DEFINITION 5.1. A European Contingent Claim (ECC) is a financial instrument

consisting of a payment B at maturity; here, B is a nonnegative, T-measurable random
variable with

(5.1) E(B)<o forsome/x> 1.

Remark 5.2. Using the boundedness of the processes r and 0, as well as the H61der
inequality, it is not hard to see that (5.1) implies

(5.2) [B,8 (T)] < Do.

DEFINITION 5.3. A hedging strategy against the ECC of Definition 5.1 is a pair
(Tr, c) 4(x) for some x>0, such that X(T)-B almost surely.

We denote by (x) the class of hedging strategies with initial wealth X(0)- x.
In words, a hedging strategy (r, c) (x) starts out with initial wealth x and

"reproduces the payoff from the ECC" at T.

What is a fair price to pay at 0 for the ECC? If there exists a hedging strategy
for some x > 0, then an agent who contemplates buying the ECC at time 0 can
instead invest in the market according to the portfolio r and consume at the rate c,
and still achieve the same wealth at T as the payment from the ECC. Therefore,
the price he should be prepared to pay at 0 for the ECC cannot possibly be greater
than this amount x.

It is natural then to define the fair price as the smallest value of the initial wealth,
which allows the construction of a hedging strategy.

DEFINITION 5.4. The number

(5.3) v inf{x> 0; ::i(m c) (x)}

is called the fair price at 0 for the ECC of Definition 5.1.
THEOREM 5.5. The fair price v of Definition 5.4 is given as

(5.4, v=[Bexp(-Ir(u
There exists a portfolio process 7r with (Tr, 0) og’(v); this portfolio is unique up to
equivalence, and the corresponding wealth process is given by

(5.5) X(t)=E Bexp r(u)du O<-_t<- T.

Proof. All the claims follow directly from Theorem 4.6 and Proposition 4.7.
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The random variable X(t) of (5.5) is called the value at time of the ECC.
Example 5.6. Consider a financial market model with constant interest rate r(t)--"

r >= 0 and volatility matrix tr(t) tr, as well as and a contingent claim with B o(P(T)).
Here, o" d+ [0, c) is a continuous function and

(5.6) P( t) (Pl( t), Pd( t))*

is the vector of stock price processes which satisfy, in this case, the equations (2.10)
in the form

(5.7) dP,(t)=P,(t) rdt+ 2 tr,dW(t) l<--i<-d.
j=l

The solution of these equations is given by (2.12), namely

(5.8) Pi(t) Pi exp r- ai, + 2 o’0 W(t)
j=l

We introduce now the function h(t, p, y)" [0, o) x d+ Xd d+ via

(5.9) hi(t, p, y) - Pi exp r- aii + Yi 1 -<_ =< d,

and observe that (5.8) can be written in the vector form

(5.10) P(t) h(t, p, trW(t)).

Coming now to the ECC with B q(P(T)), we see from (5.5), (5.9) that its value
is given by

X( t) [e-r(T-t)q(P( T)) :,]

[e-(T-t)q(h(T- t, P(t), tr(lTV(T)- (t))))l,]

"-e-r(T-t) I.a qg(h(T- t, P(t), o’z))FT-t(z) dz

almost surely , for every [0, T), where

’t(Z) (27rt) -d/2 exp ----j, ze t> 0

is the fundamental Gaussian kernel in d. It follows that, with

(5.11)
f

v(t, p) ]e-’(r-t) J tp(h( T-t, p, trz))Fr_t(z) dz,

(p),

the value at time of the ECC is given by

(5.12) X(t)= v(t, P(t)).

O<=t<T pd+,

t=T, pd

v( T, p) p(p), p d+

In this case it is even possible to "compute" the portfolio 7r(t) that achieves the value
process of (5.12). Indeed, under appropriate growth conditions on o, the function
v(t, p) of (5.11) is the unique solution of the Cauchy problem

Ov+ l d d 02v OV
Ot 2 " ’ aopiPJ + rp rv 0 on [0, T) x d+
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by the Feynman-Kac theorem (e.g., Karatzas and Shreve (1987, p. 366)). Applying
It6’s rule to the process X of (5.12) and using the above equation and (5.7), we arrive
at

dX(t)=rX(t) dt+ Y. Y croPi(t)--pi V(t,P(t)) dV(t).
i----1 j-----1

A comparison with (3.4) gives then

0
q’fi( t) Pi( t) v( t, P( t)), O<__t<__T, l<__i<_d

for the portfolio process of Theorem 5.5. In other words, we should hold Ni(t)=
(O/Opi)v(t, P(t)) shares of the ith stock at time t.

Remark 5.7. In the particular case of a European option as in Example 5.6, with
d 1, q(p)= (p-q)+ and exercise price q >0, the integration in (5.11) can be carried
out in a somewhat more explicit form. Indeed, with cI)(z) & (1/)[ exp (-x2/2) dx
and

v+(t,p;q) A
1 +1 1) t],trl,X/ [lg ()+ ( r tr21

we have

(5.13)
p(u+(T-t,p; q))-qe-r-’)(v_(T-t,p; q)),

v(t,p;q)=[(p_q)+,
Together with

O<=t<T, 0<p <oo,
t=T, 0<p <oo.

(5.14) X(t; q) = [e-r(T-t)(p,(T)--q)+lt] v(t, P,(t); q), 0_--< -< T,

the expression (5.13) constitutes the celebrated Black and Scholes (1973)formula.
Note that in this formula, as well as in (5.11), the appreciation rates of the stocks

do not appear; this fact makes the formulas particularly attractive and useful, because
appreciation rates are usually very difficult to estimate in practice. By contrast, the
interest rate r(.) is directly observable, and the volatilities tr(.) can in principle be
estimatedmalbeit with some difficulty--on the basis of observations on the price
processes (P t),. ., Pa (t)).

More generally, any convex and piecewise C2 function h :[0, oo)- [0, oo) with
h(0) h’(0)= 0 can be represented as

h(p)= (p-q)+h"(q) dq.

For an ECC with B h(PI(T)), the value at time is given then by (5.5) as

X(t)= [e-r(r-t)h(Pl(T))l;,]= h"(q)v(t, Pl(t); q) dq a.s.

for every 0<= <= T, thanks to the Fubini theorem and (5.14).
Remark 5.8. If the expiration date T is replaced by a stopping time r oWo, r and

the payment B is an ,-measurable random variable, the theory of this section still
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goes through with minor changes. A hedging strategy (Definition 5.3) now has to satisfy
X(r) B almost surely, and (5.4), (5.5) become, respectively, thanks to Remark 4.9"

(5.4)’ v(’= Bexp r(u)du

(5.5)’ X(’(t)= Bexp r(u) du

6. The pricing of American options.’- For the purposes of this section only, we
shall need to modify slightly the model of 3 for the small investor. First, we will have
to deal with cumulative consumptions Ct up to time t, rather than with consumption
rate processes.

DEFINITION 6.1. A consumption process C { Ct; 0 <- <- T} is continuous, increas-
ing, adapted to {;t}, and satisfies Co 0, Cr < o, almost surely.

Second, we have to allow the possibility for the stocks to pay dividends to the
stockholders, at the rate /zi(t); 0=< -< T for every dollar invested in the ith stock,
i= 1,..., d. These are nonnegative, bounded, and {t}-progressively measurable
processes, and we denote by (t)=(/l(t),.’’, a(t))* the resulting vector process.

Then the wealth process X associated to a portfolio process r (Definition 3.1)
and a consumption process C (Definition 6.1) satisfies the following analogue of
equations (3.3) and (3.4)"

dX( t) r( t)X( t) dt- dCt + r*(t)[b(t)+/x(t)- r(t)l] dt / 7r*( t)tr( t) dW( t)
(6.1)

r(t)X(t) dt dCt + r*(t)cr(t) dV(t)
in the notation of (2.7)-(2.9), with (2.6) replaced by

(2.6)’ O(t) (cr(t))-l[b(t)+tz(t)-r(t)l].
The notion of admissibility for a pair (or, C) remains the same as in Definition 4.1,
and (4.3) becomes

for every (-, C)e s(x).
After this setting of the stage, let us introduce the primary object of this section.
DEFINITION 6.2. An American Contingent Claim (ACC) is a financial instrument

consisting of the following:
(i) An expiration date r
(ii) The selection of a stopping time -e 9o,r; and
(iii) A payoff f(z) on exercise.
Here, {f(t); 0-<tN T} is a continuous, nonnegative process, adapted to {ot},

which satisfies

(6.3) E( sup f(t)) < o for some/z > 1.
0,T

For instance, if f(t)= (P(t)- q)+, we have an American option on the first stock
that can be exercised at the price q >_-0, at any stopping time r on [0, T]. We restrict
attention to stopping times, in order to exclude clairvoyance.

This section may be omitted on first reading, without loss of continuity; its results will not be used
in the sequel.
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As in 5, we are interested in the following pricing problem for the ACC: What
is a fair price to pay at 0 for this instrument? How much is it worth at any later
time (0, T] ?

Let us suppose for a moment that the selection of - o.r ((ii) in Definition 6.2)
has been made; then we have, from Remark 5.8, the expressions

X(’(t)= (r) exp r(s) ds

for the value of the claim and for its fair price at 0. It is conceivable then that, in
order to find the corresponding quantities for the ACC, we would merely have to
maximize over stopping times. In particular, we should expect the fair price at t--0
to be given by

sup (’)exp r(s) ds
SO,T

and the value of the ACC at any time s [0, T] by

ess sup 1 (r) exp r(s) ds ;, a.s.
Tt,T

The question is whether this process is the wealth corresponding to an admissible
pofolio/consumption process pair, that somehow again duplicates the payoff from
the contingent claim and does so with minimal initial capital.

DEFINITION 6.3. Fix X > 0; a pair (, C) M(x) is called a hedging strategy against
the ACC with initial wealth x, if the corresponding wealth process X satisfies

(i) X(t)f(t),forallOtT,
(ii) X(T) =f(T),

almost surely. We denote by (x) the collection of all such pairs.
DEFINITION 6.4. The number

(6.4) inf {x > 0; (, C) (x)}
is called the fair price for the ACC of Definition 6.2.

For every (, C)(x), we have from (6.2)" ,[f(’)fl(’)]<-_x, for all
Therefore, with

(6.5) u(t) & sup Q(-), Q(t)=f(t)fl(t), 0= T,

we obtain u(O)<=x, whence

(6.6) u(0) =< .
We shall show that equality actually holds in (6.6).

THEOREM 6.5. Th8 fair price of Definition 6.4 is given by

(6.7) =u(0)= sup (-)exp r(s) ds
..C/’O,T

There exists a pair (,) (u(O)), such that the corresponding wealth process is
given as

(6.8) ,(t) ess sup (’) exp r(s) ds aoSo
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for every [0, T], and

(6.9) l(,)>s(,)t dC, =0 a.s.

holds.
In view of (6.6), only the second claim needs to be discussed. For this purpose,

we have to recall some basic facts from the theory of optimal stopping for a continuous
process such as Q (cf. Fakeev (1970), Bismut and Skalli (1977), E1 Karoui (1981)).
We know from these sources that there exists a nonnegative, RCLL (Right-Continuous
with Left-hand Limits) -supermartingale { Y(t), ,; 0 _-< _-< T}, such that the function
u(. of (6.5) is given as

(6.10) u(t) E Y(t), 0 <_- <_- T,

and

(6.11) Y( t) ess sup :[Q()I,] a.s.
Stgt,

holds for every t[0, T]. Y is the Snell envelope of Q, i.e., the smallest RCLL
supermartingale that dominates Q, and provides the optimal stopping time rt for the
problem of (6.5)" u(t)=Q(rt), in the form

(6.12) zt & inf{s [t, T]; Y(s)=Q(s)}.

Using (6.3) and the Doob and Jensen inequalities, it can be shown that Y is of
class D[0, T] under P, i.e., that

(6.13) { Y(z)}co.T is a-uniformly integrable family.

Bismut and Skalli (1977) also show that Y is regular:

(6.14)
For every monotone sequence {o,}_1_ ,9o,r with

lim._oo or. o" 0.v, we have lim._ Y(cr,,) , Y(cr).

Proof of Theorem 6.5. From (6.13), (6.14) we conclude that Y admits the Doob-
Meyer decomposition (e.g., Karatzas and Shreve (1987, 1.4))"

Y(t) u(0) + M(t) A(t), 0 -< -< T,

where {M(t), ,} is a -martingale and A is a continuous, nondecreasing process, with
M(0) A(0)=0. As in the proof of Theorem 4.4, we have the representation

M(t)= fl(s).?r*(s)cr(s) diSC(s), 0 <- t T

of the martingale M as a stochastic integral with respect to W, for a suitable portfolio
process . Now define

(6.15) 2(t) Y(t)Po(t), 0<= t<= T,

and apply ItG’s rule to obtain

d(t) r(t)f(t) dt- dd, + r*(t)o(t) dV(t)
for the choice

(6.16) d, Po(s) dA(s).
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In other words, X is the wealth process corresponding to the portfolio/consumption
process pair (, ), which is easily seen to belong to )(u(0)). The representation
(6.8) follows from (6.11), and (6.9) from

Ior l(v(t)>O(t)} dA( t) 0 aoS.

(cf. Bismut and Skalli (1977), E1 Karoui (1981)).
The stopping time -, of (6.12) can be written equivalently as

(6.17) -, =inf{s[t, T]; X(s)=f(s)} a.s.;

obviously, z0 provides the optimal exercise timefor the ACC. The random variable (t)
of (6.8) gives the value of the ACC at time t.

Remark 6.6. Suppose that the process Q of (6.5) is a submartingale under iS;
then u(t) EQ(T), -, T for every 0 <= _<--- T, and the ACC should not be exercised
before the expiration date (i.e., is equivalent to an ECC).

For instance, in the setting of Example 5.6, suppose that the function q 9 a+.[O, oo)
is of class C and satisfies

d 02qg(P)+ Z (r lzi)Pi
l y aoPiP20piOp22 i=lj=l i=1

as well as a polynomial growth condition. Then Q(t) e-r’q)(P(t)) is a -submartingale,
and the value process for the ACC with f(t)--(P(t)) is given by (5.12), with the
understanding that r has to be replaced by r-/z in the expressions (5.7)-(5.9).

As another example, take the American option with d=l, f( t) (Pl( t) q) +,
q > 0 written on a stock which pays no dividends: /zl(t) 0, r(t) >= 0. Then

Q( t) (P( t)fl( t) q( t)) +

is a P-submartingale,. and we recover a result of Merton (1973): an American option
with positive exercise price, written on a stock that pays no dividends, should not be
exercised before the expiration date.

Remark 6.7. The infinite horizon case. In the setting of Example 5.6 and with
tz(t) tx, f(t)=q(P(t)), the value process , of (6.8) for T= is given, formally at
least, as

(6.18) X(t)= v(P(t)), 0<= <,

where v Y d+-- [0, ) is the least r.excessive majorant ofthe function q (Fakeev (1971)).
More specifically, if d=l and q(p)=(p-1) +, the function v of (6.18) was

computed by McKean (1965) as

u(p)={(-l)(p/); O<p<
p-l;

with y=(1/o2)(f62+2ro’2-6), a r-/z>0, 6 a-or2/2, K y/(y-1)> 1, and the
optimal exercise time of (6.17) is given by

zt inf {s => t; P(s) > }.

The finite-horizon version of this problem is studied in Van Moerbeke (1976); we then
face a genuine free-boundary problem, for a moving boundary (t), 0<= <= T rather
than a point as above. Van Moerbeke studies this question by reducing it to a
free-boundary problem of the Stefan type.
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7. Utility functions. To formulate meaningful optimization problems for the small
investor of 3, we shall need the concept of utility function.

Let U :[0, T] (0,) Yt be a C’1 function with the following properties for
each [0, T]:

(i) U(t,. is strictly increasing and strictly concave;
(ii) The derivative U’(t, c) & (O/Oc) U(t, c) satisfies limc_ U’(t, c) 0 and

U’(t, 0+) & limc+o U’(t,
A function with these properties will be called a utility function.
Remark 7.1. The assumption (i) says that the investor prefers higher levels of

consumption and/or terminal wealth to lower levels (strict increase of U(t,.)), but
that he is also risk-averse, i.e., that his marginal utility U’(t, c) is decreasing in the
argument c (strict concavity of U(t, )) and tends to zero as c (a "saturation effect").

The assumption U’(t, 0+)= of (ii) is not necessary, and is imposed here only
for simplicity of exposition; in the optimization problems of 8, 9 it will guarantee
that the constraint c(t) 0 on consumption (respectively, X(T) >= 0 on terminal wealth)
will never be active.

We shall denote by I(t,. the inverse of the strictly decreasing mapping U’(t,.
from (0, ) onto itself. The inequality

(7.1) U(t, i(t, y))>-_ U(t, c)+ y[I(t, y)-c], Vc>-O,

valid for every (t, y) [0, T] (0, ), is then an elementary consequence of the con-
cavity of U( t, ).

For certain of our results we shall need to impose the additional conditions

(7.2) U(t,.)C2((O,)), Vt[0, T],

(7.3) U"(t, c) & U(t, c) is nondecreasing in c (0, ) for all [0, T].
Oc2

Under (7.2) and (7.3), I(t,. is convex and of class C on (0, ), and we have

0
(7.4) U(t, I(t, y)) y _5- I( t, y), Vy 6 (0, ).oy oy

8. Maximization of utility from consumption, in this section we shall try to address
the following question. How should a small investor, endowed with initial wealth x > 0,
choose at every time his stock portfolio r(t) and his consumption rate c(t), from
among admissible pairs (Tr, c) (x), in order to obtain a maximum expected utility
from consumption ?

In order to give a precise meaning to this question, let us consider a utility function
Ui, and try to maximize the expected utility from consumption

(8,1) Jl(X; 7r, c) E Ul(t, c(t)) dt

over the class /(x) of pairs (Tr, c) (x) which satisfy
T

(8.2) E U-(t, c(t)) at < c.
o

We shall denote by

(8.3) Vl(x) sup J,(x; 7r, c)
r,c) s(x)

the value function of this problem.
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Now according to Theorem 4.4, the problem (8.3) amounts to maximizing the
expression E Ul( t, c( t)) dt subject to (8.2) and the requirement c ((x)"

(8.4) g fl( t)c( t) dt E ( t)c( t) dt <= x,

where sr is the process of (3.7).
But this question is straightforward, and concerns only the consumption process;

elementary Lagrange multiplier considerations suggest that the optimal c should satisfy
U(t, c(t))= y(t), or equivalently

(8.5) c(t)- I(t, y(t)), O t T

for an appropriate constant y > 0. This latter should be determined so that the require-
ment (8.4) is satisfied as an equality, i.e.,

T

(8.6) E (t)Ii(t, y(t)) dt-- x,
0

because we are trying to maximize total expected utility from consumption, and this
utility increases as the consumption increases.

Let us now substantiate the heuristics of the preceding paragraph. We start by
introducing the function

T

(8.7) ,(y) E (t)I(t,y(t)) dt,

and assuming that

(8.8) (y) <

It is not hard to show that (0, oo) - (0, o) is continuous and strictly decreasing, with
(0+ )= and() =0. Therefore, has the inverse [, and there is exactly
one number y (x) that satisfies (8.6) for any given x Xl > 0. We consider then
the corresponding consumption process in (8.5), namely

(8.9) c(t) I(t, (x) (t)), ON tN T.

By construction, Cl belongs to the class (x) of (4.11), and according to Proposition
4.5 there exists a unique (up to equivalence) portfolio process a such that (, Cl)
M(xt); the wealth process X corresponding to this pair is given by

(8.0)
=x,- (Cl( s+ (s(((.

In particular, X is positive on [0, T) and vanishes at T, almost surely.
ToaM 8.1. Assume hat (8.8) holds. en for any x > 0 and with c given by

(8.9), the above pair (, c) belongs to (x) and is optimal for the problem of (8.3):

(. V(x= u(, c,( .
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Proof We need to show that cl satisfies (8.2), and that for any other c
which satisfies this condition we have the comparison

(8.12) E Ul(t, Cl(t)) dt >-_ E U( t, c( t)) dt.

Now for any such c, the inequality (7.1) gives

(8.13) Ul(t, Cl(t))
>- U(t, c(t))+l(Xl)[(t)Ii(t, gtl(Xl)C(t))-(t)c(t)], O<-t<- T.

The constant consumption c(t) =- & x/E (s) ds belongs to (x), and for this
choice the right-hand side of (8.13) is A P-integrable (the value of its integral is
actually o Ul(t, ) dt). It follows that cl satisfies (8.2).

Now for any c C(x) satisfying (8.2), integrate both members of (8.13) with
respect to A P, to obtain

io [ ]E Ul(t, Cl(t)) dt _-> E UI(I, c(t)) dt + /O/l(Xl) x E ’(t)c(t) dt

The expression in the brackets is nonnegative, and (8.12) follows. [3

In order to characterize the value function V1 of (8.3) a little more precisely, we
study the expected utility associated with a consumption rate process of the form (8.5),
namely

(8.14) G(y) & E Ul(t,I(t,y(t))) at, y(O, )

under the assumption

(8.15) E lUg(t, Ii(t, y’(t)))[ at < , Vy (0, ).

Then G is a continuous, strictly decreasing function, and from Theorem 8.1 the value
function of (8.3) is obviously given as

(8.16) V1
Furthermore, formal differentiations in (8.7), (8.14) yield

;(y) E 2(t) I(t, y(t)) at

and

0
G(y)= E (t)U(I,(t, y(t)))-y I(t, y(t)) dt= y(y).

These formalities can be made rigorous under the conditions (7.2), (7.3) and their
consequence (7.4). We then arrive at the following characterization.

PROPOSITION 8.2. Under the conditions (8.8), (8.15) on the utility function UI, the
value V(.) of the problem (8.3) is given by (8.16).

Furthermore, if (7.2) and (7.3) are also satisfied by U, then the strictly decreasing
functions and Ga of (8.7), (8.14) are also continuously differentiable, and we have
G(y) y(y), for all 0 < y < o as well as its consequence

(8.17)

from (’8.16); in particular, V is strictly increasing and strictly concave.
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Example 8.3. In the important special case
with bounded, measurable ’[0, T]- , we obtain

(8.18) 3a(y) a---!,
Y

and hence

where

(8.19)

Ul(t, c) exp {- o/(s) ds}. log c

GI(y) -al logy+ 61

+81,

al exp tz(s) ds dt,

(Io6=E exp- bc(s) ds r(s)+-liO(s)[i2-tz(s) ds dt.

In particular, (8.8) and (8.15) are satisfied trivially in this case.
Example 8.4. In the special case Ul(t, c)=-exp {-o(S)ds}/c, with as in

Example 8.3, we obtain

(8.20) I(Y) alY
-/ G,(y) --aly

1/2

and thus V(x) a/x, where now

(8.21) E exp - ((s)+ r(s)) ds Z/(t) dr.

Again, (8.8) and (8.15) are obviously satisfied in this case.
Remark 8.5. If UI(0)>-, we have (x)= (x), and it can be shown easily

that (8.15) implies (8.8).. Mxatfmflty fr estem. Let us take up now the complementary
problem to that of 8, namely the maximization of the expected utility from terminal
wealch

(9. J(x; , c u(r, x(

over the class (x) of pairs (, c)e (x) that satisfy

(9.) u;(r,x(r))<.

Here, U is a utility function as in 7, and

(9. V(xl a sup J(x; m c
(,c)e(x)

is the value function of this problem.
In this setting the agent obviously tries to maximize the utility from his terminal

wealth, within the constraints imposed by the level of his initial capital and quantified
by the budget constraint (4.5), i.e.,

(9.4) E[(T)X(T)] E[(T)X(T)] N x,

which mandates that the expected terminal wealth, deflated down to =0, should
not exceed the initial capital."

According to Theorem 4.6, the problem (9.3) amounts to maximizing the expression
E U(T, X(T)) over the class of nonnegative, r-measurable random variables X(T)
that satisfy (9.2) and (9.4).
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The situation is completely analogous to that of the previous section, so we just
outline the results. We introduce the decreasing function

(9.5)

assume that

(9.6)

2(Y) E[sr( T)I2( T, ysr( T))], 0<y<c,

2(y) <, /y (0, c),

and show that z: (0, c) - (0, 0) is continuous and strictly decreasing with 2(0+ 0,
T() =0. Denoting by _= fl the inverse of this function, and fixing an initial
capital x x2> 0, we introduce the T-measurable random variable

(9.7) X2(T) 12( T, -2(x2)(T))

and observe that it belongs to the class (x2) of (4.15). From Proposition 4.7, there
exists a unique (up to equivalence) pair (re, c2) (x2) that almost surely achieves
the terminal wealth of (9.7); for this pair we have e2 0, and the corresponding wealth
process X2 is given by

/3( t)X2(t) [/3( T)X2( T)I,]
(9.8)

=x+ (s*(s(s d(s, O <-_ <-_ r.

TORM 9.1. Under the assumption (9.6), fix x2>0 and consider the random
variable X2( T) of (9.7). Then the above pair (’2, O) belongs to s2(x2) and achieves the
supremum in (9.3):

(9.9) V2(x) EU( T, X(T)).

Sketch of Proof. Using the inequality (7.1) we show that the random variable
X(T) of (9.7) satisfies (9.2), and that

(9.10) EU2( T, X2( T)) >- EU( T, X( T))

holds for any other random variable X(T) (x2) satisfying (9.2). The details are
completely analogous to those in the Proof of Theorem 8,1, and are left to the
reader.

We also have the following characterization of the value function.
PRoPOSn-IOy 9.2. Under the conditions (9.6) and

(9,11) EIUz(T, I2(T,y(T))[<o, Vy6(0,

on the utility function U, the value V2 of the problem (9.3) is given as

(9.12)

where G2 is the continuous, strictly decreasing function

(9.13) G2(y)&EU2(T, I2(T,y(T))), 0<y<.

Furthermore, if (7.2) and (7.3) are also satisfied by
of (9.5), (9.13) are also continuously differentiable, and satisfy G’2(y)= y’(y) for all
0 < y < o. In that case we have

(9.14) V= 2,

which implies that V2 is strictly increasing and strictly concave,
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Example 9.3. In the special case U2(T, c) =exp {-- ix(s) ds} log c, with ix as in
Example 8.3, we deduce easily

(9.15)

2(y) 0/-2, G(y) =-0/2. log y+ 6, and
Y

where

(9.16)
0/2 exp ix (s) ds

I2--E exp ix(s) ds r(s)+- II0(s)ll 2

In particular, take ix 0; then I2(T, y)= (y)= 1/y, and from (9.7) we obtain

fl(T)Xe(T)=x2 .exp O*(s) dW(s)+- IIo(s)ll 2 ds

On the other hand, (9.8) gives the optimal wealth process X2 as

(9.17) fl(t)X:(t) x: .exp O*(s) dW(s)/- II0(s)ll = ds

and it follows from an easy application of It6’s rule that the process/3X2 satisfies the
linear wealth equation

(9.18) (t)X)(t) x+ (s)X2(s)O*(s)[dW(s)+ O(s) ds].

A comparison with (9.8) shows that the optimal portfolio for maximizing E[log X(T)]
is given explicitly as

(9.19) Yr2(t) X2(t)(r*(t))-lo(t).

Note that the processes X2, 7/’2 can be defined by (9.17), (9.19) on the entirety of[0, oe),
and that the above maximization holds then for every finite T> 0.

Remark 9.4. A similar analysis can be carried out in the context of Example 8.3
with ix 0; it leads to the explicit computations Xl(t) xl(T- t)/T(t), el(t)
XI(t)/(T- t), and 7rl(t) X(t)(r*(t))-O(t) for the optimal wealth, consumption,
and portfolio processes. We leave the details to the care of the diligent reader.

Example 9.5. In the special case U2(T, e)=-exp {-or ix(s)ds}/c, with ix as in
Example 8.3, we have

2

(9.20) 2(Y) 0/2y -1/2, G2(y) -0/2y 1/2, V2(x _0/--2
x

where

(9.21) 0/2=E exp - (ix(s)+r(s))ds .z’/z(T)
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9.6. Maximizing the growth rate from investment. For the purposes of this para-
graph only, let us call an {rt}-progressively measurable process 7r(t, o) [0, ) x fl-->
a an admissible portfolio, if it satisfies (3.1) for every finite T> 0, and if the wealth
process X corresponding to 7r and zero consumption, i.e.,

(9.22) fl(t)X(t)=x2+ fl(s)Tr*(s)tr(s)[dW(s)+O(s) as], O t<,

is nonnegative, almost surely. Ceainly the pofolio 2 of (9.19) is admissible, since
the corresponding wealth process X2 in (9.18) is actually positive.

Quite obviously, 2 maximizes the expected growth rate limr (1/T) E[log X( T)]
from investment; indeed, we noticed in Example 9.3 that E[log X(T)] E[log X2(T)]
holds for every finite T> 0, where X is the wealth process corresponding to an arbitrary
admissible pofolio . It then follows that

1 1
li E[log X( T)] li E[log X2( T)]

(9.23)

li E = ds.
T

Consider now the problem of maximizing the actual growth rate

limr (l/T)log X(T), over admissible porolios . The comparison (9.23) suggests
: as a very strong candidate for this problem as well. In fact, we shall show that the
comparison

(9.24) lim
1 1 lor { 1 }TIOgX(T) Tlim log X2(T)= Tlim r(s)+  10(s)ll 2 ds

holds almost surely, for every admissible pofolio and its associated wealth
process X.

The equality in (9.24) follows easily from (9.17) and the fact that
limT (l/T) O*(s)dW(s)=O, almost surely. To obtain the inequality, we apply
It6’s rule to the ratio A(t)=X(t)/X2(t); in conjunction with (9.22) and (9.18), this
leads to

dA(t) X’(t)[*(t)g(t)-X(t)O*(t)] dW(t)

and shows that A is a nonnegative local maingale, hence a supermaingale. As a
nonnegative supermaingale, A has a last element A()& lim, A(t), and satisfies
the inequality

e"P[ sup A(t)>e"]EA(n)l
nt<

for every integer nl and 8>0 (cf. Karatzas and Shreve (1987, Problem 1.3.16,
Theorem 1.3.8)). It follows that

P[ sup logA(t)>Sn] e-<,
n=l nt< n=l

and by the Borel-Cantelli Lemma there exists an integer-valued random variable N
such that, for almost every m we have

logA(t, to)<-an<-at, V n>-N(to), t>-_n.
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It follows that sup,>__, (l/t)log A(t, o)-<_6 holds for every n->_ N(o), and thus also

lira 1-1ogA(t,w)_-<6 fora.e.
t--

The inequality of (9.24) is now a consequence of the arbitrariness of 6 > 0.

10. Maximization of utility from both consumption and terminal wealth. Let us
consider now an investor who derives utility both from "living well" (i.e., from
consumption) and from "becoming rich" (i.e., from terminal wealth). His expected
total utility is then

(10.1)
J(x; "rr, c) & J,(x; "n’, c)+J:z(x; "tr, c)

=E U(, c() +Eg(r, X(r),

and he tries to maximize J(x; r, c) over M,(x) (x) (x)"

(10.) g(x) sup J(x; , c).
(,z)e,(x)

Here again, U and U are utility functions in the sense of 7.
In contrast to the problems of 8 and 9, this one calls for balancing competing

objectives. We shall show that the right compromise can be drawn in a very simple
manner: at time 0, the investor just divides his endowment x into two nonnegative
parts x and x, with Xl + x x. For x, he solves the problem of 8 (with utility U
from consumption); for x, he solves the problem of 9 (with utility U from terminal
wealth). The superposition of his actions for these two problems will lead to the optimal
policy for the problem of (10.2), provided x and x are chosen judiciously. We shall
show exactly how this can be done (cf. (10.10) below).

For concreteness, we assume throughout this section that the value functions
U, U satisfy (7.2) and (7.3), as well as the requirements (8.8), (8.15) and (9.6), (9.11).

Let us start with an arbitrary pair (, x) ,(x) and define

(0.3) Xl ()c(t) , x x-x.

Denoting by X the wealth process corresponding to this pair, we conclude from (4.3),
(10.3) that

(0.4 ce(Xl, x(r e (x.

Theorem 8.1 gives us a pair (1, c)(x) which is optimal for V(x), with
corresponding wealth process X satisfying X(T)=0, almost surely. On the other
hand, Theorem 9.1 provides a pair (, 0) (x) which is optimal for V(x), with
corresponding wealth process X. If we define now

(10.5) &+., c, and 2X+X
and add (8.10), (9.8) memberwise, we obtain

(x( (s(s s+(rx(r
(10.6)

:X_ o .S+Io
In other words, X is the wealth process corresponding to the pair (, ) ,(x).
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But now recall (10.4), and add up (8.12), (9.10) memberwise to obtain

J(x; , c) <-_ V,(x,) + V(x),

whence

(10.7) V(x) <= V,(x) & max Vl(Xl) + Vz(x2)].
XI0,X20
XI+X2X

Therefore, the question is to find xl, X2 for which this maximum is achieved,
because then the total expected utility corresponding to the pair (, ) of (10.5) will
be exactly equal to V,(x); this will in turn imply

(0.8) V(x) =- V,(x)
from (10.7), and thus the above-mentioned pair will be shown to be optimal for the
problem of (10.2).

But the maximization in (10.7) is easy: it amounts to selecting xl,x2 so that
V(xl) V(x2) or, thanks to (8.17), (9.14): 1(xl) 2(x2) A <=>xl I(A), x2
2(). In other words, we find those values of x, x2 for which the "marginal expected
utilities" V(Xl), V(x) from the two individual optimization problems are identical.

The constant is determined uniquely as follows: we introduce the function

(10.9) (y) & l(y)+(y)=E (t)Ii(t,y(t)) dt+(T)h(T,y(T))

on (0, c), which is continuous and strictly decreasing with (0+)=, (o)=0. Let
-1 be the inverse of ; then A (x), and the "optimal partition" of the initial

wealth is given by

(10.10) Xl 001(O-(X)), X2 &(OS(X)).

If we also introduce the function

(10.11)
G(y) & GI(y)+ G2(y)

E U(, L(, y() + U(7", h(7", y(r

which is continuous and decreasing on (0, ), it is easy to see from (8.16), (9.12) that

(10.12) V,(x) G((x)).

We have established the following result.
THEOREM 10.1. Under the conditions of this section, the value function V of (10.2)

is given as

(10.13) V=Go.

For a fixed initial capital x > 0, the optimal consumption rate process and the optimal
level of terminal wealth are given by

(10.14) (t)= Ii(t, (x)(t)), 0<= <- T, and )(T) & I2(T, 3J(x)(T)),

respectively; there exists a portfolio process .k such that (.k, ) is optimal in ,l,2(X) for
(10.2), and the corresponding wealth process is given by

(10.15) (t)= (s)Ii(s, -3t(x)(s)) ds +( T)I2( T, (x)sr(T))

almost surely, for every 0 <-- <= T.
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Notice that the process M of (3.6), corresponding to the pair (-k, ) of Theorem
10.1, takes the form

I(l(t) fl(s)Ii(s, qY(x)(s)) ds + fl( T)I2( T, Y(x)(T)) g,

in particular, it is a P-martingale.
Example 10.2. In the case U(t, c)= U(t, c) =exp{-Ioke(s ds} log c, the func-

tions of (10.9), (10.11), and (10.13) are given by

f(y)=_a, G(y)=-a.logy+, 0<y<oo, and
Y

V(x) a log () + 8, O<x<oo

where a a + a, + i2 in the notation of (8.19) and (9.16).
Example 10.3. In the case U(t, c)= U(t, c)=-exp {-o/x(s) ds}/c, we obtain

(y)=ay-/2, G(y)=-ay1/, O<y<, and
2

V(x) =-, 0<x<oo
x

where a = al + a2 in the notation of (8.21) and (9.21).

11. The case of constant coetticients. The theory developed in the last three sections,
culminating with Theorem 10.1, provides a very precise ch.aracterization of the value
function for the optimization problem (10.2) (cf. expression (10.13)), as well as explicit
formulas for the optimal processes of consumption rate " and wealth , (in (10.14),
(10.15), respectively). But for the optimal portfolio process , the "martingale
methodology" that we have employed so far is able to ascertain only its existence
(except in special cases, such as that of Example 9.3); in general, there is no constructive
algorithm, or a useful characterization, that could lead to its computation.

Our intent in the present section is to improve this situation; we shall impose
Draconian assumptions on the model, which will enable us in particular to obtain the
optimal , " in a very explicit feedback form on the current level of wealth (cf. (11.23),
(11.24)).

Specifically, we shall assume throughout this section that

(11.1) r(t)=-r, b(t)=-b, tr(t)=-tr Vt[0, T]

for given r , b d, and o" a nonsingular (d x d) matrix. We shall also assume
separable utility functions, of the form U(t, c) e- U(c), for 1, 2 and some real
number/ 0. These assumptions will allow us to use "Markovian" methods, such as
the Feynman-Kac representation of solutions to partial differential equations and the
Hamilton-Jacobi-Bellman (HJB) equation of dynamic programming.

In order to make these methodologies available to us, we shall need a temporal
as well as spatial parametrization; to wit, we write the analogues of the wealth equation
(3.3) and of the value function (10.2) on the horizon t, T], for arbitrary 0-<_ t-<_ T, as

X(s)=x+ (rX(u)-c(u)) du+ r*(u)(b-rl) du

(11.2)
+ r*(u)trdW(u), t<-s<=T
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and

(.3) v(t,x)= sup E e-"U(c(s)) ds+e-"U(X(r))
"rr, ,C t,x

respectively. We shall also impose the purely technical assumptions

(u’,(c)) U(c))
(11.4) U(0) > -co, lim exists, lim 0, 1, 2

o u’.’, (c) c- UT(c)

for some a > 2. They will permit the analysis to go through conveniently, and include
as special cases the so-called HARA (for Hyperbolic Absolute Risk Aversion) utility
functions of the type U(c)=(c+rl) ’, 0<6<1, r/>0.-- However, they are far from
being the weakest possible conditions under which the fundamental results will hold.

By analogy with our previous analysis and notation, let us introduce the vector
0 cr-(b rl) u, the processes

t) & e(tZ-r)(s-t)zt) andZ(t) - exp {-0"( Ws Wt)-1/2 II011 (s t)},

yt,y) yqbt), t<--s <- T, 0<y<oo,

as well as the functions Ii (UI) -i, i= 1, 2 and

(11.5) G(t,y)& Elir
(11.6) (t,y)& Elf r

e-(s-t)Ul(ii( yt,y))) as+ e-(T-t)v2(I2( Y’Y))],
e-(s-t) qbt)Ii(yqbt)) ds + e

(11.7) S(t, y) & y(t, y)=E[I r

-t"( T-t) qb () I2( ydP()) ],
e-’(s-’) Y(s"Y)Ii(Y"Y)) ds "4- e-"r-’) Y-’Y)I2( V’y)) ]

for (t, y) [0, T] x (0, oc). To avoid trivialities, we suppose 0 #0; then for every
[0, T) the function (t, .) is continuous and strictly decreasing on (0, oc), with
(t, 0+ )= oc and W(t, oc)=0. We denote its inverse by Y(t,. ), i.e.,

J( t, ( t, y)) y, 0_--< t< T, 0<-y_<-eo

and by analogy with the characterization (10.13) of Theorem 10.1 we have

(11.8) V( t, x) e-’tG( t, J(t, x)), (t, x) [0, T] x (0, oo).

The point here is that we have reduced the study of the control problem (11.3)
(or equivalently, of the nonlinear HJB equation (11.19) below, which is associated
with it) to the study of the functions G, S of (11.5), (11.7); because, once these two
are known, then (t, y) is obtained straightaway as y-iS(t, y) and the value function
V becomes available from (11.8). Now from the Feynman-Kac theorem, the functions
G and S are characterized uniquely in terms of the Cauchy problems

(11.9) -+L G(t,y)+ UI(II(y))--O, (t,y)[0, T)x(O, o)

(11.10) G(T,y)= U.(I2(y)), y(O,o)

and

(11.11) (t + L) S(t, y)+ yIl(y)=0, (t, y) [0, T) x (0, oo)

(11.12) S( T, y) yI2( y), y (0, oo),
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respectively, for the linear differential operator

Lcp(t, y) &
1 2y202q(t, y)

0
OY2

O(t,y)--+(l r)y-Icg( t, y).
Oy

Indeed, using the conditions (11.4) it can be shown that G, S satisfy growth conditions
of the type

(11.13) max lu(t,y)l<-_K(l+y+y-), 0<y<oo
O<--tT

for some positive constants a, K, and that among such functions they are the unique
solutions of their respective Cauchy problems. We shall show how to compute these
solutions in closed form (Proposition 11.1).

To this end, let us recall Remark 5.7 and observe that the unique solution to the
auxiliary Cauchy problem

(t + L)v(t, y; )=0, t, y) [0, T) x (0,

v(T,y;)=(-y) +, y (O, oo)

is given by the Black and Scholes-type formula for a "put" option (the right to sell
one share of the stock at the pre-assigned price :> 0):

(11.14)

v(t, y; :)= E[e-"(r-’)( Y’Y))+]

_{’e-(r-’)dP(-u-(T-t,Y; ))-ye-(r-t),(-u+(T-t,y; :)); O--<t<T}.(-y)+; t= T

for every (y, sr) (0, c) 2, where u:(t, y; :) (1/x/-yt)[log (y/)+ t(l-r+ y)] and
y 0[[2/2. Let us also introduce the functions

(11.15) g(y)/__ Ul(Ii(y)) { yl+,X+ j+(y)_y____j_(y)l+,X_ }/z y(h+- h_) l+h+ l+h_

(ll.16) s(y)ayll(y) 1 {yl++ I+A_ },,,j+(y)_Y J_(y)
r y(A+- A_) A+

_
where A+ > 0 and A_ < 0 are the roots ofthe quadratic equation ,)// 2 (r y)A r 0
and

II(Y)
J+(y) (U(c))-+ dc,

dO

(y)

J_(y) U(c)) -’- tic.

It is easy to verify that g, s solve the ordinary differential equations

Lg(y)+ Ul(Ii(y))=O and Ls(y)+ yIl(y)=O,

respectively.
We can now put the various results together to arrive at the promised closed-form

solutions.
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PROPOSITION 11.1. The functions G, S of (11.5), (11.7) have the stochastic rep-
resentations

G( t, y) g(y) + E[ e-"(7"-t){ U2(I2( Y’Y)))- g( Y’Y)}],
S( t, y) s( y) + E[e-(r-t{ Y’YI2( Y’Y)- s( Y’Y))}],

which lead to the closed-form expressions

G(t, y)= g(y)+ ( Ue(O)- U,(O) e-t( T-t)
/

io(11.17) + U2(I2())-g())"v(t, y; ) d,

(.a s(, y s(y+ ((,- s(,"v(, y; ,
Moreover, the function V" [0, T] x [0, oo) of (11.8) satisfies the HJB Equation of
Dynamic Programming

max [1/211-*oll2Vx(t,x)+{(rx-c)+’*(b-rl)}V(t,x)+e-"’Ul(C)]
cO

(11.19)
V(t, x) in [0, T) (0, )

and the terminal-boundary conditions

(11.20) V( T, x) e-T U2(x), 0 _-< x <,
(11.21) V(t, 0)-- U2(0)-

UI(0)
e-"7"+ e 0_<- t=< T,

respectively.
It is noteworthy that we have obtained a closed-form solution for the nonlinear

HJB equation (11.19), by solving instead the two linear equations (11.9), (11.11) subject
to the appropriate terminal and growth conditions, and then performing the composi-
tion (11.8).

The maximizations over c >_- 0, 7r 2 d in (11.19) are achieved by

= Ii((t,x)), . =_(trcr,)_l(b_ rl (t,x)
o-3tx( t, x

This suggests that we should be able to justify similar feedback form expressions (on
the current level of wealth) for the optimal consumption rate and portfolio processes. We
choose to do this by studying directly the optimal wealth process.

PROPOSITION 11.2. The optimal wealth process X’x for the problem (11.3) is given
by

(11.22) X(t’X)(s) (s, r/(t’x) <= s <= T,

where rl(t’x)& (t,x)dpt)= Yt’(t’x)). In terms of X(t’x), the optimal pair (Tr(t’x), c(’’))
can be expressed as

(11.23) c("X)(s) Ii((s, X(")(s))),
(s,X(’,)(s))

(11.24) 7r(t’=)(s) -(tro-*)-l(b rl) (s,X(’,X(s))

for t<--s<--_ T.
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by
Proof By analogy with (10.15), the optimal wealth process is almost surely given

e-(-sZ’I,(qo’) dO+ e-T-Z-)I(’x))

1
y,,---7 E

s(, Y’,))
yt,y)

e-(- Y(ot’Y)II( Y(ot’y)) dO+ e-(T-’)Y’Y)I(Y.’Y))

with y=(t,x), for every s[t, T]; but this is (11.22). Now it is easily seen from
(3.10) that r/t’x) satisfies the linear stochastic equation

(t,x)(11.25) d7’’) r/(t’’)[(/z r) ds O* dW(s)], q, x.

On the other hand, by substituting $(t, y) y(t, y) into (11.11), we arrive at the linear
parabolic equation

(11.26) ,+ yy2yy+(tx-r+2y)yy-rgg+I,(y)=O, O<=t<T, 0<y<

for (t, y). An application of It6’s rule to (11.22), in conjunction with (11.25) and
(11.26), leads to

dX(t’)(s) (rXt’)(s) c("(s)) ds + (rr(")(s))*[(b rl) ds + tr dW(s)]

in the notation of (11.23), (11.24). But a comparison of this equation with (3.3) shows
that X’’’) is the wealth associated with the pair (rr

Example 11.3. In the special case U(c) U(c) c for some O< 6 < 1, we have

a(, y=p( S(, y a(, y,

and

as well as

where

V( t, x) e-"’(p(t))’-x,
x(t,X)(s) X(t,X)(s)c{")(s)=, rr{""(s) (mr*)-l(b- rl), t--<_ s--<_ T,
p(s) 1-

p(t)={(1/k)[1--e-k<T-’)] +e-kT-t)’, k#O0}l+T-t k=

k=l_ 6 /x-r6-1
12. An elr el. Let us consider in this final section an economy that

consists of the following:
(i) The same financial market as in 2;
(ii) A single consumption good or commodity," traded at the spot price

{0(t); 0 t T}; and
(iii) A finite number n of economic agents (small investors). Each one receives

an exogenous endowment at the rate ek ={ek(t); O t T}, denominated in units of
the commodity; he can either consume this endowment or turn it into cash, and invest
the proceeds in the financial market. Each agent also has a utility function Uk, and
attempts to maximize his expected total utility from consumption (as in 8).
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The equilibrium problem .for such an economy is to determine a spot price 0, so
that the markets clear when each agent behaves optimally and the commodity is traded
at the price 0. We shall show that the methodology of 8 is ideally suited to handle
this question.

We shall assume throughout this section that the processes 0 and el," ", en are
positive and progressively measurable with respect to {o%,}. On the other hand, both
the "deflated spot price" (t)O(t) and the "aggregate endowment rate"

(12.1) e(t)= ek(t), 0 <- <-_ T
k=l

processes, will be assumed to take values in intervals of the form [6, ], for finite
constants > > 0.

For a given spot price process 0, the kth agent has at his disposal the choice of
a portfolio process (t) ((t),. , e(t))* and a consumption rate process c(t),
0NtN T, as in Definitions 3.1 and 3.2 (except that (3.2) is now replaced by

O(t)c(t)dt < , almost surely). For every such pair (, c), the corresponding
wealth process X satisfies, by analogy with (3.3), the equation

dXk( t) r( t)Xk( t) dt + ( t)[ ek( t) Ck( t)] at +(t)[ b(t) r(t) 1] dt

+(t)(t)dW(t).

In terms of the -Brownian motion ff of (2.9), the solution is given by

(12.2) fl(t)Xg(t)= fl(s)O(s)[e(s)-c(s)] as+ fl(s)(s)(s) d(s).

The kth agent’s optimization problem is to maximize the expected total utility

(12.3) E Uk(t, Ck(t)) dt

from consumption, over all admissible pairs (k, Ck)as in Definition 4.1that satisfy

(2.4) u;(, c(t)) <.
Let us denote by (, ) the optimal pair for this problem, and by the associated
wealth process.

We are now in a position to define the notion of equilibrium for the economy.
DEFINITION 12.1. A spot price process 0 is called an equilibrium spot price process,

if we have the following:
(a) Clearing of the commodity market, i.e.,

(12.5) c(t) e(t), V 0 N N T, and

(b) Clearing of the financial markets, i.e.,

(12.6) (t)=0, axP-a.e, on[0, T]xa, Vi=l,...,d
k=l

k=l

almost surely.
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For a given p, let us try to solve the kth agent’s optimization problem. First, here
is an analogue of Theorem 4.4 and Proposition 4.5.

THEOREM 12.2. Every admissible pair (rk, ck) for the kth agent satisfies

Io Io(12.8) E sr(t)q(t)Ck(t) at <- E ( t)d/( t)ek( t) at.

Conversely, if a consumption rate process Ck satisfies (12.8), there exists a portfolio
7rk such that the pair (Trk, Ck) is admissible for the kth agent. In particular, if (12.8) is

satisfied as an equality, then the portfolio 7rk is unique up to equivalence and the
corresponding wealth process Xk is given by

(12.9) fl(t)Xk(t)=E fl(S)(Ck(S)--ek(S)) ds t O<--t<-_ T.

Proof For every portfolio/consumption process pair (7/’k, Ck), the analogues

(12.10) Mk(t) 3(t)Xk(t)+ (S)b(S)[Ck(S)-- ek(S)] ds,

(12.11) N,(t) (t)Xk(t)+ (S)d/(S)[Ck(S)-- ek(S)] as

of the processes in (3.6), (3.9) are continuous, local martingales under and P,
respectively. Now if the pair (rk, k) is admissible, Nk is bounded from below by a
P-integrable random variable, and is thus a P-supermartingale (which implies that Mk
is a [-supermartingale); (12.8) follows from this property, in conjunction with Xk(T) >=
0, almost surely.

Conversely, for every consumption rate process Ck that satisfies (12.8), we introduce
the random variable

(12.12) Dk (S)d/(S)[ek(S)--Ck(S)] as;

the condition (12.8) amounts to EDk >= O, and the martingale

(12.13) Uk(t) Dk--,(Dklt), 0<= <- T

is representable as in (4.9):

(12.14) Uk(t)= (S)’n’*k(S)Cr(s) dI(s),

for a suitable portfolio process ’2"/"k. From (12.2) and (3.8), the wealth process Xk
corresponding to (Trk, Ck) is given as

(12.15)
x(t) - 3()q,(s){(s)-c(s)} as+u(t)

(t)
Z(t)Dk-E (S)(s){ek(S)--Ck(S)} ds

almost surely. Both requirements of (4.1) for admissibility follow easily from this last
representation.

The remaining claims follow as in the proof of Proposition 4.5.
According to Theorem 12.2, the kth agent’s optimization problem is reformulated

as follows: to maximize EIro Uk(t, k(t)) dt, over consumption rate processes Ck that
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satisfy (12.8) and (12.4). But the solution to this problem is known from 8" the
optimal consumption rate process is of the form

(12.16) k(t)=Ik(t, yk(t)(t)), O<=t<--T, k{1,...,n}

where Yk is the unique number in (0, ) that satisfies

Io I0(12.17) E (t)b(t)Ik(t, yk(t)(t)) at= E (t)qt(t)ek(t) at, k= 1,..., n.

In paicular, k satisfies (12.8) as an equality.
The outstanding question now is whether we can find a spot price process for

which (12.5)-(12.7) are satisfied.
PROPOSITION 12.3. Let be an equilibrium spot price process, and let the vector

Y Yl, Y, (0, ) be defined in terms of by (12.17). en and Ymust satisfy

(12.18) Ik(t, yk(t)qt(t))= e(t), 0 -< < T.
k=l

Conversely, suppose that Y6 (0, oo)" and the spot price process qt are such that
(12.17), (12.18) are satisfied; then is an equilibrium spot price process.

Proof The first claim follows directly, by substituting the expressions (12.16) into
(12.5). For the second claim notice that, under the spot price q, in question, the optimal
consumption processes {k},=l are still given by (12.16) and satisfy (12.5); letting
/Sk, tk and "kk, Sik be the corresponding quantities in (12.12), (12.13), and (12.14),
(12.9), respectively, we obtain with the help of (12.5), (12.1)" Yk=l Xk(t)=--0, k=l lk
0, and Yk=l ak(t)=--O, almost surely. From this last identity and (12.14), we conclude
that (12.6) holds.

A further reduction in the characterization of equilibrium is obtained by introduc-
ing the function

(12.19) I(t, h; A) & Ik(t, hAl),
k=l

(t, h) [0, T] (0, )

for every A=(A1,’’ ",An)(0,)", and denoting by H(t,. ;A) the inverse of the
strictly decreasing mapping I(t, .; A)" [0, ] onto [0, OO], with fixed [0, T] and
A (0, c)n. The function H enjoys the positive homogeneity property

(12.20) H(t, c; pA)=pH(t, c; A), Vp>0

and in terms of H the equations (12.18), (12.17) are rewritten as

1
(12.21) (t)--= qt(t; A)= -S-Z-7., H(t, e(t); A),

t)

(12.22)

O<-_t<-_T,

E H(t, e(t)" A)Ik t,--H(t, e(t); A) at
Ak

E H( t, e(t); A)ek(t) at, k--l,. .,n,

respectively, with the identification A (a,..., An)= (l/y1,..., 1/y,)e (0, oo) n.
We conclude from this analysis that the search for equilibrium has been reduced to

the searchfor a vector A (0, oo) which satisfies (12.22); the corresponding equilibrium
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spot price and optimal consumption rate processes would then be given by (12.21) and

respectively (cf. (12.16)).
Now it is seen from (12.20), (12.22) that if A (0, oe) is a solution of (12.22),

then the entire ray {pA; 0 (0, oe)} is a family of solutions. The following result provides
a sufficient condition, under which there is only one such ray.

THEOREM 12.4. Suppose that, for every (t, k) [0, T] x { 1, , n},

(12.24) c-- CU’k(t, c) is a nondecreasing function.
Then there exists a vector A (0, oo) satisfying (12.22); if A1, A2 are two such vectors,
then there exists a y > 0 such that

(12.25) A1 yA2, (’; al)= y(’; A2)

(12.26) k(’; A)= k(’; A2), k= 1,’", n.

In other words, equilibrium spot prices can be determined only up to a multiplica-
tive constant, since there can always be a re-valuation of currency; this is not going
to affect, however, the way in which real wealth, measured in units of optimal
consumption for the commodity, will be distributed in equilibrium among the agents.

Example 12.5. Suppose that all the agents have the same utility function Uk(t, e)
c exp {-o (s) ds}, with 0< 6 < 1 and as in Example 8.3. Then

EIo exp(-Io(S)ds)e(t)(e( - dt
(12.27) I= - k=l,.., n

E Io exp (-Io (s) ds)(e(t))

gives the unique solution of (12.22) subject to = I/(--1; the corresponding
processes of (12.21), (12.23) are

(12.28) 0(t)
const, exp(-Io(s) ds)

(t)(e(t))l_ k(t) A/(-8)e(t).

Example 12.6. If Uk(t,c)=exp{-o(s)ds}loge for every k{1,...,n}, we
obtain the same results as in (12.27), (12.28) but with 6 0.

Example 12.7. Suppose that Uk(t, c)=--exp{--o(S) ds}/c holds for every k
{1,..., n}. Then the unique solution of (12.22) subject to k=/ 1 is given by

EIexp(-Io(S) ds)(e(t))-e() dt

The equilibrium spot price and optimal consumption rate processes are then given as

(t)
const, exp (-0 (s) ds)

(t)(e(t))
c(t) A/e(t).

It should be noted that the condition (12.24) is satisfied by the utility functions
of Examples 12.5 and 12.6, but not by that of Example 12.7 (in fact, in this latter
example, the function c cU(t, c) is strictly decreasing). Thus, the condition (12.24)
is far from being necessary for the validity of the results of Theorem 12.4.

We send the interested reader to Karatzas, Lakner, Lehoczky, and Shreve (1988)
for the proof of Theorem 12.4 and suggest the relaxation (or removal) of condition
(12.24) as an interesting open problem.
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13. Notes.
Section 1. The theory of continuous trading is a specialized but important topic

in financial economics; see the recent books by Ingersoll (1987) and Duffle (1988) for
a broad and exhaustive overview of the theory of financial decision making. The book
by Malliaris and Brock (1982) is a good survey of stochastic models in economics and
finance; for the early work on this subject, see the articles in the volume edited by
Cootner (1964), in particular the papers "Brownian Motion in the Stock Market" and
"Periodic Structure in the Brownian Motion of Stock Prices," by M. Osborne.

Sections 2, 3. The idea of introducing a probability measure, under which the
discounted stock prices of (2.12) are martingales, is due to Harrison and Kreps (1979)
and Harrison and Pliska (1981), (1983). The model that we have adopted, with the
particular nondegeneracy condition (2.3), is due to Bensoussan (1984).

Condition (2.3) is essential in our development; by contrast, the boundedness of
the process r(. ), b(. has been imposed only for simplicity. If we assume that these
processes are just square-integrable almost surely on [0, T], then the entire analysis
on a finite horizon [0, T] goes through with minor changes, provided that the process
Z of (2.7)malways a supermartingale under the very weak almost sure condition

[[0(t)[[ 2 dt<--is actually a martingale. A sufficient condition for this, due to
Novikov, is E[exp {1/2 [[0(t)ll 2 dt}] < o (cf. Karatzas and Shreve (1987, Prop. 3.5.12).
We only have to replace the condition (5.1) by (5.2), and (6.3) by the requirement
E [supo=,= r f( t)/3(t)] < c.

For results with "incomplete market models" (i.e., with more sources ofuncertainty
than stocks in the market model), see F611mer and Sondermann (1986), Schweizer
(1988), Pages (1987), He and Pearson (1988), and Pages (1989); consult also Karatzas,
Lehoczky, Shrive, and Xu (1989).

Section 4. The material here is drawn from Karatzas and Shreve (1987, 5.8) and
Karatzas, Lehoczky, and Shreve (1987). The terminology "attainable levels of terminal
wealth" is due to Pliska (1986), who has a result similar to Proposition 4.7.

The existence of an equivalent probability measure under which the discounted
prices are martingales (an "equivalent martingale measure" as it is sometimes called),
implies the absence of arbitrage opportunities (Remark 4.8). This property holds for
very general price processes. The converse, i.e., the existence of an equivalent martingale
measure in the absence of arbitrage opportunities, is known to hold in discrete time
(cf. Taqqu and Willinger (1987) for finite probability spaces, and the very recent work
by Dalang, Morton, and Willinger (1988) for arbitrary probability spaces). As far as
we know, the question is open for general, continuous-time price processes.

Section 5. We follow Karatzas and Shreve (1987). Example 5.6 is adapted from
Harrison and Pliska (1981). For comprehensive accounts of option pricing, see
Samuelson (1973), Merton (1973), Smith (1976), and Ingersoll (1987). For a model of
option pricing, in which the borrowing rate is higher than the interest rate of the bond,
see Barron and Jensen (1988).

Section 6. Section 6 is adapted from Karatzas (1988); see also Bensoussan (1984),
for a different approach to the stopping problem. For more recent work, in general
semimartingale models, see the doctoral dissertation of Schweizer (1988).

Section 7. The assumption U’(t, 0+)= is made only for simplicity; for full
treatments of the consumption/investment and equilibrium problems that do not rely
on this assumption, see Karatzas, Lehoczky, and Shreve (1987) and (1988), respectively.
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Sections 8-11. Sections 8-11 come essentially from Karatzas, Lehoczky, and
Shreve (1987) (with the exception of 9.3, 9.4, 9.6); that article should be consulted
for some details which are only sketched here. The model with constant coefficients
and utility from consumption was introduced by Samuelson (1969) and Merton (1969),
(1971) for utility functions of the HARA class; it was studied in great detail by Karatzas
et al. (1986) for general utility functions, using the HJB equation of dynamic program-
ming and allowing for general patterns of behaviour upon bankruptcy.

Related results have been obtained independently by Cox and Huang (1986),
(1987). For models with constraints (on borrowing, short-selling, etc.) see the recent
works by Xu (1989), Zariphopoulou (1989), Grossman and Vila (1988), He and Pearson
(1988).

Recent work by Davis and Norman (1988) treats a model with constant coefficients,
one stock, and utility U(t, c)=e-’c, 0< < 1 from consumption, but with costs of
transaction between the two assets (see also Taksar et al. (1988), Eastham and Hastings
(1988), Leland (1985)). On the other hand, Pontier and Picqu6 (1988) discuss the
consumption/investment problem in a market model with d 2, and stock prices driven
by independent Brownian and Poisson processes. For a model with consumption in
several goods with quite arbitrary prices, see Lakner (1989).

For maximization of the growth rate from investment, in discrete-time settings,
see the articles by Cover (1984), (1988), and Algoet and Cover (1988), as well as
Breiman (1961), Hakansson and Lin (1970), Hakansson (1971), Latan6 (1959), and
Thorp (1971).

Much of the analysis in 11 goes through if r(.), b(.), or(.) are deterministic
functions of time. We can also handle models in which the interest rate r(. and the
stock prices .P(t)=(P(t),..., Pa(t)) are quite general Markov diffusion processes
driven by the Brownian motion W; the optimal portfolio/consumption policies can
then be obtained in feedback form on the current level of the "extended state"
(X(t), r(t), .P(t)).

As the referee points out, the objective functions of (8.1), (10.1) mandate that
utility at time is derived from the level of consumption at that time only, for every
e (0, T); this excludes, for instance, situations like the "ratchet effect" (according to

which the utility derived from consumption at one time is influenced by consumption
levels at earlier times in such a way that a rise of consumption levels produces high
utility but a decline produces low utility). A recent reference on such intertemporal
dependence on preferences is Sundaresan (1985).

Section 12. Section 12 is taken from Karatzas et al. (1988). See also Duffle (1986),
Duffle and Huang (1985), (1987), Duffle and Zame (1988) and Huang (1987) for related
equilibrium models, as well as Cox, Ingersoll, and Ross (1985).
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Abstract. Applied to strongly monotone variational inequalities, Newton’s algorithm achieves local
quadratic convergence. In this paper it is shown how the basic Newton method can be modified to yield
an algorithm whose global convergence can be guaranteed by monitoring the monotone decrease of the
"gap function" associated with the variational inequality. Each iteration consists in the solution of a linear
program in the space of primal-dual variables and of a linesearch. Convergence does not depend on strong
monotonicity. However, under strong monotonicity and geometric stability assumptions, the set of active
constraints at the solution is implicitly identified, and quadratic convergence is achieved.

Key words, mathematical programming, variational inequalities, nonlinear complementarity, Newton’s
method

AMS(MOS) subject classifications. 49D05, 49D10, 49D15, 49D35

0. Introduction. In this paper we consider the variational inequality problem
defined on a convex compact polyhedron in R n. Since this problem can be formulated
as a fixed-point problem involving an upper semicontinuous mapping, it can be solved
by simplicial or homotopy methods for which there already exists a vast literature (see
Zangwill [16], Todd [14], Saigal [13]). For large-scale problems, however, these
algorithms tend to become inefficient, both in terms of computer memory and running
time requirements. This explains the renewed interest in algorithms closely related to
procedures originally devised for iteratively solving systems of nonlinear equations
(Ortega and Rheinboldt [10]) such as the Jacobi, Gauss-Seidel, and Newton schemes
(see Pang and Chan [11], Josephy [5], Robinson [12]) or projection algorithms
(Bertsekas and Gafni [2], Dafermos [4]) where the cost function is approximated, at
each iteration, by a simpler, e.g., linear, separable, or symmetric function. Local or
global convergence of the latter methods usually hinges on the a priori knowledge of
lower bounds for the Lipschitz constant of the cost function, either in a neighborhood
of a solution (for local convergence) or uniformly on the feasible domain (for global
convergence). These conditions are difficult, while not impossible, to verify in
practice.

Our approach is basically different. We choose as a merit function the complemen-
tary term (or gapfunction associated with the primal-dual formulation ofthe variational
inequality and find its global minimum by application of a first-order minimization
algorithm. For monotone cost functions, we show that the algorithm converges globally
to an equilibrium solution and possesses the finite termination property if the function
is affine. Furthermore, under geometric stability and strong monotonicity assumptions,
the algorithm implicitly identifies the set of constraints that are binding at the equili-
brium solution, and convergence toward the equilibrium solution is quadratic. Numeri-
cal results comparing this method to Newton’s method with and without linesearch
(Marcotte and Dussault [9]) are provided.
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1. Problem formulation. Notation and basic definitions. Let {Bx <-_ b}, where B
is an m x n matrix (m > n), represent a nonempty convex compact polyhedron in R"
and let F be a continuously differentiable function from into R" with Jacobian F’.
The variational inequality problem (VIP) associated with F and consists in finding
some vector x* in , called an equilibrium solution, satisfying the variational inequality
(VI):

() (x*-x)’t:(x*) <-o

for all x in . Since an equilibrium solution is a fixed point of the upper semicontinuous
mapping defined by x- T(x)= {arg maxya, (x-y)’F(x)} it follows from Kakutani’s
Theorem [6] and the compactness of that the set S of equilibria is nonempty.

If the Jacobian F’(x) is symmetric for all x in then the function F(x) is the
gradient of some function f: R", and (1) is the mathematical expression of the
first-order necessary conditions corresponding to the optimization problem:

(2) rain f(x) F( t) dt

where the line integral is independent of the path of integration and therefore unam-
biguously defined.

In order that a feasible point x be an equilibrium, it is necessary and sufficient
that x be optimal for the linear program

(3) min ytF(x).
ye

The optimality conditions for (3) are met by x if and only if we have

A >- O, F(x) + BtA 0 dual feasibility,

(4) At(Bx-b) =0 complementary slackness,

Bx <- b primal feasibility.

In the following, (4) will be referred to as the complementary formulation of VIP. If
F’ is symmetric, (4) corresponds to the Kuhn-Tucker necessary optimality conditions
for the optimization problem (2). If the constraint set is not polyhedral, a formulation
similar to (4) can be obtained by imposing a suitable constraint qualification condition
on the problem. The constraints Bx <= b will be referred to as the structural constraints

associated with the variational inequality problem, and the constraints F(x)+ BtA --O,
A -> 0 as the nonstructural constraints.

DEFINITION 1. The function F is
(i) Monotone on if (x-y)(F(x)-F(y))>=O for all x, y in ;
(ii) Strictly monotone on if (x-y)(F(x) F(y))>0 for all x, y in (x y);
(iii) Strongly monotone on if there exists a positive number K such that

(x-y)’(F(x)-F(y))>-Kllx-yl[ 2 for all x,y in .
When F is the gradient of some ditterentiable function f, then the various concepts of
monotonicity previously defined correspond, respectively, to convexity, strict convexity,
and strong convexity off on . For ditterentiable functions, we also have the following
characterization (see Auslender [1]):

(i) Monotonicity on : (x-y)’F’(x-y)>=O for all x, y in ;
(ii) Strong monotonicity on : (x-y)tF’(x)(x-y)>= llx-yll for all x, y in ,

for some positive number r.
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The solution set S of (1) is nonempty, as noted earlier, convex if F is monotone,
and a singleton if F is strictly monotone.

DEFINITION 2. The gap function associated with a VIP is defined, for x in , as

g(x)=max(x-y)’F(x).
y

It is clear that a feasible point x is a solution of VIP if and only if it is a global
minimizer for the gap function, i.e., g(x) 0. Using this concept, VIP can be formulated
as the linearly constrained optimization problem

(5) min g(x).
xI9

Although, in general, neither quasiconvex nor ditterentiable, it will be shown in Lemma
3 that any stationary point of (5) is an equilibrium solution. In particular, a globally
convergent algorithm using the gap function as a merit function has been proposed
by Marcotte [7].

DEFINITION 3. The dual gap function associated with VIP is defined as

,(x)=max(x-y)’F(y).
ye

The dual gap function is convex, but its evaluation requires the solution of a nonconvex
(in contrast with linear for the gap function) mathematical program. Under a monoton-
icity assumption, any global minimizer of the problem minxes, (x) is a solution to
VIP. A solution algorithm based on direct minimization of the dual gap function can
be found in Nguyen and Dupuis [17].

DEFINITION 4. We say that VIP is geometrically stable if (y-x*)’F(x*)<=0 for
any equilibrium solution x* implies that y lies in the optimal face T*, i.e., the minimal
face of containing the set S of all solutions to VIP.

The above stability condition, especially useful when S is a singleton, ensures
that T* is stable under slight perturbations to the cost function F. It is implied by the
generalization to VIP of the usual strict complementarity condition:

(6) {Bx* b :> a * > 0}

where A* is an optimal dual vector corresponding to x* in the complementarity
formulation (4). If F is strongly monotone, then geometric stability implies the strong
regularity condition of Robinson 12]. Also, under geometric stability, there must exist
at least one solution of VIP satisfying the strict complementarity condition (6); however
it need not be unique, and there might exist optimal primal-dual couples that are not
strictly complementary. Figure 1 provides examples where geometric stability holds
while strict complementarity is not satisfied. In the first case, the problem is caused
by a redundant constraint, while in the second case it is due to the linear dependence
of the constraints’ gradients at x*.

2. Newton’s algorithm. Since Newton’s method is central to our local convergence
analysis we recall its definition and main properties. Applied to VIP, Newton’s method
generates a sequence of iterates {xk} where x is any vector in and xk+(k >_-0) is a
solution to the VIP obtained by replacing F by its first-order Taylor expansion around
xk, i.e.,

(7) (x’+’-y)t(F(x’)+ F’(x’)(x-x’))<-O ryeS.

The linearized problem will be denoted LVIP (x) and its (nonempty) set of solutions
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-F(x*)

redundant constraint dependent constraints’ gradients

(a) (b)

FIG. 1. Geometric stability does not imply strict complementarity. (a) Redundant constraint. (b) Dependent
constraints’ gradients.

NEW (xk). The gap function associated with LVIP (xk) (the linearized gap function)
will be denoted Lg (xk, x) and its mathematical expression is

(8) Lg (xk, x) max (x y)’(F(xk) + F’(xk)(x xk)).
y

In a similar fashion we define the linearized dual gap function L, (x k, x)"
(9) Lp, (x k, x)=max (x-- y)’(F(xk) + F’(xk)(y-- xk)).

y

When F is strongly monotone and its F’ is Lipschitzian, it can be shown that
Newton’s method is locally quadratically convergent. We quote Pang and Chan’s [11]
version of this result, also obtained by Josephy [5].

THEOREM 1. If the matrix F’(x*) is positive definite and thefunction F’ is Lipschitz
continuous at x* then there exists a neighborhood N of x* such that if xk N then the
sequence {xk} is well-defined and converges quadratically to x*, i.e., there exists a constant
such that

(10) lix x*ll llx x*ll Vk such that xk N

where I1" denotes the Euclidian norm in R".
The next result shows that Newton’s algorithm has the capability of identifying

T*. Actually we will prove this result for a broad class of approximation algorithms
where, at each iteration, xk+l is defined as a solution to a VI where F(x) is replaced
by the function G(x, xk) parameterized in xk and such that

(11) (i) G(x, y) is strictly monotone in x;

(12) (ii) G(x, y) is continuous as a function of (x, y);

(13) (iii) G(x, x)-- F(x).

Property (i) above ensures that xk+ is unambiguously defined. Property (iii) ensures
that if xk+ xk then xk is the solution to the original VIP. In many practical situations,
G is chosen as a strongly monotone function with symmetric Jacobian. Popular choices
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for G are"

Gi(x, y) Fi(Yl, , Yi-1, xi, Yi+l, Y,,), 1,. , n Jacobi iteration,

Gi(x, y) Fi(x1, Xi, Yi+l, Yn), 1, , n Gauss-Seidel iteration,

G(x, y)- F(y)+ F’(y)(x- y) Newton’s method,

G(x, y) Ax + p[F(y) Ay] Projection method,

where p > 0 and A is a symmetric positive definite matrix.
Other choices for G may be found in Pang and Chan [11] and Marcotte [8].
PROPOSITION 1. Assume that F is monotone and that geometric stability holds for

VIP. Let Xk+l be a solution to the VI:

(xk+I y)tG(xk+l, xk)<0= for all y e

where G satisfies (11), (12), (13). Then, for each optimal solution x* of VIP there exists
a neighborhood V ofx* such that if xk V then xk+l T*.

Proof Assume that the result does not hold. Then there exists an extreme point
u of- T* and a subsequence {Xk}k converging to some x* such that

(xk+l u)tG(xk+, xk) 0 for all k e I.

Taking the limit as k--> o (k e I) we obtain

(x* u)tF(x*) (x*- u)tG(x*, x*) <= 0
implying, by geometric stability, that u T*, a contradiction.

3. A linear approximation algorithm. In this section we present a model algorithm
for solving VIP based on its complementarity formulation (4) that proceeds by succes-
sive linear approximations of both the objective and the nonstructural, usually non-
linear, constraints. Throughout this section the function F will be assumed monotone
with Lipschitz continuous Jacobian F’.

Any solution to (4) is clearly a global minimizer for the following (usually)
nonconvex, nonlinearly constrained mathematical program"

def
min h(x, A) ht(b-Bx)=xtF(x)+bth
x,A

(14)
subject to F(x)+Bth=0, Bx<-b, h>-O.

The following lemma relates the objective in (14) to the gap function.
LEMMA 1. We have

g(x)=minh(x,h)

Proof.

(15)
subject to F x + BtA O, A >- O.

g(x) max (x y)’F(x)
ye

x’F(x)- min ytF(x)
By<--b

=xF(x)- max b
Brl F(

la,O
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by linear programming duality theory. Hence

g(x)=x’F(x)+ min b’A
F(x)q-BtA =0

Z--->0

after setting A -/x, and the result follows if we replace F(x) by the equivalent term
-BtA.

The next lemma, basic to our global convergence analysis, states that any stationary
point of the mathematical program (14) is actually an equilibrium solution to VIP
and justifies the use of an algorithm based on identifying points satisfying first-order
conditions of (14). The proof does not rely on any sort of constraint qualification for
the nonlinearly constrained problem (14).

LEMMA 2. Let (2, .) be a vector satisfying the first-order necessary optimality
conditions for (14). Then is a solution to VIP.

Proof. It suffices to show that h(, )= 0. Assume that h(, )> 0. Without loss
of generality we also assume that h(, )= g(); otherwise, would not be optimal
for the linear program

min h(x, A)
A

(16)
subject to F(:)+B’A=0, A>-0

and an optimal A-solution to (16) would constitute, together with 2, an obvious descent
direction for h at (2, ).

Consider the linearized problem LVIP (2) with its gap function Lg (:) and com-
plementarity formulation:

(17)

def
min h(x, A) xt[F(,)h F’(g)(x-g)] + brA

subject to F(g) + F’()(x- 2) + B’A O, A=>0.

Problem (17) constitutes a positive semidefinite quadratic program whose optimal
solution’s primal vector corresponds to a (not necessarily unique) Newton direction.
Consider a Frank-Wolfe direction d (Y 2, ]) for (17) at the point (2, ). Direction
d is a feasible descent direction for the linearized gap function Lg at 2. Since V h(g, ,)
is identical with V/(:, ), and so are the directional derivatives of Lg and g, it follows
that- is also a feasible descent direction for g at

We are now in a position to give a precise statement of our algorithm.

ALGORITHM N.
Initialization.
Let x be any vector in and

A o arg min b ’A

subject to F(x) + B’A 0

and set k <-- 1.
while convergence criterion not met
do 1) Find descent direction d.
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(18)

Let (dx(xk), d(xk)) be an extremal solution to the linear problem
min xt(F(xk)+ F"(xk)xk)+ b’A
AO

subject to F(xk) + F’(xk)(x xk) + B’A O.

Set d (G(xk)- x
2) Perform arc search on the gap function.

if g(d(xk))<=1/2g(xk) then ff-I
(19)

else ffarg min g[xk+O(dx(Xk)--xk)].
0[0,1]

endwhile.

3) Update.

Some comments are in order:

x+, ,_ x + g(d(x)-x)
A k+ earg min

F(xk+I)+BtA =0

k-k+l

(1) At step 2) of Algorithm N, the minimization, with respect to the primal vector
x, of the nonditterentiable objective g could be seen as a search along an arc in the
space of primal-dual variables (x, h). Since dual vectors h have to be computed
repeatedly, this operation can be carried out efficiently using reoptimization techniques
of linear programming.

(2) It is not required, or even advisable, that the arc search be carried out exactly.
For instance, the Armijo-Goldstein stepsize rule, or any rule guaranteeing a "sufficient"
decrease of the objective along the search direction could be implemented.

(3) For affine functions F Ax + a, Algorithm N reduces to the standard Frank-
Wolfe procedure for solving quadratic programming problems, as then the nonstruc-
tural constraints become linear.

4. Convergence analysis. We first state and prove a global convergence result for
Algorithm N.

PROPOSITION 2. Any point of accumulation of a sequence generated by Algorithm
N is an equilibrium solution.

Proof. If g(dx(xk))--< .5g(xk) infinitely often at (19), then limk_o g(Xk) =0. Other-
wise the linesearch in (19) is asymptotically always performed and, to prove global
convergence, we will strive to check the conditions behind Zangwill’s global conver-
gence theorem, namely:

(i) All points generated by the algorithm lie in a compact set.
(ii) The algorithmic map is closed outside the set of solution points S.
(iii) At each iteration, strict decrease of the objective function occurs.
(i) Since is compact by assumption, it is sufficient to show that the sequence

{dx (xk)} is bounded. By definition of the sequence {d(xk)} we have

(20)
d, (xk) arg min b ’A

AO

subject to B’A H(xk)

where H(xk) r F(xk)+ F,(xk)(dx(Xk)_xk) R".
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(21)

First observe that the linear program:

min btA subject to
A0

B’A -H(xk)

is the dual of the linear program

(22) max -xF(x)

that is feasible and bounded; hence, by linear programming duality, we have that (17)
is also feasible and bounded, i.e., that (17) possesses at least one optimal basic solution.
Let {Ne}e=,...,p denote the set of full rank square submatrices (basis) of B . Since

dA (x) is extremal, we have

d (x) -N-H(x)
for some e e (1, , p}. From the continuity of F and F’ we deduce that H(x) must
lie in some compact set K independent of x k. Therefore d(x)e C derUP=_- -N-K,
which is bounded. The same continuity argument is then used to show boundedness
of the sequence {+}.

(ii) The closedness of the algorithmic map follows directly from the continuity
of F’ and the closedness of the linesearch strategy used.

(iii) We must prove that h(x+, +)< h(x, ,) if the latter term is positive
(not zero). This is a direct consequence of Lemma 2. [3

PROPOSITION 3. If F is monotone on and affine, then Algorithm N* converges
in a finite number of iterations.

Proof Replacing F by Ax + a in (16) yields a quadratic programming problem.
Its solution set is a face T of the polyhedron {Ax + B’& O, Bx <= b, , >- 0}. For some
iterate k we must have that (dx(x), d(x)) lies in (otherwise the iterates would
always be bounded away from T, contradicting global convergence of the method).
When (dx(x), da(xk))e " we have = 1 and (xk+l, k+l) . [-]

Remark. The preceding result is also valid under the assumption that T* is a
singleton (F monotone but not necessarily affine). The proof is similar.

To obtain a rate-of-convergence result for Algorithm N we assume, until explicitly
stated otherwise, that the function F is strongly monotone in a neighborhood of the
solution x* with strong monotonicity coefficient and that the geometric stability
condition is satisfied at x*. This implies that the entire sequence {x} converges to the
unique solution x*. Under these assumptions we will show that Algorithm N* is
locally equivalent to Newton’s method, thus implying quadratic convergence and
implicit identification of the set of active constraints at x*. We first show that the
descent direction d obtained from Algorithm N* satisfies d),(x) NEW (xk) if x is
sufficiently close to x*. The following lemmas will be used in the proof.

LEMMA 3. The optimal dual vector y(x) associated with the nonstructura! constraint
F(x)+ B’, =0 of (18) satisfies lim_ y(x) x*.

Proof Write the Lagrangian dual of the linear program (18)"

max min x’[F(xk) + F’t(x)x] + b’A y[F(x) + F’(x)(x-xk) + B’, ].
y xcCD

Then observe that the inner minimum has value -oe unless By <= b, in which case the
minimum over nonnegative A is achieved when I is zero, yielding

max min xt[F(x) + F"(x)x y’[F(x) + F’(xk)(x x)].
yc xC
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This expression is equivalent, modulo a constant term, to

(23) max min (x--y)t[F(xk)nt-F’(xk)(x--xk)]--(x--xk)F’(xk)(x--xk)
yCb x

and constitutes a quadratic perturbation of the dual gap function L at xk. Since y(xk)
is dual-optimal for (18) it must correspond to the y-part of a solution to (23). If y(xk)
does not converge to x* then there exists a subsequence {Xk}k1 such that
limk_oo.ky(xk) 37 X*. Passing to the limit in (23) we obtain, after setting x to :

lim max min (x--y)’[F(xk)+ F’(Xk)(x--xk)]--(x--xk)’F’(xk)(x--xk)
kcx y x
kI

_<_ (7- 7)’[F(x*) + V’(x*)(;- x*)] (- x*)’F’(x*)(- x*)

_-<-KJJ)7-x*ll 2 by strong monotonicity

<0.

But this contradicts the optimality of the sequence {y(xk)}k1 since we obtain, by
taking y x*"

lim min (x--x*)’[F(xk)+ F’(Xk)(X--Xk)]--(X--Xk)’F’(xk)(X--Xk)
k-c x

min (x x*)’F(x*)

=0 by definition of x*.

LEMMA 4. There exists an index K such that k >-K implies d,,(x) T*.
Proof From (23) we get

dx(Xk)e D(xk) deZ arg min (x-- y(xk))’[F(xk)+ F’(xk)(x--xk)]
(24)

(x x)’F’(x)(x x).
Since y(xk)-+ X* as koo (Lemma 3), (24) represents, for x k close to x*, a small
quadratic perturbation of the linear program: min,a, x’F(x*). It follows from the
geometric stability assumption that dx(xk) T*. [3

COROLLARY. dx(x*) T*.
Proof Since F’ is continuous, the point-to-set mapping :-+{d,,(ff)} is upper

semicontinuous. Hence dx(X*){dx(limk_,ooxk)}=limk_,oo{dx(Xk)} T*. V]

LEMMA 5. limk+oo d,,(xk) x*.
Proof From the proof of Lemma 2, we have

g’(xk; dx(Xk)--xk)<o.
Passing to the limit and using upper semicontinuity there comes

g’(x*; dx(x*) x*) <= O.

But, by Danskin’s rule of differentiation of max-functions (see [18]), we have

g’(x*" dx(x*)-x*)=max [dx(x*)-x*]’[F(x*)- F"(x*)(y-x*)].
yeT*

Assume that T* is not the singleton x* (otherwise the result follows trivially from
Lemma 5) and let e be a positive number such that . o-rx*-e(d(x*)-x*) T* (see
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Fig. 2). Then we have

o->_ g’(x*; d(x*)-x*)

>- [dx(x*)-x*]’[(x*)+ F"(x*)(d(x*)-x*)]

>= ,lldx(x*)-x*ll ,
implying that &, (x*) x*.

FG. 2

LEMMA 6. There exists an index K such that for k >= K, dx(xk) NEW (xk).
Proof From (18), d (xk) is an optimal dual vector for the linear program

(25) min z’[F(x’)+ F’(xk)(dx(xk)--xk)].

For k large, d(xk) is close to x* (Lemma 5) and problem (25) is an arbitrary small
perturbation of the linear program

min z’F(x*)

whose set of optimal solutions is T*, by definition. Therefore the optimal solutions to
(25) lie in T* by geometric stability. From the complementary slackness theorem of
linear programming we can write

d, (xk)t(Bd(xk) b O.

We conclude that the couple (d,(xk), d(xk)) is optimal for the quadratic program
(17). Since its solution is unique in x and equal by definition to NEW (xk) we conclude
that d(xk) NEW (xk). ]

PROPOSITION 4. There exist positive constants and such that

IIx-x*ll g(x) llx- x*ll,
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Proof It suffices to prove the result in a neighborhood of x*.
(26) (i) Proof that g(x) -<_/3 IIx x*[[.

g(x)=max(x-y)’F(x)

(x x*)’F(x) + max (x* y)tF(x)

<-IIx-x*ll. IIF(x)ll +max (x*- y)’F(x*)
yCD

+max (x*- y)’(F(x) F(x*))

--< IIx- x*ll, IIV(x)ll / DIIx- x*ll sup

<= M + M’ diam

where M d=SUpxa, ]]F(x)II, M’ d--esup,,a,,, ]lF(()-F(rl)[I/I]-rl]l, and D is the
diameter of . Then set M + M’D.

(27) (ii) Proof that g(x) >_- a ][x-
We consider three mutually exclusive cases.
Case 1. T*= x*. (Fig. 3.) For x sufficiently close to x* we have

g(x)=(x-x*)’V(x)

(x x*)’F(x*)+ (x x*)’(f(x) F(x*))

=> llx-x*ll, IIF(x*)ll cos (x-x*, F(x*))/ ,, IIx-x*ll 2.

F(x*)

FIG. Case 1.

Since F(x*) is orthogonal to no feasible direction from x* into @ (by geometric
stability) we must have that cos (x-x*, F(x*)) is positive and bounded away from
zero. Hence (27) holds with

def
a c inf {cos (- x*, F(x*))}llF(x*)ll > o.

:x*
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Case 2. T* {x*} and x T*. (Fig. 4.) Let p be a positive number such that the
mapping Proj. (x-(1/p)F(x)), defined for x cp, is contracting, where Proj. denotes
the projection operator on P, in the usual Euclidean norm. The existence of such a
number p is a consequence of, say, Example 3.1 of Dafermos [4]. For x sufficiently

x P x* Y

-F(x*)

x- f(x)
FIG. 4. Case 2.

close to x*, p a__er Proj. (x-(1/p)F(x)) lies in T* (see Proposition 1). Let 0 [0, 1] be
the contraction constant, dependent on p; we have lip- x*ll <--ollx-x*ll. we have

IIp-xll>= [Ix-x*]l-[Ix*-pl[ by the triangle inequality
(28)

>-_(1-o)llx-x*ll.

Also by construction of p

(29) (x-p)’F(x)- Ilx-p 2.

Define

(30) 0=max {4)lx+ck(p-x) r*}

(0 must be positive since x lies in the relative interior ri (T*)) and y=x+O(p-x).
We have

(x- y)tF(x) q,(x-p)’F(x)

=Ollx-pll = by (29)

pllx-pll(1-o)llx-x*ll by (28).

Now 4,1lx-pll- Ilx-y[I must be bounded from below by some positive number s since
x lies in ri (T*) and )7 is on the boundary of T*. It follows that

g(x)>=(x-y)’F(x)

p(1-O)sllx-x*ll
and the result holds with ce ps(1- 0).

Case 3. x : T* (consequently T* ). (Fig. 5.) Define p Projr. (x). First we
will show that cos (x-p, F(x*)) is bounded below by some positive number %

Define, for x T*, the function x - r/(x) where r/(x) is the intersection of the line
going through the segment [p, x] with the boundary of , in the direction x-p. Let
Be(x*) be a ball of radius e about x*, H B(x*)f3 -T*, and E the closure of
r/(H) (see Fig. 6). We have E f’l T*= and

(31)
cos (x-p, (x*)) cos (n(x)-p, F(x*))

->min cos (v-p, F(x*)).
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X

T* x*

x-F(x)
FIG. 5. Case 3.

F(x*)

E

FIG. 6

But cos(v-p,F(x*))>O (peT*) for each vC_T* by geometric stability. Hence,
cos (x-p, F(x*)) >= 3/ > O.

We then write (x-p)tF(x*) >- llx-pll" IIF(x*)ll. Thus

>3(32) (x-p)tF(x)=-[Ix-pll IIF(x*)ll

for x sufficiently close to x*. Now consider the following two subcases.
Case 3.1. IIx-pll<-_llp-x*ll with C=ps(1-O)/2ODM’. Define 37 as in Case 2

(see Fig. 4). Then

g(x) >= (x-.9)tF(x)
(x -p)’F(x)+ (p -y)’F(x)

O+ (p -.9)’F(p) + (p y)’ (F(x) F(p))

>-os(a-O)llx-x*ll-rllp-x*[IDM’ since pc T* (see Case 2)

_-> (ts(1 o) ODM’)IIx x*ll
>ps(1-O)

2

Set c ps 1 O)/ 2.
Case 3.2. IIx-Pll--> ffllp-x*l[. We have

(33) [Ix-x*ll Ilx-pll + p-x*ll (1 + ff)IIx-pll.
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We obtain

g(x)>=(x-p)’F(x)

llx-pl[" F(x*) by (32)
-2

>_..y 1
x*

=2 1+ [Ix- I1" IIF(x*

by(28)and(29),withF(x*)O, andtheresultholdswitha= yllF(x*)ll/2(l+). [3

Remark 1. The above general proof does not require ditterentiability of the cost
mapping F. If F is ditterentiable, the proof of Proposition 4 can be somewhat
streamlined (see Dussault and Marcotte [21]).

Remark 2. Proposition 4 strengthens a result of Pang 19] who derives an estimate
of the form

IIx- x*ll oo4g(x)

for some positive constant w.
PROPOSITION 5. Let {xk} be a sequence generated by Algorithm N. Then there

exists an index K such that for k >-K, xk+l= NEW (xk), the Newton iterate.

Proof We must prove that g(NEW(xk))<-1/2g(x) for k>=K, in which case
Algorithm N will set x+1 to d,(x), which is equal to NEW (x) by Lemma 6:

g(NEW(x))=</3llNEW(x)-x*II by Proposition 4

<- t3cllx- x*ll 2 from (10)

_<-- c ilxk _x, llg(x) by Proposition 4

1
<_-g(x)
2

as soon as IIx-x*ll c/2c, l-1
The preceding results can be summarized in a theorem.
THEOREM 2. Consider a VIP with monotone cost function F and let {x} be a

sequence generated by Algorithm N. If VIP is geometrically stable, then
(i) g(xk+l) < g(xk) if g(x) O.
(ii) lim_. g(x) O.
(iii) IfF is affine or T* is a singleton then there exists an index K such that g(x) 0

for k >-_ K (finite convergence).
(iv) IfF is strongly monotone then the sequence {x} converges quadratically to the

point x* and there exists an index K such that x T* whenever k >= K.
5. Numerical results. A working version of Algorithm N has been developed,

using a standard linear programming code, and contrasted against Newton’s method,
with or without linesearch. The asymmetric linear complementarity subproblems in
Newton’s method have been solved by Lemke’s Complementary Pivoting Algorithm.
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In the test problems, has been taken as the unit simplex i=1 Xi--- 1, x >= 0 and
the mapping F assumed the general form

F(x) (A- A’)x + B’Bx + yC(x) + b

where the entries of matrices A and B are randomly generated uniform variates, C(x)
is a nonlinear diagonal mapping with components Ci(x) arctan (xi), and the constant
vector b is chosen such that the exact optimum be known a priori. The parameter y
is used to vary the asymmetry and nonlinearity of the cost function.

Sixteen five-dimensional and sixteen 15-dimensional problems have been gener-
ated, with y-values ranging from 10-40. Newton’s search direction differs from
Algorithm N’s direction in 18 of the 32 problems. In some instances (Figs. 7-10)
Algorithm N yields a direction as good or better than Newton’s direction. For some
other problems (Figs. 11-14) Newton’s direction is slightly superior. In all cases, the
difference in the number of iterations required to achieve a very low gap value is small.
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This preliminary testing shows some promise for the linearization algorithm. Its
direction finding subproblem involves a linear program, versus an asymmetric linear
complementarity problem for Newton’s method. The linear subproblem bears close
resemblance to the linear program that must be solved to evaluate the gap function,
and as such could benefit from some fine tuning of the computer code. Moreover, it
may well prove unnecessary to solve the subproblem exactly, yielding another area
for further improvement. In contrast, solving linear complementarity problems yields
a feasible solution only at termination, therefore making the implementation of an
inexact strategy more difficult.

Finally let us mention that Marcotte and Gu61at [20] have successfully imple-
mented Algorithm N to solve large-scale network equilibrium problems when the
mapping F, i.e., its Jacobian matrix, is highly asymmetric.

6. Conclusion. The main result ofthis paper has been to prove global and quadratic
convergence of an algorithm for solving monotone variational inequalities. The
algorithm operates by solving linear programs in the space of primal-dual variables.
Computational experiments show that the algorithm is efficient for solving both small-
scale and large-scale problems.

Acknowledgments. The authors are indebted to anonymous referees for relevant
comments on an earlier version of this paper that led to numerous improvements.
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THE PARTIALLY OBSERVED STOCHASTIC MINIMUM PRINCIPLE*
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Abstract. Using stochastic flows and the generalized differentiation formula of Bismut and Kunita, the
change in cost due to a strong variation of an optimal control is explicitly calculated. Differentiating this
expression gives a minimum principle in both the partially observed and stochastic open loop situations.
In the latter case the equation satisfied by the adjoint process is obtained by applying a martingale
representation result.

Key words, stochastic control, minimum principle, adjoint process, stochastic flow
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1. Introduction. Various proofs have been given ofthe minimum principle satisfied
by an optimal control in a partially observed stochastic control problem. See, for
example, the papers by Bensoussan [1], Elliott [8], Haussmann [11], and the recent
paper [14] by Haussmann in which the adjoint process is identified. The simple case
of a partially observed Markov chain is discussed in the University of Maryland lecture
notes [9] of Elliott.

In this article we show that the minimum principle for a partially observed diffusion
can be obtained by differentiating the statement that a control u* is optimal. The results
of Bismut [5], [6] and Kunita [16] on stochastic flows enable us to compute in an easy
and explicit way the change in the cost due to a "strong variation" of an optimal
control. The only technical difficulty is the justification of the differentiation. As we
wished to exhibit the simplification obtained by using the ideas of stochastic flows,
the result is not proved under the weakest possible hypotheses. In 6, stochastic open
loop controls are considered and a similar minimum principle with an explicit adjoint
process is derived in 7. If the optimal control is Markov, the equation satisfied by
the adjoint process is obtained in 8 using the martingale representation result of 10].
This simplifies the proof of Haussmann [12]. Finally in 9 it is pointed out how
Bensoussan’s minimum principle [2] follows from our result if the drift coefficient is
differentiable in the control variable.

2. Dynamics. Suppose the state of the system is described by a stochastic differen-
tial equation

dt f( t, t, u) at + g( t, t) dwt,
(2.1)

tRa, o=Xo, O-t-T.

The control parameter u will take values in a compact subset U of some Euclidean
space R k. We shall make the following assumptions:
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(A)

(A)

(A3)

Xo is given; if Xo is a random variable and Po its distribution, the situation
when IxlqPo(dx) < for some q > n + 1 can be treated, as in [14], by including
an extra integration with respect to P0.

f’[0, T]Rd U-> Rd is Borel measurable, continuous in u for each
(t,x), continuously differentiable in x and for some constant K,
(1 + Ixl)-llf( t, x, u)l + Ifx( t, x, u)l <- K1.
g’[0, T] x Rd -> Rd () R is a matrix-valued function, Borel measurable, con-
tinuously differentiable in x, and for some constant K2, Ig(t, x) + Igx(t, x) <_-
g2.

The observation process is given by

(2.2) dy h , dt + dr,, y, R ", Yo O, 0 <= <= T.

In the above equations w=(w ,w") and v=(v ,vd) are independent
Brownian motions. We also assume the following:

(A4) h" Ra- R is Borel measurable, continuously diiterentiable in x, and for
some constant K3, Ih(t, x)l + Ih(t, x)l-< g3.

Remark 2.1. These hypotheses can be weakened. For example, in (A4), h can be
allowed linear growth in x. Because g is bounded, a delicate argument then implies
the exponential Z of (2.3) is in some Lp space, 1 < p <. (See, for example, Theorem
2.2 of [13].) However, when h is bounded, Z is in all the Lp spaces (see Lemma 2.3).
Also, if we require f to have linear growth in u, then the set of control values. U can
be unbounded as in [14]. Our objective, however, is not the greatest generality but is
to demonstrate the simplicity of the techniques of stochastic flows.

Let /3 denote Wiener measure on C([0, T], Rn) and /x denote Wiener measure
on C([0, T], R"). Consider the space f C([0, T], R ") C([0, T], R m) with coordi-
nate functions (w,, y) and define Wiener measure P on 12 by

P(aw, ay)= P(aw)lz(ay).

DEFINITION 2.2. Write Y= { Y} for the right continuous complete filtration on
C([0, T], R’) generated by yO o-{ys" s <= t}. The set of admissible control functions
_U will be the Y-predictable functions on [0, T] C([0, T], R") with values in U.

For u U and x Rd write :s,t(x) for the strong solution of (2.1) corresponding
to control u, and with s,s(x)= x. Write

(2.3) Z,t(x) exp h(sU,r(X)) dyr-- h((,r(x) dr

and define a new probability measure pu on f by dP’/dP Zg,7-(Xo). Then under pu,
(,(Xo), y,) is a solution of (2.1) and (2.2), that is, ,t(Xo) remains a strong solution
of (2.1) and there is an independent Brownian motion v such that y satisfies (2.2). A
version of Z defined for every trajectory y of the observation process is obtained by
integrating by parts the stochastic integral in (2.3).

LEMMA 2.3. Under hypothesis (A4) for t<= T,

E[(Z,t(Xo)) p] < for all u U_ and all p, 1 <= p < c.

Z,t(Xo) 1 + Z),r(xo)h(,r(Xo) )’ dy
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Therefore, for any p there is a constant Cp such that

F_[(Z),t(Xo))p] Cp 1 + E (Z),r(Xo))2h(,r(Xo))2 dr

The result follows by Gronwall’s inequality.
Cost 2.4. We shall suppose the cost is purely terminal and given by some bounded,

continuously differentiable function

c(,.(Xo)),

which has bounded derivatives. Then the expected cost, if control u _U is used, is

J(u) ,[c(’,,(Xo))].

In terms of P, under which Yt is always a Brownian motion, this is

(2.4) J(u) E[Z,r(Xo)C(,r(Xo))].

3. Stochastic flows. For u U write

(3.1) ,,t(x) x + f(r, s,r(x), ur) dr+ g(r, ,(x)) dwr

for the solution of (2.1) over the time interval Is, t] with initial condition (x)= x.
In the sequel we wish to discuss the behavior of (3.1) for each trajectory y of the
observation process. We have already noted that there is a version of Z defined for
every y. The results of Bismut [5] and Kunita [16] extend easily and show the map

s," R Ra

is, almost surely, for each y C([0, T], R) a diffeomorphism. Bismut [5] initially
gives proofs when the coecients f and g are bounded, but points out that a stopping
time argument extends the results to when, for example, the coecients have linear
growth.

Write IIU(Xo)ll,=SUpo=x=, I,,(Xo)l. Then, as in Lemma 2.1 of [13], for any p,
1 p <, using Gronwall’s and Jensen’s inequalities,

( IoII"(Xo)llN c 1 +lXol + g(r, g,(Xo)) dw

almost surely, for some constant C.
Therefore, using Burkholder’s inequality and hypothesis (n3), II:U(x0)llr is in L p

for all p, 1 <- p < c.
Suppose u* _U is an optimal control; then J(u*)<=J(u) for any other u _U.

Write (.) for s,(.). The derivative O(x)/Ox is the matrix solution C of the
equation for s-<_ t,

(3.2) dC,=f(t, ,(x), u*)C, dt+ g(t, t(x))C, dw with Cs L
i=1

Here I is the n x n identity matrix and g(i) is the ith column of g. From hypotheses
(A2) and (A3), f and gx are bounded. When we write IICII, supo=<,<__, ]C,], an applica-
tion of Gronwall’s, Jensen’s, and Burkholder’s inequalities again implies ]lC][r is in



1282 J. S. BARAS, R. J. ELLIOTT, AND M. KOHLMANN

Lp for all p, 1 <=p < oo. Consider the related matrix-valued stochastic differential
equation

D, I- Drfx(r, ,.r(x), u* )’ dr- Drg’)(r, r(x)) dw’
i=1

(3.3)
4. Dr(gi3(r, r(X))t)2 dr.

i=1

Then it can be checked that D,Ct I for -> s, so that D, is the inverse of the Jacobian,
that is, D, (O,(x)/Ox)-1. Again, because f,, and g, are bounded we have that IIDII,
is in every LP, 1 <= p < oo.

For a d-dimensional semimartingale z, Bismut 5] shows that scs*.,(z,) is well-defined
and gives the semimartingale representation of this process. In fact if z,=
Zs 4. At +i= ts Hi dwir is a d-dimensional semimartingale, Bismut’s formula states that

*s,t(z,)--Zs + f(r,s,r( ),U*)+ (r,(zr),u*)--x (Z)H,
i=1. 0(z) )(3.4) +- (Hi, Hi) dr

2 i= Ox2

4. dAr4. g(i)(r, *s,.(zr))-I---x (zr)U dw
OX i=1

DEFINITION 3.1. We shall consider perturbations of the optimal control u* of the
following kind. For s 6 [0, T), h > 0 such that 0 _-< s < s 4- h -<_ T, for any other admissible
control ti _U and A Ys define a strong variation of u* by

u*(t, w)
u(t,w)=

/(t,w)
if (t, w)C_[s,s+h]A,
if (t, w)e[s,s+h]xA.

Applying (3.4) as in Theorem 5.1 of [7], we have the following result.
THEOREM 3.2. For the perturbation u of the optimal control u* consider the process

# Z(3.5) zt x+
\ -0" (f(r, s,( ), u)-f(r, r(z), u*)) dr.

Then the process s.,( t) is indistinguishable from s,t(x).
Proof Note that the equation defining zt involves only an integral in time; there

is no martingale term, so to apply (3.4) we have Hi 0 for all i. Therefore, from (3.4)

,(zt) x + f(r, *.(Zr), U* dr

+ I’ (O*’(Zr)) \ X /
* z

_
(f(r, s*,,(z), Ur)-f(r, ,( ), u*)) dr

+ g(r, r(z)) dw.

However, the solution of (3.1) is unique so

,(z,) ".,(x).
Remark 3.3. Note that the perturbation u(t) equals u*(t) if > s + h so z, Z+h

ift>s+h and

,(z,) (,+(x)).*.,(z+ *Cs+h,t
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4. Augmented flows. Consider the augmented flow that includes as an extra coor-
dinate the stochastic exponential Z* with a "variable" initial condition z R forS,

Z* (.) That is, consider the (d + 1)-dimensional system given byS,S

s*.,(x x + f(r, ,*,(x, ur* + g(r, ’,*.(x/w,

z* (x, + z* (x, zh(L(x’.S, S,

Therefore, from the first equation in the proof of Lemma 2.3 we have

z exp h(((x))’ +- h((x))2 dr

and we see there is a version of the enlarged system defined for each trajectory y by
integrating by parts the stochastic integral. The augmented map (x, z)

X(.,(),Z,(x,z)) is then almost surely a diffeomorphism of Ra+ Note that
Ot(x)/Oz=O, Of/Oz=O and Og/Oz=O. The Jacobian of this augmented map is,
therefore, represented by the matrix

( O*s,,(x)/ox o )
and for 1 -< <_- d as in (3.2)

oz*,,,(x, z(x, h(eL(x o*,s,(x
Ox = 0 Ox

(4.1)
+ h , dZ(x, z)) dye.(,(x)) ox,

(Here the double index k is summed from 1 to n.)
We shall be interested in the solution of this differential system (4.1) only in the

situation when z 1, so we shall write Z*s.t(x) for Zt(x, 1). The following result is
motivated by formally differentiating the exponential formula for *Z,,(x).

LEMMA 4.1.

s,.__._. Z* (x) hx(s*,r(X))
OxOX

s,t

where v (vl, o n) is the Brownian motion in the observation process.
Proof From (4.1) we see OZ,(x)/Ox is the solution of the stochastic differential

equation

(4.2) ozZ,(x)_ ff (oz(x) z, o(x))OX \Th’(*s,r(x)) + s,r(x)hx(*s,r(X)) OX dyr.

Write

t. ,(x)= z*,(x) hx. oC.__z clv,s, OX

where

dy= h(,(x)) dt + dv,.
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Because

Z*s,t(x) q- Z*s,r(x)h’(s*,r(x)) dyr

the product rule gives

IS ;’’(IS c*
tst(X) Z*r(x)hx" Os*,,r

dvrnt_ hx" s,______ff.. dl)r Z*r(x)h’(es,r(x)) dyrs, OX Ox s,

O*
* x h’+ Zs,r( x))" hx’dr

OX

Lr(x)h’(*s,r(x)) dyr+ Z*(x)hx. ,,_._.r. dy,.s,
OX

Therefore, L,,(x) is also a solution of (4.2), so by uniqueness

L,,,(x) ox

Remark 4.2. As noted at the beginning of this section we can consider the
augmented flow

(x, z) (,(x), Z,(x, z)) for x e R", z R,

and we are only interested in the situation when z 1 so we write Z*(x)s,

Poo Z(x) is te process nuely efine y

(4.3) Z"(x) 1+ Z(x)h’(,(x)) dyr

Consider an augmented (d + 1)-dimensional version of (3.5) defining a semimartingale
if, (z,, 1), so the additional component is always identically one. Then applying (3.4)
to the new component of the augmented process, we have

z* (z,)= + Z,(z,)h’( * z

] + Zr(Zr)h’(sr(X)) dyr

by Theorem 3.2. However, (4.3) has a unique solution so Z* (z,)= Z.,(x),
Remark 4.4. Note that for > s + h

z* (z,)= Z* (zs,t s,t +h

$. The minimum principle. Control u will be the peurbation ofthe optimal control
u* as in Definition 3,1. We shall write x ,,(Xo). Then the minimum cost is

J(u*) e[z(Xo)C(,(Xo))]
e[z,(xo)Z(x)c((x))].

The cost corresponding to the perturbed control u is

J(u) [Z*o,,(xo)Z2(x)c(fl,(x))]
-[ZL(xoZ*,(z,+)c(,f2(z,+))]
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by Theorem 3.2 and Lemma 4.3. Now Zr(" and c(sCs*.r( )) are almost surely differenti-
able with continuous derivatives and z,, given by (3.5), is absolutely continuous.
Therefore,

J(u) J(u*) [Z*o,(Xo)(Z(+)c(:%-(z+))* Z*(x)c((x)))],

E F(s, z)(f(r, s,r(Zr), U)--f(r, U,,(x), ))

where by Lemma 4.1

f
F(S, Zr) lo,s(xO) * iz,(z) c((z))----o(z)

OX

c(*s,,(z))( f h( * z ’%" ’s,o.( r))TX (Zr)duo.)} (Zr))
Note that this expression gives an explicit formula for the change in the cost resulting
from a variation in the optimal control. The only remaining problem is to justify
differentiating the right-hand side.

From Lemma 2.3, Z is in every Lp space, 1-< p < oo, and from the remarks at the
beginning of 3, Cr Or/Ox and Dr (Os*.r/ox)- are in every Lp space, -_< p <
Consequently, F is in every Lp space, 1 _-<p <

Therefore,

* ZJ(u)-J(u*) E[(F(s, z)-F(s, x))(f(r, Cs*.(Zr), Ur)--f(r, s.,.( r), U*))] dr

s+h

* Z *+ E[(F(s,x)-F(r,x))(f(r,r(Z),ur)-f(r,,( r),Ur))]dr

s+h

* *+ Elf(r, x)(f(r, sC:,(zr), Ur)-f(r, $s,r(Zr), U

Now,

-f(r, $s,r(X), ur)+f(r, r(x), u*))] dr

+ ElF(r, x)(f(r, O,r(XO), Ur)-f(r, O,r(XO) U*))] dr

Ii(h)+/(h)+/3(h)+ I4(h), say.

s+h

II,(h)l=< K, E[IF(s, z)-F(s, x)[(1 + [[:"(/o)[l+h)] dr

<-- K,h sup [Ir(, z,,)-r’(, x)[(l+ II’(xo)ll,+,,)],
s<--<_rs+h

fS
+h

Ih(h)l---- K2 E[IF(s,x)-F(r,s)l(+llC(xo)ll+)]dr

<-_ Kh sup

s+h

Ih(h)[ <-- K3 /[IF(’ x)l :s*,r(z)- (x)ll] dr

<- K3h sup [Ir(r, x)l IIs",.(x)- s*,.(x)ll+h].
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The differences Ir(s, Ir( s, x) r( r, x)l and are all
uniformly bounded in some Lp, p-> 1, and

lim IF(s, Zr)--F(s, x)l 0 a.s.,

lim IF(s, x) F(r, x)l 0 a.s.,

Therefore,

lim IIr( , x)ll --0,

lim IIF(s, x)-F(r, x)llp =0, and

lhim II(]l:su,.(X) *,,.(X)l]s/h)ll p =0 for some p.

Consequently, limh_,O h-llk(h) =0, for k 1,2, 3.
The only remaining problem concerns the differentiability of

f,+h sCo*,(Xo), u*))] dr.I4(h) ElF(r, x)(f(r, o,(Xo),* ur)-f(r,

The integrand is almost surely in Ll([0, T]) so limh-.O h -lI4(h) exists for almost every
s e [0, T]. However, the set of times {s} where the limit may not exist might depend
on the control u. Consequently we must restrict the perturbations u of the optimal
control u* to perturbations from a countable dense set of controls. In fact:

(1) Because the trajectories are, almost surely, continuous, Yo is countably gener-
ated by sets {Aio}, i= 1, 2,... for any rational number p [0, T]. Consequently, Y is
countably generated by the sets {Aio}, p t.

(2) Let Gt denote the set of measurable functions from (f, Y,) to U c R k. (If
u e _U then u(t, w) e Gt.) Using the Ll-norm, as in [8], there is a countable dense subset
Ho {ujo} of Go, for rational p e [0, r]. If H, U p<=, H, then H is a countable dense
subset of G,. If ujo Ho then, as a function constant in time, ujo can be considered as
an admissible control over the time interval t, T] for >_-p.

(3) The countable family of perturbations is obtained by considering sets Ai, Yt,
functions ujp Ht, where p <_-t, and defining as in (3.1) the following:

u*(s, w) if (s, w)C:[t, r]xAio,uj*.o(s, w)=
Ujo(s, w) if (s, w)e[t, T]xA,o.

Then for each i, j, p

(5.1) lim h -1 E[F(r, x)(f(r, (*o.r(Xo) uj*o)-f(r, j*o.r(Xo), u*))] dr
hO

exists and equals

E[r(s, x)(f(s, *o,s(Xo), ujo)-f(s, *o,(Xo), l’i*))IAio]
for almost all s e [0, T]. Therefore, considering this perturbation we have

lim h-l(J(u)-J(u*))= ElF(s, x)(f(s, :o*,(Xo), ujo)-f(s, o*,s(Xo), u*))Ia.o]
h0

_-> 0 for almost all s e [0, T].
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Consequently there is a set S c [0, T] of zero Lebesgue measure such that, if s S, the
limit in (5.1) exists for all i, j, p, and gives

E[F(s, x)(f(s, *o,,(Xo), ujo)-f(s, o*,s(Xo), U*))IA,o]>=O.
Using the monotone class theorem, and approximating an arbitrary admissible control
u e _U, we can deduce that if s S, then

(5.2) E[r(s,x)(f(s, *o,(Xo), u)-f(s, *o.s(Xo), U*))IA]>=O for any A Ys.
Write

p,(x) F* [ c(*o,(Xo)) (I )Ox Ox
v {x}]

where, as before, x *O,s(Xo) and E* denotes expectation under P* P"*. Then ps(x)
is the co-state variable and we have in (5.2) proved the following "conditional"
minimum principle.

THEOREM 5.1. If U* U_ is an optimal control there is a set S c [0, T] of zero
Lebesgue measure such that if s ! S

E*[p(x)f(s, x, u*)[ Y]-> E*[ps(x)f(s, x, u)l Y] a.s.

That is, the optimal control u* almost surely minimizes the conditional Hamiltonian and
the adjoint variable is p., x ).

6. Stochastic open loop controls. We shall again suppose the state of the system
is described by a stochastic differential equation

(6.1) dt f( t, t, u) dt + g(t, t) dwt, t Rd, o Xo, 0 <--_ <: T

where Xo, f, and g satisfy the same assumptions A1, A2, and A as in 2.
Suppose w (w 1, w") is an n-dimensional Brownian motion on a probability

space (fl, F, P), with a right continuous complete filtration {F,}, 0_-< t_-< T. Rather than
controls depending on some observation process y we now consider controls that
depend on the "noise process" w. These are sometimes called "stochastic open loop"
controls [4].

DEFINITION 6.1. The set of admissible controls _V will be the Ft-predictable
functions on [0, T] x 1" with values in a compact subset V of some Euclidean space R k.

Remark 6.2. For each u _V there is, therefore, a strong solution of (6.1) and we
shall write ".,(x) for the solution trajectory given by

(6.2) su,t(X) x + f(r, sU,r(X), Ur) dr+ g(r, s",r(X)) dwr.

Again, because u is a (predictable) parameter the results of [2], [5], or [16] extend to
this situation, so the derivative O,,/Ox(x)= C.t exists and is the solution of

fs I(6.3) Cs, I + fe(r, s,r(X), ur)Cs, dr+ gk)(r, ,r(x))C,r dWkr
k=l

Suppose D",, is the matrix-valued process defined by

(6.4)
D,= I- DsU,, fe(r, s.(x), u)- gT)(r, .,(x))2 dr

k=l

Dt/,rg(t’)(r, ",,(x)) dw.
k=l



1288 J. S. BARAS, R. J. ELLIOTT, AND M. KOHLMANN

Using the it6 rule as in 3 we see that d(Dsu,tCsU,t)--0 and Ds,sCs,s= I, so

D,= CU,) -1
S, S,

As before, if

ll"(Xo)ll, sup [:,s(Xo)l,
Os<t

IICll= sup IC,,l, IIDII= sup
O<_s<=T

then applications of Gronwall’s, Jensen’s, and Burkholder’s inequalities imply that

II(xo)ll, Ilcll, and IIDll
are in Lp for all p, 1 p <.

Cost 6.3. As in 2, we shall suppose the cost is purely terminal and given by a
bounded C2 function

c(,(Xo)).
Furthermore, we shall assume

]c(x)[ + c(x)[ + ]c(x)l K3(1 + Ixl q)
for some q <.

The expected cost if a control u y is used, therefore, is

J(u) [c(,(Xo))].
Suppose there is an optimal control u* y so that

J(u*)J(u) for all u
Notation 6.4. If u* is an optimal control, write * for "*, C* for C"*, etc.
DEFINITION 6.5. Consider perturbations of u* ofthe following kind. For s [0, T],

h > 0 such that 0 s < s + h T and A 6 F define, for any other y, a strong variation
of u* by

u*(t,w) if (t, w) [s, s + h] x A,
u(t, w)=

6(t, w) if(t,w)[s,s+h]xA.

The following result is established exactly as Theorem 3.2.
THEOREM 6.6. For any perturbation u of u* consider the process

en the process ,(z,) is indistinguishable from (x).
Note if > s + h, ,,,(z, * (z+)= *+,,(,+(x)).
7. An open loop minimum principle. Now

J(u*) [c(,(Xo))]
[c((x))]

where x sC*o,s(Xo).
Similarly,

(u)= [c(,(Xo))]
[c(",(x))]
[c((z+))].
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Therefore,

J(u)-J(u*)= [c(*,(+)) c((x))].
Because :y(" is differentiable this is

C((Zr)) OX k OX
(7.1)

-1

zr) (f(r,r(zr),u)

-f(r, r(z), U’r)) dr].
As in 5, this gives an explicit formula for the change in the cost resulting from

a "strong variation" in the optimal stochastic open loop control. It involves a time
integration over Is, s+ hi and, again, the only remaining problem is to justify the
differentiation of the right-hand side of (7.1).

Write

r(s, , z)= c(*s.(z))
OX (Zr)\ OX

(Zr)
-1

and

Os,Tp,(x) c(o*,(Xo)) ax (x) l,

(7.2) =E[r(,s,x)lf],
where, as above, x :o*,,(Xo).

Then arguments similar to those of 5--but in fact simpler because Z is not
involved--enable us to show that there is a set S c [0, T] of zero Lebesque measure
such that if s S,

E[F(s, s, x)(f(s, :o*,(Xo), u)-f(s, so*,(Xo), U*))IA] >- 0

for any u e V and A Fs.
That is, in terms of the adjoint variable ps(x) we have the following minimum

principle for stochastic open loop controls.
THEOREM 7.1. If U* V is an optimal stochastic open loop control there is a set

S c [0, T] of zero Lebesgue measure such that if s e! S

p,(x)f(s, x, u*) <-_ p,(x)f(s, x, u) a.s.

for all u V. That is, the optimal control u* almost surely minimizes the Hamiltonian
with adjoint variable ps x ).

Remark 7.2. Under certain conditions the minimum cost attainable under the
stochastic open loop controls is equal to the minimum cost attainable under the Markov
feedback controls of the form u(s, scg.(Xo)). See for example [3], [12]. If UM is a
Markov control, with a corresponding, possibly weak, solution trajectory :u,, then UM
can be considered as a stochastic open loop control UM(W) by putting

NM(W) blM(S ),Ms (Xo, W)).

This means the control in effect "follows" its original trajectory seu- rather than any
new trajectory. That is, the control is similar to the adjoint strategies considered by
Krylov [15]. The significance of this is that when we consider variations in the state
trajectory :, and derivatives of the map x .,(x), the control does not react, and so
we do not introduce derivatives in the u variable.
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If the optimal control u* is the Markov, then the process * is Markov and

(7.3)
ps(x) ElF(s, s, x) F]

=E[r(s,s,x)lx].

8. The ndjoint process. Suppose the optimal stochastic open loop control u* is
Markov. The Jacobian Or/Ox exists, as does (Or/Ox)- and higher derivatives.

THEOREM 8.1. Suppose the optimal control u* is Markov. Then

ps(x) E[ce(*o.r(Xo))Co,,]- pr(O*.r(Xo))fe(r, *O,r(Xo), U* dr

+ px(r, *o,(Xo))g(r, o*,(Xo)) dw

px(r, (o*.,(Xo))g(r, (*o,r(Xo))ge(r, (*O,r(Xo)) dr.

Proof Write f(r) for fe(r, o*,(Xo), u*) and g(r) for g(r, *O,r(Xo)), etc. By unique-
ness of the solutions to (6.1)

(8.1) o*,r(Xo) r(o*,s(Xo))

so, differentiating,

(8.2) Co,r Cs, rCo,s

where Co,T Co*,r, etc. (without the *).
From (7.2) and (7.3)

p(x) [c(*o,(Xo))C,[ Fs],

so from (8.2)

(8.3) ps(x)Co,s [ce(*o,(Xo))Co,l Fs],

and this is a (P, {Ft}) martingale. Write x :o*,s(Xo), C Co,s. From the martingale
representation result 10], the integrand in the representation of ps(x)C as a stochastic
integral is obtained by the It6 rule, noting that only the stochastic integral terms will
appear. These involve the derivatives in x and C. In fact, by considering the system
:-o,t with components :o*,, and Co.t and any real C2 function , the martingale

Ms E[(-o,rl Us] E[(-o,r)lx, C]= V(s,x, C)

V(O, Xo, I)+ V,(r, O,r(XO), Co,)g(r) dw

q- Vc(r, *o,(Xo), Co,r)gk)(r)Co, dwkr
k=l

Therefore, for the vector martingale (8.3)

ps(x)C E[ce(O,T(xo))Co,r]+ p(r, *o,(Xo))g(r) dwCo,r
(8.4)

+ Pr(*O,r(Xo))g(ck)(r)Co, dwk

k=l
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Recall that Do,s C -1, so forming the product of (6.4) and (8.4) by using the It8 rule,
we have

ps(x)=(p,(x)C)Do,

E[C(*O,T(Xo))Co,T]-- pr(*o,r(Xo))f(r) dr

pr(*o,(Xo))g(k)(r) dwk + p(*O,r(Xo))(gk)(r))2 dr
k=l k=l

Io Io+ p(r, ,(Xo))g(r) dw+ p(,(Xo))g(r) dw)
k=l

Io Iop(r, ,(Xo))g(r)g(r) dr- p(,(Xo))(g(r)) dr
k=l k=l

[ce(,(Xo))Co,]- pr(,(Xo))(l ar

Io ;o+ p(r, ,(Xo))g(r) dw- p(r, ,(xo))g(r)g(r) dr,
k=l

thus establishing the result.
This verifies by a simple, direct method the formula of Haussmann [12] without

any requirement that the diffusion coecient matrix gg* is nonsingular. However we
do not identify p(x) with the gradient of the minimum cost process; this follows from
arguments as in [12].

9. Conclusion. Using the theory of stochastic flows the effect of a perturbation of
an optimal control is explicitly calculated in both the paially observed and stochastic
open loop cases. The only diculty is to justify the differentiation. The adjoint variable
p(x) is explicitly identified.

TzozM 9.1. Iff is differentiable in the control variable u, and if the random
variable x= ,,(Xo) has a conditional density q(x) under the measure P*, then the
inequality of eorem 5.1 implies

This is the result of Bensoussan’s paper [1].
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OPTIMAL AND APPROXIMATELY OPTIMAL CONTROL POLICIES
FOR QUEUES IN HEAVY TRAFFIC*

HAROLD J. KUSHNERt$ AND K. M. RAMACHANDRANt

Abstract. The "approximately" optimal control problem for tandem queueing or production networks
(with local feedback allowed) under heavy traffic is treated. The buffers (scaled with traffic) are finite. The
controls allow various inputs, connecting links, and the processors to be shut down or opened to manage
the system. The service and arrival rates, as well as the routing probabilities, can also be controlled, and
the system statistics can depend on the system state (scaled buffer occupancies). The associated costs involve
holding costs, costs for shutting off/turning on the links or processors and the opportunity cost for lost
production. It is shown that the (scaled) controlled system converges weakly (in an appropriate sense) to
a controlled limit "reflected" diffusion. In the rescaled time, the actions of the controllers lead to multiple
"simultaneous" impulses in the limit problem. Thus a nonstandard limit control problem is obtained, and
the usual methods of weak convergence for systems under heavy traffic must be modified. Since it is usually
not possible to obtain the optimal or nearly optimal controls for the physical process, it is of considerable
interest to know whether an optimal or nearly optimal control for the limit process is also nearly optimal
for the physical system with heavy traffic. This is shown to be true under reasonable conditions. Although
the limit control problem is nonstandard and there is little available theory concerning it, acceptable numerical
procedures are available.

Key words, weak convergence, queueing networks, production networks, heavy traffic approximations,
controlled reflected diffusions, controlled queueing networks, approximately optimal stochastic controls,
numerical methods for stochastic control

AMS(MOS) subject classifications. 93E20, 93E25, 90B22, 60F17, 60K25

1. Introduction. We consider optimal and "nearly optimal" control problems for
the open queueing networks in heavy traffic of the type dealt with in the fundamental
papers of Reimann 1 and Harrison [2], [3]. Owing to the state and control dependence
of the processes here, much of their methodology cannot be carried over. One of the
main motivations behind the heavy traffic approximations 1 ]-[4] of queueing networks
is the idea that the limit process is usually much easier to analyze than the actual
physical process, and that it is much easier to find good control policies for the limit.

In [ 1 ], there are several interconnected service or processing stations, and at each
there is an infinite buffer (ours is finite, but suitably scaled). At each there are possible
arrivals from outside the network as well as arrivals routed from other service stations.
Eventually with probability one (w.p.1) all customers leave the network. Under reason-
able conditions on the interarrival and service times and with appropriate spatial and
temporal normalizations, in the heavy traffic case the vector of the normalized queue
lengths converges weakly to a reflected Brownian motion with constant drift and
covariance parameters [ 1 ]. This will be generalized here in several directions, although
we work with a somewhat simpler network structure.

Although it underlies much of the motivation for the limit theorems, there has
been little work on the usefulness of the limit process for purposes of getting a good

* Received by the editors June 1, 1987; accepted for publication (in revised form) January 17, 1989.
Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University,

Providence, Rhode Island 02912.
The work of this author was supported in part by National Science Foundation contract ECS-8505674,

Air Force Office of Scientific Research contract AFOSR-85-0315, and Office of Naval Research contract
N00014-85-K-0607.

The workof this author was supported in part by Army Research Office contract DAAG29-84-K-0082
and Office of Naval Research contract N00014-85-K-0607. Present address, Department of Mathematics,
University-of South Florida, Tampa, Florida 33620.

1293



1294 H. J. KUSHNER AND K. M. RAMACHANDRAN

or nearly optimum control for the physical process. Let e index the traffic intensity.
As e 0, the "intensity" goes to one. For whatever cost criterion is used (this will be
defined in later sections), let W(Tr) denote its value for the physical system when a
policy 7r is used. Suppose that # is an "adaptation" of the optimal or -optimal
policy for the limit, applied to the physical process. (We will say more about such
adaptations later.) For # to be a "good" policy for the physical process we need at
least that V () inf, V (Tr) be small for small e, where the inf is over an appropriate
set of policies for the physical process. This is the problem addressed here. In the
course of the development, a number of interesting and nonclassical problems arise;
for example, the appropriate "limit" control problem might involve multiple "simul-
taneous" impulses, and we must treat state-dependent service, arrival, and routing
processes.

We choose a problem formulation that illustrates the main problems and allows
the development of a method that applies to many other formulations. Our work differs
from earlier work in several important respects. If the service or arrival rates can be
controlled, then the limit process is no longer a reflected Brownian motion with constant
coefficients. Owing to the control, there might be "travel" along the boundaries of the
state space. Some control actions (e.g., on/off controls with associated impulsive costs)
might yield a sequence of paths that do not converge in the Skorokhod topology, but
there still is a meaningful sense in which the limit is a well-defined impulsively controlled
process, perhaps with "multiple simultaneous impulses." The lumping together of all
idle times as done in equation (3) of [1] in the Bk(t) argument is a very slick idea,
but it is inappropriate in our context owing to the state and control dependencies. We
must show that the "limit" controls and other quantities are "admissible," or nonan-
ticipative with respect to the limit Brownian motions. In fact, we combine the ideas
of [1] with those of the martingale method and the weak convergence techniques of
[5] and [6].

The present work is a continuation of the lines of development in [6]-[8] where
approximations to other optimal control problems are dealt with.

In 2, the basic system is described, the control problem is defined and the
assumptions are stated. To avoid some quite complicated bookkeeping, we eventually
specialize to the case where there are only two processors and feedback is only allowed
from a processor to itself. The general results can be readily extended to problems
where (except for the possibility of rerouting an output back to the input of the same
processor), the flow is all "forward." In 3, we discuss representations for the processes
that facilitate the weak convergence analysis, and in 4 we describe the proper "limit"
control problem; i.e., the appropriate controlled reflected diffusion whose optimal (or
6-optimal) controls are to be used for the physical process.

Section 5 contains the basic weak convergence results, and we state and prove
the results concerning the "almost optimality" of the 3-optimal (for small 8) controls
for the limit process, when applied to the physical process. Some computational
questions are discussed in 6. Although the "limit" control problem is not always
simple, effective and convenient numerical methods are available. Reference [10]
contains an analysis of the dynamic programming equation for a one-dimensional
version of the limit problem.

2. Problem description and assumptions. We start by describing a network with K
service stations (processors), the ith referred to as Pi. Each processor services only
one customer at a time, although batch or multiserver cases can all be handled. Shortly,
we specialize to the case K 2, but it is simpler to first use a unified terminology. We
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retain the basic structure of [1], but use a discrete time parameter for notational
simplicity. Each processor can be connected to an external input as well as receive
(and deliver) outputs from (to) other processors.

Let {ai,;} denote the sequence of interarrival times of the customers coming to
from the exterior of the network, and let ; denote the indicator of the event that
there was an arrival from the exterior to Pi at time n. We use the convenient representa-
tion (as in 11 ]) where the processor keeps processing even if the queue is empty, with
the "errors" generated by this convention accounted for by an added reflection term.
With this convention in mind, let {A} denote the sequence of service times for Pi,
and q; the indicator of the event that a service at Pi is completed at time n (whether
or not there are actual "physical" customers in Pi at that time). As in 11 ], we suppose
that if there is an arrival to Pi in the midst of a service interval when the queue at P
is empty, then the actual service time for that customer is just the residual service time
for the current service interval. Under the heavy traffic assumption, this does not affect
the limit formulas. An outline of the proof is in the Appendix. Let I’, i= 1,. ., K,
j 0,. , K, denote the indicator function of the event that a completed service at P
at time n is scheduled to be sent to P (or to the exterior, if j 0). We use {pj, i, j-
1,. ., K} to denote the probability that a completed service from P is to be routed
to P, and write Po 1-j=l Po. The buffer size at P is Bi/x/-, for Bi > 0.

We will impose the following assumptions: We work with impulsive controls only,
although the results can be extended to the case where the service and interarrival
"rates" are controlled continuously. The processor Pi can be shut off for a time, at a
cost k > 0, to be paid at the moment of shut off. The external inputs to P can be shut
off for a time, at a cost ko > 0, to be paid at the moment ofshut off. If P communicates
with P, in lieu of shutting off P, we can open or break the link connecting Pi to P.
In that case the output of P destined for P will be shunted to the exterior and lost,
or sold as a "partially completed" product. The cost for shutting off the link is ko > O,
to be paid at the moment of shut off, and there will be an additional cost for the lost
customers. This cost is qjx/-- per lost customer, qj > 0. By convention, we allow all
customers in P who have completed service there and are destined to return to P
immediately to do so. If the buffer of Pi is full, then one or more inputs must be turned
off, i.e., either the input links to P are shunted to the exterior, or the P connecting
to P are shut off.

Let P, pOi. and P’, respectively, denote the indicators of the events that P is
working at time n (i.e., processing or not shut off), the external input to P is not shut
off at time n, and the link connecting P to P is open at time n, respectively. Let N,;
(respectively, ) denote the nth time that P is turned off (respectively, turned back
on), and set ];=0. Let N’ (i=0, 1,...,K, j=I,...,K) (respectively, ’)
denote the nth time that the link connecting Pi to P is shut off (turned back on,
respectively). (If i=0, then it is for the link connecting the exterior to P.) Define

i,e i,e ij, iJn ~i,e ~ij,v, =eN, v, =eN and similarly define v, and v,
Let X;= (number of customers in or waiting for service at Pg at time n) and

set X’(t)= X]. This is the quantity of interest in the desired interpolated time and
amplitude scale. Then, in this interpolated scale, v’ v, ), n >_- 1, etc., are the intervals
of closure of P, etc. When ratios t/e are used as indices, we use the integral part.
Until 5 and 6, and for notational convenience, we always assume that all processors
and links are working at 0. Thus Vo’-= 0 and v,~.....> v, for n > 0.

To keep track of the flows in the system in a way that allows a convenient
development of the limit theorems, we need to separate the corrections to the flows
due to empty queues and to the flow components due to the control actions. This is
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why (2.1)-(2.4) are introduced. Throughout the paper, e-superscripts will be omitted in
the terms in sums or integrals. Define

With the definitions (2.1)-(2.3), we can write

Xi’(t) Ai’(t) + DJi"(t) ’. D’(t) + E YJ’(t)
ji ji j#i

(2.5) -, Y"(t)-U"(t) + , Uq’(t) E U"(t)
j#i j#i ji

The first term in (2.5) respresents the potential external arrivals to P, the second
represents potential arrivals from other P, j # i, all neglecting the effects of controls
or empty queues. The third term represents potential departures from Pi, again neglect-
ing the effects of controls or empty queues. The other terms correct for these omissions.
The yij,e(. corrects for departures from P when Pi is working and its queue is empty,
and the Y’(. corrects for arrivals to P from P when the buffer of P is empty and
neither Pj nor the link from P to Pi is shut off. The Ui"( corrects for the stopped
external arrivals, when the input to P from the exterior is shut off. The UJ"( corrects
for the stopped departures from Pi when P is closed, and the U"’( corrects for the
stopped arrivals from P to P when either P is not working or the link from P to Pi
is shut off (i.e., shunted to the exterior).

The ZJ’( represents the lost output when the link from P to P is shunted to
the exterior. There can only be lost output at time n if X’. > 0 and P;" 1 and P", 0.
Write X= (X1’ X<’) and let r or 7r denote control policies (i.e., rules for

i,e ",,e ij, e, ij,determining the v v v ), and let E, denote the expectation, given policy
zr and initial condition X x. Let Pt denote the vector of indicator functions {PT} of
the processors and links at time t. (We set P 1 until 5). Then, for a bounded and
continuous k(. and/3 > 0, our cost will be of the discounted form:

K K K

V(er, x,P)=E e-tk(X(t))dt+E,, , k,e-Vl"+E, E E k,j
i=1 i=0j=l

(2.6)
+E e-st qo, dU"(t) + 2 qj dziJ’(t)

i,j
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We now specialize to the case of Fig. 2.1, since it is very awkward to keep track
of the effects of the controls in a network with general feedback allowed. With mainly
notational changes, the case dealt with here can be extended to the general feedforward
case.

Refer to Fig. 2.1, and assume (A2.1). The first part of this assumption says that
if a queue is empty, then we will not continue to "starve" it--but will turn on all the
inputs. The assumption seems to be quite unrestrictive, and it does simplify the
bookkeeping quite a bit.

(A2.1) If X2’. =0, then all inputs to P2 are open’, i.e., pln’e= pln2’e= Pn2’e--1. If
X1’. 0, then the input to P1 is open (i.e., -,Pl’ 1). If some Xi’. Bi, then
all inputs to P are closed.

For the system of Fig. 2.1, and under (A2.1), we have that (2.1)-(2.5) take the
forms (2.7)-(2.9). Here, p2,, 1, since there is never a need to shut off P2"

t/

P,, I(x=o,

(2.7)

t/
y:O, (t) x/E O 2oI,, I{x,,=ot,

dy2,(s).
Jv,2t

The y12,e(. will converge to a continuous function and v,-*-12’e O nl2,e
_

0. Thus the last
term on the right of the last equation will disappear in the limit. Define UI’(.)
ul’( + U12’( ). Then

(2.8a) Xa’(t)=a"(t)-D’(t)-Da2’(t)+ Y’(t)+ y12’(t)-U’(t)+ ul’(t),

(2.8b) X2’(t)=AZ’(t)-DZ’(t)+D12"(t)+ Y2’(t)- Yc2’(t) U2’(t) Uc2’(t),

V(r, x, P)= E e-’k(X’(t)) dt+ k,Ex E e-3"+ E ko,Ex , e
i=1

(2.9)

+k2E e-tv’2"+E e-tt qodU"(t)+q2dZZ’(t)
i=1

We now give some more definitions and state the heavy traffic assumptions. It
i,e ~i,e ijwill sometimes be convenient to write the multiple sequence v-- {v, v, v,’ ’

DO zO

FIG. 2.1. The system configuration.
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as a single sequence Let {z,} denote the sequence of event times indicated by all the
elements of v in nonincreasing order, but without respect to which events they indicate,
or whether they indicate multiple events. Define R,] (R,I",..nRI’,..nR2’, R n12’), where
R" 1, -1, or 0 depending on whether or not the "control" with the same superscript
was opened (turned on), closed (turned off) or left unchanged at z,]. From
{Rn, z, 6Un}, we can recover all the control actions and their times and values.

Define

U U"(+,)- U’(), U"(+,)- U"(),

U2’e("Fn+l) U2’e("Fn), Ulc2’e(Tn+l) "-’c]r[12"s (T)).

If r is not defined for some n, to, then let it equal to infinity there, and define the
associated R T, and 6U7, arbitrarily.

i,e i,e i,e En denote the expectation given theLet S Yj=I aj Sd, j= Aj Let
arrival, departure, and control intervals and actions that ended by real time Si’

a,n, as
i,ewell as the lengths of all other arrival and service intervals (other than an+) that

i,estarted by, but might not have been completed by, time S,n. Analogously, E d,n denotes
the expectation given the arrival, departure, and control intervals and actions that

i,eended by real time Sd, as well as the lengths of all other arrival and service intervals
i,e(other than An+i) that started by S, Define the conditional variances var.nvar

analogously.
Define

E i,e i,e i,e
a, nOln+l n+l,
i,e i,e i,eE d,nAn+1--An+l,

2
Vara, ol n+l (’a,n+l)

i,e i,e i,e
vard, Zn+l (d,n+l)2.

Henceforth when we say that Pi, Poi, or P12, respectively, is open (closed) at time

n, we mean that processor is working, the link from the exterior to Pi is open or
(respectively), the link from P to P2 is open for traffic.

We will use the following assumption.

(A2.2) There are positive numbers ga and gdi and bounded continuous functions
a (. and d( such that

i,e[t,n+l]-- -"gaiq-X/r" a,n + o(v/-{), i,e --1n+l] ga, + d,n + o(v/),

where ain=a (Xs:,) and dn=d(Xs,:;,).
Comment on (A2.2). We allow the (marginal) external interarrival intervals and

the service intervals to depend on the system state. The argument X,., (for example)
is the proper one, since S. is the moment of arrival to Pi of the (n’+ 1)st customer
from the outside, and X,,:r, is the system state at that time. At some expense in details,
we could let the marginal mean rates a(.) and d( be controlled. We would then
use the forms ia (Xs,. r,.) etc., where the r represents controls. The condition
(A2.2) together with 02.4)"’mply that the total load put on processor P is very close
to its processing capacity. In other words, the idle time is negligible in the sense that
it converges to zero as e 0.

(A2.3) i,e 12 i,eThe set {lan , JAn [, i, n <c, small e, all control actions} is uniformly
integrable.

(A2.4) (Heavy traffic assumption)

gal--(1--Pll)gdl, [P,2gd,+ga2]/(1--P22)--gd2
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Assumption (A2.4) is also what we would get from Reimann’s [1] formulas for
the case of Fig. 2.1.

(A2.5) The routing variables {Ik i,j, k} are mutually independent and indepen-
i,e i,edent of the {ck ,Ak } and P{I’" 1} =Pij.

(A2.6) There are continuous functions oai(" ), crdi(" such that

O" .+l O’a i(Xs,i’;)

where 6 --> 0, uniformly in all other variables.

Comment on (A2.5) and (A2.6). We allow the conditional variance to depend on
the state here, just to show the possibilities. The sequence of interarrival times or
service intervals can be correlated (in ways other than via the "state" dependence used
here). This would involve a more complex method for obtaining the weak convergence.
The perturbed test function methods of [5] can be used, but the additional notational
burden hardly seems worth it now.

3. A convenient representation for X(.). In this section, we center and rewrite the
terms of (2.8) to facilitate the weak convergence analysis in 5. We will do three things.
First, the A and D processes will be centered, the centering terms simplified, and the
centered processes written as a rescaling of simpler processes. This is similar to the
procedure of 1 ]. Then we will represent the yij, and Ui’ in terms of simpler processes
Y’ and Ui’e plus a term that will go to zero as e- 0. Finally, we will represent Y’
and Xi’ as continuous functions of the "other" data.

Centering of the arrival and departure processes. Define ;(t) (and analogously
](t)) to be the inverse ofthe interpolated arrival time function eS,,,/,. More precisely,
define

(t) max {ek" eS, t}.

Define the centered processes

tie S: ,-1 [ 1,]

(3.1)

D’(t) lll

The second equality in the first definition follows from the fact that ’= 1 only
at the left endpoint in the interval [S,, S,+) and the length of the interval is a

Owing to the independence assumptions in (A2.5), we can replace the I] by
I. We can write the Ai’( of (2.3) in the form

/"()
(3.)

A(’;()) +() A’,() + ().
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(3.3)

where

Doing the same thing for the D’e( ), we have

Di, , 5 o, 1,
=--o (Sd (t))+,.,a (t)= (t)+,-,a (t)

(3.4)

For purposes of calculation below, write

We now cancel the "principal parts" of the L terms. By taking the terms in the
order in which they would appear in the centering of the first three terms of (2.8a)
and using the expansion in (A2.2), we write

’ft)- (7’(t) + k’(t)) 2 [gl+a+o()]
k=l

(3.5) - Z a[ga+d+o()](-p).
k=l

Since =1 a= 1/e (mod O(1)), the principal term of the first sum is gt/
(mod O()), and of the second is (1-pl)galt/ (mod O()). These cancel by
(A2.4). By using the definitions of and a, we can write the sum of the middle
terms in the first sum of (3.5) as

t/e
e E al(Xk) + (t)

(where all 6 (. here and below go to zero uniformly on bounded time intervals as
e 0), and similarly for the analogous terms in the second sum.

With the above cancellations and the last representation, we can rewrite (3.5) as
t/ o

(.

Repeating the procedure for the biases" arising from (2.8b), we get

t/e

(3.7)

reresemafi fr U’, go,. Define the processes (with P’ 1)

(3.8) g,e(. )= glO,e(, )+ g,(. ), g,(, t= gO,(. ).

We can also write

(.9a) e’’(t)
=1 v’e
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It will turn out (see 5) that the limits in (3.9b) hold:

U’J’(.)-Ul"(.)p,j/(1-p,,)=:>O, j=0,2,
t/e

Ule2’(t)-x/p,2 q(1--nnnn2)0,
o

z’,(. )-[ ’,(. )- u’,( )]o,
(3.9b) ,’-vn -0 for all a, n,

r",( .)- P’ Y’,(.)0,
pao+p2

v’?,( v,(. o.
To prepare for the utilization of these convergences and simplifications, rewrite (2.8)
as (3.10), where the pi,(. are linear combinations of the 6(. in (3.6) and (3,7) and
fi2"(.)=p2"(.)+(Ve2"(.)-p,2V"(.)/(p,o+p,2)) and the Wi’(.), i=1,2, are
defined to be the sum of the first three terms in the middle part of (3.10a) and (3.10b),
respectively:

X"(t) ,,"(t) (/’’(t) +/’’(t)) + B"(t)
(3.10a) + (Yl’(t)+ Y2’(t))- U’(t)+ U’(t)+pl’(t)

W"(t) + Bl"(t) + Y"(t) U"(t) + U"(t) + p"(t),

X2’(t) ,2,(t) -/20,(t) 4-/12,(t) 4- B2’(t)
+ V2’(t)- V2,(t) U2,(t)- U2,(t)+p2,(t)

(3.10b)
W:’ (t)+ B2’(t) + Y2"(t)-p,2 V"(t)/(p,2+p,o)

U2,(t)- U’c2’(t)4- fi2’(t).
We also write

(3.11) V*(Tr, x) [(2.9) with Z2’(’) ulc2"e(’)-U12’e(’)4-3"e(’)]
where fi3.(.) is an "error" term. We have supt<__Tlpi’(t)]-->O in distribution as e-0,
for each T < o. Also, it will be shown in 5 that, for any sequence of controls 7r

with sup V(r, x) <o, sup,<_Tlfii’(t)[-O in distribution for any T<o.
Owing to the impulsive nature of the "control" part of the cost (2.9), on any

bounded time interval there are only a finite number (w.p.1) of subintervals on which
the controls are active. By the definitions, the reflection terms YJ’(. cannot increase
on these "control intervals." In particular, Y’(.) can only increase when both Pol
and P are on (recall that Pol must be on when X =0). Also, yZ,e(. can increase
only when all of P, P2, and P02 are on (by (A2.1), if X2’=. 0, then all inputs must
be turned on). Because of this and the feedforward nature of the problem, the simplest
form of the reflection principle can be used to obtain the "reflection" terms as
continuous functions of the other "noncontrol" data, simply by working with the
appropriate "noncontrol" time segments, and we now formalize this.

The following result is well known and is a special case of the cited results in [1]
and 12].

LEMMA 3.1. Let z( be in D[0, oo), the space ofreal-valuedfunctions with left-hand
limits and that are right continuous, and with the sup norm topology. There is a unique
y( in D[0, oo) such that x( z( + y( and x( t) >- O, y(O) O, and y( is nonde-
creasing and increases only when x(.)=0. In particular, y(t)=-min {0, infs=<, z(s)}.
The map z y is continuous in the sup norm on each finite interval [0, T].
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Remark. In all cases below, the functions that replace z, x, and y will be the
obvious terms from (3.10). We will want a representation of y(.) as a continuous
function of the other terms on the right-hand side of (3.10) to simplify the weak
convergence proof.

Let jl,=n [[al’l’en [l,e)n denote the sequence of successive intervals (of interpolated
time) such that P,’ pl, 1 for ek jl,,, and let j2,, [/x2,n 2’) denote the success-
ive intervals such that P,’ p,2, p2, 1 for ek j2,;. The Y"(.) can increase
only on the J;.

We apply the representation in Lemma 3.1 to get an alternative representation of
the increments of yi,(. on the time segments between the control actions. For any
function.f(.) in D[0, oe), define the function Tnf(.) in D[0,0e) by 67,f(.)=
f((i +.)f-i/2;)-f(/xi,;). The function f(. is just the segment of the function
f(. ), stopped at/2 ’n shifted left by/x ’n and centered by subtracting the new "initial
value" f(t.l, i’e),, We now apply Lemma 3.1 on the intervals jl,, and J’ in turn.

By Lemma 3.1, for t_-> 0 we have

(ln (t) -min inf (Xl’(/x.)+ 31. (s)+ llnB (s)--I- tln p (S)), 0
[..st

(3.12) 62n (t)=-min inf X2’ B2’e(S
-\[_st

Pl+Plo
Also, we have

’, (t) E ,,, ,, ).y,(_ ,
i i’et

We use the following notation for functions of infinitely many variables. Let S be a
metric space with metric d(.) and canonical point s or s’. On S-I-[ S, with
canonical point s-(sl,"’) or s’-(s,...), we use the metric d(s,s’)-

2-dn(s, s;)/[14-d(s, s’)]. Suppose that the number of control actions on each
bounded time interval is finite. Then, from (3.12), we can construct a unique function
F(.) with values in D[0, oo) and such that

W Be i,e i,e i,e i,e(yl,( y2,(.)) F(Xo, (.) (.),X (tz, ),lz,
(3.13)

i=1,2, n=l,2,...)

where F(.) is continuous (recall that we use the sup norm topology on bounded
intervals on D[0, oe) here), and Yi’(.) can increase only when X’(t) equals zero.
Also Xi’( >= 0, always.

A tentative form for the limit control problem. To motivate the form of the limit
process, suppose that the arguments of F(.) converge to W(.), B(.),. ., p(.),
where p(.)--0, and let Y(.) be the limit of yi,(.). Then, on each bounded time
interval, the complement of the intervals {[/x ., /2 ),, n < eel will just be a finite set of
points, and the controls will be impulses acting at these points. Using this assumed
convergence and the approximations in (3.9b), we can characterize the limit process as

Xl(t) X(0) + WI(t) + B(t) + ya(t) Ul(t) + Ul(t),
(3.14) X2(t) X2(0) + W2(t) + B2(t) + Y2(t)

--P2 yl(t)/(P12+Plo)- U2(t) ulcZ(t).
The sense will be made precise in Theorem 5.1.
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The ylc2 can be obtained from the limit yl(. via (3.9). The limits YI(.)=
lim (yO,(.)+ y2,(.)) and yZ(.)=lim y20,(.) are obtained from the limit of
(3.13). Furthermore (as in [1]), the yi(.) obtained from the limits in (3.13) are the
unique continuous functions that can increase only when Xi(t) is zero and that
guarantee Xi(t) _-> 0.

The Uc2(.) can be used to define U2(.) via the limits in (3.9). It will turn out
that U2( )=p12Ul( )/(1 -ply).

4. Description of the limit control problem. In this section, we define the proper
limit control problem for the system of Fig. 2.1. First, it will be convenient to describe
the effects of various control actions on the X(.) for small e. We do this in some
detail, since the limit problem is somewhat nonstandard, owing to the possibility of
"multiple simultaneous impulses."

For the "’limit" problem to make sense as an approximation to the physical
problem, for any admissible policy r for X(. ), there must be a sequence r of policies
that can be applied to the X( (e.g., Po, Pi on/off) and such that, under r, X(
converges to X(. under policy r, and the associated costs also converge. Because of
this, the limit control problem must be defined in terms of limits of what is possible
for the X (.).

Controls for the limit problem. Refer to Fig. 4.1, where some typical paths are
constructed, under the heavy traffic conditions. Start at point (a) with all P, P on
except that Po is off. The path moves to the left and as e- 0, it converges to the
horizontal line (a, b). The mean (interpolated) movement to the left in time A is
gaiA/N/-- O(A). Hence in the limit, as e -0, there is an impulsive change.

Now, restart at (d) with only PI off. The path drops, and as e - 0 it tends to the
vertical line (d, e). In time A, the mean drop is p2gaA/v/-+ O(A). The same path is
followed if only Po: is off or if P and Po are both off, although the "drop" speed
will be different. Now, restart at (e) with only P1 off. The path moves toward (f) (for

g
2

Po off

b

d

Pa off

C

P ,Po off

Po off

0 X
_

B
FIG. 4.1. Impulsive changes in X( or X(. due to the control actions.
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small e), and the limit slope can be calculated from

(4.1)
net mean flow into

net mean flow into
ga2- (1 P22) gcl2 Pl2 gd

gal gal

If the path reaches (f), then Pol must be turned off. If,. at (g), we turn P back on
(but leave Pol off), then the path moves toward (h). The effects of both P1 and P2
being off simultaneously are the same as for P being off alone. Over small intervals
of length A, the A, D, and Y terms in (3.10) contribute very little to the paths (compared
to the effects of the control actions), since they converge weakly to continuous functions.

Now refer to (i), and let only Po and Po2 be off. Then the path moves to (j) with
a limit slope [(1--pz2)gd2--plgdl]/(1--Pll)gdl.

All finite sequences of arbitrary lengths of the impulses described in connection
with Fig. 4.1 are possible. Suppose (e)- (f)-> (g)-* (h). Then as e -*0, it would appear
that the limit X(.) jumps from (e) to (h) directly. But this (e)--> (h) impulse must be
realized as a concatenation of the basic impulses described above. In general the limit
control is specified by a sequence of off/on actions for the Pi, P0, in a specified order,
and with the impulsive distance traveled between successive ("simultaneous") control
actions specified. The cost paid for the impulses is precisely the impulsive costs defined
by (2.9). The described limitation on the ways in which the impulses for X(. can be
created is important, if the control problem for the limit X(. is to be properly related
to that for X(.). In 6, we show that the problem can be quite tractable from a
numerical point of view.

The instantaneous changes in the U"(.) can be readily read off from the limit
sequences of simultaneous impulses. For illustration, we do it for the (e, f, g, h)
sequence of Fig. 4.1. Let ei, etc. denote the ith coordinate of the point (e), and let
6U denote the increment in Us. On (e, f), 6U1+ tU12=fl-e, 6Uc2= e2-f2. On
(f, g), 6U=U+6U-, and the value is unimportant, since their effects cancel in
(2.8a). Also, tUlcZ=f2-g2 On (g, h), tU01= gl- hi. All nonspecified 6U are zero.
The 6Ui always occur together as the sum (UI+ U2).

The limit dynamical system. The Wiener process. The limit system will be (3.14),
where the Wi(.) can be written in terms of the limits of the terms in (3.10) that are
used to define them:

(4.2) W( ,(. + W(. ), W(. _/1o(. _/12(. ),

(4.3) W2(. )=/2(. )+ W,](. ), W](. )= _/2o(. )+/12(. ).

Here, all the terms are continuous martingales, with 1(.), 2(.), /2o(.) and
(o(.),2(.)) being mutually orthogonal. The quadratic variation of (.) is

2o g(X(s)) ds and that of Wd(" W(" ), W(" )) is E(t) {0(t)}, where

) (X(s)) dsZ,,(t) ga, p,,(1 p,,)t+g],(1-p,,

(4.4)
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If the o-]i and O-2ai are constants, then the covariance is precisely that obtained by
Reimann [1] (with a different notation used there).

It is evident from (4.4) and the cited orthogonality properties that there are

w ,(.mutually independent Wiener processes wia( ), wa(" ), w](), { (.), w )}, where
each scalar valued process is standard, and with respect to which X(. is nonanticipa-
tive and Ewa1(t)wZ(t)=-[pllp12/(1-pl,)(1-P12)]1/2t and

/i(/) _....3/2 (X(s)) dw(s)gai ai

(4.5)
W(t)=[gapl(1-p)]/w(t)+(1-pl)g a(X(s)) dw(x),

g]q2 (X(s)) dwS(s)P20g2 d2(g(s)) dw(S)--Pl2 dl

The drift terms B(.) in (3.14) came from (3.6) and (3.7) and are

B() [a(X(s))-(1-p)dl(X(s))] ds,

(4.
B() [a(X(s))-(1-p)d(X(s))+pd(X(s))] ds.

ssle emrl efios. The U and U in (3.14) ere nondecreasing piecewise
constant functions having only a finite number of jumps on each finite interval, and
they can be taken to be right continuous. They thus correspond to fimpulsive" controls.
The allowed impulsive effects of U in (3.14) are those described for U’ in (2.8), as
e 0. Also the impulsive effects of U are the limits of those of U’, and the effects
of the U are those of the U’ as e 0. This completely characterizes the possibilities
for the impulse control of (3.14). Generally, several components of the controls might
jump simultaneously, or a single jump in one component might be a consequence of
a multiple simultaneous off/on sequence. We must allow these possibilities and distin-
guish an order for the simultaneity," as discussed above, not only because they are
possible control actions, but because they are possible limits-of control actions for the
physical processes. Thus, we count the parts of the multiple simultaneous impulses as
distinct impulses. We now develop the notation for keeping track of the necessary
information. Recall the definitions of r and R given below (2.9).

Let % denote the sequence of event times. The % are not necessarily distinct, but
%+ % and the subscript n denotes the correct ordering, simultaneous" or not. At
each event time one or more of P or P0 might shut off or turn on. What happens is
indicated by the vector R (Rl, R R R), where R= 1, -1 or 0 (respectively,
R) according to whether or not P0 (respectively, P) is turned on, off, or not changed
at . Associated with (, R) is U
) change in the concrols U(. ). To illustrate the procedure refer to the path (e, g, h)

in Fig. 4.1. There are four event times: associated with (e), with (f), etc. Also
r r r3 4. At , R 1. At , R 1. At 3, R 1 and at r4, R 1. All
nonlisted R are zero. The associated impulses U are given in the discussion below
(4.3).

The {U, , R} is said to be a control policy. The policy is said to be admissible
if the function

(4.7) (t)={Xo,UI,,,t,rI,,,,l,RI,,,,,Ii,,,,l,n<,X(t), Y(t)}
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is nonanticipative with r.e.spe.c..t to the Wiener processes w(. ). An equivalent definition
of admissibility is if the A’, Do (.) are martingales with respect to the filtration generated
by {(t),.i( ),/)iJ(. )}, with the quadratic variation defined in and above (4.4).

The Y(. in (3.14) is obtained from (5.1) below that is in turn obtained by taking
limits ,in (3.13 ).

For an admissible policy, the cost function (the limit of (2.9)) is

ioV(r, x, P) E e-tk(X(t)) dt + k,E e

2

(4.8) +Z koE 2 e-2’+ k,2E Z e-’

+ e-m qodU(t)+qd[U(t)-U(t)]
i=1

In (4.8), the v, v are defined as the moments of shutting off/turning on the indicated
links or processors, as in 2.

g. We eergeee. Throughout the section, we use the Skorokhod topology on
the products of D[0, ), and the Euclidean topology on the Euclidean spaces.

We will use the following assumption"

(A5.1) The uncontrolled X(. has a unique solution (in the weak sense) for each
initial condition.

Note that (A5.1) implies weak uniqueness of the solution X(. for any admissible
control policy. Lemmas 5.1 and 5.2 are preparatory for the main convergence Theorem
5.1.

In the ensuing analysis, we ignore the possible increase of Yd when P’ =0
(and P’= 1) for simplicity. This does not affect the result for the following reason.
Shutting off the link from P1 to P does not affect the input or output process from
P. Also, the mean number of times that the link can be shut off on any bounded time
interval is bounded uniformly in e, for otherwise the cost will go to infinity, as e 0.
Fuhermore, the total mean interpolated time that the link is shut off on any bounded
time interval goes to zero as e 0, for otherwise the Z’( component" of the cost
will go to infinity as e 0. A heavy trac analysis of P by itself yields a continuous
limit Y(. (see Lemma 5.3). The above facts imply that the mean increase of yl,e(.
during all the intervals (on any [0, T]) when P’ 0 (and Pld= 1) must go to zero
as e0.

LMMA 5.1. Assume (A2.1)-(A2.6) and (A5.1) and let sup V(, X;) < for
{R, , u, n <} admissible. en the first four convergences in (3.9b) all hold.

On each interval [0, t] the mean number ofcontrol actions is bounded uniformly in e and
each control interval collapses to a point as e 0.

Proo We prove (3.9b) only for the process o,(. UO,(.
-poU’( )/(po+p), since the rest are treated in the same way. Due to the mutual
independence of the {_0., n < m} and its independence of {

lO 12

g10’e)" ,/e__ [ln(pO +Pl)P____InPl0] n(1 Pn)l

/ (1- P)= C(t). It is easilyis a martingale and its variance is bounded by O(e)E
seen that lim ’/ (1-P)<, for otherwise the buffer of P will fill up (one
or more times), forcing Po to shut off (one or more times) such that lim N U’(t)



QUEUES IN HEAVY TRAFFIC 1307

and the associated costs will go to infinity. Thus C(t) 0 as e -> 0, yielding the desired
result that 1o,(.) converges weakly to the zero process. The last assertion is
obvious.

Define X;( Xi’((/x i’n +" f3 fii,).n Then (the 6i, W, etc., are defined above
(3.12)) we can write

wl,e 1,e pl,e( yl,exld(t)
(5.1) X’=X’(’)+6.W2’(t)+6.B’"(t)+62’(t)

--P12/(P,2 + Plo)n Y’(t) + 6, Yz’(t).
In (5.1), {’} is the subset of {r} at which both P and Po are on, with at least one
turned off at r,_a, and {, } is the subset of times at which all of P1, P2, and Po
are on, with at least one being off at r_.

LMMA 5.2. Assume the conditions of Lemma 5.1. For a a and d, the processes
i,e --i,eeS,t/ and S (.) converge weakly to S(. and (. ), respectively, where S (t)= t/gi

and g(t)= tg. e {"(. ), 2,(. ), (1,(.), 2,(. )), 2o(. )} is tight in D[0,
and the limits of any weakly convergent subsequence of the four sets (we pair 1o and
2) are strongly orthogonal continuous martingales. e {6 Y’(.), e >0} are tight
and the weak limits are continuous, and similarly for the { Y’ (.), e > 0}. e {X (.),
e > 0} are tight and have continuous limits. e last two parts of (3.9b) hold, and the
pi, (.) and i, (.) in (3.10), (3.11), all converge to the zero process.

Proof We now prove the first assertion and do only one case. We have
t/e

8Sa,t/e-S(t)= 8 E [i’e--i’e]+O()

The summands are martingale differences, since they are centered about their condi-
tional expectations, given the "past." Thus, the variance of the sum is O(e). The weak
convergence follows from this.

Owing to the above results, for the second assertion of the lemma we need only
prove that the set {’(. ), ’(. ), (fio,(.), fi2,(. )), fio,(. )} is tight and that the
limits are continuous maingales, whose quadratic covariation 0.

By the fact that the terms in the summands in each sum in the above set are
centered about their conditional expectations (given the "past"), and the square
integrability (A2.3), each term is a sum of martingale differences and is tight in the
Skorokhod topology. This follows from the Aldous criterion [5, Thm. 3.3, Pa 2].

By the uniform integrability in (A2.3), for each T< m, 6 > 0,

P{ sup [(1-/),>6}0.Tie

Then the jumps in (. are "uniformly small." This implies that any weak limit of
{(. ), e > 0} must have continuous paths w.p.1. This is similar for the other terms.

We next prove that all weak limits are orthogonal martingales. We first show the
ohogonality of A’ "’o (’) and Ao (’). Take a "typical’ term from each sum and use
the definition of E’ above (A2.2) and the centering in (3.1) to get (drop the e for
simplicity)

’ I-pi =0.+ 1
n

I{s:,_,<s3:;_l}d,-
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By a similar calculation we can show the following. Let h(.) be a bounded and
continuous function of its argument and let ti, 1,..., k, and s be such that
ti <- < + s. Then

Eh((tj), r5j, <
’o (tj),j=k)[ (t+s)Dg’(t+s) (t)/(t)]=0.

If .(. ), /(. are weak limits, then

Eh(io( tj), (tj),j <= k)[(t + s)l( + s)-(t))( t)] 0.

Due to the arbitrariness of h(.), k, tj, t, + s, this expression implies that (. and
/(. are strongly orthogonal martingales. (The fact that they are martingales can be
seen by repeating the argument and dropping one of the processes.) This argument
yields the third sentence of the theorem, when applied to all the processes there.

yi,The pi,e( satisfy E supl<_Tlpi’(t)l--> 0 for each T. The fact that {ln (’),
n 1, 2, , e > 0} is tight and has continuous limits follows from the above assertions
concerning tightness and continuous limits of the processes in the arguments of the
first part of (3.12). The assertion concerning { yl,(. ), e > 0} follows from this argument
and the fact that there are only finitely many control actions w.p.1 on each bounded
time interval.

We now show that (Plo +P2)y2,(. )-P2 Y’(" converges to the zero process
as e - 0. This expression equals x/ 2tl/e [PlolI2--P12I]pnI{x,=o}, which is a sum of
martingale differences and has variance O(e)E .’1/ I{x’ o} The fact that yl,(.)n_.

converges weakly to a continuous process implies that

Tie }P O(e) ’, I{xl=o} >-_ --> 0

y2,efor any T> 0, > 0. The tightness and continuity of the weak limits of {62n ("),
n 1, 2, , e > 0} and of { y2,(. ), e > 0} follows from the above assertions and the
representation in the second line of (3.12).

The following lemma is a corollary of Lemma 5.2.
LEMMA 5.3. Assume the conditions ofLemma 5.1. Let e index a weakly convergent

subsequence of {X hi’e(" ), ]Jb wi’e( ), e > O, 1, 2, n 1, 2, } with limit denoted
by {Xin( Idbin, i W ,,,i

", (.), i=1,2, n=l,2,.-.}. Then ]Jbn+l--lUb and Xn(0)=
lim Xi’(,;). For a real-valuedfunction G(. on [0, oo), define the function 3nG(" )=
G((la, +.) l,n+l)- G(/x’n). Then { yi,e(. ), 1, 2, e > 0} converges weakly to Y(. ),
y2(.)), where Yi(’)=.n./,=,6nY(t--tXn) and 6nYi(.) is just the weak limit of

gi,{6in (’), e 0}. We have

y1X’ (t) X in (0) + 8,. W’(t) + 8,.Bl(t) + aln (t),

X2n(t) X2n(0) + a2,,W2(t) + 62nB2(t) + 62ny2(t)-p1262nY’(t)/(p,_+p,o).

The 6inyi( are continuous and can increase only at those times when Xn(.) equals
zero. Also X in (t) >= O, for all t, n, i.

The proof follows from Lemma 5.2, the representation (3.12), and the weak
convergence.

Notation for Theorem 5.1. Let 9 denote the set {X, /’(.), /o,(.), B(.),
Rn( ), r, 6U,, i,j, n}, where the 9, r and 6U are defined below (2.9). If e indexes
a weakly convergent subsequence of{} with limit 9, we use the following notation.

Define the process

9(. )= {Xo, ’(" ), l’J( ), B(. ), i,j, (Rn, r,, 8U,)I{,,<=.}, n < oo},
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and let N(t) denote the o’-algebra induced by {(s),s_< t}. Analogously to the
definition of R, and 6U, we write R,=(RI,,R,1,R.2,R1.2) and 6U,=
.(6U1, 6 12 U 6U The {/x } is a subset of {-,}," ", Uc,). Define (t) =Y ,,=,

TrtEOREM 5.1. Assume the conditions ofLemma 5.1. Then {e} is tight. Let e index
a weakly convergent subsequence with limit . Let X(.) denote the process with paths
in D[0, oo) that equals Xin( t- t-t,) for 6 [/x,, ]Zn+l). Then (X (.), X2( )) satisfy (3.14),
where WI(.)=,1(.)-(/(.)+/2(.)) and W2(.)=2(.)-/2(.)+/2(.). The
yi( can increase only when Xi( takes the value zero, and xi(t) [0, Bi]. Then ,i(
and Dr( are continuous 1 t)-martingales with quadratic variations given in and above
(4.4). The limit policy r {R,, z,, 6U,} is admissible for X(. ).

Remark. We might not have Xe(.)X(.) in the Skorokhod topology. The
problem concerns the behavior during the "control intervals." For example, let to
eke > 0 and consider the sequence of right continuous and piecewise constant functions
defined by Me(t)= 0 for t-<_ to, and that then increases at each ek (k >-ko) by
until the value of one is reached. In an obvious sense, the limit is a step functionwith
an increase of unity at to, but the convergence is not in the Skorokhod topology. We
still get what is desired for our control problem.

Proof By Lemmas 5.1 and 5.2, the processes and random variables in R are
tight, so that we can extract and work with a weakly convergent subsequence. Also,
the limits of the processes are continuous martingales. The assertion concerning
yi(. and the representation (3.14) follows from Lemma 5.3.

Owing to the strong orthogonality of the four processes ,i,e(. ), etc., it is sufficient
to prove the "quadratic variation" property separately for each component. We do it
only for (/1o(.),/2(. )). Let e index a weakly convergent subsequence of {e}. Let
f(. be a smooth function with compact support and h (.) a bounded and continuous
function, both being real valued. Let the t, + s and k below be points such that
the probability P{% equals or t+s or tk}=0 for each n, k. Define
I,e -pijAe/

By the uniform integrability (A2.3), the representation of D’e( as a sum of the
&b’e. and a truncated Taylor series expansion, for each N < o0 we can write

Eh(Xe(tk), ,i’e(tk) J’e(tk), Bi’e(tk), (R,], ’r, tJen)I{<=tk}, k, n N)

[f(/l’e(t + s), /12’e(t + S)) f(lO’e( t), /12’e(t))

(5.2) ’+ ( -{ )a=0,2 en=ld,e(t)

2 ,t3 =0,2 =5

Equation (5.2) holds since the conditional expectation of the bracketed quantity, given
the data in the argument of h(. ), goes to zero in the mean as e- 0.

By the properties of conditional expectations, (5.2) remains true if we replace
each term of the sums in the bracket by its conditional expectation given any data that
includes the data in the argument of h(. ). Now, to exploit this, use the definition of
E d,, given above (A2.2), the centering of 6,’e and the assumption (A2.6) on the,, aq, 0),1 in the first sum in (5.2) by zero (,_conditional variances, to replace
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and the 6@k 6@ in the second by Ea,k-1 k 1. For k any random time >-q’(t),
this latter quantity is

Ea,_ k -Pj
(5.3)

Po j =P,8-P,Plt +P,Pt var’,,_ A,/(,,)2

Plt,O --Pl,Pl +PlPlog2dO’2dl(Xs:,_,)
+ (negligible terms).

With these replacements, the limit (as e-0) of the double sum in (5.2) is

1
2 f

(t+)

fx.x,(5(’),/2(r)). .(r) dr
2 ..=0,2 agS(t)

where

oo(t) Plo p12o + pog2alcr2al(X( t/ga 1)),
02(t) --PloP,2 +PoP12 g2d 0"2d X [/gd 1)),
;22(t) p2o- p22o + pog2aCr2al(X(t/gal))

where we used (5.3) and the fact that 1,eSa,t/-) t/ga to get the proper limit of the
argument of cr(.). The right-hand sides are defined for all that are not points of
control action (i.e., for all but a finite number of t, w.p.1).

--iNow, recalling that Sa(t)= gait, and taking limits in (5.2), we obtain

Eh(X(tk), .i(tk), 5iJ(tk), Bi(tk), (R., %, 6U.)I(.<_t), n <- N, k})

(5.4) [f(/l(t + s), /12(t + S))--f(/10(’), /12(t))
(t+s)gdi ]2 a, =0,2 .ttgdi

The arbitrariness of h(. ), f(. ), N, t, + s, and {ti} implies that the expectation of the
bracketed term, conditional on g(t), is zero. Thus, (5.4) implies the asserted martingale
property of/(. ).

The quadratic variation can be obtained from (5.4) by observing that /i(t)--
/)l(gdt) and using the change of variables r/gda- r and setting f(x, y) to either x2,
xy, or y2.

With analogous calculations for/)o,(. and for the ,’( ), we get the quadratic
variation for the W(. ), i(. ), b,(. ), as given in 4.

By the above argument, the limit policy {%, R,, 6U,} is "nonanticipative" with
respect to the maingales. Owing to the way it was obtained as a limit of the
{r, R, 6U}, the limit policy {%, R,, 6U,} is admissible in the sense that it corre-
sponds to admissible sequences of impulses corresponding to the sequence of off/on
controls as discussed in 4.

Extension. Consider the graph of X(.) (X’(.) plotted versus X2’( )) in the
state space during a fixed control action. It can be shown that the graph converges
uniformly (in probability) to the limit straight lines given by, for example, Fig. 4.1.
The convergence is in the sense that the maximum value of the distance between any
point on (this part of) the graph of X( and the closest point on the limit straight
line goes to zero in probability.

Alternatively, during the "control sections," use a rescaling with e used for both
the amplitude and timescale. Then the processes during this control interval converge
in the Skorokhod topology, to straight lines whose graphs are precisely the graph
referred to above.
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THEOREM 5.2. Assume (A2.1)-(A2.6) and (A5.1), and let e index a weakly conver-
gent subsequence with limit (.). Then (with - defined as in Theorem 5.1) for any P

(5.5) lim V(cr, x, P) _-> V(r, x, P).

Define N’( t) to be the number of actions of the control P on the interval [0, t]. If
(5.6) {S’(n + 1)- S’(n), a, n <
is uniformly integrable, then

(5.7) V(zr, x, P)-> V(zr, x, P).
Proof The relation (5.5) is just a consequence of Fatou’s Lemma and the weak

convergence. Now, let the uniform integrability hold. Then the holding costs and the
impulsive control costs in (2.9) Converge to their limits, as given by the terms in (4.8).
We need only work with the last integral in (2.9). The arguments for each component
are essentially the same, and we work with the ul’(.) term only and assume that
P1 is on. If P1 might also be off part of the time, the argument is a little more involved
(involving the X2’ as well as the xl’e), but is essentially the same.

When Pol is off, the increments in the yl,(. are zero. (If X’(t)= 0, we must
have Pol on, by (A2.1).) We can write

ul’(t) ul’( "1’ (v,,Vn r) t)- U01"e Ol,e

=Z WI’( --o1, (Vn (’] t)]v, f3 t)- W’ o,

Z [x"(’" ,, o,v. n t)-X (v. n t)]

+2 [B"(t,’’ n t) B"(v,l’e n t)]

+ (terms that go to zero as e - 0).
For some K1 < co, the last two sums on the right are bounded by KN’(t), which is
uniformly integrable by hypothesis. By the orthogonality properties of the summands
in the expression for the W’( ), the mean square value of the middle term is O(t + 1).
This yields the uniform integrability of { U’(t)} for each and of { U’(n + 1)-
U’(n), e > 0, n < oo}. By the weak convergence and the uniform integrability of these
and the other terms in the last integral of (2.9), the assertion (5.7) follows.

It is not a priori obvious that there is a control policy for which (5.6) is uniformly
integrable, since we must shut off the inputs to P whenever its buffer is full. We will
define a standard "comparison" control policy called the Ao-boundary policy, for which
(5.6) is uniformly integrable. Since we can switch to this policy at any time, for any
6>0 there is a &optimal policy for which (5.6) is uniformly integrable. Let Ao
(0, min (B, B2)/4 and refer to Fig. 5.1. If X’ B2 then shut off all inputs to P2 until
X2’ reaches B: Ao. Then turn them back on. If at the end of that time B1 Ao
B, shut off Pol until X1’= B- Ao. If X1’= B, then shut off Po until XI’ reaches
B- Ao. Then turn Po back on. We use the analogous definition for the Ao-boundary
policy for X(. ). Then, if ever X( or X(. hits the outer boundary, we control it
to a distance at least Ao (in each coordinate) from the outer boundary.

THEOREM 5.3. Assume (A2.2)-(A2.6). Then for the Ao-boundary control and each

(5.8) sup E,[N’(n+l)-N’(n)[k<oo foralla,
small
ox,

and similarly for the "jump numbers" of the limit process X(’ ).
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g

Ao
" P’ Po2 off

PI ,Poz, POl of ’
PO off

PO off

X

FIG. 5.1. The comparison Ao-boundary control.

Remark on the proof Refer to Fig. 5.1. Let t7 denote the ith time of return of
Xe(.) to the outer boundary after the ith time that the control takes the process to
the set [0, (B1-Ao)] x [0, (B2- Ao)]. We can readily show that for any 6o (0, 1), there
is To > 0 such that

(5.9) sup P{ ti+l t < Tol data up to tT} _-< 1 30.
to,

small

This is just a consequence of the properties of We( and Be( and of the fact that
dU’e( --0 on the intervals of interest. With (5.9), it is not hard to show that all the
moments of N"’e(iTo + To)-N"’e(iTo) are bounded, uniformly in and e and in the
initial condition (similarly, for the X(.) process). This yields the desired result. See
the proof ofTheorem 5.3 of[7] of a related result for a problem with a more complicated
statistical structure.

The optimality and "almost" optimality theorem. At the present time almost nothing
is known about optimal or 6-optimal (3 > 0) policies for the Xe( ). This is one of the
basic reasons for considering suitably adapted policies that are "good" for X(.).
Unfortunately, we know little about the optimal or 6-optimal policies for X(. ). Thus,
we must postulate (in (A5.2)) the existence of a 6-optimal policy with certain smooth-
ness properties. The assumption appears to be eminently reasonable, since there is
usually enormous flexibility in the smoothing that can be put on 6-optimal controls.
The numerical results obtained via the methods described in 6 satisfy (A5.2) for all
the cases tried, in the sense that the "control decision" surfaces (discretized for the
numerical calculation) seem to have the required properties. In fact, the situation in
Fig. 5.1 seems to be typical, in the sense that some continuous deformation of these
decision surfaces is what is seen in the numerical calculations.

For our current purposes, it is best to view the path X(. as its graph in the state
space. The uncontrolled sections are the graphs of the paths of the uncontrolled
reflected diffusion, and the controlled sections are straight lines or "broken" straight
lines, each segment corresponding to a different value of the set of indicators P
(p01, pO2, p, p2). In a sense, (A5.2) is a long-winded and formal way of saying that
(for some 6-optimal policy) the lengths of the line segments are piecewise continuous
in their starting point. It also deals with the possibility that the initial P might be
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inappropriate for the initial state x, and that we might have to change the control
settings instantaneously at =0. We tried to give a general description of what
reasonably seems to be expected. The situation might be simpler in special casesmbut
it seems likely that the useful ;-optimal control policies would be described by (A5.2),
due to the nature of the impulse sequences. Note that

1 + sup V(x, P) + 1 ]/min ks -= K
x,P

is an upper bound for the number of "simultaneous impulses" for the 6-optimal
controls, with 6 -<_ 1.

We require some "smoothness" in the -optimal "feedback" controls, since we
need to adapt them for use with the.X (.) process and will require that the correspond-
ing sequence {X( )} (and the associated costs) converge appropriately to X(. (and
its associated cost).

The boundaries of the sets G(1) and Gi(P) below are smooth in that they are
composed of a finite number of ditterentiable curves that are not tangent at the points
of intersection. We use P to denote the control value just before a decision to change
the control is made, and P1 to denote the new control value just after the decision is
made. Recall that P 1 is used for P (1, 1, 1, 1).

We could replace (A5.2) by the simpler assumption that for each > 0 there is a
&optimal admissible policy r for X(.) and admissible policies r; for X(.) such
that X( (under r;) converges weakly to X(. (under r), and the associated costs
converge. Assumption (A5.2) simply defines a reasonable r for which this can be
done. The interiors of all sets in (A5.2) are relative to G [0,/1] [0, B2].

(A5.2) For each 6 > 0, there is a policy r for X(. that is -optimal in the sense
that it satisfies (A2.1) and

(5.10) V(x,P)= inf V(r,x,P) > V(r,x,P)-
adm.

for all x, P and that has the following properties:
(a) Let P 1. Then there is a decision set G(1), whose boundary is divided

into a finite number of segments. Each segment is associated with a
switch to some P1 1 when X(. hits it from the exterior of G(1). The
segment associated with each P1 is strictly interior to one of the sets
Gi(P1) below.

(b) For each P 1, there are a finite number (perhaps zeromsee remark
in (c) below) of sets Gi(P) whose interiors are disjoint. If x Gi(P)
and P is used, then it is used until the boundary of G(P) is reached.
The distance (taken by the graph of X(. ), a straight line) from x Gi(P)
to the exit point on the boundary of G(P) is a continuous function of
x. The (straight line) graph is (uniformly) not tangent to theboundary
at any point of contact. The boundary is divided into a finite number
of segments, each associated with a new control setting, perhaps with
P= 1. These segments are strictly interior to some set Gj(P) for the
new value P.
At the corners of the segments ofOGi(P) or OG( 1 ), any policy associated
with the intersecting segments can be used. There is A > 0 such that
after a finite number of switches, we have P and X(. is a distance

>--A1 from G(1).
(c) It is possible that there will be immediate (or several) changes P some

P1 P at t=0, until (a), (b) above are active.
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Remark. The assumption concerning "points in common" to several OGi(P) does
not seem to be restrictive. Generally, in dynamic programming, when the state is on
the boundary of sets corresponding to different policies, any one of the policies is
optimal.

Adapting zr to X(.). By adapting the policy 7ra for use with X( we simply
take as the moments of decision the moments when X( hits the decision boundary
segments.

We now prove the "almost 6-optimality" of Try-applied to X(.). This justifies
the use of the limit approximations for purposes of getting nearly optimal controls.

THEOREM 5.4. Assume (A2.2)-(A2.6), (A5.1), and (A5.2). Let 7r denote the policy
of (A5.2) adapted to X( ). Then

(.11) v(, x, P)- v(, x, P).

For admissible 7r and small e,

(5.12) sup [V(zr,x, P) V(zr,x, p)J<=2&
{r

Proof The proof is a consequence of the weak convergence in Theorems 5.1 and
5.3, the piecewise continuity properties of (A5.2) and an estimate of the type obtained
in Theorem 5.2, and we only outline some of the argument.

(a) Let denote a sequence (as used in Theorem 5.1) associated with admissible
7r. Let (respectively, a) denote a convergent subsequence associated with 7r
(its limit, respectively). Let and X(. denote the quantities associated with policy
Try--with the understanding of the "multiple choices" at the corners in (A5.2)(b).
Suppose that N(t) denotes the number of distinct control actions on [0, t], and
suppose that {N’(n + 1)- N’(n), n <, (small) e >0} is uniformly integrable for
7r. Now, suppose that if is the limit of a subsequence of {}, then .
Then (5.11) holds.

The expression (5.12) is a consequence of the &optimality of 7r and Theorem
5.2. Thus, we need only prove the uniform integrability and the fact that .

(b) The uniform integrability property is proved by a method similar to that used
for the Ao-boundary policy.

(c) We examine only the case where X(0) X(0) x G(1) and where there is
no switch at 0, for the other cases are dealt with in a similar way. To get the desired
weak convergence, we need to show that the hitting times and locations on the decision
sets converge (as e 0) to those that would hold under 7r. Until the last remark below,
we assume for simplicity that the hitting locations of the limits X(. are not on the
"corners." We first make the following observation.

Let H denote a compact set which is the closure of its interior and with differenti-
able boundary. Then for any T < c, the functions r(x(. ))= min { T, hitting time of
x(. on H}, x(r(x(.))) on C[0, T] (sup norm) are continuous w.p.1 with respect to
Wiener measure (similarly, if H satisfies the conditions that we put on G(1)). Let e
index a weakly convergent subsequence of {X( )} with limit denoted by X(. ). We
assume for simplicity that the hitting locations on the switching curves of X(.) are
not on the corners (w.p.1). This is unrestrictive since by (A5.2) any of the actions that
can be chosen at the corners yield the same cost. Then by the above "continuity"
comment and the nondegeneracy of WI( ), W2( )), the first hitting times r of X(
on G(1) converge weakly to r, the first hitting time of Xa(" on G(1) and X(r)
X(,).
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Suppose that the first hitting point of X(. on G(1) involves a switch to P 1,
and is in the set G(P1). Let ’ denote the hitting time of the next decision set. Then
(see comments after the proof ofTheorem 5.1) the graph ofX (.) on ’, -] converges
to a straight line. By (A5.2), this straight line hits the boundary of the next decision
set at precisely the same point where the Xa(" would hit it, if both started at Xa(’l)
on OG(1). A continuation ofthis argument yields that both the "diffusion" and "control"
sections of Xa(" are those of X(. ), which is what was to be proved.

6. A numerical method for approximating the optimal value function and control.
The control problem defined by the cost (4.8), system (3.14) and the control actions
described by the possibilities associated with the off/on impulses associated with the
discussion about Fig. 4.1 can be approximated by the numerical methods studied in
[9]. The method in [9] involves a Markov chain (indexed by a "finite difference"
parameter) approximation to the optimal continuous-time problem. We then show that
the sequence of value functions for the chains converges to the optimal value function
for the continuous parameter problem, and that suitable continuous parameter interpo-
lations of the chain converge weakly to the optimal controlled continuous parameter
process. The methods of [9] can be readily adapted to our problem, and only an outline
will be given. The weak convergence methods used in [9] will have to be replaced by
the methods here--owing to the reflection term, but the general idea is the same.

Let h be a finite-difference parameter, and let B; be integral multiples of h. Let
Gh denote the h-grid on G [0, B] [0, B2]. Define aij by Eij(t) 0 ai(X(s)) ds, and
omit the x-argument in the %(. and b( below. For the Markov chain approximation,
the status of the controls at any time is defined by the vector P (Pl, p02, p, p2),
where P= (respectively, 0) denotes that the control is on (the link is operating
normally) (respectively, closed). Recall that, when/9 (1, 1, 1, 1), we write P 1.

Let {xhn} denote the approximating Markov chain, and let x denote the canonical
current state, y the canonical successor state, and P the canonical control that will
be used at state x to bring the chain to the next state. Define Xh( ), the interpolated
process, to be the right continuous piecewise constant process with interpolation
intervals Ath(x, P1). Both these intervals and the transition probabilities ph(x, y[ P1)
depend on the new chosen control as well as on the current state. If P 1, we use
Ath(x, P)--O; i.e., the interpolation interval has zero length. In this case, several steps
of {xh} all occur simultaneously in the interpolation xh(’). Define Qh(X)=
2[a,,/a22-la,21]/h([b’l/lb21), and let a, la,21-> 0, i=1,2. For PI=I, we use
Ath(x, P,) h2/ Qh(X).

We now define the transition probabilities ph (X, y lP1) for the chain when P 1,
for x, y Gh. Let e denote the unit vector in the ith coordinate direction. We use

ph(x, X + eih P 1) {aii la,l + h(b’)+]/ Qh(X),

(6.1) ph(x,x+eh-e2hlP= 1)=ph(x,x-eh+ehlP 1)

--la,l/Qh(X).

If some x (the ith component of x) equals zero--then the transition probability (6.1)
is modified as follows, as a concatenation of two transitions, the first being (6.1). For
the second (the "reflection") step, we distinguish two cases.

Case 1. Either (yl _>_ 0, y2 < 0) or (y < 0, y2_< 0). Then simply project (reflect) the
process back to the nearest point in Gh.
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Case 2. y <0, y2>0. Project to (0, y2) with probability 1-p12/(P,2+Po) and to
(0, yZ-h) with probability p,2/(p,z+p,o). This step is to account for the p,zy/(p12 +
Plo) term in (3.14).

Let P denote the control used to get the current state x. The actual state for the
problem is the pair (x, P), since the cost associated with the next transition depends
on whether or not some element of the current control vector is changed. Let
K h(x, P, P,) denote the costs associated with the transition, when current state is x,
and control P changes to P,. For P, 1, Kh(x, P, 1) Ath(x, 1)k(x), the holding cost
only.

We now define some of the transition probabilities and costs when P # 1. There
are 15 possibilities, and only some typical ones will be described. These are constructed
so that the limit (as h-0) of Xh(’. will be the reflected controlled X(. ), and so that
the associated costs for Xa(.) will also converge to that for X(.). We write P
(pO,, pO2, p,2, p,), p, (plo,, p,O:, p:, p,,).

Let P,’ =0, with other P’= 1. Then use p’(x,x-e, hlP,)= 1 (by (A2.1),
here) and K’(x,P,P,)=qo, h+ko,I{pO,=l,,?,=o}. Now, let P,=0 with other P’=I.
Then ph(x,x-e:hlP,)= and K’(x,P, P,)=qo:h+ko:I{,o:=,,,,o,:=o}. For P’,:=0 and
other P 1, we have p’(x, x- eh P, and K(x, P, P,) q,h +

Now, let P =0 with other P 1. Let P,:gd, go, (the reverse case is treated
analogously) and refer to Fig. 6.1. The line from x to (a) is the mean direction of
the appropriate impulse, and its slope (see 4) is [go:- (1 --P:)gd]/g,,, --P,:gd,/g,,.

x x+eh

x-e2h
Transition prob-FG. 6.1. ph(x,x+eh e2h/Pl) P’(X,X+elh/Pt)=pzgd/ga,PZgdt=g,,.

abilities for P O, other P 1.

To "simulate" this mean line, we use

ph(x,x+eh-e2hlP)=p,2gd,/g,,= 1-ph(x,x+e,hlP1).

The instantaneous cost is Kh(x, P, P)= k,I{p,=l,pI=o}.
Now, let P2=P2=0 with all other P’=I. Then ph(x,x--e2h]P,)=l. The

"impulsive" part of Kh(x, P, PI) is obvious, namely, k,2I{p,2=.pl2=o + ko2I{po2=,po2=o}.
But the "opportunity" costthat due to Z 12 and U: is less obvious. This is obtained
from the relative rates at which Xa(.) decreases due to the effects of P,2 and P02
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(respectively) being off. This is (respectively) P2gdl and ga2. Thus we use the "oppor-
tunity" cost

h[ ql2 Pl2 gd q- qo2 ga2]/ Pl2 gd q- ga2)"

The ph(x, Y P) and K h(x, P, PI) are calculated in a similar way for all the other
possibilities.

The dynamic programming equation for our "approximation" problem is

(6.2) V(x,P)=min[(exp-Ath(x,P,))ph(x, yJP)Vh(y,P,)+K(x,P,P,) 1.PI y

The weak convergence methods of this paper can be used to show that Vh(x, P)-
V(x, P)=inf=dm. V(, x, P). For reasonable grid sizes, say 50x50, the numerical
problem is quite tractable.

For the numerical problem, we do not need to duplicate the dynamics of the
original system X (.), but we can use any controlled process having the same controlled
limit equation. See [9] for a fuller development of this computational point of view
for a large class of more classical problems.

Appendix. We have used the assumption that if the first queue is empty at the
start of a new "service interval" of length , and an arrival occurs at some A’ < b later,
then the service interval for that arrival is the residual time A-A’, and similarly for
the second queue. In Theorem 1 of [11, p. 159], Iglehart and Whitt have shown that
such an assumption does not affect the limit equations. A proof very similar to theirs
works here, and we only outline the ideas and differenceswith heavy reference to
the cited theorem. We work only with the first queue because the second is treated in
essentially the same way.

Let O’( and 2’( (set 0"( )= 2"( )/, Q’(. )= X’( )/) denote
the quantities that would be obtained for the true queue; i.e., where an arrival to an
empty queue has the correctnot the residualservice time. In [11], a sequence of
potential "service times" has been constructed that (or some subsequence of which)
has been used for both Q’(. and O’( ), and this has enabled a comparison of the
two processes. We do the same thing here, following the method of 11] for their case
s 1. The only difference is due to the state-dependence of the intervals here. Except
for the to of [11, p. 160], we use our own terminology (our (Q, 0, e,A’) is their
(Q’, Q, 1/n, v)). (First note an addendum to the proof in [11], for a case omitted
there. If, given t, 0’() 1 for all t, then set their to=0 and use ’(0) Q’(0),
and proceed as in their construction.) Let Q(0) 1; otherwise, the result can be
deduced from the argument below. The actual sequence of service intervals will be
the same for both and Q until the first time that they equal zero.

Suppose that ’(. reaches zero at time , at the end of the kth service interval.
Ak+ as in the text, but with distribution determinedThen generate a service interval ’

by () (the first component of which equals zero). Suppose that no arrival occurs
1,e 1,ebetween and +Ak+. Then generate the next interval Ak+ as in the text, but with

the distribution being determined by X(+Ak+). On the other hand, suppose that....(.) generate another potentialan actual arrival occurs at < ’ < +Ak+. Then for 0
service interval ’k+, with the distribution determined by (’). We continue in this
way to generate the (used and unused) service intervals for ’(. ). This sequence has
the correct distribution for the true queue. Use the sequence {’} for the queue
Q’(. ), with "residual" times used as in the text.
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This procedure is precisely the one used in Theorem of [11] except there the
intervals are all independently and identically distributed. But, the association of
particular intervals with particular service periods for both queues is exactly the same.
We need only show that (A2.2), (A2.3), (A2.6) hold. In Theorem of [11] it has been
shown that for any T (our notation) supt=r ]l’(t)-Xl’(t)l-O if (our notation)
(maximum length of generated service intervals unused by 01’( on [0, T]) - 0. But
this holds under our construction and the conditions on the intervals. This result, and
the continuity and boundedness of d(. yield

1,e A 1,eE d.n n+l gall +V dl(Xs;;,) + o(x/-)

gd +V/ d(Xs,:;,) + o(x/),
and similarly for the expression for the conditional variance. Thus, the generated
service time sequence satisfies (A2.2), (A2.3), and (A2.6).
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ON DISTURBANCE DECOUPLING IN DESCRIPTOR SYSTEMS*

L. R. FLETCHER? AND A. AASARAAI?

Abstract. The disturbance decoupling problem for a linear multivariable control system is to determine
when and how a state feedback may be chosen so that some class of disturbances has no effect on the
system output. The development of necessary and sufficient conditions for the solvability of this problem
for state space systems by Wonham and his co-workers has profoundly influenced geometric control theory,
particularly by means of the concept of an (A, B)-invariant subspace. This paper develops necessary and
sufficient conditions for solvability of this problem for linear systems described by a mixture of algebraic
and differential equations. Although the argument presented has the same structure as in the state space
case, and incorporates a generalisation of (A, B)-invariant subspaces to descriptor systems, there are some
additional issues. Demanding particularly careful attention is the ensuring of existence and uniqueness of
classical solutions of the underlying differential equations, which cannot be taken for granted. The geometric
structure of the solution space is investigated and a general notion of invariance of subspaces for descriptor
systems is proposed.

Key words, descriptor systems, smooth solutions, disturbance decoupling, invariant subspaces

1. Introduction. We study a linear multivariable control system in descriptor form:

(1) E( t) Ax( t) + Bu( t) + Sd t), x(O) Xo,

(2) y(t) Cx(t).

Here x, y, u, d are functions of time with values in f ", P, ", q, respectively,
and E, A, B, C, S are real, constant, matrices of suitable sizes. Although we have in
mind that E is singular, this is nowhere essential to our argument. Furthermore, many
papers on such systems assume that E and A are square; following Wong [8], we will
not make this assumption. A selection of examples of systems where descriptor models
are useful is given by Luenberger [4] and a recent survey of results has been provided
by Lewis [3]; however, implicit in this latter paper is the assumption that E and A
are square. There are also intriguing, but unexplored, similarities to the work of
Manitius [5] on retarded differential systems.

In (1) the function d represents unknown or unmodeled disturbances affecting
the system. We investigate the questions of when and how the real rn n matrix F in
the state feedback control law

(3) u(t) -Fx(t)

may be chosen so that the output y(t) of the closed loop system (1)-(3) is independent
of d(t). In the state space case, that is when E is a nonsingular square matrix, this
problem is discussed in detail in Chapter 4 of [9] and a complete solution is presented,
using constructive arguments to obtain conditions on the system necessary and sufficient
for the existence of F. Specifically, the following is a simple extension of Theorem 4.2
of [9]; here and throughout this paper we use to denote the subspace spanned by
the columns of the matrix B.

THEOREM 1.1. Suppose E is a nonsingular square matrix. Then a necessary and
sufficient condition for the existence ofa feedback F such thatfor any continuous function
d there exists an initial condition Xo for which y(t)=-0 is the existence of a subspace
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of ker C such that

(4) Ao//,_ EO//, + , Im S
_
EU.

It is a straightforward deduction from the proof of this result given by Wonham
[9] that, for some suitably chosen F, a given initial condition x0 leads to y(t)=-O
whatever the disturbance function d(t) if and only if Xo *, the unique maximal
element of the set of subspaces U satisfying the conditions in the theorem.

Our aim in this paper is the generalisation of Theorem 1.1 to the case when E is
singular and perhaps not square. Some work on disturbance decoupling in descriptor
systems appears in [10] but there the class of feedbacks considered is different from
ours as defined in (3). Our arguments follow closely those in [9] but there is a major
new issue to be attended to in th.e descriptor case. It is essential that the feedback F
be chosen so that the closed loop system

(5) Eg (a- BF)x + Sd, x(O) Xo
has appropriate regularity properties. To be precise about our objectives in this respect
we need to refer to a time-invariant, first-order, linear system of differential and
algebraic equations

(6) E(t) Mx( t) +f( t), x(O) Xo
in which E and x are as before, M is a matrix of the same size as E, and f(t) is a
vector function of time with the appropriate number of components. The theory of
systems such as (5) or (6) depends on what is meant by a solution; throughout this
paper we adopt the following definition.

DEFINITION 1.1. A function x [0, oo) - " is a solution of the initial value problem
(6) if

(i) (t) exists and satisfies the differential equation for all > 0;
(ii) x(0)-- Xo;

(iii) (0/) exists and E(0/)-Mxo/f(O).
This stipulation about the admissible solutions to (5) or (6) implies some regularity

properties of the function f(t) and an appropriate relation between the behaviour of
f at zero and Xo. It is recognised that this is suitable for some applications and not
for others [6]; however, it is essential in all approaches that F be chosen so that
uniqueness of solutions to (5) prevails. Thus we have the following definition.

DEFINITION 1.2. We shall say that the system (6) is semiregular if it has at most
one solution for any initial condition.

It is shown in [1] that (6) is semiregular if and only if the matrix M-AE has
linearly independent columns for some value of A. Moreover, this is equivalent to
requiring that the pencil M-AE is nonsingular in the sense of [8] so this definition
is a generalisation for possibly nonsquare E and A of the classical notion of regularity
[3, 2]. Ultimately, a feedback F that achieves disturbance decoupling must also
ensure that the system (5) is semiregular in this sense, so we need to avoid at the outset
the pathological situation that for no F does closed loop regularity hold. It is shown
in [1] that this is equivalent to the following assumption.

REGULARISABILITY ASSUMPTION. We will assume that for at least one complex
number A the matrix

[A-AE, B]
has (at least) n linearly independent columns.

Note that we do not need to assume that the open loop system enjoys uniqueness
of solutions. On the other hand our regularisability assumption can only be satisfied
if in (1) there are at least n equations.
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In discussing (6) it is important to bear in mind that, eventually, in constructing
a feedback matrix to solve the disturbance decoupling problem, the matrix M is
replaced by the closed loop system matrix A-BF, which is unknown at the outset,
and f(t) represents the disturbance function Sd (t) where d (t) is unknown throughout.
For these reasons the well-known analysis of (6) by means of the Kronecker canonical
form (see, for example, [7]) does not meet our needs. Although it might be possible
to describe by such means the features of the pencil A-AE that are desirable for
disturbance decoupling, it is not known at present to what extent the Kronecker
canonical form of A-BF-AE can be assigned by a suitable choice of the matrix F.
We must therefore adopt a different approach to (4) as exemplified by the following
key concept.

DEFINITION 1.3. A pair of subspaces 0//, U will be said to be ({A, E}, B)-invariant
if

(i) AV_ EV+;
(ii) V (3 ker E {0};
(iii) E c__ A +;
(iv) dim (E (3 )=<dim {u : Au }.
The final ingredient in our main result is a statement of what we mean by

"disturbance decoupling."
DEFINITION 1.4. We shall say that a feedback matrix F achieves disturbance

decoupling for the system (1), (2) if the closed loop system (5), (2) has the following
properties.

(i) For no initial condition Xo and disturbance function d(t) does (5) have more
than one solution;

(ii) For every disturbance function d(t) that is sufficiently differentiable there is
a solution of (5) for any initial value x0 in a certain affine subspace of

(iii) y(t) is independent of d(t) in that for any sufficiently differentiable d there
are initial conditions, admissible in the sense of (ii), such that y(t)= 0.

Now we can state our main result.
MAN THEOREM. So that there exists a matrix F achieving disturbance decoupling

for the system (1), (2) it is necessary and sufficient that there exists an ({A, E}, B)-
invariant pair of subspaees all, contained in ker C such that

Im S
_
EU+ Lr

for some satisfying the following:
(a) Eg

_
Y A//+ ;

(b) dim Y{ f3 <-_ dim {u : Au }.
We have not been able to determine simple conditions on Xo necessary and sufficient

for the existence of a solution (in the sense of Definition 1.1) of (5) for a suitably
chosen F in which y(t)=-0 whatever the disturbance function d(t). The main obstacle
is that the admissibility of xo depends on the values of d and its derivatives at 0
so that a given initial condition, Xo 0 say, might be admissible for one disturbance
function and not for another; this issue is addressed in (iii) of Definition 1.4. In the
proof of the Main Theorem the value of v(0) in (19) below is the crucial point. It is
not difficult to deduce some sufficient conditions on Xo from the argument at the end
of 3. For example, if the disturbance function d(t) is such that Sd (t) EV in some
interval [0, to) and Xo V then, for some suitably chosen F, y(t)-= 0. However, these
conditions are not necessary.

The linear algebraic arguments in 2 below form the heart of the paper. They
provide a feedback characterisation of those subspaces that are invariant in the sense
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of satisfying Definition 1.3. In 3 we prove the sufficiency claim in our Main Theorem.
Finally, in 4, we examine the Kronecker canonical form of a closed loop system in
which disturbance decoupling is assumed to have been achieved, in order to prove the
necessity part of the Main Theorem.

2. Invariant subspaees for descriptor systems. Our main objective in this section
is a proof of the following key result:

THEOREM 2.1. If the pair of subspaces 9/, is ({A, E}, B)-invariant, then there
exists a matrix F and a subspace 7IV with V 7/I/"

_
9/+ 7/‘ such that

a BF 7V
_
ETg’, Eg/

_
a BF 9/11

and the matrix A- BF- AE has linearly independent columnsfor some complex number A.
Our proof of this result is couched entirely in terms of linear algebra and is

somewhat intricate so we proceed by means of a sequence of lemmas. The first of
these is of some interest in its own right.

LEMMA 2.2. For a given subspace 9/ there exists a matrix F such that

(7) Eg/

_
(A-BF)9/

ifand only if9 satisfies (iii) and (iv) ofDefinition 1.3. Moreover, in these circumstances

we can arrange that (A- BF)9/ for any subspace satisfying conditions (a) and
(b) in the Main Theorem.

Proof Let u,..., Us be elements of 9/ such that Eu,..., Eu is a basis of
Eg/(3 3 and Ur+," ", U is a basis of o//C)ker E and let u+, , ut be the remainder
of a basis of 9/.

Suppose (7) holds for some matrix F then, clearly, (iii) of Definition 1.3 holds.
Furthermore, there exist w,. ., Wr 9/ such that

Eu (A BF) wi for 1, r

and so for i= 1,. ., r we have

Aw Eu + BFw .
Thus Wl," , Wr are linearly independent elements of the subspace {u 9/" Au }
so (iv) of Definition 1.3 holds.

Conversely, suppose (iii) and (iv) of Definition 1.3 hold. Then

(8) Eui Awi + Bvi for i=l,...,t

for some w,. ., w 6 9/. Clearly, W+," ", w are linearly independent and we can
take w Wr 0. We are assuming that there exist linearly independent vectors
v, , r 9/ such that

Ai=Bi for i-1,...,r.

We show first that the vectors &,..., r; W+I,’’’, W are linearly independent.
Indeed were there scalars a+,. , a, not all zero, such that

ol.iAw
i-s+l

then, according to (8), the vector

aEu= aiAwi+B OiV
i----s+l i----s+l i=s+l
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would also lie in Y3, contrary to the definition of the integer s. Now define F by

Fli i- Vi, i: 1," ", r,

Fwi =-vi, s+ 1, ,
and extend F to the whole of arbitrarily. Then for 1,..., r we have

(A- BF) Bi- B(i- Vi)

B)i Eui

for r + 1,. , s we have

Eui A- BF)O

and for i=s+l,..., we have

(A- BF)wi Awi + Bvi Eui.

Thus E (A BF) as required.
Now suppose Y is a subspace satisfying conditions (a) and (b) of the Main

Theorem. Let zl, , Zp be a basis ofY . Then, by condition (b), there exist linearly
independent elements vl,. ., Vp of 0 such that Avi . There exists a matrix F such
that (7) holds, so there are vectors vl,"" ", Vp and gl,"" ", gp satisfying

(9) zi (A BF) vi + Bg for 1,. ., p.

Now let Zp+,. ., Zq be linearly independent elements of E such that Zl," ", Zq is
a basis of ( ffl ) + E. Then for p + 1, , q there exist u, v o// such that

(10) EIg z (A- Bl2)l)i

Our next step is to show that the subspaces of 0-// spanned by v,..., vp and by
V,+l, , vq intersect trivially. First note that, since E f’l Y fq , the space span-
ned by Zp+,..., zq does not intersect . Now suppose

p q

E aiVi E /iVi
il i.--p+l

Then, by (9) and (10)
p p q

i=1 i=l i=p+l

But the left-hand side here lies in , and, as we have just remarked, the right-hand
side does not, unless it is zero. Thus the subspaces of 0 we are considering do intersect
trivially so there exists a matrix Fo such that

Fov -g, 1, , p,

Fovi O, i=p+ 1," ", q.

Putting F F+ Fo we see that

and

Z (A- BFI)vi for 1, , q

Ell (A- BF).
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To complete the proof of Lemma 2.2, let Zq+l, Z be the remainder of a basis
of Y and choose a matrix F so that for the largest possible integer k there exist
v, ., Vk OR such that

(11) Z (A- BF1)vi for i= 1, k.

To complete the proof of this lemma we show that k r; we have shown in the previous
paragraph that k_-> q. Suppose k < r; then, by condition (a) of the Main Theorem,
there is some nonzero gk+ such that

z,+ (A- BF1)Vk+ + Bg,+.

Were vk+ dependent on v, , vk in (11), say

then we would have

so that

k

/-)k+l E Olil)i
i=1

k

E OliZi Zk+l- Bgk+l
i=1

k

i=1

But z,..., zv is a basis of f3 and k+l >p so we would have a contradiction.
Since, then, v+ is not dependent on v,. ., v there exists a matrix F2 such that

Fzv=0 fori=l,...,k,

F2v+ -g+

Replacing F by F + F would increase the value of k, which would be a contradiction.
Thus k= r.

This completes the proof of Lemma 2.2.
It is worth noting that conditions (i) and (ii) of Definition 1.3 are necessary and

sufficient for the existence of a matrix F such that

(12) (A BF) E

and the matrix A-BF-AE has linearly independent columns for some complex
number A. As far as necessity is concerned, we need only point out that if (12) holds
then

(A BE-E) E

so A-BF-E having linearly independent columns implies that dimE dim .
Sufficiency will follow from Theorem 2.1 with {0}.

Continuing with the proof of Theorem 2.1, from the set of F satisfying the
requirements of Lemma 2.2, we aim to select one that also satisfies the other require-
ments of Theorem 2.1 for a suitable subspace .

LEMMA 2.3. If satisfies (iii) of Definition 1.3 then there exist subspaces , of
such that

R -, E
_
(A- BF)o,

E-=(A-BF)-, -f3 ker E {0}.
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Proof Let G" - 07/be a linear mapping obtained by writing for u e

where w 0?j is a solution of the equation

Eu =(A-BF)w.

Now let

R U ker Gi, -= CI Im Gi.

It is a well-known general property of linear transformations (see, for example,
p. 48-49 of [2]) that, with these definitions

R@-=, G2__o@, G-=-, -ClkerG={0}.

It is easy to see that this completes the proof of Lemma 2.3.
DEFINITION 2.1. For an ({A, E}, B)-invariant pair a//, U let be a subspace that

is maximal subject to the following:
(i) c_ c__ + -;
(ii) A7_
(iii) o/ CI ker E {0} where is the subspace of whose existence is established

in Lemma 2.3.
Since U itself satisfies these conditions such subspaces o/ exist although, in

general, o/ is not uniquely determined. However, we have the following useful result.
LEMMA 2.4. If 7/F1, c2 are both maximal subject to satisfying (ii) and (iii) of

Definition 2.1, then E74/’ ETg’2.
Proof We show that /1 - /f2 + ker E. Let H" 7g’ - 7g’1 be the linear transforma-

tion given by Hw z where z 7g’ is chosen to satisfy

Aw=Ez+b

for some b N. If w is an eigenvector of H, say Hw Awl, then, for some b N,

Aw AEw + b.

Now the space spanned by wl and W2 satisfies Definition 2.1(iii) and so, by the
maximality of 7//#2

Thus

w 2+ker E.

Aw Ew2 + b
for some w

Now suppose v e 7/’1 such that Hv Avl + w; that is, v is a principal vector of
H with respect to the eigenvalue A. Then

Av E(Av + W1)-II- b2
AEv1-4- Ew: + b2

for some b 3. Now the subspace spanned by o and v satisfies Definition 2.1(iii)
so, by the maximality of

V ( o////’2 -1- ker E.
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Continuing in this way shows that the entire root space [2] of H in 7/’1 relating to A
is contained in //’2+ker E. Repeating this for each eigenvalue of H shows that___ -- ker E.

This completes the proof of Lemma 2.4.
COROLLARY 2.5. In the notation of Definition 2.1

Proof The subspace - satisfies (ii) and (iii) of Definition 2.1.
LEMMA 2.6. For an ({A, E}, B)-invariant pair o-g, 7# the matrix F can be chosen to

satisfy

(A- BF) 7F
_
EkF

(in addition to the requirements of Lemma 2.2).
Proof Let wl,. ., Wk be a basis of W f3 - and Wk+l,’’" W be the remainder

of a basis of W. Then, for 1,. ., k there exist /1," ", tk E such that

A BF) wi Eti
and so, by Corollary 2.5,

(A-BF)wiEET/U for i=l,..-,k.

Now Wk+l,’’" Wl #\0 by the construction of 7/tr and also there exist vi 7/# and
gi such that

Awi Evi + Bgi fori=k+l,...,/.

If we arrange that

Fwi=gi fori=k+l,...,l,

then F 07/ can remain unaltered and

(A- BF)wi ET fori=k+l,...,l.

This completes the proof of Lemma 2.6.
Finally in this section we show that a matrix F can be chosen from amongst those

satisfying the requirements of Lemmas 2.2 and 2.6 and such that, for some complex
number A, the matrix A-BF-AE has linearly independent columns. To do this, let
WI, Wk continue to denote a basis of W, let Uk+l, U be linearly independent
vectors in such that Euk+,." ",Eut complement EW in E(g+) and let
Wk+l,’’’, Wl be vectors in such that Eui-(A-BF)wi for i= k+ 1,..., I.

LEMMA 2.7. Suppose F satisfies the requirements of Lemmas 2.2 and 2.6. For all
but a finite number of values of A, if w is a nonzero linear combination of Wl," ", Wl
then A BF AE w # O.

Proof The choice of Wk+I,’’’, Wl ensures that the vectors (A-BF)wi Eui for
i= 1,. ., are linearly independent. Indeed if

k

(A- BF) E OgiWi (A- BF) E
i=1 i--k+l

OiWi

then, since (A-BF)74/" EW, there exists v 7g such that

Ev= aiEu
i-k+l

contrary to the choice of Uk+l, U unless Ok+ O 0. NOW, if P is a matrix
whose columns are a basis of (Ek) +/- and Qo=[wk+, Wl] is a matrix with the



DECOUPLING IN DESCRIPTOR SYSTEMS 1327

columns shown, then we have just proved that the matrix P’(A-BF-,E)Qo has
linearly independent columns when , 0. Hence it has linearly independent columns
for all but a finite number of values of A or, in other words, for only a finite number
of values of A is there a vector w such that Ewe E(all + 7/’)\ETg" and (A-BF-AE)w
ETg.

Now let H W denote the linear transformation given by Hw v for v, w w/g.

satisfying

Then

A BF)w Ev.

(A- BF- AE)w Ev AEw

=E(H-AI)w.

If , is not an eigenvalue of H then, recalling that 7g" 0 ker E {0}, it is clear that
(A-BF-AE)w=O for we 7/t only if w=0.

If A does not belong to either of these exceptional sets then the conclusion of
Lemma 2.7 holds.

Proof of Theorem 2.1. Let Wl/l, ", w, be the remainder of a basis of . Choose
F from amongst those that satisfy the requirements of Lemma 2.6 and A so that, for
the largest possible value of the integer r, the vectors

(13) (A-BF-AE)wi for i= 1,..., r

are linearly independent. We must show that r n; Lemma 2.7 shows that r -> I. Suppose
r < n. By our regularisability assumption, the matrix [A-/xE, B] has at least n linearly
independent columns for some/x and, hence, for almost all/x. We can assume, therefore,
that the A just chosen is not one of these exceptional values of/x and hence that the
vectors

(A-BF-AE)w for i=r+l,...,n

are linearly dependent on those in (13) and that there are vectors g+l, , g such that

(14) Bgr+l Bg,,

are linearly independent of those in (13). Define FI" span {g+l,""", g} by

FlW-0 for i=l,...,r,

FlWi-" gi for r + 1,. , n.

Since r-_> l, F1 w 0 for all w and

Eu=(A-B(F+F1))w for i=k+l,...,l,

F+ F satisfies the requirements of Lemmas 2.2 and 2.6. On the other hand, the vectors

(A-B(F+F1)-AE)w, for i=l,.-.,n

span the same space as the vectors in (13) and (14). This contradicts the choice of F
andA so r=n.

This completes the proof of Theorem 2.1.

3. The proof of the Main Theorem: sufficiency. In this section we show that the
conditions in the Main Theorem are sufficient to ensure the existence of a feedback
matrix F achieving disturbance decoupling in the sense we have defined it. More
precisely, we prove that any matrix F satisfying the conclusions of Theorem 2.1 and



1328 L.R. FLETCHER AND A. AASARAAI

Lemma 2.2 with respect to the given o, W, Z will suffice. Note that the uniqueness of
solutions to the closed loop equation

(15) E=(A-BF)x+Sd(t), x(0) Xo

follows, by Theorem of ], from the matrix A BF AE having linearly independent
columns for some complex number ,. Thus it is sufficient to consider existence of
solutions; the argument we provide illuminates some more general issues so we
postpone any consideration of y(t) until the end of this section.

For most of this section we discuss the existence of solutions of the system (6),
assuming that the pencil M-,E is nonsingular in the sense of Wong [8]. We have
already noted that the Kronecker canonical form is not an appropriate technique and
we will also require information about the subspaces in which a solution evolves in
more detail than is provided by existing approaches. On the other hand, most of the
linear algebra we require is available in [8],-though it will be necessary for us to
reformulate some of Wong’s results. We begin with a simple result about the case
f(t)=-O.

LEMMA 3.1. Let o be a subspace of and let * denote the unique maximal
element of the collection

(16) { U - o: MU EU}

of subspaees ofo. Then the equation

(17) E(t) Mx(t), x(O) Xo

has a solution such that x(t) o for all >= 0 if and only if Xo t/’*.

Proof Suppose Xo U*. Since M*___ E*, there exists a linear transformation
with matrix L such that L//"*

_
U* and My ELy for all v U*. If Xo U* then

x(t)=eL’xo satisfies (17) and has x(t)o for all t=>0.
Conversely, suppose x(t) satisfies (17) with x(t)o for all t->_0. Let be the

smallest subspace of o such that x(t) U for all t->_ 0; we show that is one of the
subspaces (16). If v U then v x(tl) + x(t2) +" + X(tk) for some tl, t2," ", tk and
SO

My= E(t,)+ E(t2)+" "+ E(tk).

Thus, to show that M//"_ E, it is sufficient to prove that 2(t) for all 0. But

X(t+6t)--X(t)
(18) (t) lim

t-o 6t

(with 6t > 0 if t=0) where, by definition, x(t + 6t), x(t) . Moreover, is closed
since is finite-dimensional, so proceeding to the limit in (18) does not leave . Thus
x(t) U* for all _-> 0 so x(0) *, as required.

This completes the proof of Lemma 3.1.
The main result of this section is Theorem 3.2.
THEOREM 3.2. Suppose and are subspaces of satisfying

Ell
_
MR, MtU

_
EW.

Then (6) has a solution x( t) iff is differentiable dim 0 times and such that

f(t) Et+ MR for all >= 0
and Xo belongs to an appropriate affine subspace of ll + k/#. Furthermore, x(t) ll + l"
for all >= O.
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The key step in the proof of this theorem is a result in linear algebra. Define
subspaces e//., 7* of o//+ 7/F as follows:

o//. sup {

* sup { + "M EI}.

Then we have Lemma 3.3.
LEMMA 3.3. ere exists a subspace of such that

E M,

Proof It follows from Lemma 3.1 that * is the set of admissible initial conditions
for (10) which lie in + , analoggus to the subspace H in [8]. Note that whatever
the value of A, (M-AE)* E*, so by the semiregularity of the pencil M-AE,
ker E * {0} and, similarly, ker M * {0}. Furthermore, if Mu Ev for u *,
v * then, by maximality, u * so that E* M* M(* *). Hence,

dim (E( + )+M(+ ))=dim (E(* + *)+M(*+ *))

dim E*+M*)

dim E*+ dim M* dim (E* M*)

dim

dim (*+ *)

=dim ( + ).

It now follows from Lemma 3.1(i) and Theorem 3.2 of [8] that the subspace denoted
by H in [8] will serve as .

This completes the proof of Lemma 3.3.
Proof of eorem 3.2. It is easy to see that

E+M E(+)+M(+) E*+M

and so

f(t) Eg(t)+ Mh(t) for all 0

where g(t) * and h(t) for all 0. Now we split (6) into two pas"

(19) (t) Mv() + g(), (0) Xo- q(O),

(20) Eo(t) Mq( t) + Mh( t)

where v(t) * and q(t) for all 0. Clearly, if we can solve (19) and (20), then
the sum of the solutions satisfies (6). To solve (20) let K" be (the matrix of) a
linear transformation such that

K , MKu= Eu for allu

It is shown in Lemma 3.1(iii) of [8] that K is nilpotent on , say K =0. Now it is
easy to see, by direct substitution, that a solution of (20) is

s d
q( h(.

Note that the solution determines q(0), so the omission of initial conditions from (20)
was deliberate.



1330 L.R. FLETCHER AND A. AASARAAI

Equation (19) has a solution if and only if v(0) 7//’*, so this determines the affine
subspace of referred to in the statement of the theorem. Then it is easy to see, again
by direct substitution, that

v(t)= eCvo+ eC(-’g(z) dz,

where L is the matrix introduced in the proof of Lemma 3.1, satisfies (19).
This completes the proof of Theorem 3.2.
Now we can easily establish that the existence of subspaces 0-//, , Lr as specified

in the Main Theorem is sufficient for the existence of F achieving disturbance decoup-
ling. Indeed, if F satisfies the requirements of Theorem 2.1 and Lemma 2.2 with respect
to these subspaces, then the hypotheses of Theorem 3.2 are satisfied with M- A- BF
and f(t)= Sd(t). Thus, (15) has a solution contained in + 7/r= o-//+ o//’_ ker C what-
ever the function d(t) provided that it is sufficiently differentiable and that Xo is
appropriately related to the value of d and its derivatives at time 0.

This completes the proof of sufficiency in the Main Theorem.

4. Proof of the Main Theorem: necessity. In this section we complete the proof
ofthe Main Theorem by outlining a proofthat the conditions for disturbance decoupling
are necessary, as well as sufficient. Suppose F is a feedback achieving disturbance
decoupling in the closed loop system

E=(A-BF)x+Sd(t),
(21)

y= Cx.

x(O)=xo,

Let o ker C be the subspace of minimal subject to containing every solution of
(21) for which y(t) 0. It is clear that if x(t) To for all >- 0, then (t) o for all
t-> 0. Since F achieves disturbance decoupling

Im S c_ Eo+ (A- BF)o
and we have Lemma 4.1.

LEMMA 4.1. To prove the necessity of the conditions in the Main Theorem it is
enough to show that

for some subspaces all, t/" satisfying

E
_
A BF), A BF)

_
ET/’.

Proof. If the conditions of this lemma hold, then

Im S E( + )+(A- BF)(O +
E+ (A BF) all.

It is easy to see that - (A-BF)all satisfies (a) and (b) of the Main Theorem.
This completes the proof of Lemma 4.1.
We sketch a construction of the subspaces 0//, referred to here using the

Kronecker canonical form A1- AE1 of the pencil Ao-AEo, where Ao and Eo are the
matrices of the linear mappings obtained by restricting A- BF and E, respectively, to

o. It will be convenient to refer to [7] for details of the Kronecker canonical form
as Wilkinson is directly concerned with the differential equations

E,:( t) A,x( t) +f( t).
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We recall that we may be dealing with a singular pencil since Ao and Eo might not be
square matrices. We begin therefore by referring to [7, p. 249], where

the essential features introduced by singularity (are) surnmarised as follows:
Corresponding to each (of the minimal column indices) the general solution contains
one arbitrary function...
Corresponding to each (of the minimal row indices) r... a compatibility relation is
required between

f, Dr+,, D2f+2,
\at/

Since we are insisting on uniqueness of solutions, A1- AE1 contains no minimal
column indices and, as we are allowing any sufficiently differentiable d (t) without any
compatibility requirement, all the minimal row indices are zero. Thus there exist
nonsingular matrices P and Q such that

P(Ao- AEo)Q A1- AE1
A2 AE.

where A2-AE2 is a regular pencil. Furthermore, A2-AE2 can be taken to be block
diagonal with diagonal blocks given either by

(22) I-AS(O)

or by

(23) S(A,)-AI

where "J(. .)" denotes "a Jordan matrix with eigenvalue..." and Ai ranges over the
finite eigenvalues of the pencil Ao-AEo. We will assume that the diagonal blocks are
arranged so that all those of the first kind appear above and to the left of any of the
second kind. Thus

(24) t 0

P(Ao- AEo)Q A3- AE3 00
0 A4-AE4

where all the infinite eigenvalues of Ao-AEo are accounted for in A3- AE and the
finite eigenvalues in A4-AE4.

The matrices A1 and E1 may be taken to act on the space of column vectors given
by 1 Q-lo. Let 1, U1 denote subspaces of 1 corresponding to a partition of
these column vectors conformable to that in (24). Then it is clear that

1 (, E1 //1
_
A1, A1 //’1 E1

and so ag Q0?/1 and U QI satisfy the requirements of Lemma 4.1.
This completes the proof of the necessity of the conditions in the Main Theorem,

so we have now proved the Main Theorem in its entirety.

5. Conclusion. We have provided necessary and sufficient conditions for the
existence of a state feedback that achieves disturbance decoupling in a linear time-
invariant descriptor system. We have taken care to ensure that the resulting closed
loop system has smooth solutions for a wide class of disturbance functions and initial
conditions and that, when a solution exists, it is unique. Although different application
will require different stipulations about the existence of solutions, "control" in the
context of descriptor systems seems almost certain to require uniqueness of solutions.



1332 L.R. FLETCHER AND A. AASARAAI

Our mode of argument has been in the spirit of Wonham [9] and the structure
of our proof clearly resembles that of the corresponding result in the state space case.
However, we have found the usual presentation, in terms of the properties of uniquely
determined maximal elements of certain collections of subspaces, neither possible nor
essential in the descriptor case. This has meant that our proofs are .less constructive
than we would like; some work is needed to integrate our notions with other, more
algorithmic, approaches. It would be particularly interesting to identify, in a construc-
tive way, the maximal subspace that is the image under E of a subspace of ker C
satisfying (i) and (ii) of Definition 1.3. Lemma 2.4 shows that this subspace is uniquely
determined.

Throughout this paper we have had in mind a linear system described by a mixture
of algebraic and differential equations; the extension of our results to the discrete-time
case should not present any major difficulty.

Acknowledgment. It is a pleasure to acknowledge that detailed comments from
referees of an earlier version of this paper led to clearer thinking and sharper results.
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EXACT PENALTY FUNCTIONS IN CONSTRAINED OPTIMIZATION*

G. DI PILL0 AND L. GRIPP0:[:

Abstract. In this paper formal definitions of exactness for penalty functions are introduced and sufficient
conditions for a penalty function to be exact according to these definitions are stated, thus providing a

unified framework for the study of both nondifferentiable and continuously differentiable penalty functions.
In this framework the best-known classes of exact penalty functions are analyzed, and new results are
established concerning the correspondence between the solutions of the constrained problem and the
unconstrained minimizers of the penalty functions.

Key words, exact penalty functions, nonlinear programming, constrained optimization
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1. Introduction. A considerable amount of investigation, both from the theoretical
and the computational point of view, has been devoted to methods that attempt to
solve nonlinear programming problems by means of a single minimization of an
unconstrained function. Methods of this kind are usually termed exact penalty methods,
as opposed to the sequential penalty methods, which include the quadratic penalty
method and the method of multipliers (see, e.g., [4], [23], and [26]).

We can subdivide exact penalty methods into two classes: methods based on exact
penalty functions and methods based on exact augmented Lagrangian functions. In our
terminology, the term "exact penalty function" is used when the variables of the
unconstrained problem are in the same space as the variables of the original constrained
problem, whereas the term "exact augmented Lagrangian function" is used when the
unconstrained problem has to be minimized on the product space of the problem
variables and of the multipliers.

Exact penalty functions can be subdivided, in turn, into two main classes: non-

differentiable exact penalty functions and continuously differentiable exact penalty
functions.

Nondifferentiable exact penalty functions were introduced for the first time in
[39] and have been widely investigated in recent years (see, e.g., [1], [2], [5]-[10],
[22], [25], [29], and [35]). Continuously differentiable exact penalty functions were
introduced in [24] for equality constrained problems and in [28] for problems with
inequality constraints; further contributions have been given in [14], [15], and [34].

Exact augmented Lagrangian functions were introduced in 11 and 12] and have
been further investigated in [3], [4], [19]-[21], [31], and [38].

In this paper we restrict our attention to exact penalty functions, with the aim of
providing a unified framework which applies both to the nondifferentiable and to the
continuously differentiable case.

We start from the introduction of formal definitions of various kinds of exactness
that attempt to capture the most relevant aspects of the notion of exactness in the
context of constrained optimization. This is motivated by the fact that in thecurrent
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literature the term exact penalty function seems to be used without a definite agreement
on its meaning. In particular, as noted in [29], most of the literature on this subject
is mainly concerned with conditions that ensure that the penalty function has a local
(global) minimum at a local (global) minimum point of the constrained problem. On
the other hand, since the penalty approach is an attempt to solve a constrained problem
by the minimization of an unconstrained function, this characterization is fully satisfac-
tory only when both the constrained problem and the penalty function are convex. In
the nonconvex case, the study of converse properties appears to be of greater interest,
as they ensure that local (global) minimizers of the penalty function are local (global)
solutions of the constrained problem.

Moreover, again in the nonconvex case, a distinction has to be made between
properties of exactness pertaining to global solutions and properties pertaining to local
solutions. It will be shown that, for the same penalty function, different kinds of
exactness can be established under different regularity requirements on the problem
constraints.

Finally, the correspondence between the constrained and the unconstrained
minimization problem can only be established with reference to a compact set contain-
ing the problem solutions, and this must be carefully taken into account in the analysis
of the properties of exactness.

The formal definitions mentioned so far constitute the basis for the development
of sufficient conditions for a penalty function to be exact according to some specified
notion of exactness. In particular, we establish sufficient conditions which apply both
to the nonditterentiable and to the continuously ditterentiable case, thus providing a
unified framework for the analysis and the construction of exact penalty functions. In
this framework, we consider the best-known classes of exact penalty functions, and
we provide a complete analysis of their properties, recovering known results and
establishing new ones.

The paper is organized as follows. Section 2 contains the problem statement, basic
notation, and preliminary results. In 3 we formalize the definitions of various kinds
of exactness of penalty functions, which are classified as weak exactness, exactness,
strong exactness, and global (weak, strong) exactness. Section 4 deals with nonditterenti-
able penalty functions: we analyze the properties of lq exact penalty functions as well
as those of the globally exact nondifferentiable penalty function considered in [16].
In 5 we study continuously differentiable exact penalty functions, and we introduce
a globally exact differentiable penalty function for mixed equality and inequality
constrained problems by extending the results given in [15].

Computational aspects are beyond the scope of this paper. We refer, e.g., to [3],
[4], [9], 18], [21], [27], [28], [33], [34], [36], and [37] for some algorithmic applications
of exact penalty functions.

2. Problem statement, basic notation and preliminary results. The problem con-
sidered here is the general nonlinear programming problem:

minimize f(x)
(P)

subject to g(x) <= O, h(x) O,

where f: [n , g [n __> [m, h [R" - P, p =< n are continuously differentiable functions
and the feasible set

y := {x e": g(x) <- o, h(x) 0}

is assumed to be nonempty.
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We denote by and , respectively, the set of global solutions and the set of
local solutions of problem (P) and we assume that is nonempty.

The Lagrangian function associated with problem (P) is the function L :Nn x R
Nv
_
N defined by

L(x, ,, tx) := f(x) + A’g(x) + tx’h(x).

A Kuhn-Tucker triple for problem (P) is a triple (), X,/2)R R x[p such that

VxL()Z, X, g) 0,

X’g(g) =0,

_->0,

g(x) <-o,

h(x) =0.

We denote by - the set

3-:= {g Nn: there exist (, fi) such that

(, ,/2) is a K-T triple for problem (P)}.

For any x [ we define the index sets:

Io(x) := { i: gi(x) O}

I+(x) := (i: gi(x) >- 0}.

We adopt the following terminology.
The linear independence constraint qualification (LICQ) holds at xR if the

gradients Vgi(x), Io(x), Vh(x),j= 1,. ., p are linearly independent.
The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at xN if

Vh(x),j= 1,...,p are linearly independent and there exists a zR such that

Vgi(x)’z < O, Io(x)

Vhi(x)’z=O j= l, p.

It can be shown, by using the theorems of the alternative [32] that the MFCQ
can be restated as follows.

The MFCQ holds at x " if there exist no ui, Io(x), and vj, j 1, , p such
that

p

2 u,Vg,(x)+ y vvh(x)=O,
i lo(x

U O, Io(x),

(ui, 6 Io(x), v, j 1, p) O.

In some cases we shall make use of a stronger constraint qualification, which is
stated in the following equivalent formulations.

The extended Mangasarian-Fromovitz constraint qualification (EMFCQ) holds at
x ifVh(x),j 1, , p are linearly independent and there exists a z Nn such that

Vgi(X)’Z < O, I+(x)

V h(x)’z O, j l, p.
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that
The EMFCQ holds at x Nn if there exist no ui, /+(x), and v.i,j 1, , p such

P

2 uVg(x)+ 2 vVh(x)=O,
il+(x) j=l

ui >= O, I+(x),

(ui, 6 I+(x), v, j 1," p) O.

It can be noted that the LICQ implies the MFCQ and that the EMFCQ implies
the MFCQ.

It is known that if ff is a local solution of problem (P) and if the MFCQ holds
at , then e -, that is, there ex.ist K-T multipliers (h,/2) associated with :.

We recall that a nonempty set *
_

is called an isolated set of if there exists
a closed set Y( such that * is contained in the interior of Y( and such that if
x e Y(-*, then x % Isolated sets of local minimum points possess the property
stated in the following lemma, which is proved in [23].

LEMMA 1. Let * be an isolated compact set of local minimum points ofproblem
(P), corresponding to the local minimum valuef*; then there exists a compact set
such that * c , and for any point x Y( fq , if x *, then f(x) >f*.

We also state the following lemma, which for q >_-2 is an obvious consequence of
the equivalence of the norms I1" IIq and I1" Ilq-1 on

LEMMA 2. Let q , 1 < q <. Then, there exists a number p > 0 such that for all
z ’, we have"

Iz, lq-’ lllzllq-.
i=1

Proof The assertion follows from a more general result on positive homogeneous
continuous functions ([30, Thm. 5.4.4]). [3

In the sequel we shall be concerned with compact perturbations of the feasible
set. In particular, we shall consider the case in which o% is compact and-there exists
a vector/3 (ao, a’)’ with ao , a m, /3 > 0, such that the set

0t := {x 6 "" g(x)<--_a, IIh(x)ll_-< o}
obtained by relaxing the problem constraints is compact. It can be shown, by extending
a similar result given in 15] for the inequality constrained case, that under the following
assumptions"

(i) there exists adm+l, d>0, such that oWfi is compact,
(ii) the MFCQ holds on o,

there exists a compact set S, with/3 > 0, where the EMFCQ is satisfied.
We make use of the following notation. Given the set s, we denote by s, 0s,

and s, respectively, the interior, the boundary, and the closure of . Given a vector
u with components ui, i= 1,. ., m we denote by u/ the vector with components:

u-:= max [0, ui], i= 1,. ., m
and by U the diagonal matrix defined by:

U := diag (u), 1,. m.

Given a function F :", we denote by DF(x, d) the directional derivative of F at
x along the direction d. We say that is a critical point of F if DF(x, d)>= 0 for all
d ". If : is a critical point of F and F is differentiable at , we have 7F(Y)=0; in
this case we say that ff is a stationary point of F.

Finally, we denote by (:; p) the open ball around ff with radius p > 0.
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3. Definitions of exactness for penalty functions. Roughly speaking, an exactpenalty
function for problem (P) is a function F(x; e), where e > 0 is a penalty parameter, with
the property that there is an appropriate parameter choice such that a single uncon-
strained minimization of F(x; e) yields a solution to problem (P). In particular, we
require that there is an easy way for finding correct parameter values by imposing that
exactness is retained for all e ranging on some set ofnonzero measure. More specifically,
we take e (0, e*] where e*> 0 is a suitable threshold value.

In practice, the existence of a threshold value for the parameter e, and hence the
possibility of constructing the exact penalty function F(x; e), can only be established
with reference to some compact set @. Therefore, instead of problem (P) we shall
consider the following problem.

(P) minimize f(x), x 71 @,

where @ is a compact subset of " such that f’l . It can be observed that if
c @, then problem () and problem (P) are equivalent.

We denote by and L, respectively, the set of global solutions and the set of
local solutions of problem (P), that is:

oT := {x f3 @" f(x) <-f( y), for all

:-- {x f-I @" for some p>Of(x)<-f(y), for all yof-I@f-I(x;p)}.

We have, obviously, that 71 (’1 ; moreover, if 71 , we have also

For any given e > 0, let F(x; e) be a continuous real function defined on a set
such that c__ g___ @ and consider the following problem.

(Q) minimize F(x; e ), x .
Since is an open set, any local solution of problem (Q), provided it exists, is
unconstrained; thus problem (Q) can be considered as an essentially unconstrained
problem. The sets of global and local solutions ofproblem (Q) are denoted, respectively,
by c3(e) and (e)"

c3(e) := {x " F(x; e)<-F(y; e), for all y }
5e.(e) := {x - for some p > 0 F(x; e) <-_ F(y; e), for all y N(x; p)}.

There are different kinds of relationships between problem (P) and problem (Q),
which can be associated with different notions of exactness.

A first possibility is that of considering a correspondence between global
minimizers of problem () and global minimizers of problem (Q). This correspondence
is established formally in the following definition.

DEFINITION 1. We say that the function F(x; e) is a weakly exact penalty function
for problem (P) with respect to the set @ if there exists an e*> 0 such that, for all
e (0, e*], any global solution of problem () is a global minimum point of problem
(Q) and conversely; that is if for some e*> 0"

%(e), for all e (0, e*].
The property stated above guarantees that the constrained problem can actually

be solved over @ by means of the global unconstrained minimization of F(x; e) for
sufficiently small values of the parameter e.

We remark that if all global solutions of problem (P) are contained in , then
problem (P) and problem (’) possess the same global solutions. In this case, weak
exactness implies that global solutions of problem (P) and global minimizers ofproblem
(Q) are the same.
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The notion of exactness expressed by Definition appears to be of limited value
for general nonlinear programming problems, since it does not give a meaning to local
minimizers of the penalty function, while unconstrained minimization algorithms
determine only local minimizers. Therefore, we introduce a further requirement con-
cerning local minimizers which gives rise to a stronger notion of exactness.

DEFINITION 2. We say that the function F(x; e) is an exact penalty function for
problem (P) with respect to the set @ if there exists an e*>0 such that, for all
e (0, e*], (e) and, moreover, any local unconstrained minimizer of problem
(Q) is a local solution of problem (P), that is:

(e)
_, for all e (0, e*].

It must be remarked that the notion of exactness given in Definition 2 does not
require that all local solutions of problem (P) in correspond to local minimizers of
the exact penalty functions. A one-to-one correspondence of local minimizers does
not seem to be required, in practice, to give a meaning to the notion of exactness,
since the condition o7 q3(e) ensures that global solutions of problem (P) are
preserved. However, for the classes of exact penalty functions considered in the sequel,
it will be shown that this correspondence can be established, also, at least with reference
to isolated compact sets of local minimizers of problem (P) contained in . Thus, we
can also consider the following definition.

DEFINITION 3. We say that the function F(x; e) is a strongly exact penaltyfunction
for problem (P) with respect to the set @ if there exists an e*> 0 such that, for all
e(0, e*], q= (e), (e)_ ,, and, moreover, any local solution of problem (P)
belonging to is a local unconstrained minimizer of F(x; e), that is"

N (e) for all e (0, e*].

The properties considered in the preceding definitions do not characterize the
behavior of F(x; e) on the boundary of . Although this may be irrelevant from the
conceptual point of view in connection with the notion of exactness, it may assume a
considerable interest from the computational point ofview, when unconstrained descent
methods are employed for the minimization of F(x; e). In fact, it may happen that
there exist points of such that a descent path for F(x; e) that originates at some of
these points crosses the boundary of . This implies that the sequence of points
produced by an unconstrained algorithm may be attracted toward a stationary point
of F(x; e) out of or may not admit a limit point. Therefore, it could be difficult to
construct minimizing sequences for F(x; e) which are globally convergent on toward
the solutions of the constrained problem. In order to avoid this difficulty, it is necessary
to impose further conditions on F(x; e), and we are led to introduce the notion of
global exactness of a penalty function.

DEFINITION 4. The function F(x; e) is said to be a globally (weakly, strongly)
exact penaltyfunction for problem (P) with respect to the set @ if it is (weakly, strongly)
exact and, moreover, for any e > 0 and for any 0@ there exists a neighborhood
(, p) such that if {Xk}C and limk_ xg , we have"

lim inf F(Xk; e) > F(x; e),
k-eo

for all x (; p) f3 .
The condition given above excludes the existence of minimizing sequences for

F(x; e) originating in that have limit points on the boundary. In fact, we can state
the following proposition.
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PROPOSITION 1. Let F(x; e) be a (weakly, strongly) globally exact penaltyfunction
with respect to the set 9 and let {Xk} c be a sequence such that F(Xk+I’, e)< F(Xk" e).
Then, any limit point of {Xk} belongs to .

Proof By the compactness of 9 there exists a subsequence, which we relabel {Xk},
such that Xk-> 9. Reasoning by contradiction, assume that 09. Then, recalling
Definition 4, we have, for sufficiently large values of j, lim infk-,oo F(Xk’, e) F(xj’, e),
which contradicts the assumption F(Xk; e)<: F(xj; e) for all k_->j.

4. Sufficient comlitions for exactness. In this section we state sufficient conditions
which imply that a penalty function F(x; e) possesses some of the properties of
exactness considered in the preceding section. Everywhere below we suppose that the
following assumption holds.

Assumption (A1). Any global solution of problem () belongs to the set , that
is: =.

We note that Assumption (A1) concerns the selection of the set 9 and implies
that c; it can be satisfied, in particular, by a proper choice of 9, whenever the
global solutions of problem (P) belong to a bounded subset of .

Let Y( be the subset of ffl where the function F(x; e) takes the same values
off(x), that is"

(1) Y{:={xof-)’F(x;e)=f(x)foralle>O}.
The next theorem establishes a sufficient condition for F(x; e) to be a weakly

exact penalty function in the sense of Definition 1.
THEOREM 1. Let F(x; e) be such that the following conditions are satisfied.
(al) For any e > O, the function F(x; e) admits a global minimum point on a set

such that c_c_ ; c_ 9.
(a2) If { ek} and {xk} c__ g’ are sequences such that limk_oo ek 0, limk_,oo xk 9

and lim supk_,oo F(xk, ek) <oo, we have o%9 and f()<=limsupk_,ooF(xk,
(a)
(a4) For any c, there exist numbers e() > 0 and o() > 0 such that, for all

e (0, e()], if %(e) and x %(e) is a global minimum point of problem (Q)
satisfying x -< o(:), we have x

Then, F(x; e) is a weakly exact penalty function for problem (P) with respect to the
set 9.

Proof We show first that there exists an e*>0 such that, for all e (0, e*] we
have 3(e) and qa(e) c_ . Recalling condition (al), we have that, for any given
e > 0, there exists a point x* such that:

F( *"x, e) min F(x; e).
xG

We prove, by contradiction, that there exists an e* > 0 such that, for all e_e (0, e*] the
point x* is a global solution to problem (). Suppose that this assertion is false. Then,
for any integer k there must exist an ek <= 1/k and a global minimizer Xk of F(x; ek)
on {g such that Xk is not a global solution of problem (). Let Y be a global minimizer
of problem (); then, by (a3) we have 07 Y{, so that, by definition of the set Y{, we have"

F(:; ek):f(;).

Then, as Y{_ __C_ {q, we can write:

(2) F(Xk, ek) min F(x; ek) <---- F(Y; ek) =f(:).
xG
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Since @ is compact and
___

@, there exists a convergent subsequence, which we relabel
{Xk}, such that limk_, Xk @. By (2) we have:

lim sup F(Xk, ek) <=f(Y),
koo

so that (a2) implies"

fff3@ and f()=<f(Y),

whence it follows that is a global minimum point of problem (). Recalling Assump-
tion (A1), we have and therefore, since limk_, Xk , it follows that for sufficiently
large values of k, say k => ko, the point Xk belongs to . As __. , this implies that

F(Xk, ek) min F(x; ek) <= min F(x; ek),
x x

that is: cg(e) 2 and xg (e) for k_>- ko. Moreover, since cg, lim_, e =0
and lim_,x =, we have that there exists an integer kl--> ko such that, for all
k -> k, x e a(e), e _-< e(:) and [[x - ll -< (), where e(2) and o-(2) are the numbers
considered in condition (a4). Therefore (a4) implies that x ’" for all k _-> k, so that,
by (2), we obtain"

f(x,) F(x; e) <= f(:), k >= k
Hence, x ff is both a .global minimum point of F(x; e) on and a global
minimum point of problem (P) and this contradicts our original assumption. It can
be concluded that there exists an e* > 0 such that for all e (0, e*] any global minimizer
x* of F(x; e) on is a global solution to problem (). On the other hand, by
Assumption (A1), the global solutions of problem () are in and hence, for all
e (0, e*], we have that x* is a global minimizer for problem (Q).

Thus we have proved that for e(0, e*], (e) and (e)___ . Now let
e (0, e*] and let x be any point in (e) c_ . By condition (a3) we have (e) c__ ff{

so that:

(3) f(x) F(x; e).

If is another global minimizer of Problem (’), again by (a3), we have

(4) f(g) F(X; e).

Therefore, as f(x)=f(g), (3) and (4) imply that F(X; e)= F(x; e) and this proves
that X is a global solution to problem (Q). Thus,

_
(e) for all e (0, e*] and this

completes the proof. U
A short discussion of conditions (a)-(a4) is in order.
Condition (a) requires the existence of a global minimizer of F(x’, e) on the set. Two cases are of interest" the case @ and the case . When @, recalling

that @ is compact, the existence of a global minimizer is ensured by the continuity of
F(x; e); if , we must specify some further condition on the behavior of F(x; e)
on 0. We shall address this problem later in connection with sufficient conditions for
global exactness.

Condition (a) indicates the role played by the penalty parameter e it requires,
in particular, that, as e goes to zero, if the penalty function remains bounded from
above, the constraints are satisfied in the limit.

With regard to (a3), we may note that this condition is satisfied whenever, for all
e>0"

F(x; e) =f(x), for x o f-I .
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In fact, in this case we have, by (1), that Y{ -71 . The different classes of exact
penalty functions considered in the sequel are associated with different characteriz-
ations of Y{. In particular, in the case of nondifferentiable penalty functions, we have
Y{" o% . However, this requirement would be too strong to allow the construction
of continuously differentiable exact penalty functions, as will be apparent from the
content of 5. Thus, in the case of continuously differentiable exact penalty functions,
the set Y{ turns out to be a subset of f3 containing a region where suitable necessary
optimality conditions for problem (’) are satisfied.

Finally, we may note from the proof of Theorem 1 that condition (a4) is of major
relevance in order to establish the properties of exactness considered, since the first
three conditions are usually satisfied in the case of sequential penalty functions also.

We give now a sufficient condition for F(x; e) to be an exact penalty function in
the sense of Definition 2, which is obtained by replacing (a4) of Theorem 1 with
a stronger condition and by imposing that F(x; e) is bounded above by f(x) on
the set o

More specifically, we state the following theorem.
THEOREM 2. Let F(x; e) be such that conditions (al)-(a3) ofTheorem 1 are satisfied

and assume further that the following conditions hold.
(as) There exists an g>0 such that, for all e (0, g], if(e) and x (e),

we have x
(a6) F(x; e)<=f(x) for all e>O andx6f’l.
Then, F(x; e) is an exact penalty function for problem (P) with respect to the set @,

in the sense of Definition 2.

Proof We observe first that condition (as) is stronger than condition (a4) of
Theorem 1 so that the function F(x; e) is a weakly exact penalty function in the sense
of Definition 1. Hence, there exists an g>0 such that for all e e (0, g] we have
(e) and this implies (e) . Now let e*= min , g], where g is the number
considered in condition (as), let e (0, e*], and assume that x e (e). Then, by (as),
we have x Y{" so that we get F(x; e)=f(x). This implies that for e (0, e*] and
for some p > 0 it can be written:

f(x)<=F(x; e) forallxo%f’ll(x;p).

Hence, by (5) and (a6) we have:

f(x)<-f(x) forallxeflN(x;p),

so that x is a local minimizer of problem (P). [3

As already observed in the proof of the preceding theorem, condition (as) is
considerably stronger than (a4) of Theorem 1; it requires, in particular, that for
sufficiently small values of e any local minimum point ofproblem (Q) is a feasible point
forproblem (P). It will be shown in the sequel that satisfaction of condition (as) requires
the introduction of a suitable constraint qualification in problem (P).

In order to give sufficient conditions for strong exactness, we now establish a
condition which ensures that isolated compact sets of local minimizers of problem (P)
correspond to local unconstrained minimizers of F(x; e) for sufficiently small values
of e.

PROPOSITION 2. Let * be a nonempty isolated compact set oflocal minimum points
ofproblem (P) corresponding to the local minimum valuer*, such that * 71 . Let
F(x; e) be such that the following conditions are satisfied.

(bl) If {ek} and {Xk}C are sequences such that limk_.oo ek =0, limt,_oo Xk ) ,
and lim SUpk-oo F(Xk, ek) < OO, we have 71 @ and f(2) _-<lim SUpk-oo F(Xk, ek).
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(b2) c,
_

if{’.

(b3) _For any : c, there exist numbers e() > 0 and o’() > 0 such that, for all
e (0, e()], if (e) and x (e) is a local minimum point of problem (Q)
satisfying IIx 11 <-- (), we have x

Then, there exists an e*> 0 such that for all e e (0, e*], 2 c, implies that is a
local minimum point ofproblem (Q).

Proof. Let be the compact set considered in Lemma 1. Since c, c N , we
can find a compact set c " satisfying

c*c and

such that

(6) f(x)>f* forallx ff, x c,.

Now consider the following problem.

(7) minimize f(x), x e , N .
Then, by (6), we have that c, c is the set of global solutions of problem (7). Recalling
Theorem 1, it can be easily verified that the function F(x; e) is weakly exact with
respect to the set , and hence there exists an e* > 0 such that for all
implies that 2 is a global minimum point of the following problem.

(8) minimize F(x; e ), x .
On the other hand, since , any global solution of problem (8) is a local minimizer
of problem (Q) and this completes the proof.

Using the preceding result, we can establish a sufficient condition for strong
exactness under the following assumption on problem (P).

Assumption (A2). There exists a finite number of isolated compact sets *,r*),
1, , r of local minimum points of problem (P) corresponding to the local minimum
values f*, such that *(f*) and. n U c,(f,).

i=1

Assumption (A2) requires that any local minimizer of problem (P) in belongs
to an isolated compact set of local minimizers and that the number of these sets
contained in is finite.

Then, we have the following theorem.
THEOREM 3. Suppose that Assumption (A2) holds. Let F(x; e) be such that the

following conditions are satisfied.
(Cl) For any e > O, the function F(x; ) admits a global minimum point on a set

such that 9.
(c2) If { e} and {Xk} are sequences such that limk_ ek 0, limk_ Xk 9,

and lim SUpk_ F(Xk, ek) <, we have @ andf() <-- lim SUpk_ F(Xk, ek).
(c3) n

___
YC.

(C4) There exists an g> 0 such that, for all e (0, g], if(e) Q and x (e),
we have x 77;

(c5) F(x; e)<=f(x) for all e>0 and x f-).
Then, F(x; e) is a strongly exact penalty function for problem (P) with respect to

the set @.
Proof By Assumption (A1) we have o9

_
N ; then, noting that the set of

conditions (c)-(c5) implies the conditions stated in Theorem2, we have that the



EXACT PENALTY FUNCTIONS 1343

function F(x; e) is exact in the sense of Definition 2 for some threshold value Co> 0
of the penalty parameter. On the other hand, for 1,..., r we have *(f*)g Y’, so
that, since conditions (c)-(c5) also imply conditions (bl)-(b3) of Proposition 2, there
exist values
Lc(e). Thus, by letting e* mino=<__<re we have that F(x; e) is exact, and, moreover,
by Assumption (A2) we have

n [5 c,(f,)
__
(s)

=1

for all s(O, s*], so that the function F(x; ) is strongly exact in the sense of
Definition 3.

5. Nondifferentiable exact penalty functions. In this section we shall make use of
the sufficient conditions given before in order to establish the exactness of the best-
known class of nondifferentiable penalty functions.

We suppose that Assumption (A1) stated in 4 is satisfied, that is,
We consider the class of nondifferentiable penalty functions defined by

Jq(x; e):= f(x)+
1

II[g+(x)’h(x)’]’ll,

where 1 _-< q _-< . In particular, we have

Jq(x; s)=f(x)+- E (gT(x))q 2 Ibm(x)
8 i=1 "=1

for 1 =< q <, and

1
J(x; 8)=f(x)+-max [g(x),..., g+,,(x), Ih(x)l,

e

For this class of functions the set 3’" defined in (1) is obviously obtained as

The expression of the directional derivative DJq(x, d; 8) of Jq(x; 8) is given in the
following proposition, which is proved in full detail in [16].

PROPOSITION 3. For all 8 > 0 and d eR", the function Jq(x; 8) admits a directional
derivative DJq x, d; e ).

Let

(9)

and

(10)

IVg,(x)’d,
:, (x, d):= { (Vgi(x)’d)+,

[0,

/fg,(x) > O;
fig,(x) =0;
fig,(x) < 0

[v(x)’a,
’a(x, d):=

if(x)>O;
if(x) =0;

ifh(x)<O.
Then, we have:
(a) for q= l:

DJ,(x, d; 8)= Vf(x)’d +- E (x, d)+ Y. j(x, d)
8 i=1 j=l
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(b) for 1 <q<oo, x 0%:

DJq(x, d; e)= Vf(x)’d

+ g+ ’h --I Y (g-(x))q-’i(x, d)+ 2 Jhj(x) j(x, d)
11[ (x)(x)’]’ll ,=, =,

(c) for 1 < q < oo, x 6 0%:

DJq(X, ; f(x’e +- ((x, + ((x, ao /q,
8 i=l j=l

(d) for q oo:

1
DJoo(X, d; e)= Vf(x)’d +-max [{:(x, d), e I(x)}, {j(x, d),j e I2(x)}],

8

where

Ii(x) := {i" g[(x)= II[g+(x)’h(x)’]’lloo)

I_(x) := {y: Ih,(x)l II[g+(x)’h(x)’]’ll}.

The next two propositions, which have been proved in 17], play a significant role
in establishing the exactness properties of Jq(x; e).

PROPOSITION 4. Let 0% and assume that the MFCQ holds at . Then, there exist
numbers e() > 0 and o’() > 0 such that, for all e 6 (0, e(;)], ifx is a critical point of
Jq(x; e) satisfying [[x-:[[ <_--o’(), we have x .

PROPOSITION 5. Assume that the EMFCQ holds on 9. Then, there exists an g > 0
such that, for all (0, gl, ifx @ is a critical point of Jq(x; e), we have x 0%.

We can now prove that, under suitable assumptions on problem (P), the function
Jq(x;.e) satisfies the sufficient conditions of exactness stated in the preceding section.

THEOREM 4. (a) Assume that the MFCQ is satisfied at every global minimum point
ofproblem (’). Then, thefunction J,(x; e) is a weakly exact penaltyfunctionfor problem
(P) with respect to the set 9.

(b) Assume that the EMFCQ is satisfied on 9. Then, the function Jq(x; e) is an
exact penalty function for problem (P) with respect to the set 9; moreover, ifAssumption
(A2) holds, the function J(x; e)is a strongly exact penaltyfunctionforproblem (P) with
respect to the set 9.

Proof We show first that conditions (al)-(a4) of Theorem 1 are satisfied.
Let g 9; then, (al) follows from the continuity of J(x; e) and the compactness

of 9.
With regard to condition (a2), let {ek} and {Xk} c be sequences such that ek > O,

limk-_>oek O, limk_+oo Xk 9, and assume that

This implies

lim sup Jq(Xk; ek) r# < oo.
k-+oo

f(:) + lim sup
I

II[g+(xg)’h(xk)’]’llq r,
k- 8k

whence it follows that

II[g+())’h()7)’]’llq 0 and f()) _-< r#

so that (a2) is satisfied.
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Condition (a3) follows from the definition of Jq(x; e), since

Jq(x; e) =f(x) for all x o%.

Finally, condition (a4) follows from Proposition 4, since any global minimum
point of problem (Q) is a critical point of Jq(x; e). This concludes the proof of (a).

Consider now the conditions stated in Theorem 2; we have already proved that
(al)-(a3) hold. Condition (as) is implied by the result given in Proposition 5 and
condition (a6) follows from the definition of Jq(X; e). It can be easily verified also that
conditions (cl), (c2), (c4), and (c5) of Theorem 3 reduce to conditions (al), (a2), (as)
and (a6), and that condition (c3) follows from the definition of Jq(x; e). Thus (b)
follows from Theorems 2 and 3. [3

In the next two propositions we report additional results concerning the correspon-
dence between critical points of Jq(x; e) and K-T triples of problem (P).

PROPOSITION 6. Let gT; then, if g is a critical point Of Jq(x’, e) we have 3.
Moreovoer if the EMFCQ holds on , there exists an e* > 0 such that for all e (0, e*],
ifx is a critical point of Jq(x; e), we have x 3-.

Proof. Let us define the following set.

:= {z: Vgi(g)’z<-_O, Io(g),

Vhj(:)’z =0,j= 1,..., p, Vf(:)’z <0}.

it is known that, by Farkas’ lemma, Lr-- implies that there exist " and/2 NP
such that (, ,/2) is a K-T triple for problem (P). (See, e.g., [23, p. 18].)

We prove first that if is a critical point of Jq(x; e), we have N=. in fact,
since : if, we have, by Proposition 3

Do(, ; f(’+- 2
E ie Io()

for 1 =< q < o, and

l/q

[(Vgi(’)’Z)+] q q- L IVh(z)’zl q

j=l

1
DJo(X, z; e)= Vf(:g)’z +-max [(Vg,(X)’z)+, 6 io(X), Ivh()’zl,j= 1,... p].

E

It follows that, whenever Vgi())’z -< 0, for i Io(:) and Vhj())’z 0, for j= 1, ..., p
we have"

DJq(Y,, z; e)= Vf())’z.

Therefore, as 9 is a critical point of Jq(x;e), we have Vf())’z>_- 0 for all z satisfying

Vg,(ff)’z <-- 0, iIo()

Vhj())’z 0, j=l,...,p

and this implies Y , so that 9 3-. Now, recalling Proposition 5, we have that if
the EMFCQ holds on @ there exists an e* > 0 such that for all e (0, e*] if x is
a critical point of Jq(x; e) We have x and hence x -. [3

PROPOSITION 7. Let (,, ) be a K-T triple for Problem (P). Then" (a) : is a
critical point of Jq (x; e), 1 <- q < for all e > 0 such that

.ie<----(m+p) (’-q)/q, i6Io(.g)

]/2]e <--(m nt-p) (1-q)/q, j l, p.,
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(b) : is a critical point of Joo(x; e), for all e > 0 such that

i Io( j--

Proof. Since (, ,/2) is a K-T triple for problem (P), we can write

(11) Vf(x) E x,Vg,(.g) + E /2V h(.g)
i I0()

Consider first the case 1 q < . As , by Proposition 3 we have, for any given
d:

DJo(, d; e)= f()’d+ [(Vg()’d)+] + Vh()’dl
E ielo( j=l

so that, by (11):

Jo(, ; 2 [(g(’*]o + 2 h(’
ie Io()

ie Io( j=

Using HSlder’s inequality, we can write

elo() P

+jl e(m+p)(q-)/q-Ijl

and this implies (a).
Consider now the case q . Since g if, we have, by Proposition 3:

o(g, d; ) Vf(g)’d+max [(Vg,()’d)+, i Io(), IVh()’dl,j ,..., p].

By (11), we can write"

1
DJ(, d’, e)>-max [(Vg,()’d) e Io(X), lVh()’dl,j-- 1, p]

E ,(Vg,(g)’d)+ + Y, I/2l Iv h()’dl
iE 10(: j=

whence, noting that

P. .,(Vg,(g)’d)+ + . I/2j] IVh,()’dl
iElo( j=l

ielo() j=l

we obtain (b).
We consider now, under suitable compactness assumptions on the feasible set,

the nondifferentiable penalty function with global exactness properties proposed in
16]. This function incorporates a barrier term which goes to infinity on the boundary
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of a compact perturbation of the feasible set and can be viewed as a generalization of
the "M2" penalty function introduced in [22].

Let

5co := {x N", g(x) <= c, IIh(x)[[ =< o}
be the set introduced in 2 and suppose that the following assumption is satisfied.

Assumption (A3). The set 5et is compact.
Obviously, this assumption implies that the feasible set is compact. We can take
5et, so that c , problem (P) reduces to the original problem (P), and Assumption

(A1) of 4 is satisfied.
Let us introduce the functions:

ao(x) := ao-[[h(x)ll
ai(x) := ol.i- gi(x), i= 1,’’’, m

and denote by A(x) the diagonal matrix"

A(x) := diag (a(x)), i- 1,. ., m.

We have, obviously, that a(x) > O, O, 1, , m, for all x e .
Then, we consider the following function

Zq(x; e):=f(x)+le (A-(x)g+(z))’a)J q’
where e > 0 and 1 _-< q _-< . In particular, we have"

Zq(x" e)=f(x)+l [ (g-f(x)’q 1 P ]’/q\ a,(x)) +ao(x)q " Ihj(x)lq
E i=1 j=l

for =< q < oe, and

Zoo(x" e)=f(x)+-max
e a,(x)’ ’a.,(x)’ ao(x)’ ao(x)

An equivalent expression of Zq(x; e) can be derived by defining the functions

g,(x)
(12) ,(x) i= 1,"" ", m

a,(x)

(13) (x) h(x)
ao(x)’ j= 1,. p.

Using (12) and (13) we can write

Zq(x’ f(x) +
1

E

Taking this into account, the expression of the directional derivative DZq(x, d; e) can
be obtained from (a)-(d) of Proposition 4 by replacing g(x) with (x) and h(x) with
h(x). By this substitution we have for the gradients

ai(14) Vg,(x) a(x) Vg,(x), i= 1,..., m

1 hi(x) Oh(x)’
h(x), j 1,’", p.(15) V hj(x) aoi) h(x)+ 2 ao(X) Ox

We can now perform the analysis of the exactness properties of the function
Zq(x; e) making use of the sufficient conditions given in the preceding section. The
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analysis is based on the fact that, by construction, the function Zq(x; e) is defined for
all x and goes to infinity for x converging to a point of 0@; then, by Definition 4
we have that Zq(x; e) is a globally (weakly, strongly) exact penalty function for problem
(P) with respect to the set @ if it is (weakly, strongly) exact in the sense of
Definitions 1, 2, and 3.

The following propositions, which have been established in [16], can be viewed
as the analogues of Propositions 5 and 6.

PROPOSITION 8. Let and assume that the MFCQ holds at . Then, there exist
numbers e() > 0 and tr() > 0 such that, for all e (0, e ()], ifx is a critical point
ofZq (x; e satisfying x --< (), we have x .

PROPOSITION 9. Assume that the EMFCQ holds on . Then, there exists an g > 0
such that, for all e (0, g], ifx is a critical point of Zq(x; e), we have x .

Using the preceding results, it is possible to establish the properties of exactness
of Zq(x; e), which are collected in the following theorem.

THEOREM 5. (a) Assume that the MFCQ is satisfied at every global minimum point
ofproblem (P). Then, the function Zq(x; e) is a globally weakly exact penalty function
for problem (P) with respect to the set 9.

(b) Assume that the EMFCQ is satisfied on 9. Then, the function Zq(x; e) is a
globally exact penalty function for problem (P) with respect to the set 9; moreover, if
Assumption (A2) holds, thefunction Zq(x; e) is a globally strongly exact penaltyfunction
for problem (P) with respect to the set @.

Proof By construction, we have limk_Zq(Xk; e)=oO for any sequence {Xk}C
such that Xk y 0@. Hence, by Definition 4 we have that Zq(x; e) is globally (weakly,
strongly) exact if it is (weakly, strongly) exact.

With regard to 5(a), letting , we can proceed as in the proof of Theorem 4
making use of Proposition 8 in place of Proposition 4; the proof of 5(b) is similar to
that of Theorem 4(b) provided that we employ Proposition 9 in place of Prop-
osition 5. [3

Finally, we state without proof the relationships between critical points of Zq(x; e)
and K-T triples of problem (P).

Noting that, for x we have Vgi(x)’z-_<0 and V/(x)’z=0 if and only if
Vgi(x)’z<=O and Vhj(x)’z=O, and recalling Proposition 9, the proof of Proposition 6
can be easily modified to yield the following result.

PROPOSITION 10. Let ; then, if is a critical point ofZq(x’, 8), we have -.
Moreover, if the EMFCQ holds on 9, there exists an e* > 0 such that for all e 6 (0, e*],
ifx is a critical point ofZq (x; e), we have x ’.

The next proposition is an analogue of Proposition 7 which can be established by
taking into account formulas (14) and (15) when considering the expression
DZq(x, d; e).

PROeOSITIOY 11. Let (, ,/) be a K-T triple for problem (P). Then: (a) 2 is a
critical point of Zq (x; e), 1 _-< q < o for all e > 0 such that:

1.,e <=--(m +p)(-q)/q, Io(X)

1
[12jle <---(m +p)(1-q)/q, j 1,’’"

Oo
,P.

(b) : is a critical point of Zoo(x; e), for all e >0 such that"

ie Io()
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6. Continuously differentiable exact penalty functions. In this section we study a
class of continuously differentiable exact penalty functions, making use of the sufficient
conditions established in 4.

The key idea for the construction of continuously differentiable exact penalty
functions is that of replacing the multiplier vectors (, ) which appear in the aug-
mented Lagrangian function of Hestenes, Powell, and Rockafellar [4] with continuously
differentiable multiplier functions (&(x), (x)), depending on the problem variables.

Let

:= {x 6g": Vgi(x), Io(x), Vh(x),j 1," ", p are linearly independent};

then, for any x we can consider the multiplier functions (A (x), pc(x)) introduced
in [28], which are obtained by minimizing over" P the quadratic function in (A, pc)
defined by:

,(;, ., x):-IlVxL(x, ;t, )11+ ,ll a(x); ,
where 3/ 0 and

G(x) := diag (g,(x)).

The function (h, pc; x) can be viewed as a measure of the violation of the set of K-T
necessary conditions:

Vx/4X, ;t, ) 0, (x) =0.

Let N(x) be the (m+p)x(m+p) matrix defined by:

og(x) og(x)’ v(x
Ox Ox

N(x) :=
oh(x) og(x)’
Ox Ox

og(x) oh(x)’
Ox Ox

Oh(x) Oh(x)’
Ox Ox

In the next proposition we recall some known results established in [28].
PROPOSITION 12. Let gand 3’ O. Then: (a) the matrix N(x) ispositive definite;
(b) there exists a unique minimizer (h (x), pc(x)) of the quadratic function in

(,, pc), (, pc; x), given by

OX
Vf(x);

k(x) - (x)
oh(x)

(c) if (g, X, t2) g x" x NP is a triple such that VxL(g, , fi) 0 and G(g). O,
we have h () and pc () f;

(d) the Jacobian matrices of h (x) and pc (x) are given by

(16)

LOxJ
where

Og(x)
R(x): VL(x, h(x), /z(x))+ E e’VxL(x, h(x), pc(x))’VZgi(x)

OX i=1

Og(x)
OX
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s(x): h(x) V]L(x, h(x),/z(x))+ e;V,,L(x, h(x), (x))’V2hj(x)
OX j=l

VxL(x, A (x), i(x)) := [VxL(x, A,
, =,(x)

VZxL(x, h(x), t*(x)) := [VZxL(x, h,
=(x)

A(x) := diag (a,(x))
pand ei (ej) denote the ith(jth) column of the m x m(p x p) identity matrix.

Thus we can consider the penalty function introduced in [28], defined by

1
W(x; e):=f(x)+h(x)’(g(x)+ Y(x; e)y(x; e))+- Ilg(x)+ Y(x; e)y(x; e)[[ 2

8

(17)
1

+,(x)’h(x)+- Ilh(x)ll,
where

(18)

yi(x; e):= -min O, gi(x)+- hi(x)

Y(x; e):= diag (y,(x; e)).

It can be verified that the function W(x; e) can also be written in the form

1
’hW(x; e)=f(x)+A(x)’g(x)+-Ilg(x)ll+**(x) (x)

1 "+-Ilh(x){{ - 7- E {min[O,ei(x)+2gi(x)]}2

E I4E i=l

From the above expression and the differentiability assumptions on the problem
functions, it follows that W(x; e) is continuously differentiable on . The expression
of W(x; e) can be derived by means of the following reasoning.

Consider the transformed problem:

minimize f(x)

subject to g(x) + Yy O, h(x) O,

where Yi, 1,. , m are slack variables and Y:= diag
Define the augmented Lagrangian function for this problem:

L,(x, y, A, ; e):=f(x) + M(g(x)+ yy)+l iig(x)+ gyll2+ t,,h(x)+l [[h(x)[[2.
E E

Then, by substituting (h(x), (x)) for (A,/z) and minimizing with respect to y,
we get the function W(x; e), that is,

W(x; e)=La(x,y(x; e),a(X),l(X); e)=minLa(x,y,a(X),l(X); e).
y

Since, by construction,

[VyLa(x, y, h,/z; e)] a=a(x)=0,
t*
y=y(x; e)
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the gradient expression of W(x; e) can be obtained by treating formally y(x; e) as a
constant vector. Thus, we have"

v W(x; ) V/(x) +
Og(x)’ Oh(x)’

a(x)+(x)
Ox Ox

20g(x)’ 2 Oh(x)’
-(g(x)+ Y(x; e)y(x; e))-
e Ox e Ox

h(x)

ox(x)’ o(x)’+ (g(x)+ g(x; )y(x; ))+ h(x),
Ox Ox

where OA(x)/Ox and Ol(x)/Ox are the Jacobian matrices defined in (16).
Some properties of exactness of the function W(x; e) have been established in

[15] for inequality constrained problems. Here we perform a more complete analysis
for problems with both equality and inequality constraints, making use of the sufficient
conditions given in 4.

We suppose that Assumption (A1) of 4 is satisfied, that is, c , and that
everywhere in this section the following assumption holds.

Assumption (A4). The LICQ is satisfied on
Some immediate consequences of the definition of W(x; e) are pointed out in

the following proposition.
PROPOSITION 13. Let (2, , ) be a K-T triple for problem (P), such that @.

Then, for any e >0, we have" (a) g(ff)+ Y(2; e)y(ff; e)=0;
(b) W(2; e)=f(2);
(c) v w(z; )=0.
Proofi By Proposition 12 we have ;t()= ] and (2)=/2, so that, since (2,,/2)

is a K-T triple for problem (P), we obtain VL(2, A (2),/ (2)) 0, , (2) -> 0 and ;t() 0
when g()< 0. Then, (a) is satisfied by definition of y(2; e) and (b) follows directly
from (17). Finally, (c) follows from (19), taking (a) into account and noting that, by
assumption, h()=O and VxL(& h(),/(2)) =VL(, ,/2).

Then, we have the following proposition.
PROPOSITION 14. Let , 9. Then, there exist numbers e() > 0 and cr() > 0

such that, for all e6(0, e()], if x is a stationary point of W(x; e) satisfying
IIx-ll (), we have that (x, A(x),/(x)) is a K-T triple for problem (P).

Proof Let x e ; then, by definition of y(x; e), we have

(20) Y2(x; e)h(x) =-2 Y2(x; e)(g(x)+ Y(x; e)y(x; e));
E

moreover, by definition of h (x) we can write:

(21)

Og(x)
Ox

VxL(X, (x), (x)) -va(x) (x)

=-y2G(x)(G(x)+ yE(x; e))A(x)+ y2G(x) y2(x; e)A(x)

=-y:ZG(x)A(x)(g(x)+ Y(x; e)y(x; e))+ y2G(x) y2(x; e)A(x).

Therefore, by (20) and (21) we get

Og(x)
Ox

VxL(x,A(x), ix(x))=-y2G(x)(eA(x)+2YZ(x; e))(g(x)+ Y(x; e)y(x; e)),
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so that, by (19), we can write

(22)

where

Og(x)
e------ V W(x; e) e------

Ox

og(x)
VxL(x,a(x),(x))

Ox

Og(x)(Og(X)’ OA(x)’+ 2 + (g(x)+ Y(x; e)y(x;
ox ox -o-- /

og(x) ( oh(x)’ o.(x)’)+ 2 +e h(x)
Ox Ox Ox

Kl,(x; e)(g(x)+ Y(x; e)y(x; e))+ K,2(x; e)h(x),

KI,(x; e):= 21
g(x)/ Og(x)’

\ Ox Ox
y2G(x) Y(x; e))

(og(x) oa(x)’
+e\ xx Ox rG(x)A(x))
og(x) oh(x)’ og(x) o(x)’

K12(x; e := 2-- --+e
Ox Ox Ox Ox

Now, by definition of x(x), we have

oh(x)
Ox

vxI4x, t (x), (x)) o

and hence, by (19) we can write

(23)
oh(x)

e VW(x; e)= K2,(x; e)(g(x)+ Y(x; e)y(x; e))+ K22(x; e)h(x),
Ox

where

Oh(x) Og(x)’ Oh(x) OA(x)’
g21(X; E):= 2 t-e

OX OX OX OX

oh(x) o(x)’Oh(x) Oh(x)’
K2(x; e) := 2

Ox Ox

Thus, from (22) and (23) we get, for all x :

(24) e

-Fe
Ox Ox

og(x)

Oh(x)
V W(x’e)=K(x’e)

g(x)+ Y(x; e)y(x; e)
h(x)

L ox
where K(x; e) is the matrix defined by

[Kl(X" e) K2(x; e)]K(x;e):=
K21(x; e) K22(x; e)

Let now ; C1 @; then, by definition of y(x; e) we have

y2(.; O)=-G(:),
so that, by definition of K(x; e), we get

K(;; 0) 2N(;).
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Therefore, since Assumption (A4) implies that N(x) is nonsingular, by continuity
there exist numbers e()> 0 and tr()> 0 such that the matrix K(x; e) is nonsingular
for all e [0, e()] and all x such that IIx- ll-<- (), Let e [0, e(:)] and let x
be a stationary point of W(x; e) satisfying IIx-11 =< (). By (24) we have

K(x. )[(x)+ V(x; )y(x; )] =0,
h(x)

which implies, as K(x; e) is nonsingular, h(x)=0, and

(25) g(x)+ Y(x; e)y(x; e)=0.

Therefore, since 7W(x; e)=0, we have from (19)

(26) 7,L(x, )t(X), /a,(x)) =0;

on the other hand, by definition of A(x) and/(x), we have

(27) Og(x) ’VL(x, ,(x),/x (x)) + yG2(x)A(x)=0,
Ox

and hence, by (26) and (27) we obtain

G(x)(x) =o.
Finally, if gi(x)=0 for some i, we have, by (25), y2(x; e)=0, which implies, by
definition of y(x; e), that Xi(x) >- 0. Hence, the triple (x, A (x),/x(x)) is a K.T triple
for problem (P). l-]

The next proposition establishes the correspondence between stationary points of
W(x; e) and K-T triples for problem (P) on the whole set @.

PROPOSITION 15. Assume that the EMFCQ holds on 9. Then, there exists an e*> 0
such that, for all e(0, e*], if x is a stationary point of W(x; e), we have that
(x, A (x), I (x)) is a K-T triple for problem (P).

Proof The proof is by contradiction. Assume that the assertion is false. Then, for
any integer k, there exists an ek =< 1/k and. a point xk such that V W(x; e)=0,
but (x, A (x),/z(xk)) is not a K-T triple for problem (P).

Since is compact, there exists a convergent subsequence (relabel it again {x})
such that lim_ x : @. Moreover, since V W(x; ek) 0 for all k and since e 0,
we have in the limit, by (19):

(28)
Og(:)’

(g()) + y(;; O)y(); 0))+ oh(;)’ h(.)=0,
Ox Ox

where, by definition of y(x; e) we have

y,2.(; O)= -min [0, g()],

It follows that (28) can be rewritten into the form:
p

E g,())Vgi(;)-k E hj(:)Vhj(;) 0,
iel+(;) j=l

where /+()={i" gi()=>0}. Therefore, by the EMFCQ we have gi(;)=0, ie/+(),
and hj()=0,j= 1,...,p so that e f-) . On the other hand, by Proposition 14
there exists an integer k such that for all k => k we have that (x, ,(x),/x(x)) is a
K-T triple for problem (P) and we get a contradiction.

The properties of exactness of W(x; e) are summarized in the following theorem.
THEOREM 6. (a) The function W(x; e) is a weakly exact penalty function for

problem (P) with respect to the set 9.
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(b) Assume that the EMFCQ is satisfied on 9. Then, the function W(x; e) is an
exact penalty function for problem (P) with respect to the set 9; moreover, ifAssumption
(A2) holds, thefunction W(x; e) is a strongly exact penaltyfunctionforproblem (P) with
respect to the set 9.

Proof. Let g 9; we show first that conditions (al)-(a4) ofTheorem I are satisfied.
It is easily seen that (al) follows from the continuity of W(x; e) and the compact-

ness of .
With regard to condition (aE), let {ek} and {Xk}.C be sequences such that ek 0,

limk_ ek 0, limk_ Xk and assume that

lim sup W(Xk; ek) < 0.
koo

By the continuity assumptions we get from (17)

g() + Y(; 0)y(; 0) 0,

which imply and

f()_-<lim sup W(Xk; ek),
k

h(;) =0,

(30)

whence:

2g,(x)+eA,(x)>-O,

so that, since gi(x)_-<O, we have

(29)
1 gZ(x + A,(x)g,(x) <-

2
g(x) + A,(x)g,(x) <- O.

Now assume that yEi(x; e)> 0; in this case we obtain

gi(x)+yi(x; e)=- hi(x),

1-(g(x)+ y(x; e))E+A,(x)(g(x)+ y2(x; e))= A,2.(x)_--<O.
Therefore, by (29) and (30) we have, for any i- 1,..., m"

1
-(gi(x)+ yi(x; e))2+ A,(x)(gi(x)+ y2(x; e))_<--O,

so that (a2) is satisfied.
We observe now that Assumptions (A1) and (A4) imply that J

_
3-. On the other

hand, by (b) of Proposition 13 we obtain 3-
_

’(. Therefore, we have
_

Y" and hence
condition (a3) is satisfied.

Finally, condition (a4) follows from Proposition 14, noting that 3_ Yf and that,
bythe differentiability of W(x; e), any point x (e) is a stationary point of W(x; e).
Thus (a) is proved.

With regard to (b), we have already shown that conditions (al)-(a3) of Theorem 2
are satisfied. Condition (as) is implied by Proposition 15. Therefore we must show that
(a6) holds, that is,

W(x;e)<--f(x) for alle>O and x(’l.

Let x be such that g(x)<O= and h(x)=0. Suppose first that yE(x’i e)=O’, this
implies, by definition of y(x; e), that
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so that, by (17), we obtain W(x; e)<-_f(x) and hence condition (a6) is satisfied. It can
be verified also that conditions (el), (c2), (c4), and (c5) of Theorem 3 are satisfied and
that condition (c3) follows from (b) of Proposition 13. Thus (b) follows from Theorems 2
and 3. Iq

We now consider the construction of a continuously ditierentiable exact penalty
function with global exactness properties, along the same lines followed in the non-
ditferentiable case. As in 5, we take 5t,oand we suppose that Assumption (A3)
holds. Then, we can define on the set g’ the continuously differentiable exact
penalty function:

Z(x; e):=f(x)+A(x)’(g(x)+ Y(x; e)fi(x; e))

1
+-(g(x)+ (x; e))7(x; e))’a-(x)(g(x)+ (x; e))7(x; e))

+tx(x)’h(x)+eao(X [[h(x)ll 2,

where (A (x), (x)) are the multiplier functions defined in Proposition 12, and

ao(x) :- o-[Ih(x)ll
ai(x) := ai gi(X), 1," ", m

A(x) := diag (ai(x)), i= 1,. ., m
with:

IT"(x; e):= diag (i(X’ F_,)), 1," ", m

yi(x’, e):= -min O, gi(x)+ ai(x)Ai(x)

In order to justify the expression of Z(x; e) we first consider the equality con-
strained problem obtained from problem (P) by introducing the vector Yy of squared
slack variables into the inequality constraints g(x)<-_0.

Then, we define the augmented Lagrangian function:

1
L,(x,y,A,I.; e):=f(x)+A’(g(x)+ Yy)+-(g(x)+ Yy)’A-l(x)(g(x)+ Yy)

1
+l’h(x)+eaO(x Ilh(x)ll =,

where the penalty terms are weighted by the barrier functions A-(x) and 1/ao(x).
Finally, by substituting (A (x),/z (x)) for (A,/z) and minimizing with respect to y

we get the function Z(x; e), that is,

Z(x’ E)- La(x (x’ E), l(x), [d,(x)’ E)

min La(X y, A (x),/z(x); e).

By construction, we have

[VyLa(X, y, A, tz)]
x =x(x)

=0
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and hence the gradient expression of Z(x; e) can be obtained by taking )(x; e) as a
constant vector.

Thus, we can write"

Oh(x)’
VZ(x; e)= Vf(x) + Og(x) ,(x)+ I(x)

Ox Ox

20g(x)’
e Ox
--A-l(x)(g(x)+ ’(x; e))7(x; e))

(31)

10g(x)’
e Ox

[G(x)+ 2(x; e)]A-2(x)(g(x)+ (x; e)(x; e))

2 Oh(x)’ 2llh(x)ll2 Oh(x)’
h(x)+ ------h(x)

eao(x) Ox aZo(x) Ox

+Oa(x)’(g(x)+ f(x; )2(x; ))+,e,(X)’h(x).
Ox Ox

The study of the properties of exactness of the function Z(x; e) can be performed
along the same lines followed in the case of the function W(x; e), taking into account
the expressions of)7(x; e) and VZ(x; e) and noting that ai(x)> 0, i=0, 1,..., m for

In particular, the next two propositions are the analogue of Propositions 13 and
14 and can be proved in a similar way.

PROPOSrrloN 16. Let (, , 12) be a K-T triple for problem (P), such that @,

Then, for any e > O, we have:
(a) g(X)+ Y(ff; e)f(ff; e)=O;
(b) Z(; e) =f(#);
(c) vz(; e)=0.
PROPOSlmOy 17. Let . en, there exist numbers e() > 0 and () > 0

such that, for all e (0, e (2)], if x is a stationary point of Z(x; e) satisfying
x (2), we have that (x,, A (x), (x)) is a K-T triple for problem (P).

We now need the following lemma which is proved in [15].
LEMMA 3. Let {6)}, i= 1,..., r be r sequences of positive numbers. en, there

exist an index i* and subsequences {)}, 1, r corresponding to the same index
set K, such that:

lim=l<+, i=l r.
ko
kK

The following proposition establishes the correspondence between stationary
points of Z(x; e) and K-T triples for problem (P).

PROPOSrrION 18. Assume that the EMFCQ holds on 9. Then, there exists an e* > 0
such that, for all e 6 (0, e*], if x is a stationary point of Z(x; e), we have that
(x,A(x),tx(x)) is a K-T triple forproblem (P).

Proof Reasoning by .contradiction, we assume that for any integer k, there exists
an ek <- 1 / k and a point Xk such that VZ(Xk; ek) 0, but (Xk, A (Xk), tX (Xk)) is not
a K-T triple for problem (P). Since @ is compact, there exists a convergent subsequence
(relabel it again {Xk}) such that limk_. Xk .
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We show first that . In fact, assume that 0@; this implies, by definition
of @, that there exists a subset J of {0, 1,. ., m} such that:

(32) lim ai(Xk) O, J.
k-+oo

By Lemma 3 we can define an index i* J and a subsequence (relabel it again {Xk}
such that

ai*(Xk)
(33) lim li < +oo, J,

g-+co ai(xk)

where, in particular, li. 1. Recalling (31), we can write

(34)

o= ea,(x)VZ(x; )

e,a.[VxL(xt,, A (X,),/z(x,))

oa(x)’ o(x)’+ (g(xt,)+ Y(xt,; et,)y(xt,; et,))+ h(x,)
Ox Ox

(+ 2
aZi*(x’)

2+
i=1 ai(xt,)

gi(xt,)+ yi(xt,;
ai(x,)

(gi(Xk)-3V’2i(Xk’ Ek))Vgi(Xk)

ai*(x’) (+2 1+
j= ao(xt,) IIh(x)ll)ao(x)

kj(x,)Vkj(x).

Taking limits of (34) and recalling (32) we can write

p

(35) E v,vg,(2)+ E uVh()=0,
i=1 j=l

where, by (33)

and

t,(g,(;) +(;; o)),
v

1.0, otherwise,
ifiJ;

l,llh(;)l122h()u 1.0, otherwise.
if0J

Since i6 J and i=> imply i6/+(), we can rewrite (35) into the following form"

P

iel+() j=l

This implies, by the EMFCQ, that v 0 for e/+() and uj 0, for j 1,..., p. On
the other hand, as l,. 1, we have either h()= 0 (if i*= 0) or g,.()+.(; 0)= 0 (if
i*e {1,..., m}). In both cases we get a contradiction to (32). Then we can conclude
that . Therefore, from (31) and (34), taking the limit of eVZ(xg; e) over the
subsequence converging to , we have

E 2
g’() +(" 0) k(g’() +(" 0)):

a() a:()
V&()

+ [2 -hJ(;) Ilh()llh()]Vha()=O.=, ao()
+ a()
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Noting that, by definition of )Ti(Xk; ek), the inequality gi() < 0 implies gi() + fi/2(; 0)
0, we can write

where now

and

p

il+() j=l

gi() + ,2.(;; O) (gi(:) +)7(.; 0))2
Vi:=2 ai()

+ a()
>--_0

uj:=2[l+llh()]]2] hj(:)
ao(x’---- ao()"

Therefore, again by the EMFCQ, we have v/--0, i L(), and /xj=0,j= 1,...,p
which imply

gi() +)7/2(:; 0) 0, 1, , rn

h() 0, j=l,...,p,

so that : ft. As ek 0, Proposition 17 implies that for sufficiently large values of k,
the triple (Xk, A(Xk), tZ(Xk)) is a K-T triple for problem (P) and this yields a contra-
diction. [3

We can now summarize the properties of exactness of Z(x; e) in the following
theorem.

THEOREM 7. (a) The function Z(x; e) is a globally weakly exact penalty function
for problem (P) with respect to the set @.

(b) Assume that the EMFCQ is satisfied on 9. Then, the function Z(x; e) is a
globally exact penalty function for problem (P) with respect to the set 9; moreover, if
Assumption (A2) holds, thefunction Z(x; e) is a globally strongly exact penalty function
for problem (P) with respect to the set 9.

Proof. By construction, we have limk_Z(Xk; e)= for any sequence {Xk}C
such that Xk y 0@. Hence, by Definition 4 we have that Z(x; e) is globally (weakly,
strongly) exact if it is (weakly, strongly) exact.

Letting , assertion (a) can be proved along the same lines followed in the
proof of Theorem 6, making use of Propositions 16 and 17 in place of Propositions 13
and 14.

With regard to (b), again letting , we can proceed, as in the proof of Theorem
6, by employing Proposition 18 in place of Proposition 15 and making use of the
inequality:

Z(x; e) <=f(x) for all x e ,
which can be established in a way similar to that followed in the proof of Theorem 6
for the case of the function W(x; e). [3
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A GEOMETRIC ISOMORPHISM WITH APPLICATIONS
TO CLOSED LOOP CONTROLS*

ROBERT B. GARDNER?, WILLIAM F. SHADWICK, AND GEORGE R. WILKENS

Abstract. Feedback equivalence of n state, n control systems satisfying certain regularity conditions
divides such systems into two invariant classes. We show that class one corresponds, via a geometric
isomorphism, to classical Lagrangian variational problems. We prove the existence of time critical closed
loop controls for systems that satisfy the nondegeneracy condition that the analogue of the Hessian for the
Lagrangian problem have full rank. We show that the vanishing of this Hessian characterizes the control
linear systems in class one and identify the rank condition for local controllability for such systems as the
nonvanishing of a differential invariant. Th.e control linear systems in class two are also characterized by
the vanishing of an invariant and the rank condition is identified.

Key words, feedback equivalence of control systems, classical Lagrangian variational problems, time
critical closed loop controls

AMS(MOS) subject classifications. 49, 53

1. Introduction. In this paper we consider the problem of feedback equivalence
of control systems, with n states and n-1 controls, as the equivalence problem for
systems

dx
(1.1)

dt
F(x, u), x R u R

under diffeomorphisms of the form

(1.2) @(t,x, u) (t, b(x), q(x, u)).

By making use of Cartan’s method of equivalence [3], [5], [6] we obtain an invariant
splitting of regular systems into two classes. The first of these, on which we focus our
attention, is identified, via a geometric isomorphism, with classical single integral
variational problems. The existence of this isomorphism means that all of the rich
geometry of classical Lagrangian mechanics is encoded in the control system (1.1) and
may be applied to its study. The most basic elements of the Lagrangian problem are
the notions of regularity and of the Euler-Lagrange equations for critical curves. We
show that, as one would hope, these concepts translate into basic features of the control
problem. The vanishing of the Hessian for the associated Lagrangian is necessary and
sufficient for the control system to be equivalent to one in control-linear form

n--1

(1.3) dx-f(x) + 2 gi(x) bli"
dt i=l

At the other extreme, when the Hessian has full rank, we show that the Euler-Lagrange
equations may be solved to provide closed loop controls. As the Lagrangian functional,
applied to solution curves of (1.1), measures the time from initial to final endpoints,
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these controls are time critical. Moreover, for a certain subclass of control systems,
they are the geodesics of a pseudo.Riemannian metric intrinsic to the system as Wilkens
found in the case n 3 [13].

The second class of systems corresponds to a nonclassical variational problem of
the sort studied by Griffiths [8] and Bryant [2]. We will pursue the study of this aspect
of the problem elsewhere. We show that every system in this class can be put in the form

dx dx

dt
U l <= <= n -1,

dt
g(x’ u)

where g is homogeneous of degree one in the controls. We give necessary and sufficient
conditions for the system to be control linear, in which case g(x, u)= gi(x)u i. For
such systems the controllability condition [1], [11] is that an invariant should not
vanish. As there is no drift term, the condition will fail for any linearizable system in
this class, however, there is an invariant skew symmetric matrix j that determines at
least rank j equivalence classes of controllable control linear systems.

The regularity mentioned after (1.2) is a set of conditions that is developed during
the analysis of the problem. In particular, we will require that the rank of the n x (n 1)
matrix cF/gu be n and that certain functions either vanish on an open set or never
vanish on an open set. Finally we note that, while the restriction to consideration of
systems with n states and n- 1 controls is essential to the identification of a classical
first order variational problem, the same techniques apply to the case of n states and
p controls. This case requires the analysis of more general variational problems and
is currently being studied.

2, The equivalence problem. Given the system (1.1) on Uo c R2n with coordinates
t, x n--1,...,x,u ,...,u and a second system

d
d---= F(g, a)

on Oo c R2", the problem of local equivalence under feedback is the equivalence
problem for maps

Uo-., Oo
of the form
(2.1)
that satisfy
(2.2)

/’oq)=t, Xoq=b(x), ffo=@(x,u)

*(d- Pd)= T(dx- Fdt)
for some T" Uo- GL (n, R). This is an overdetermined equivalence problem and leads,
as discussed in [7], to the following problem in standard form.

Let U and U be open sets on which F and F are nonzero and let Ao and Ao be
maps from U and U to GL (n, R) such that

AoF=o t(1, 0,..., 0).
A diffeomorphism from U to U satisfies (2.1) and (2.2) if and only if

?oO=
and

(2.3) ,(.,..) /i A O01(Aodx

There is a normal form for the case wherej has full rank; see Feedback Equivalencefor General Control
Systems, by Gardner and Shadwick (to appear).
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with B, E e GL (n-1, R). This now has the form considered in [5] and [6] where G
is the subgroup of GL (2n 1, R) of matrices of the form

ti
A 0 t(2.3’) B 0

D E

with B and E in GL(n-I,R). Thus we construct the vector of one-forms
,..,,r/,/x,..’,/z )on UxGgivenby

(2.4)

where

t0C A 0t( fl_ )
(uu) =(Aodxdu /"

We now turn to the equivalence of classical first-order Lagrangian problems and
show that it leads to the same structure. Here we consider functionals

(c) f L(z, q, q) &.

over curves c in R2p+1 that satisfy

d qtt’oc=-r( oc), l<-i<=p.

These curves are integrals of the contact system

0 := dqi- qi d’r, 1 <-_ <-_ p

with independence condition dr O. Given a second functional 2, we will say that
and . are simply equivalent [2] if there is a contact transformation such that

(2.5) *f_, d =- L d" (mod Oi).
This is clearly an equivalence relation and preserves the value of the functionals on
integrals of the contact system.

If we complete {L dz, 0} and {/[ d, if} to coframes by adding one.forms " and
and use the fact that must preserve the contact system {0}, we may summarize the
conditions on the Jacobian of an equivalence by

(2.6) * ff B 0
( D E

Thus, if p= n-1, (2.6) and (2.4) suggest the identification on r/[ with L d" and
{rt,’ ", rt} with the contact system. It is easy to verify that if c is a solution of
(1.1) we have

c*Ao dx ’(dt, 0,. ., O)

so c* r/ dt, c* rl O, 2 <= n, and

q dt.
to
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Thus the variational problem we have identified is the time optimization problem for
solutions of (1.1).

There is an integrability condition that obstructs the identification of {
with a contact system: the derived structure of r/2, .., r/" must coincide with that of
01, 0 "-1. We now show how this invariant arises by pursuing the equivalence
problem calculation.

For the system (2.4) With 9 ’(rt2,’. ", ,), the structure equations take the form

dq ’a A + q ’m ^ tx,

(2.7) d =/3 A F/+ r/m A

d/4 y A rl+3 A

after all torsion has been absorbed.
The matrix := () is, up to left and right multiplication, just

and hence the full rank case is the only one in which all n- controls are actually
present. From the infinitesimal action on ’m and M,

d’m ’aM + tme - 0
(2.8) (mod r/’, #,/z),

dM ,SM + Me =- 0

we see that the rank of M is also an invariant and thus there are two cases to consider:
rank M n-2, and rank M n-1. In either case, as we may assume that rank

n- 1, we may put the original control system in a form similar to those observed
by Hermann [9]

(2.9)
dxi dx"
=u, 1-< i_-< n -1, -g(x,u),
dt dt

and we may choose Ao to be given by

o o o
__//2 ul 0 0

(2.10) ao ..
!;-100 0 u

A short calculation now shows that rank M n 2 if and only if ff := g U Og/Ou 0,
i.e., if and only if g is homogeneous of degree one, clearly a nongeneric condition.

Case 1. Rank M n 1. We have := g- u Og/Ou 0 and from (2.8) we may
normalize M to the identity and ’m to zero to obtain new congruences

ta =_ 0
(mod 7’ ,/z).(2.8’)

/

In this case, the identification suggested above is actually an isomorphism, as the
structure equations are now identical with those of the classical Lagrangian problem
[6], and we have the following theorem.

THEOREM 2.1. If rank M n- 1 the system is isomorphic to the classicalfirst-order
Lagrangian system in n- 1 dependent variables.
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The remainder of the equivalence problem is now precisely the calculations for
the Lagrangian case carried out by Bryant and Gardner [6] and the parametric form
of the invariants has recently been investigated by Sutton [12]. For our purposes, it
suffices to consider the invariants introduced by the congruences (2.8’).

After absorption of torsion terms the structure equations become

d,rl tt.l,H ^ + tj A l + ’rl ’k ^ ,
(2.11) dO=/3 ^ + r/’ ^ ,

The integrability condition d2= 0 shows that H is a symmetric matrix, and in the
Lagrangian variables, H is, up to conjugation, just the Hessian matrix (O2L/Oi ).

THEORE 2.2. If 0, H vanishes if and only if the system (1.1) is equivalent to

dx
u i, i n- 1,

dt
(2.12)

-f(x)+Ygi(x)u’.
dt

IfH 0 the rank condition for local controllability is satisfied if and only if dq # O. The
condition drl =0 gives a conservation law generalizing Hermes [10].

Proof To establish this result we look at the explicit parametric calculation for
the normalization of ’m to zero. If we adopt the parametrization given by (2.9) and
(2.10), then

dx
rt =-+A,(u’ dx2-u2 dx’)+. "+An-2(U’ dx"-’-u"-’

+ A,,_,(u dx"-gdxl).
It is easy to check that dr/ -=0 (mod g/) requires

Og
A1 -A,,_ 2Ou

Og
(2.13)

Ou
A2 -An_l

A,,_2 -A,,_I
Og

Oil n-1

and 1/u= A,_. As # 0, we may solve for An_ to obtain

=! { ax" a__g ax’ a__g x(2.14)
g \ 0//1 0/,/2

Now H 0 means

(2.15) dr/ ^ r/1= ’g/S ^ /^ r/

ou n-1 dXn-1

so the right-hand side has no component in/, and hence no component in du. But

"2 d ^dxl+’"+d Adx
Ou

A{ dxn- OU
lO----gdxl-

OU20dx2 ouOdxn-1}
and the vanishing of the terms in du A dx" required by (2.15) forces 02g/Ou Ou O,

i, j n l, so g =f(x) + g(x)u i, where f# O. It is clear that this condition is also
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sufficient for H =0. When H =0 it follows from (2.14) that

(2.14’)
1’= (dx (x) dx’ ,(x) dx"-’rl -g, g.- ).

If we define X, :=f(x) O/Ox" and Xi :=O/Ox +g(x) O/Ox" the rank condition [1], [11]
is satisfied unless [X,, Xi] [X, X] 0 for 1 i, j -< n 1 and it follows directly from
(2.14’) that this happens if and only if dr/l= 0. [3

Next we proceed to the case in which H has full rank. The infinitesimal action
on H is given by dH-’H-H 0 (mod rtl, t,/z), showing that H is being conju-
gated. On an open set on which the rank and signature of H are constant, we may
normalize H to a constant matrix Q with the same rank and signature. The remaining
torsion terms j and k may both be normalized to zero, putting dr/ in normal form:

(2.16)

As described in [4] and more recently in [5], the Euler-Lagrange equations for the
functional r/1 are the exterior equations

(2.17) tz =0, =0.

THEOREM 2.3. Ifrank M n- 1 and rank H n- 1 the system (2.17) yields closed
loop time critical controls for (1.1).

Proof The system {,2, ,/n, /a[,1, /.,n--1} is completely integrable and hence

tx Tdw (mod ’r
2

for some nonsingular matrix T and vector function w(x, u). Because

A ’01A A ’/’/n "--det T det--0w du A" A du "-1A 3/ A" ^Ou

the system w =z, z constant, can be solved for /,/i(x), 1-<i=< n-1. But, as we have
already observed, the solutions of dx/dt F(x, u(x)) solve 0 and, by construction,
also satisfy z =0. Thus they are solutions of the Euler-Lagrange system (2.17) and as
such are time critical. [3

We also note that the same arguments given by Wilkens [13] show that there is
a class of control systems for which the quadratic form (r/)2+ ’Q defines a pseudo-
Riemannian metric on the state space and the solutions of (2.17) are geodesics of the
metric.

Case 2. Rank M n- 2. We conclude by considering the second class of prob-
lems. After the reduction of the only unabsorbable torsion is in dr/" and

(2.18) d,rln--fln^,qnWtlS^ q-(-/1, t)T^(_1)
where’S S and tT--"-T.

THEOREM 2.4. If, 0 then dq" can be put in theform (2.18) and S 0 ifand only
if the system is control linear. If S 0 the system satisfies the rank condition for local
controllability if and only if T O.
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Proof We can make the following choices for the one-forms

U-- 1’ -j=dxC--ua--, 2<a<n--l,=
U

dx EOg. du
q u -u dX bU-- 1,

du
2 =a=n-1,

and the reduction of imposes the following relations on the group of matrices
defined by (2.3’)"

0 B

E=
B

B E R,

Since

("tin-’B3 dxn-Z ?t. dx
it is clear from (2.18) that S =0 if and only if

oZg
Ou Ou t 0, 2 <---- a, fl<-n-1.

This condition, together with the fact that

Og

i=1 oui g’

implies that S 0 if and only if

02g
=0, l<-_i, j<=n-1.

If S 0 then

"rl B3(dx g,(x) dx gn-l(X) dxn-1)

and the condition d/"-=0 (mod ") is precisely the condition that the vector fields

Xi :--" O/OX + gi(x) O/Ox" all commute.
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PARAMETRIZED INTEGRATION OF MULTIFUNCTIONS WITH
APPLICATIONS TO CONTROL AND OPTIMIZATION*

ZVI ARTSTEIN

Abstract. Integration of a set-valued map depending on a parameter is examined. If a point in the
range depends measurably on the parameter, then it is the integral of a selection that depends measurably
on the parameter. This is proved in the paper and applied in two cases: a control setting, where a Filippov-type
lemma for chattering systems is verified; and an optimization problem, where existence of unvarying solutions
to asymptotic stochastic maximization is established.

Key words, set-valued maps, integration of multifunctions, selections, chattering controls, Filippov
Lemma, optimization
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1. Introduction. Integration of set-valued functions is a powerful tool in many
branches of applied mathematics, including control theory, optimization, statistics,
and mathematical economics. Recent investigations in these applications have gener-
ated the need for what we term here parametrized integration, namely, the simultaneous
integration of multifunctions that depend on a parameter. In this paper we verify a
property of the parametrized integration, and present two applications of it.

The property we are interested in is an integral version of the implicit functions
lemma used in control theory. It says, roughly, that a point in the range that depends
measurably on the parameter can be realized as an integral that depends measurably
on the parameter. We state the full result in the next section after recalling the basic
definitions and setting the technical framework. The proof of the main result is given
in 5. It uses some known facts about multifunctions, that we recall in 3, and some
lemmas that are proved in 4.

The two applications are given in 6 and 7. The first application is in control
theory; it is the analogue of the Filippov Lemma, here in the contextof chattering
equations. The second application deals with event depending cost in asymptotic
stochastic optimization. We give enough details of these problems to make the argu-
ments of the applications self-contained; however, for the complete background and
motivation, the reader is sent elsewhere.

2. The main result. First we recall the notion of integrating set-valued functions,
and set the framework in which the main result is stated.

Let S be a measure space, with/3 a probability measure on it. Let F be a mapping
that assigns to each s S a subset F(s) of the Euclidean n-dimensional space. An
integrable selection (with respect to/3) of F is a function f that is/3-integrable, and
such thatf(s) F(s) for/3-almost every s. The integral of F with respect to/3 is defined
by

(2.1) IsF(S)fl(ds)={Isf(S)fl(ds):fanintegrableselectionofF}.
This definition was introduced by Aumann [7]. See Castaing and Valadier [11],
Hildenbrand [13], Klein and Thompson [14] and references therein for only part of
the applicability of this concept.

* Received by the editors May 18, 1988; accepted for publication (in revised form) December 6, 1988.
? Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel.
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Note that we use/3(ds) to denote integration with respect to the measure/3 and
the variable s. This is convenient when more parameters are present in the formulas.
If no confusion arises, we suppress the dependence on s or on fl, and thus write F d/3
or F for the integral.

The framework we are interested in is such that the set-valued function depends
on a parameter, say t, in a measure space T with a measure A on it. Thus, for each

T a set-valued map Ft and a probability measure/3t on S are given. For each the
integration of F, with respect to/3, can be performed, resulting in

(2.2) F(t)= Is F,(s)fl,(ds),

which is a set in R", depending.on the parameter t.

The problem we address is the following. Suppose y is a selection of F, namely,
y(t)eF(t) for ,-almost every t. Then y(t) can be written as If(s),(ds), with f(.) a

/3rselection of F(. ). Then canf(s) =f(t, s) be chosen measurable in the two variables?
Our answer is stated in the theorem below, after some notations are recalled and the
underlying assumptions listed.

Notations. We switch at will between the notation F,(s) and F(t, s). Multifunc-
tion set-valued function. We write Ixl for the Euclidean norm of x R", and K
sup{[xl: x e K} for K R". General definitions for, and general properties of, set-
valued functions are stated for a set-valued function G defined on a measure space
U with a measure r/ on it.

The multifunction G is measurable if for every closed set C the set {u: G(u) 71 C
} is measurable. This is a standard definition, and it is equivalent to other common
definitions in the case that G has closed values, a case that we adopt anyway. See
Castaing and Valadier [11, Chap. III]. The set-valued map G is ,7-integrably bounded
if there exists an rt-integrable scalar function b: U[0, oe] such that
for all u e U.

The space S, on which the probability measures/3 are defined, is assumed to be
metric, separable, and complete. We consider the ensemble of probability measures
on S as a metric space itself, with the metric being generated by the weak convergence
of measures (see, e.g., Billingsley [9], or Hildenbrand [13, p. 48]). Thus, continuity or
measurability properties of -/, are understood with respect to this metric structure.

The following conditions are assumed throughout.
Underlying Assumptions. (i) S is a complete separable metric space with its Borel

structure.
(ii) T is a complete separable metric space, with its Borel structure, and A is a

or-additive finite measure on T (in particular, A is tight; see [9, p. 10]).
(iii) The mapping t- fit, which associates with each a probability measure

on S, is measurable.
(iv) The values F(t, s) are nonempty compact subsets of R n.
(v) F(.,.) is measurable on T x S.
(vi) For each T the mapping F(.) is flt-integrably bounded.
THEOREM. Let y T- R" be measurable and such that y( t) F(t) for A-almost every

t. Then there exists an f(t, s), measurable on T x S, such that for A-almost every t, the
inclusion f(t, s)6 F(t, s) holds for flralmost every s, and f(t, s)t(ds)= y(t).

3. Preliminary results. For the convenience of the reader here we collect some
results about multifunctions and their integrals. We either provide references for a
proof or hint how it goes.
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Notation. When x Rn and K c R we write dist (x, K) for inf {Ix yl: Y K}.
We denote by p. x the scalar product of p and x. We write sup p. K for sup {p. x: x
K}, and likewise infp. K =inf{p. x: x K}; we may replace sup by max when the
supremum is attained, e.g., when K is compact. The boundary of K in the direction
p, namely {x K:p. x sup p. K}, is denoted Kp.

In what follows, U is a complete separable metric space with its Borel structure
and r/ is a tr-additive finite measure on U. The multifunctions we treat have subsets
of R" as values.

PROPOSITION 3.1. Let G be a measurable multifunction with closed nonempty values;
then a measurable selection of G exists.

Proof. See, e.g., Castaing and Valadier [11, p. 65], Hildenbrand [13, p. 54], or
Rockafellar [15] for the proof.

PROPOSITION 3.2. Let G be a measurable multifunction with compact nonempty
values. Then IIG(u)l[ is measurable. If h: U-->R is measurable, then u--->
dist (h(u), G(u is measurable, and there exists a selection g of G such that
dist (h(u), G(u))-[h(u)-g(u)[.

proof. The measurability of G(u)[[ and dist (h (u), G(u)) follows easily from the
Castaing Representation Theorem (see Castaing and Valadier [11, Thm. III.7] or
Rockafellar [15, Thm. 1B]). To prove the existence of g(u), consider the multifunction
H defined by H(u)= G(u)Cl{x: [x-h(u)[-dist (h(u), G(u))}. It is measurable as the
intersection of two measurable multifunctions (see Rockafellar [15, Thm. 1M]); any
selection of H, existing by the previous result, is the desired g.

PROPOSITION 3.3. Let G be an integrably bounded measurable multifunction with
closed nonempty values. Then G dq is nonempty and compact. If q is atomless then
G dq is a convex set.

Proof. See Aumann [7], or see Klein and Thompson [14, Chap. 18] for the proof.
PROPOSITION 3.4. Let Gk be a decreasing sequence of multifunctions, namely,

Gk(U) Gk+l(U) for -almost every u. Suppose that all Gk are measurable and have
closed nonempty values and that G is integrably bounded. Let G(u)= fq k= G(u). Then

Proof. G is measurable, by Rockafellar 15, Thm. 1M], and G is trivially included
in the intersection of the integrals. To prove the converse let x be a point in the
intersection, therefore x gk with gk a selection of Gk. By Proposition 3.2 there exist
selections hk of G such that Igk(U)--hk(U)l=dist(gk(U), G(u)). The pointwise limit
of the latter is zero, and therefore the Lebesgue Dominated Convergence Theorem
implies that (gk--hk) converge to zero as koo. Namely, Yk hk converge to x.
Since Yk G and G is compact (by Proposition 3.3), it follows that x E G.

The following implicit functions property is used several times in the sequel. The
above definition of measurability of multifunctions applies also to multifunctions with
values being subsets of an abstract metric space.

PROPOSITION 3.5. Let V be a locally compact separable metric space, and let Q be
a multifunction that assigns to each u U a closed subset Q(u) of V. Let a: V---> R" be
continuous. Let G(u) {a(v): v Q(u)}. Suppose Q is measurable and let g be a measur-
able selection of G. Then there exists a measurable selection q of Q such that g(u)=
a(q(u)).

Proof. The result is established under much weaker conditions in Castaing and
Valadier [11, Thm. III.38]. Here is a proof in our case. The continuity of a implies
easily that the multifunction H(x)= {v V: a(v)=x} is measurable. Then it is easy
to see, e.g., by the Castaing Representation Theorem, that the composition of H and
g, namely Q(u)--{v: a(v)- g(u)}, is also a measurable multifunction. Therefore the
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intersection Q(u)f’)Ql(u) generates a measurable multifunction; any selection of it,
existing by Proposition 3.1, is a candidate for the desired g. This completes the proof.

In parallel with the definition of the integral of a set-valued function, we write

Y Ki xi" x Ki and the series is summable
i=1 i=1

Note that if Ki is not empty for all i, then -’i=1 Ki is a bounded nonempty set exactly
when ,__ K, <. The following corollary is used in the proof of the main result.

COROLLAgY 3.6. For each let K(u) be a measurable multifunction with nonempty
compact values in R n. Suppose that for each u the set

FA(U)= 2 Ki(u)
i=l

is nonempty and bounded. Then [’A is a measurable multifunction with compact values.
Let 3/a(" be a measurable selection of FA. Then there exist measurable selections x(u)
of Ki (u) such that YA(U) Zi= Xi (U).

Proof Compactness of [’A(U) is a simple exercise (and a particular case of
Proposition 3.3). The measurability of 1-’a follows, e.g., from the Castaing Representa-
tion Theorem (see [11, Thm. III.7] or [15, Thm. 1B]). To prove the existence of x(u)
consider V= R" R" and define Q(u) Kl(u) =2 Ki(u) and c(x, y) x +y. By
Proposition 3.5 there are measurable selections x(u) of K1 (u) and Y2(U) ofYi=2 Ki(u)
such that x(u)+yz(u)= yA(U). Inductively, x(u),..., xj_(u) and yj(u) are defined,
and y; is a measurable selection of Y=; K;. Consider Q(u) K;(u) x Y=j+ K(u). By
Proposition 3.5 there are x;(u) and y;+(u), selections of K;(u) and Y=;+ K(u) such
that xj(u)+y;+(u)=y;(u). In this way the sequence of measurable selections x(u),
Xz(U) is defined. The boundedness of K(u) + K2(u) +. implies the pointwise
convergence of y;(u) to zero as j, and hence ya(U)=, X(U). This completes the
proof.

The following two results are concerned with the boundary of the integral in the
direction of a vector p R"; see the definitions above.

PROPOSITION 3.7. Let G be a measurable multifunction with closed values, and let
p R". Then

f (G(u))pdr =(/G(u)drl).
p

Furthermore, if g is a selection of G and p. g(u)<sup p. G(u) on a set of positive
rl-measure then g dr] does not belong to (j G dq)p.

Proof The proof follows, e.g., from Klein and Thompson [14, Prop. 18.1.8] or
Hildenbrand [13, Prop. 6, p. 63].

Recall that the relative boundary of a convex set K is formed by first taking the
linear hyperspace (fiat) spanned by K, then the boundary of K in this hyperspace.

PROPOSXTION 3.8. Let K be a measurable multifunction with convex compact values.
Let TN be a measurable selection of K such that yN(u) is in the relative boundary of
K u for all u in particular, K (u) is never a singleton ). Then a measurablep(u) U -. R"
exists such that p (u) yu u max p(u) K (u) > min p(u) K u ), for almost all u.

Proof We say that a vector p is parallel to the convex set C in R n, if p is spanned
by vectors of the form x-y with x and y in C. With each convex compact set C and
a vector y in the relative boundary of C we associate the set P(C, y) of vectors p such
that [p[ 1, p is parallel to C, and p.y max p. C (namely, the vectors of norm 1,
supporting C at y within the span of C). For 1,. ., n let cG be the collection of
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compact convex sets of dimensionality i. On i the mapping (C, y)- P(C, y) has a
closed graph, when the family of convex compact sets is endowed with the Hausdorff
distance (for the latter see, e.g., [15]). Hence P(C, y) is a measurable multifunction
on C cCi and y in the relative boundary of C. But c0, 1," ", cgn forms a measurable
partition of the space of compact convex sets, e.g., since the dimension of C is a lower
semicontinuous function. Hence P(C, y) is a measurable multifunction on its domain.
The mapping u- K (u) was assumed measurable as a set-valued mapping, but this is
equivalent to its measurability as a point-valued mapping into the space of compact
sets with the Hausdorff distance (see Rockafellar [15, Prop. 1G]). Therefore, the
composition u - P(K (u), YN (U)) is a measurable multifunction. The selection of it
guaranteed by Proposition 3.1 is the desired function p(u).

4. Lemmas. Some of the steps toward proving the theorem are collected in this
section; some are of interest for their own sake.

LEMMA 4.1. Let U be a measure space, and let q be a tr-additive measure on it. Let
0 be an ordered set, not necessarily countable. Let Go, 0 0 be a decreasing family of
multifunctions, namely, 0 < " in 0 implies Go(u)c G(u) for l-almost every u. Suppose
that each Go is measurable and takes compact subsets ofR as values. Then there exists
a denumerable cofinal sequence Go,, namely, for each 0 there is an element Oi in the
sequence such that Go (u) Go, (u) for q-almost every u.

Proof We can assume that IIGoll are bounded, say by 1; indeed, it suffices to
prove the result for the multifunctions d(u)Go(u) where d(u)-min (1,
with 01 fixed. By Proposition 3.2, the function d(u) is measurable.

Let {xi} be a dense sequence in the unit ball of R ". With each 0 in O we associate
a real number R(0) as follows. First, define

ri(O,u)=dist (xi, Go(u))
for i= 1, 2,.... These functions are measurable in u (Proposition 3.2), and bounded
by 2. Second, define

L(O, u)= Y 2-’ri(O, u).
i=1

Then L(O, u) is measurable and bounded by 2. Finally, let

R(0)= f L(O, u)q(du).
u

We claim that R(0)> R(z) implies that 0< " in (R), and in particular Go(u)c G(u)
for q-almost every u. Indeed, the inclusion property implies that the functions ri(0, u)
are rt-almost everywhere nondecreasing in 0, and hence so are L(0, u) and R(0). Once
the claim is verified, it is clear that the desired cofinal sequence can be determined by
a sequence R(0i), which is cofinal with respect to the usual order among the numbers
R(0), 0 (R); existence of such a sequence is trivial.

We now return to the framework ofthe main result and the underlying assumptions.
A convenient tool in our derivations is to consider the measure

(4.1) /x f fl_ dA,
T-

which is a measure on T x S obtained by integrating the probability measures/3, with
respect to A. Namely, if D c T x S is measurable and D, {s: (t, s) D}, then

(4.2) /z(D) [ fl,(D,) dA.
T
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See, e.g., Bourbaki [10], where the integration is developed for locally compact based
measures. It is justified in our case since, given e > 0, by Lusin’s Theorem there is a
compact T c T with A T\ T) < e and such that -> fit is continuous on T. By tightness
then (see Billingsley [9]) there is a compact S c S such that flt(S\S) < e for all T.
Thus on T x S the integration is justified, and as e -> 0 we get the integration over all
T. This reliance on tightness with reference to Bourbaki [10] should be repeated in
some of the lemmas below; we leave out the details. (A different approach used to
obtain (4.2), as noted by a referee, is to define /z first for simple functions, and
rectangulars, and then employ standard completion arguments in measure theory.)

LEMMA 4.2. A measurablef: T x S -> R satisfiesf( t, s) F( t, s) for tz-almost every
t, s) if and only iffor A-almost every t, the inclusion f( t, s) F(t, s) holds for fit-almost
every s.

Proof Applying Bourbaki [10, p. 11] to the function p(t, s) =dist (f(t, s), F(t, s)),
which is measurable by Proposition 3.2, we obtain

I P(t’s) dtz-f dAIsP(t’s)flt(ds)’TxS T

an equality that is equivalent to the desired conclusion.
Notation. We denote by 3 (S) the Borel or-field on S, and by (T) the completion

of the Borel or-field on T with respect to the measure A.
LEMMA 4.3. For a measurable E c S the function t-> fit(E) is T)-measurable.
Proof The indicator function 1E is measurable; thus/t(E) s lE,(ds) is a (T)

measurable according to Bourbaki 10, p. 11].
LEMMA 4.4. Define w: T x S ---> [0, 1] by w(t, s) -/,{s}, namely, assign to an atom

s offit its weight, and assign the value zero otherwise. Then w is (T) x (S) measurable.
In particular, the set

(4.3) A {(t, s): the point s is an atom

is (T) S) measurable.
Proof For each let oi (Ei., E.2, ") be a partition of S into measurable subsets,

with the diameters of Eij converging to zero as i-> , and nested, namely, a set Ej is
included in one of the elements of Crk if k<i. Define wi(t,s)=fl,(Ea) if (t,s)6Ea.
Then the functions w( .,. are (T)x (S) measurable by the preceding lemma.
Since w(t, s) is the pointwise limit of w(t, s) as i oo, the result is proved.

For each the measure/3, has only a countable number of atoms. The following
results show that these atoms, and the corresponding values of the multifunction F,
can be enumerated in a measurable way.

LEMMA 4.5. There exists a sequence of T)-measurable functions qi(t) T’-> S,
each defined possibly on a subset of T, such that there is one-to-one correspondence between
the atoms of fit and the sequence ql(t), q2(t)," ", when defined.

Proof Consider the sets

A/= {(t, s): (j + 1 )--1 ( 111( t, ,$) --<--j--l}
for j =0, 1," ", and where w(t, s)= fit{s} is the function introduced in the previous
lemma. The sets Aj are a (T) (S) measurable by Lemma 4.4. Each Ai is the graph
of a multifunction, say Li(t), from T into subsets of S, with values consisting of a
finite number of points (indeed, L(t) cannot have more than / 1 elements). Therefore,
each L is (T) measurable (see Castaing and Valadier[11, Thm. III.30]). Using the
selection theorem, possibly i+ 1 times for L, it is easy to obtain qi,l(t)," .., qi.+l(t),
functions of the type we want, that exhaust the elements in L(t). The ensemble of all
these qd forms the desired sequence.



PARAMETRIZED INTEGRATION OF MULTIFUNCTIONS 1375

COROLLARY 4.6. There exists a sequence gi( t) ofa T)-measurable multifunctions
on T, with values being compact, possibly empty, subsets of R n, such that for a given
there is a one-to-one correspondence between the nonempty elements Kl(t), K2(t), ,
and the values flt({si})F(t, si) when si go over all atoms oft. In particular, if we replace
the empty values Ki(t) by {0} we get

(4.4) , Ki(t) F(t, s)flt(ds)
i=1

with At (s: the point s is an atom oft}.
Proof. Define Ki(t)=t((qi(t)})F(t,q(t)), with q(t), q(t),.., given in the

preceding lemma.
COROLLARY 4.7. Let G( t, s) be a measurable multifunction on T S, with compact

values in R and suppose Gt(’) is rintegrably bounded. Then t-->J G(t, s)t(ds) is a
T)-measurable multifunction.
Proof. The integration is the sum F(t)+F(t), with F(t) the result of the

integration on the atomic part of fl, and F(t) the result of the integration on the
atomless part of t, both justified by Lemma 4.4. The sum would be measurable if
each of the components is measurable (see, e.g., Rockafellar [15, Prop. 1J]). The same
result, together with Corollary 4.6, imply that F(t) is (T)-measurable. The measura-
bility of F(t) is implied by Bourbaki [10, p. 11], once we recall that F(t) is also
the integral of the convex hull of G(t, s), and integration of multifunctions with
compact convex values coincides with the Bochner integration into a Banach space
(see Klein and Thompson [14, p. 190]).

5. Proof of the theorem. Let J t dA be the measure on T S as defined in
(4.1) and (4.:2). Let be a family of multifunctions defined on T S with the following
properties.

(a) Each G is measurable, with compact values.
(b) G(t, s) F(t, s) for/-almost every (t, s).
(c) Js G(t, s)t(ds) contains y(t) for A-almost every t.
The family is not empty since F . On consider the partial order of inclusion

/-almost everywhere.
CLAI 1. There exists a minimal element in , namely, a Go such that if G is

in o and G( t, s) Go(t, s) for i-almost every t, s), then the equality G( t, s) Go(t, s)
holds i-almost everywhere.

To verify the claim we use Zorn’s Lemma. Let Go, 0 0 be a decreasing family,
not necessarily countable, of multifunctions in . By Lemma 4.1 there exists a denumer-
able cofinal subsequence Go. Define G by

G(t, s)= Go(t, s).
i=l

By Proposition 3.4, property (c) holds for G; it is clear that properties (a) and (b)
hold as well, and thus G is a lower bound for Go, 0 O. By Zorn’s Lemma there exists
a minimal element. This completes the proof of the claim.

Recall that A (of (4.3)) is the set of atoms of all fit. Let N be the complement of
A in T S. Both A and N are (T) (S) measurable by Lemma 4.4.

CLAIM 2. Let Go be a minimal element in . For ix-almost every (t, s) in N the
value Go(t, s) contains exactly one point, say, Go(t, s)= {go(t, s)}.

To prove the claim define

(5.1) FA(t) / Go(t, s)t(ds), r(t) / Go(t, s)t(ds)
dA ]N
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and Fa(t)-" {0} or FN(t)= {0} in case the displayed formula is empty (and where
and N, denote the t-sections of A and N). Both integrals are well defined by Lemma
4.4, and both multifunctions are (T)-measurable by Corollary 4.7. Since Go o it
follows that y(t)Fa(t)+FN(t). By Corollary 3.6, for i= 1, 2, there are selections
ya(t) of FA(t) and yv(t) of FN(t) such that

(5.2) ya(t) + Yrq(t) y(t).

By Proposition 3.3 the values Fu(t) are compact and convex. We now examine two
cases.

The first case is that for in a subset, say T1, of positive measure, the value F(t)
is not a singleton, and ys(t) is in the relative interior of Frq(t). Suppose, without loss
of generality, that the Euclideari distance between ,/re(t) and the relative boundary of
F(t) is at least e>0 for te T (if there is no lower bound for this distance we can
consider a subset of T on which there is a lower bound). Let M c (T x S) N be a
measurable set with the property that for (t, s) M the value G0(t, s) is not a singleton,
and

(5.3) f [IOo(t,s)ll,(ds)<e.
Mr

Such a set exists by the /3rintegrability of Go( t, s [[. Define H( t, s) Go( t, s) for
(t, s) M, and H(t, s) {g(t, s)} otherwise, when g is a selection of Go. Then, in view
of (5.3) and the location of YN (t) in FN (t), the integral of H over N, contains yv (t),
and hence H ft. But H is strictly smaller than Go in the inclusion/x-almost everywhere,
a contradiction to the minimality of Go.

The second case is that for in a subset of positive measure, say T2, the value
Fu(t) is not a singleton, and yv(t) is in the relative boundary of Fu(t). Let p(t) be
given by Proposition 3.8 with K =Fu. For t6 T2 let us define H(t, s)= Go(t,
namely the boundary of Go(t, s) in the direction p(t), and define H(t, s)= Go(t, s) if

2. Then, by Proposition 3.7 we have that yv(t) belongs to the integral of H(t, s)
over N, with respect to/3, therefore H e o%. But the integral of Go contains more than
that of H; hence H is strictly smaller than Go on the order of , which is a contradiction
to the minimality of Go.

Once the two cases are excluded, we conclude that Fu(t) is a singleton for all t;
hence the second claim is verified.

We now proceed with the definition of the desired f(t, s). We define

(5.4) f(t, s) g0(t, s) if (t, s) 6 N

where go is given by Claim 2. We use Lemma 4.5 to determine a sequence q(t),
q2(t)," that exhausts the atoms of/3,, and use Corollary 3.6 to determine x(t),
selections of the values K(t)= 13,(q(t))Go(t, q(t)) such that 2,x(t)= yA(t), and define

(5.5) f(t, q,(t))=x,(t), i= 1,2, .
This defines f(t, s) on T x S in a measurable way with respect to (T) (S). A
change of /x-measure zero would make it Borel measurable, and a selection of F,
according to Lemma 4.2. The desired equality, namely,

sf(t,

s)t(ds)= y(t),

follows from (5.4) and (5.5), taking (5.2) into account. This completes the proof.
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6. An application in control.
Background. Consider the control system

(6.1) =f(x, t)+ g(u, t), u U(t)

defined on to, tl]. The admissible controls are measurable functions u(t):[ to, tl]
satisfying u(t) U(t), the latter being a prescribed multifunction. A reduction can be
performed as follows. Consider the system

(6.2) =f(x, t) + v, v V(t)

where V(t) encompasses the actual effect of the control on the dynamics, namely,

V(.t)-- {g(u, t): u U(t)}.

It is clear that an admissible control of (6.1) generates an admissible control of (6.2),
namely, v(t)= g(u(t), t), which yields the same trajectory. The question is whether or
not the reduction (6.2) is actually equivalent to (6.1) in the sense that all admissible
controls v(t) :It0, t] V(t), are generated by measurable functions u(t) :[t0, t]
U(t). The answer is positive, under mild conditions, and this equivalence was observed
by Filippov and was the basis for introducing the differential inclusions F(x, t) as
a convenient model of control systems. See Filippov [12] and Berkovitz [8] for more
on the Filippov Lemma and its applications in control theory. The implicit functions
property that we quoted in Proposition 3.5 can be used in proving such an equivalence.

A similar equivalence question arises in [3] and [4] in a more complicated situation
as follows.

The application. Let S be a separable complete metric space. For each [to, t]
let/Jr be a probability measure on S. Let g(u, t, s) R" to, t] S -> R" be given. The
control system takes the form

(6.3) g=f(x, t)+ fs g(u, t, s)flt(ds), u U(t, s).

The admissible controls are measurable functions u(t, s):[to, q]S R" satisfying
the constraints u(t, s) U(t, s), the latter being a prescribed multifunction.

Such strange looking systems arise as variational limits of control systems with
highly oscillatory control coefficients. The probability distribution/3t models the occur-
rence, in the limit, ofinstantaneous oscillations in the control parameters. This motivates
the terminology chattering for such systems. See [3] and [4], for more details.

The system (6.3) can also be reduced to the form

(6.4) f(x, t) + v, v V( t),

this time with

V(t)={fsg(U(S), t,s)flt(ds)" u measurable from S into U(t,s)}.
And the question is again whether or not each admissible v(t):[to, t] V(t) is
generated by a measurable u(t, s) :[ to, t] S- U(t, s). Wegive an answer, employing
the theorem of this paper.

Assumptions. Suppose U(t, s) is a measurable multifunction with compact values.
Suppose g(u, t, s) is continuous in u and measurable in (t, s). Suppose that for each
the multifunction

F(t, s)= {g(u, t, s): u U(t, s)}
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is flt-integrably bounded in the s variable. Suppose t-, fit is measurable, and let A be
the Lebesgue measure on [to, tl].

Application 6.1.. Under the assumptions, given an admissible control v(t) of (6.4),
there exists an admissible control u(t, s) of (6.3) such that

v(t)= fs g(u(t, s), t, s)flt(ds

for A-almost every in [to, tl].
Proof It follows from the definition ofmeasurability and the continuity of g(u, t, s)

in the u variable that the multifunction F(t, s) is measurable and has compact values.
We claim that given a measurable selection 3’(t, s) of F(t, s), there exists an admissible
control u(t, s) such that y(t, s) g(u(t, s), t, s). The existence of such u follows from
the implicit functions property given in Proposition 3.5.

In particular it follows that

(6.5) V(t)= Is F(t, s)flt(ds).

Let v(t) be an admissible control of (6.4), namely, a measurable selection of V(t). By
the theorem in this paper (and the assumptions) there exists a selection y(t, s) of
F(t, s) such that

v(t) fs y(t, s)flt(ds).

The previous argument, namely that y(t, s) can be realized as g(u(t, s), t, s) with an
admissible control u, completes the proof.

7. An application in optimization. Let T be a probability space, with probability
measure A. For each 6 T and each interger k an optimization problem is given as
follows"

(k) maximize J(x, t),

subject to x H(t),

1
x (x(t) +... + x(t)),

xj( t) Fj( t)

with constraints H(t) and F(t) prescribed, and independent of k. The optimal values
and the optimal solutions of (k) may of" course depend on the integer k. We are
interested in the asymptotic behaviour as k-; in particular we are interested in
obtaining an unvarying asymptotic solution, namely, a sequence of" decisions

(7.1) x(t), x2( t), xj( t) Fj( t)

such that for large k the finite sequence xl(t),’" ,Xk(t) (whose elements do not
depend on k) is a good approximation for a solution. A formal way of expressing
what properties an asymptotic solution has follows.

DEFINITION. Denote by yk(t) the average (Xl(t)+’’ "+xk(t))/k. The sequence
in (7.1) is an unvarying asymptotic solution of (k), as k- o, if A-almost everywhere
dist (Yk (t), H(t)) converge to 0 and if J(yk (t), t) Vk (t) converge to zero as k - ,where Vk(t) is the optimal value of (k).
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Maximization problems like the one we treat, and the need for asymptotic unvary-
ing solutions, arise in stochastic planning and in optimization under uncertainty. In
mathematical economics, Arrow and Radner 1 offer a model of this type for decisions
in large terms. A survey of relations between probabilistic limit laws for multifunctions
and asymptotic values and asymptotic solutions of the problems (k) is presented in
[2]. Indeed, existence of unvarying asymptotic solutions depends on asymptotic proper-
ties of the constraints F(t); these asymptotic properties can be derived from stochastic
characteristics of the Fs(t) when interpreted as random variables. This is the connection
with stochastic optimization in general, and optimization with stochastic constraints
in particular.

In this section we employ the main theorem and derive unvarying asymptotic
solutions under conditions weaker than those given in [2]. The framework is as follows.

Let S be a complete separable metric space. Let F(t, s) be a multifunction, with
values being compact subsets of R n. The constraints F(t) are obtained as

(7.2) Fs( t) F( t, ss( t))

with ss(t) a sequence of measurable functions from T into S; they represent t-dependent
samplings of the parameter space S. For each let fl, be a probability distribution on
S. It is assumed in the statement of the application below that the realization
{Sl(t),""", Sk(t)} is a good sample of fl, in some sense. This is done along the lines
of[5] and [6]. In and in [2] it is assumed that Fs(t) F(ss(t)), with F(s) independent
of t, and Sl(t), s2(t), are identically distributed and independent. This is a particular
case of ours, and implies all the approximation properties that we demand for the
sample.

Assumptions. The functional J(x, t) is continuous in x and measurable in t. The
multifunction F(t, s) has compact values, is measurable in and is continuous in s
(with respect to the Hausdorff metric), and F(t,. is bounded. The mapping t-> 3, is
measurable. For each the set F(t, s)f,(ds) is convex, and has a nonempty intersection
with H(t). The multifunction H(t) is measurable, with closed values.

Application 7.1. Denote F(t)= H(t)I F(t, s)fl,(ds). Then F(t) has compact
values, and by Corollary 4.7, it is N (T)-measurable. Let Fo(t) be the set of x F(t)
on which J(x, t) achieves its maximum. The continuity of J in x implies that Fo(t) is
nonempty, and it is easy to verify that Fo is 3 (T)-measurable. Let Yo be a selection
of Yo.

By the theorem, there exists a measurable selection f(t, s) of F(t, s) such that

(7.3) f f(t, s)flt(ds)= "go(t)

for A-almost every t. Let fl,.k be the empirical measure ’on S determined by the sample
{sl(t),’’’, Sk(t)}. Suppose that for almost every the measures 3,.k converge, in the
space of probability measures, to 3, and that f(t,.), when defined on the measure
space (S, fl,.k), converge in distribution to f( t,. when regarded as a function on (S, 3,).
Then the sequence

(7.4) xs(t) =f(t, ss( t)), j 1, 2,...

forms an unvarying asymptotic solution.
Proof The weak convergence of ,,k to /3, and the continuity of F(t, s) in the s

variable imply that coF(t,s),,k(dS) converge in the Hausdorff metric to
co F(t, s),(ds), where co K is the convex hull of the set K (see, e.g., Artstein and
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Wets [5, Thm. 3.1]). Since j F(t,s)t(ds)=F(t) was assumed convex, and since flt,k
is determined by the sample Sl(t)," ., Sk(t), it follows that

1 k

lim sup F(t) is included in F(t).
k- i=1

In other words, J(To(t), t) is the maximal value of limits of optimal values /.)k(t)
of the problems (k). We now show that J(To(t), t) is the limit of J(yk(t), t), where
yk(t) is determined bythe decisions xj(t) of (7.4) (see the definition). From the definition
it would then follow that (7.4) forms an unvarying asymptotic solution. In fact, the
continuity of J(., t) implies that it suffices to show that yk(t) yo(t) for A-almost every
t. But this convergence follows from the assumption of convergence in distribution of
f(t, .). Indeed, yk(t)=f(t, S)t.k’(ds) while yo(t)=f(t, s)t(ds). This completes the
proof.

Remarks. There is an ad hoc assumption in the preceding application, namely,
the assumption of convergence in distribution of the functions f(t,.). It would be
desirable to deduce the existence of a selection f with this property from conditions
on the data. We can come up with some conditions, e.g., if co F(t, s) is strictly convex
and J(., t) is a convex function; but we do not dwell into these considerations here.
Other conditions can be relaxed. The condition that F(t) is convex can be dropped.
Indeed, the sampling process averages out the contributions from the atoms of fit a
modification of (7.4) along the lines of [2, Scheme 2, p. 74] would produce then an
unvarying asymptotic solution. We leave out the details. As mentioned, stochasticity
of the samples sj(t), for instance, if they are independent and identically distributed,
would enable us to ease more conditions; for instance, the continuity of F(t,. is not
needed then, and the A-almost everywhere convergence in distribution of f(t,.),
demanded in the application, is then satisfied automatically.

REFERENCES

[1] K. J. ARROW AND R. RADNER, Allocation of resources in large teams, Econometrica, 47 (1979), pp,
361-385.

[2] Z. ARTSTEIN, Limit laws for multifunctions applied to an optimization problem, in Multifunctions and
Integrands, Stochastic Analysis, Approximation and Optimization, G. Salinetti, ed., Lecture Notes
in Mathematics 1091, Springer-Verlag, Berlin, 1984, pp. 66-79.

[3] , A variational convergence that yields chattering systems, Ann. Inst. H. Poincar6, Anal. Non
Lin6aire, to appear.

[4] Chattering linear systems: A model for rapidly oscillating coefficients, Math. Control Signals
Systems, to appear.

[5] Z. ARTSTEIN AND R. J-B WETS, Approximating the integral of a multifunction, J. Multivariate Anal.,
24 (1988), pp. 285-308.

[6], Decentralized allocation of resources among many producers, J. Math. Economics, to appear.
[7] R. J. AUMANN, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), pp. 1-12.
[8] L. D. BERKOWTZ, Optimal Control Theory, Springer-Verlag, New York, 1974.
[9] P. BLLINGSLE, Convergence of Probability Measures, John Wiley, New York, 1968.

[10] N. BOURBAK, Elements de Mathematique, Live VI, Integration, Hermann, Paris, 1959, Chap. 6.
[11] C. CASTAING AND M. VALADIER, Convex Analysis and Measurable Multifunctions, Lecture Notes in

Mathematics 580, Spfinger-Verlag, New York, 1977.

[12] A. F. Ft3ppov, On certain questions in the theory of optimal control, SIAM J. Control, (1962),
pp. 76-89.

[13] W. HILDENBRAND, Core and Equilibria of a Large Economy, Princeton University Press, Princeton,
NJ, 1974.

[14] E. KLEIN AND A. C. THOMPSON, Theory of Correspondences, Wiley-Interscience, New York, 1984.
[15] R. T. ROCKAFELLAR, Integral functionals, normal integrands and measurable selections, in Nonlinear

Operators and the Calculus of Variations, L. Waelbroeck, ed., Lecture Notes in Mathematics 543,
Springer-Verlag, Berlin, 1976, pp. 159-207.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 27, No. 6, pp. 1381-1402, November 1989

(C) 1989 Society for Industrial and Applied Mathematics
009
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Abstract. The structurally fixed modes for a decentralized control system described in the descriptor
form F Ax+ Bu, Hy Cx are investigated under a physically reasonable assumption that the coefficients
in the equations are classified into independent physical parameters and dimensionless fixed constants.
A necessary and sufficient condition for the existence of structurally fixed modes is given in matroid-theoretic
terms; the condition can be tested by an efficient algorithm for the independent-flow problem. The com-
binatorial canonical form of a layered mixed matrix plays a central role in deriving the condition.

Key words, structurally fixed mode, decentralized control system, layered mixed matrix, combinatorial
canonical form, matroid-theoretic algorithm
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1. Introduction. The concept of fixed modes introduced by Wang and Davison
[40] is now recognized as one ofthe fundamental concepts for the decentralized control,
especially with respect to stabilization and pole assignment (see also Anderson and
Clements [2], Corfmat and Morse [8], and Davison, Gesing, and Wang [10]). In line
with the structural or generic approach to controllability initiated by Lin [22] and
developed by Glover and Silverman 14], Kobayashi and Yoshikawa 19], Maeda [25],
Shields and Pearson [37], and others, the concept of structurally fixed modes is proposed
by Sezer and iljak [36] and its combinatorial or graph-theoretic characterizations are
given by Sezer and iljak [36] and Pichai, Sezer, and ;iljak [33]. See also Reinschke [34].

In this paper, the structurally fixed modes for a decentralized control system
described in a descriptor form are investigated in a physically reasonable framework
(described in 3) that has been proposed by Murota [26]-[28], [30] in formulating
the structural controllability. That is, the structurally fixed modes are discussed under
the assumption that the coefficients in the equations are classified into independent
physical parameters and dimensionless fixed constants. A necessary and sufficient
condition, of a combinatorial nature, for the existence of structurally fixed modes is
derived in 4 with the aid of the combinatorial canonical form (abbreviated as CCF)
of a layered mixed matrix (abbreviated as LM-matrix), which is a mathematical tool
useful for systems analysis in general [28], [30] and is described briefly in 2.
Furthermore, it is shown that the derived condition can be tested efficiently by a variant
of the matroid-theoretic algorithm for the matroid union/partition problem [12], [21]
or for the independent-flow problem [13]; the proposed algorithm, being expressed
in terms of an auxiliary graph, is suitable for practical applications in that it is free
from the numerical difficulty of rounding errors and is guaranteed to run in polynomial
time in the size of the control system in question. The established criterion naturally
reduces to the graph-theoretic criterion obtained by Pichai, Sezer, and ;iljak [33] in
the case where all the nonzero coefficients can be regarded as independent parameters.
It is also mentioned in 7 that a hierarchical decomposition of a dynamical system
with respect to an arbitrarily specified feedback structure is provided by the CCF of
an LM-matrix associated with the decentralized system. No explicit reference to matroid

* Received by the editors May 25, 1988; accepted for publication (in revised form) February 1, 1989.
? Department of Mathematical Engineering and Information Physics, University of Tokyo, Tokyo 113,

Japan.
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theory [41] is made in this paper, although extensive use is made of the results in
linear algebra that have been obtained with the aid of matroid theory. In this connection
the readers are also referred to 16]-[18], [28] for the use of matroid-theoretic concepts
and algorithms in circuit theory.

To be specific, consider a linear time-invariant dynamical system with v local
control stations described as follows"

(1.1a)

(1.1b)

where x is the state-vector,

(t) Ax(t) + Bu(t),

y(t)=Cx(t)

u= and y=

are the input-vector and the output-vector, respectively, consisting of the input-vectors
ui (i 1,. ., ,) and the output-vectors Yi (i= 1,. ., ,) of the local control stations.
The matrices A, B, and C are real and constant; corresponding to the local stations,
B and C are partitioned into , blocks as

B=(B,I...IB), C:

The local output feedback is specified by a block-diagonal real matrix

(1.2) K block diag [K1,. ", K],

where the size of Ki is such that matrix product BKCi is defined (i= 1,..., ,). That
is, K represents the nondynamic decentralized output feedback

(1.3) u(t)=Ky(t),

i.e., u Kyi (i 1, , ,). The local output feedback control with dynamic compensa-
tion is described by

/.(t) Lz(t) + My(t),

u(t) Nz(t) + Ky(t) + Pv(t)

(1.4a)

(1.4b)

where

z= and v=

and zi and vi are, respectively, the state-vector and the external input-vector of the ith
feedback controller (i 1,..., ,); the matrices L, M, N, and P are block-diagonal
real matrices of appropriate sizes.

Let ’[ be the family of all real matrices K of the form (1.2). The greatest common
divisor of the set of characteristic polynomials of A + BKC, for all K ’, is called the
fixedpolynomial of(A, B, C) with respect to ’[, and denoted by b(s) 0(s; A, B, C, ’{),
i.e.,

(1.5) p(s; A, B, C, ’) =gcd {det (A + BKC sI) K }.
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A complex number A C is called a fixed mode of (A, B, C) with respect to Y( if A is
an eigenvalue of A + BKC for all K Y{’, i.e., if q(A; A, B, C, Y{) 0. The importance
of the concept of fixed modes is demonstrated by the following results due to Wang
and Davison [40] and to Corfmat and Morse [8]: (i) the system (1.1) is stabilizable
by the decentralized dynamic output feedback (1.4) if and only if all the fixed modes
of (A, B, C) have negative real parts; and (ii) the spectrum of the closed-loop system
(1.1) and (1.4) is freely assignable by means of K Y{ if and only if there exist no
fixed modes for (A, B, C).

As already noted in [40], the notions of fixed polynomial and fixed modes can
be defined for (A, B, C) with respect to an arbitrarily specified family Y{ of the matrices
K, not necessarily of the form (1.2). In the special case where Y{" is composed of all
matrices of the compatible size (i.e., of size such that matrix product BKC is defined),
the fixed mode with respect to Y{" is called the centralized fixed mode in [10]. It is
pointed out in [33] that the above-mentioned result (i) on the stabilizability can be
extended to the situation where Y( consists of those matrices K that are subject to an
arbitrarily specified zero/nonzero structure and where M in (1.4) is constrained to a
structure consistent with that of K.

A fixed mode of (A, B, C) is called a structurally fixed mode if it stems not from
accidental matching ofthe numerical values of system parameters but from the structure
of the system [36]. In [33] and [36], however, the structurally fixed modes are defined
with respect to the zero/nonzero structure of A, B, and C. Namely, the fixed modes
are considered for the family of systems that are "structurally equivalent" to^
(A, B, C), where a system (A, B, C) is called structurally equivalent to (A, B, C) if A,
B, and C have, respectively, the same zero/nonzero structure as that of A, B, and C.
Obviously, the concept of structurally fixed modes can be defined with respect to a
pair (O, Y{) of a more general family 5e of systems and a more general family Y{" of
output feedbacks.

It has been gradually recognized that in the design and analysis of large-scale
systems in general, "structural" or qualitative considerations are no less important
than "numerical" or quantitative ones. It should be emphasized that the "structure"
should be defined on a physically sound basis, and that it is crucial in this respect to
work with elementary mathematical representations of physical structures expressed
in terms of elementary variables, and not with sophisticated and compact representa-
tions.

In the present case of dynamical systems, therefore, the "standard state-space
form" (1.1) is not suitable for expressing the elementary physical structure in that the
entries of the matrices A, B, and C usually have mutual algebraic relations among
themselves. The so-called "descriptor form" (cf. Armentano [4], Cobb [6], [7],
Luenberger [23], [24], Verghese, L6vy, and Kailath [38]) is more suitable. That is,
(1.1) and (1.3) are to be replaced, respectively, by

(1.6a) F(t) Ax(t) + Bu(t),

(1.6b) Hy(t) Cx(t),

(1.7) Gu(t):Ky(t).

Then, as advocated by Murota [28] and Murota and Iri [31], it is often justified to
assume that the coefficients in these equations are classified into two groups, one of
independent physical parameters and the other of fixed constants, typically simple
integers such as +/-1.
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In this paper we recognize the structure of a system in the above sense. That is,
we set be to be the family of systems (A, B, C, F, H) of (1.6), in which the independent
parameters of those coefficient matrices can take arbitrary real values while the fixed
coefficients remain constants. As for the feedback structure constraint we assume that
Y{" consists of pairs (G, K) of the matrices G and K having structures specified similarly
in terms of independent parameters and fixed constants. We will discuss the structurally
fixed modes with respect to such (be, 77{) (see 3 for the precise formulation of the
problem). Combinatorial and algorithmic characterizations of the existence of struc-
turally fixed modes will be established in Theorem 4.2 and Theorem 5.1.

The present formulation of the fixed modes for a general descriptor system (1.6)
includes those treated in [8], [10], [33], [36], and [40] as special cases. When a
decentralized control system is described by (1.6) with F and H being nonsingular,
and Y( consists of all block-diagonal matrices (G, K) compatible with the locality of
admissible feedbacks, the fundamental results of Wang and Davison [40] and Corfmat
and Morse [8] mentioned above remain valid and clarify the control-theoretic sig-
nificance of the fixed modes in the present formulation. In this case, nothing new is
introduced to the concept of fixed modes of a particular system. Nevertheless, the
descriptor form is more suitable for considering structurally fixed modes since it
represents the physical structure more faithfully. A general descriptor system, however,
may have the so-called impulsive modes that bring about complications [4], [7], [38].
Although substantial results seem to have been obtained so far on the pole assignment
by state-feedback [3], [5], [6], the present author is not informed of results on pole
assignment by dynamic compensation for a general descriptor system.

2. Preliminaries on mixed matrices. Let K_ F be fields. A matrix A is called a
mixed matrix with respect to K if

(2.1) A=Q+T

where (i) Q (Qij) is a matrix over K, and (ii) T=(To) is a matrix over F such that
the set (T) is (collectively) algebraically independent [39] over K, where (. denotes
in general the set of nonzero entries of a matrix. The following identity is fundamental
where, for a matrix M in general, we denote the row-set and the column-set of M by
Row (M) and Col (M), respectively, and the submatrix with row-set I and column-set
J by M[I, J]; note also term-rank of M coincides with its generic rank if A(M) is
algebraically independent. See Murota [28], [29], Murota and Iri [31], and Murota,
Iri, and Nakamura [32] for the details of this section.

LEMMA 2.1. For a mixed matrix A Q + T,

rank A=max {rank Q[R-I, C- J] +term-rank T[I, J][I R, J
_

C},

where R Row (A), C Col (A).
A matrix A is called a layered mixed matrix (or an LM-matrix) with respect to K

if it takes the following form (possibly after a permutation of rows):

and Q and T of (2.2) meet the requirements (i) and (ii) above.
By the admissible transformation for an LM-matrix A of (2.2) we mean the

transformation of the form:
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where S is a nonsingular matrix over the subfield K, and Pr and Pc are permutation
matrices. The admissible transformation brings an LM-matrix into another LM-matrix
and two LM-matrices are said to be LM-equivalent if and only if they are connected
by an admissible transformation.

There exists a finest block-triangular matrix, called the combinatorial canonical

form (or CCF for short), among the matrices that are LM-equivalent to each other.
Note that the CCF is a generalization of the canonical decomposition due to Dulmage
and Mendelsohn [11] of a bipartite graph, or of a formal incidence matrix [35]. The
CCF for a nonsingular LM-matrix is described as follows.

Let A be the CCF of a nonsingular A; Row (A) and Col (A) are, respectively,
partitioned into nonempty blocks as

(2.4) {R,. .,R}, {C,. ., C}

where

#Rk_Row(A), #CkCol(A) for k=l,...,r,

RkCIR=, CkCIC= fork#/.

LEMMA 2.2. The CCF A ofa nonsingular LM-matrix A has thefollowing properties"
(1) A is block-triangularized with respect to the partitions (2.4). That is,

A[Rk, CI]=O if l<=l<k<=r.

(2) rank A[R, C] IRI IC l > 0 for k 1,..., r.

(3) A is the finest block-triangular matrix with property (2) that is LM-
equivalent to A.

A nonsingular LM-matrix A will be called (LM)-irreducible if its CCF does not
split into more than one block, that is, if r= 1 above. Each diagonal block A[R, C]
of the CCF above is irreducible (k 1,..., r). The following result of Murota [29]
plays the central role in 4. It is a generalization of the result of Ryser [35] for formal
incidence matrices.

LEMMA 2.3 Let A (T) be a nonsingular irreducible LM-matrix with respect to K,
and -= 3c(T) denote the set of nonzero entries of T.

(1) det A is an irreducible polynomial in the ring K[ -].
(2) Each element of -appears in det A.

3. Problem formulation. For the descriptor system (1.6) and (1.7) we define the
fixed polynomial 0(s) with respect to a family Y{ of allowable feedbacks (G, K) by

(3.1) O(s)= O(s; A, B, C, F, H, Y{) gcd {det D(s)I(G, K) Y{}

where

(3.2)
A- sF B HtD=D(s)= 0 -G
C 0

and gcd is considered in C[s]. Note that this is an extension of (1.5) since

A-sI B 0 t(3.3) det(A+BKC-sI)=det 0 -I K
C 0 -I

We call a complex number A C a fixed mode of (A, B, C, F, H) with respect to Y{" if
0() =o.
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We now introduce the first physical observation that explains how we recognize
the structure of a system. This will constitute the basis of our choice of the family 5
of systems. When a dynamical system is written in the form (1.6) and (1.7) in terms
of elementary physical variables, it is often justified to assume that the nonzero entries
of the coefficient matrices A, B, C, F, and H are classified into two groups, one of
generic parameters and the other of fixed constants. In other words, as observed by
Murota and Iri [31 ], we can distinguish two kinds of numbers that characterize physical
systems as follows: (i) those numbers representing independent physical parameters
such as resistances in electrical networks that, being contaminated by various noises
and errors, take inaccurate values independent of one another, so that they can be
modeled as algebraically independent generic numbers, and (ii) those numbers account-
ing for various sorts of conservation laws such as Kirchhoff’s, that, stemming from
topological incidence relations, are accurate (often +1) in value so that no serious
numerical difficulty arises in arithmetic operations on them. See [31] or Chapter 4 of
[28] for further discussions.

Based on this physical observation we assume that coefficient matrices A, B, C,
F, and H are expressed as follows:

A--QA+ TA, B=Qs+ Ts, C=Qc+ Tc,
(3.4)

F QF + TF, H QH + TH,

where Q, Q, etc., are matrices over Q (the field of rational numbers), and the sets
W(T), :V’(T), etc., of nonzero entries are disjoint and

(3.5) b= dV’(TA) d Tn (.J W" Tc t.J W" TF (.J W" T, )(_R)

is algebraically independent over Q. It should be clear that assuming algebraic indepen-
dence of b is equivalent to regarding the members of as independent parameters,
and therefore to considering the family, to be denoted also by , ofsystems parametrized
by those parameters in . Such a particular system has a fixed mode with respect to
Y{ if and only if each member of has a fixed mode with respect to YL

The feedback structure constraint if{ is assumed to be specified by means of a pair
of mixed matrices

(3.6) G Qo + To, K QK + TK.
That is, Y/" is composed of (G, K) of (3.6), where the nonzero entries of To and T
take any real values.

In this paper we are primarily concerned with combinatorial and algorithmic
characterizations of the condition

(3.7) q(s; A, B, C, F, H, Y{’) C

for a system (A, B, C, F, H) such that

(A1) 5 of (3.5) is algebraically independent over Q.

Remark 3.1. The rationality of the entries of QA, Q, etc., is not essential to the
subsequent arguments. In case nonrational constants are involved, we may choose as
K an appropriate extension field of Q. The subfield K affects the computational
complexity of the algorithm to be described in 5.

Since the members of (To)U (T/) are independent parameters, (A1) implies
that D of (3.2) is a mixed matrix (cf. 2) with respect to K Q(s), i.e.,

(3.8) D= QD+ TD
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with

(3.9)

(3.10)

Qo=QD(S) o
Oc 0

TA- sT, TB
To=To(s) 0 -To

T 0

O t-Qn

tr,
-r

The second physical observation made by Murota [26] (see also [27], [28, Chap.
4]) is that the fixed constants, or the accurate numbers, usually represent topological
and/or geometrical incidence coefficients that have no physical dimensions. Therefore,
it is natural to expect that the entries of QA, Qn, etc., are dimensionless constants. On
the other hand, the indeterminate s should have the physical dimension of the inverse
of time, since it corresponds to the differentiation with respect to time. When combined
with the principle of dimensional homogeneity [15], [20], this implies that

(3.11) QD(s)=diag[s",,... ,sra] QD(1)" diag [s-’, ,s-"
for some integers r and ci (i 1, , d), where d is the size of the matrix D (see [26]
and [28] for details). Note that -r and -ci admit the natural physical interpretation
of the exponents to the dimension of time associated, respectively, with the ith row
(equation) and the ith column (variable) of D. It is known that (3.11) holds for some
integers r and c (i= 1,. ., d) if and only if

(A2) Every nonvanishing subdeterminant of Qp(s) is a monomial in s over Q (i.e.,
of the form asp with a rational number a and an integer p).

Our problem is to derive necessary and sufficient conditions for (3.7) under the
assumptions (A1) and (A2).

4. Algebraic/combinatorial characterization of a fixed polynomial. We will solve
our problem formulated in 3 in a still more general form as follows. (Examples in
6 will provide a concrete idea to the argument below.) Let s be an indeterminate

over C and let

(4.1) D D(s)= QD + TD
be a d d nonsingular matrix such that

(4.2)

(4.3)

where

(A1)

(A2)
(A3)

QD=QD(s)=Q+sO1

TD TD(S)=(T+ sT’)+ I

-= W(T) (_J W(T1) (disjoint union) (_ C) is algebraically independent
over Q.
Every nonvanishing subdeterminant of Qo(s) is a monomial in s over Q.
The elements of {--W(/) are indeterminates over C(s).

Recall that (A2) implies

(4.4) QD(S) =diag [sr’, Sr’] QD(1) diag [s-C’,

for some integers ri and ci (i= 1,..., d).
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Remark 4.1. It should be clear that for the problem formulated in 3 we have

QO 0 -Q QK Q’ 0 0

Oc 0 -O o o

To O O O T1-- O O O

Tc 0 TH 0 0 0

o
O O

for the matrices introduced here.
In accordance with (3.1) we define the fixed polynomial 0(s) as the greatest

common divisor in C[s] of all det D(s), where arbitrary real values are substituted
into Y{. Also we call a complex number A C a fixed mode with respect to Y{ if (A 0.

Regarding det D(s) as a polynomial in (s, ow, Y{’) over Q, let

(4.5) detD(s)= 1-[ Ok(S)" 1-I O(S,
k xIt k xIt k xIt

be the decomposition into irreducible polynomials in Q[s, ow, y{], where 0k(s) Q[s]
for k o, 0k(s, ow) Q[s, 0] -Q[s] for k 1, and 0k(s, 0, Y{) Q[s, ow, y{’] -Q[s, ow]
for k 2. The following would be obvious.

LEMMA 4.1. The fixed polynomial O(s) C[s] is given as

(4.6) O(s)= I] Ok(s)" H Ok(s, 5).
kIt kxIt

Proof It suffices to show that Ok (/, Q, {’) is not equal to zero as a polynomial in
Y{ over C for all A e C and for all k e 2. Suppose, to the contrary, there exist h C
and k 2 such that Ok (h, oW, Y() 0 in C[Y’]. As a polynomial in (s, Y() over F --- Q(Ok is expressed as

O (s, Y, E po(s) C

where a denotes a multi-index, is a product of some elements in {’, and p (s) F[ s ].
Note that there exist more than one term in this expression since 0k(s,
Q[s, o, Y{] Q[s, 9] is irreducible. Then p()t) =0 for all a. This means [39] that p(s),
for each a, is divisible in F[s] by the minimal polynomial of A over F. However, this
contradicts the assumption since the irreducibility of qk(s, 5, {’) in Q[ s, 9, Y{] implies
[39] its irreducibility as a polynomial in (s, Y{) over F

Consider the first factor on the right-hand side of (4.5). It follows from (A2), or
(4.4), that

(4.7) l-I qk(S) asp (a Q, p Z).
ke

LEMMA 4.2. D(s) is nonsingular (s: indeterminate) with p =0 in (4.7) if and only
if D(O) is nonsingular.

The nonsingularity of D(0) can be characterized combinatorially by Lemma 2.1
since D(0)--Q+(T+) is a mixed matrix with respect to Q. (More generally it is
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possible to compute the value of p by a matroid-theoretic algorithm. See Theorem 4.2
below.)

The remaining factors in (4.5) are determined as follows. Put

(4.8) /=D(s; t,, td)=
--diag[tl,’’’,td] To f

where Id is the unit matrix of order d, and ti (i= 1,- ., d) are indeterminates (distinct
from s and Y{). Obviously,

(4.9) det D(s) =det D(s; 1,. , 1).

The matrix/ is an LM-matrix with respect to K Q(s). Let

(4.10) D D(s; tl,’’"

O D2 D2,r_ D2r
td)--

0 0 Dr_ Dr_l,
O O O Dr

be the CCF of/ (cf. 2). Since E3 is obtained from / by the transformation (2.3)
with nonsingular S over Q(s), we have det D= po(S)" det D with po(s)Q(s)-{O}.
Furthermore, we may assume, by virtue of (A2), that po(s) is a (possibly negative)
power of s, i.e.,

(4.11)

det D(s; h,"" ", ta)= det Dk(S; /1,""",

-’-OloSp det/(s; tl, ta) (ao Q(s)- {0}, poe Z)

and that each entry of D belongs to Q[s, , Y{‘, tl," , td].
LEMMA 4.3. For k 1,..’, r,

(4.12) det Dk(S; 1,. , 1)= pk(S)" 6k(S)

where @k (S) Q[ s, 5, 3’{‘] Q[s is irreducible and Pk (S) Q[ s ].
Proof Denote by 3-i the set of elements of 3-= ow 3’{" contained in the row of D

corresponding to ti (i= 1,..., d) (cf. (4.8)). Put f(3-1,’", 3-d; q,’’’, ta)--det Dk
that is irreducible in Q(s)[3-1,’", 3-d, tl,’" ",td] by Lemma 2.3(1). From the
expression

tic()k) tl td

(where the notation 3-i/ti (i 1,. d) on the right-hand side means substituting a ti
for each indeterminate a 3-i), it follows that det Dk(S; 1,..., 1) is irreducible in
Q(s)[O, Y{‘], completing the proof. [3

When index sets 1 and 2 are defined by

(4.13a) contains a variable of 9 and no variable of 3’{‘},

(4.13b) 2--{kl/3k contains a variable of 3"{‘},
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Lemma 2.3 implies that

(4.14a) Ok(S) 4’k(S, b) Q[s, ]- Q[s], k 6 1,

(4.14b) Pk(S) 4’k(S, , Y{) Q[s, , Y/’] -Q[s, 6e], k 2

where Ok(S) is defined by (4.12). Combining (4.5), (4.9), (4.11), (4.12), and (4.14), we
see that

(4.15a) {O(s, )]k q,,} {47(s, 6e)lk ,},

(4.15b) {O,(s, 6e, :) k q} {qS(s, o% ’/’) k }

where in these expressions two polynomials are considered equal if they are equal up
to a nonzero multiplicative factor in Q. To sum up, the decomposition (4.5) of det D(s)
into irreducible factors is determined, up to a factor of monomial of s, by the CCF of
D of (4.8).

THEOREM 4.1. Assume (A1), (A2), and (A3) as well as the nonsingularity ofD(s)
of (4.1). The fixed polynomial d/(s) is given by

O(s) a,sp’ H Ok(S, 6)= a2s 1-[ det D(s),

where ai e Q- {0} and Pi Z for 1, 2.
Proof This follows from Lemma 4.1 and (4.15). l-3

This theorem shows that there exist no nonzero fixed modes if and only if
k(S, 9) Q[6e] for all k e 1. This condition can be stated in combinatorial terms as
follows.

Recalling that Dk is an LM-matrix with respect to Q(s), express it in the form of
(2.2) as

Put C Row (D)U Col (D) and define " C Z with reference to (4.4) by

J--r ifj Row (D),
(4.17) ’(j)

-c ifjCol(D),

and

’(J) ’, st(j), J
___

C.

Then

(4.18) deg det Qg[Row (Q), J] Po+ ’(J)

for all J Ck =- Col (Dk)_ C such that Qk[ROw (Qk), J] is nonsingular, where Po is
independent of J.

For J_ Ck such that Tk[Row (Tg),J] is nonsingular, we denote by k(J) and
qk(J) the highest and lowest degrees in s of a nonzero term in det Tk[ROw (Tk), J].
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(Note k(J) and ’ok(J) can be computed by solving a bipartite weighted-matching
problem. See also 5.)

Then, we have

(4.19) degsd/-k(s)=max{(k--J)+k(J)lJ3k}--min{(k--J)+’ok(J)lJk}

where

(4.20) k {J - (k O[Row (0), C’ J] and k[ROw (k), J] are nonsingular},

since no cancellation occurs among terms with distinct J in the generalized Laplace
expansion

detDk= det Qk[ROW(Qk), Ck-J]" det Tk[Row(Tk),J].
Jk

Hence we obtain the following lemma concerning the nonzero fixed modes.
LEMMA 4.4. Assume (A1), (A2), and (A3) as well as the nonsingularity of D(s)

of (4.1). The number of nonzero fixed modes is given by

[max {(k--J)+k(J)[J k}--min {(k-J)+’ok(J)lJ /k}].
ke

The combinatorial characterization of the nonexistence of fixed modes is now
obtained, on the basis of which an efficient algorithm is designed in the next section.

TrEOREM 4.2. Assume (A1), (A2), and (A3) as well as the nonsingularity ofD(s)
of (4.1).

(1) A 0 is not a fixed mode if and only if
(c1) D(O) is nonsingular, i.e., there exist I Row (D) and J Col (D) such that

Q[Row (D)-/, Col (D)-J] and (T+ I)[I, J] are nonsingular;

(2) The multiplicity of the zero fixed mode is given by

min {(-J)+’o(J)lJ }- ’(R)

where

{J
_

t[Row ((), J] and ’[Row (’), J] are nonsingular},

and "o(J) is the lowest degree in sofa nonzero term in det T[Row(T),J] (cf. (4.8)).
(3) There exist no nonzero fixed modes if and only if

(C2) For each k 1,

max {’(k J)+ k(J) ]J lk} min {r(k J)+ "Ok(J)[J k}.

Proof. (1) By Lemmas 4.2 and 2.1 applied to D(0) QO+ TO+/) that is a mixed
matrix with respect to Q.

(2) See [26], or 27 of [28].
(3) By Theorem 4.1, there exist no nonzero fixed modes if and only if degs dig(S) 0

for all k 1 that is, in turn, equivalent to (C2) by (4.19).

5. Algorithm of testing for the existence of fixed modes. In this section we describe
an efficient algorithm for checking for the existence of fixed modes by means of
Theorem 4.2. It is based on the algorithmic characterization of the irreducible com-
ponents of the CCF of an LM-matrix (see 22 of [28]) as well as on the fundamental
facts concerning the independent-flow problem 13]. It would be interesting to compare
this algorithm with those for testing the structural controllability (cf. [27] and 29 of
[28]) and for computing the dynamical degree (cf. [26] and 27 of [28]).
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First, note that (C1) in Theorem 4.2 can be checked readily by the efficient
algorithm for computing the rank of a mixed matrix that uses arithmetic operations
on rational numbers only [28], [31].

Before describing the concrete procedure for (C2), we will outline the basic idea
in general terms. As shown in [28] and [32], the rank of an LM-matrix can be computed
on the basis of Lemma 2.1 by finding a maximum independent flow [13] in a certain
network and, moreover, the CCF can be obtained from the strong components [21]
(or strongly connected components [1]) of the auxiliary network N associated with
the maximum independent flow. By introducing appropriate costs associated with arcs,
the quantities max {sr(Ck J) + :k(J)} and min {sr(Ck J) + 7/k(J)} appearing in (C2)
are expressed as the maximum and the minimum of the cost of an independent flow
in the strong component that corresponds to the block Dk of the CCF. If each arc in
N is given the "length" ;/that represents the imputed cost, then (C2) is equivalent to
the graph-theoretic condition that there exists no directed cycle of nonzero length in
the strong component. This condition is amenable to an efficient algorithm since, as
noted in [27], this is equivalent to the existence of potentials associated with vertices
such that the length of an arc is the difference of the potentials of the endvertices.

The concrete description of the algorithm for (C2) is as follows. It works with an
auxiliary network N (V, A; ;/) with underlying graph (V, A) and length function .
Put R Row (D), C Col (D), and Vo Ro U Co, VT RT U CT, where Ro and RT
[respectively, Co and CT] are disjoint copies of R [respectively, C]. Denote by
goo’ R U C --> Ro U CO and got" R U C -> RT U Cr the one-to-one correspondences. The
vertex set V is defined as

V= Ve U VT (Re U CO U (RT U CT).

The arc set A consists of five disjoint parts as follows"

(5.2) A= B.U B*U Ae U ATU AM,

to be defined by (5.3), (5.4), (5.6), (5.7), and (5.8) below. The initial and terminal
vertices of an arc a^

, are denoted, respectively, as O+a and O-a.
Denoting by I c_ R and J c_ C those subsets I and J that attain the maximum in

Lemma 2.1 applied to D(s) of (4.1), we put

B. {(g0T(i), goo(i))li 6 f} U {(goT(j), goo(J))IJ c )},

(5.4) B* {(goo(i), goT(i))[i R f} U {(goo(j), goT(j))lJ .}.

Remark 5.1. Provided that D(s) is n.on.singular, both QD(S)[R-I, C-J] and
TD(S)[, ]] are nonsingular. Such a pair (/, J) can be found by an efficient algorithm
using arithmetic operations in Q without involving s, since

rankQD(s)[R-I,C-J]=rankQD(1)[R-I,C-J], I_R, J C,

by (A2) and

rank TD(S)[I, J] =term-rank TD(1)[I, ]], I R, J c_ C,

by (A1) and (A3). See [28] and [31].
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Let P be the pivotal transform of Q=-Qo(1)=q+Q with pivot (--
Q[R-, C-J], i.e., Row (P) (C-)) U , CoI(P)=(R-I)UJ, and

c 6-’
C-Y]O-1

O-’ Q[R , .] )Q[, ]] Q[, C ]] Q- Q[R [, J]

With reference to P, we define

(5.6) Ao-{(qQ(i), qgQ(j))IPoO iE (C-Y) U ,jE (R-) U.},

representing the linear dependence among the columns of the matrix (Id[Qm) in (4.8).
The structure of Tm is represented by AT and AM. AT has a one-to-one correspon-

dence with the transcendental elements, i.e.,

(5.7) AT U .Y{= W( T) U W(T’) U A/’(I)

where we set a+a=qr(i)ERT and O-a=qT(j) E CT if nEAT is in the (i,j) entry of
TD. Note that parallel arcs can exist (e.g., if TT, # 0). Since TD[_, .] is nonsingular,
the bipartite graph GT (RT U CT, AT) with vertex set RT U CT and arc set AT has a
matching M(_AT) such that IMI=Ii[(=IYl) and M covers and . (i.e., ={a+ala M}, J {a-ala M}). We define AM as the set of reoriented arcs of M:

(5.8) AM={alamM}

where a denotes the reorientation of a, i.e., 0+a =O-a and 0-a O+a.
The length /" A--> Z is defined with reference to ri and ei (i 1,..., d) of (4.4)

as follows"

/(a) ri if a=(qgT(i),qo(i))6B,, iL
if a=(qgT(j), qo(j))B,, jE C-J,

/(a)=-r, ifa=(qo(i),pT(i))B* iR-,

(5.9)
/(a) -9 if a (qo(J), qr(j)) B*, j ,
"p(a)=O if aeAo,

/(a)=0 ifaEX(T)mx(I)c_Ar,

/(a)=l ifaW(T1)AT,

/(a) -/(a’) if a E AM is the reorientation of a’ E M AT.

It may be noted here that N is defined with reference to a particular choice of
(/, J) for the matrix_ D(s), and without direct reference to D(s); however, the str,,ong
components of N are known to be determined independently of the choice of (/, J),
and D(s) can be constructed easily from the strong components of N.

Now we are ready to rephrase (C2) of_Theorem 4.2 in terms of the network N.
For each strong component G (V, A) of N (where

_
I7,/]_ ), we consider the
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condition that the sum of the lengths /(a) along any directed cycle 0 in ( is equal
to zero, i.e.,

(5.10) Z (a) 0
act)

(VC: directed cycle in G).

As observed in [27] and [28] (see also Remark 5.2 below), this condition is equivalent
to the existence of a "potential" function r" Q-* Z such that

(5.11) /(a) (O-a)- 7r(O+a) (Va e ).

THEOREM 5.1. Assume (A1), (A2), and (A3) as well as the nonsingularity ofD(s)
of (4.1). Condition (C2) in Thdorem 4.2 holds if and only if

(C3) Each strong component of N either contains an arc of ?7{ or admits a potential
function 7r such that (5.11) holds.

Proof First recall that the strong components on N correspond essentially to the
irreducible diagonal blocks Dk of D of (4.10). As shown in 4 (cf. (4.12)), we have

det D(s; 1,. ., 1)= akS
p O(S, , )

with ak e Q, Pk e Z, and d/k(S, 5e, 77{) e Q[s, 5, 77{]-Q[s] being irreducible. This poly-
nomial 0k does not contain s, i.e., 0k Q[5, 77{] if and only if the strong component
corresponding to Dk satisfies (5.10).

The overall computational complexity of testing (C1) and (C2), as well as testing
for nonsingularity of D(s), is dominated by that for the construction of the network

and is bounded by O(d log d) in the worst case [9] and is usually much smaller
than this worstcase bound (cf. [27] for the detail). Note also that the decomposition
of N into strong components can be found [1] in time of O(IAI) and the potential
function of (5.11) for a strong component (V, A), if any, can be found by constructing
a spanning tree (cf. Remark 5.2) in time of O([/[). It should be emphasized here that
the whole algorithm involves only pivoting operations on the rational matrix Qo whose
entries are simple numbers such as +1 in practical applications.

Remark 5.2. The pot,,ential function 7r of (5.11) can be constructed as follows.
First observe that, since G is strongly connected, (5.10) is equivalent to the condition
that the length of a path depends only on the initial and terminal vertices of the path,
i.e.,

E /(a)= E /(a)
P P

if P1 and P2 are directed paths such that O+P1 =o+P2 (=u) and a-P1 =o-P (=v). In
fact, taking a directed path P’ with O/P’= v and O-P’= u (such P’ exists since is
strongly connected), we see

E /(a)+ E /(a)=0= E /(a)+ E (a)
aP aP’ aP aP’

by (5.10). Hence the following procedure is valid: First fix a spanning tree "/] and
a vertex u "’; and for each v V, set 7r(v) equal to the length of the path in "connecting u to v; and finally check for the condition (5.11) for each a e A- T.
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Remark 5.3. The number of nonzero fixed modes can be computed efficiently
based on Lemma 4.4 by solving the so-called independent-flow problem [13], [17] for
each strong component of N. The number of zero fixed modes can also be computed
efficiently based on the formula of Theorem 4.2(2) using the matroid union/intersection
algorithm.

Remark 5.4. In the particular case as treated in Pichai, Sezer, and iljak [33], the
present characterization (i.e., Theorem 4.2 and Theorem 5.1) reduces to the graph-
theoretic conditions given in Theorem 4 of [33], as follows.

When a system is described by (1.1) with "structured" matrices A, B, and C,
having independent nonzero entries, and the feedback structure is specified by another
"structured" matrix K, we have

Qo -I 0 To O O
O -I C O

in (4.1) (see Remark 4.1). Note that the row-set R and the column-set C both correspond
to the union of the sets X, U, and Y of variables x, u, and y; let ’a:R--> X U U U Y
and ’c: C--> X U U U Y denote the correspondence.

Then it is easy to see (by Linkage Lemma; cf., e.g., Proposition 7.1 of [28]) that
(C1) in Theorem 4.2 is equivalent to (ii) in Theorem 4 of [33]. To define the network, we can choose , J ;, since Qo is nonsingular. The arc set of/Q consists of
the following:

B. {(g0T(j), goo(J)) IJ C},

B* {(goo(i), goT(i))liR},

Ao {(goo(j), goQ(i))[ ’a(i)= ’c(j), R,j C},

AT (A) U (B) U (C) U W’(K),

Note that B., B*, and Ao are in one-to-one correspondence to X U U U Y, and that
cycles in N are in one-to-one correspondence to the cycles in the graph used in [33].

The matrix QD above satisfies (A2) with ri and c; in (4.4) defined as follows" ri 1
if ,a(i)X and =0 otherwise; c;=0 for jeC. Then the length ;/(a) equals -1 if
a (goo(i), god-(i))e B* and ’a(i)e X, and vanishes otherwise. As easily seen, a strong
component of N cannot admit a potential function r unless it consists of a single
vertex. Therefore (i) in Theorem 4 of [33] implies (C3) in Theorem 5.1. Conversely,
suppose (C3) holds together with (C1). Condition (C1) implies that the four vertices
of N corresponding to one x-vertex are contained in a strong component of N, which
cannot admit a potential function, and therefore must contain an arc of YL Thus, (C1)
and (C3) together (in this special case) are equivalent to the two conditions given in
Theorem 4 of [33]. See also Example 6.2.

6. Example.
Example 6.1. The algorithm described in 5 as well as the derivation in 4 is

illustrated here by means of an example. Consider a matrix D of (4.1) (with d =9)
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given by

W1

W2

W3

W4

QO+ sQ1 w5

w6

w7

w8

w9

w1

W2

W3

W4
T+ sT1= w5

W6

W7

W8

W9

W1

W2

W3

W4

I--W5
W6

W7

W8

X1

0

-1

0

1

0

--S

Io
Xl

/o0
0

0

0

0

0

0

Io
Xl

/o0
0

0

0

0

0

w9 0

X2 X3 X4 X5 X6 X7 X8

0 1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 -1 0 0 0 0 0

0 0 0 s 0 s

0 1 0 -1 -s s 0

0 0 0 0 0 0 0

0 -s 0 0 0 0 0

0 0 0 0 0 0 0

X2 X3 X4 X5 X6 X7 X8

0 0 0 0 0 0 0

sfl 0 0 0 0 al 0

a2 sf2 a a4 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 a6
0 0 0 0 0 0 a7
0 0 0 0 0 0 0

0 0 0 a9 sf3 0 0

x2 x3 x4 x5 X6 x7 x8
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 k2 0 0 0 0

0 0 0 0 0 k3 0

0 0 0 0 0 0 0
0 0 0 0 0 k4 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
Assumption (A2) is satisfied, where (4.4) holds true with

(r, ,...,/’9) (0, 0, 0, 0, 0, 0, 0, 1, 0),
(Cl,... c9)--(0, 0, 0, 0, 0,-1,-1,-1, 1).

Note 6e={a,,..., a9}U{fl,’",f3} and ’(={k,,..., k4}.
By direct calculation we obtain

X9
0

0

0

0

0

0

0

1

O!
X9

/0

0

0

a5
0

a8

0

o//
X9

k
0

0

0

0

0

0

0

0

det D=[s]. [(a9-f3)(fif2s-a2)] [ka(k,s+ 1)(aTs-k4s+ aTk3-a6k4)]
where the brackets correspond to the three parts in (4.5), From this expression it
follows by Lemma 4.1 that

O(S)-" S" (a9--f3)" (flf2s- a),
or

tp(s) s" (fifes2- a2),
since (a9-f3) C; note also that (4.7) holds with a 1 and p 1.
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The associated LM-matrix/ of (4.8) is given by

--1 --1

--1

--I

12
13

By choosing, e.g.,

-t

sfl
sf2

-t

--t 3f3

1
1

S= 1 1
1

in (2.3), we obtain the CCF D of (4.10)"

1

-t sfl
sf2 --t

--1

sf

-1

-t

The CCF D has 11 blocks with the following column sets" C1 {xl}, C2 {w2, x, x3},
C3- {w3}, C4- {x4}, C5 {w4}, C6-- {xs, x6}, C7 {Wg}, Ca {ws, w6, xT, Xs}, C9 {wT},
clo {Wl, x}, c, {w}.
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The index sets of (4.13) are given by

1 {2, 6}, 2 {4, 8, 10}

and O,(s) of (4.12) for k 1U2 are as follows"

O(s) (flf2s- a), O-6(s) (a9--f3),

04(s)=k2, Os(s)=(a7s-k4s+a7k3-a6k4), lo(s)=(kls+l)

where note also that det D6 --s" t6.
We now apply the algorithm of 5. Suppose we have found (cf. 20 of [28])

{ W2, W3, W4, W5, WT, W9}, J {x2, x3, x4, x6, x7,

and a matching

M= {aT,f,f2,f3, k:z, k3}.

Then we have the matrix P of (5.5) as follows"

W1 W6 W8 X2 X3 X4 X6 X7

x 1

x5 1 -1 -1

x9

w2 1

P=w3
w4

w5 -1 1 1

W7

w9\
and the auxiliary network N as depicted in Fig. 6.1; we write xr qr(x), x qo(x),
etc. In Fig. 6.1, the five subsets in (5.2) can be identified as follows: an arc belongs to

B. if it is of the form (wr, w) or (xr, x); to B* if (w, wr) or (x, xf); to Ar if
(w.r,, x[); to A if (x[, wr); and to Ao otherwise. The associated length /(a) of (5.9)
is as follows: /(a) 1 if

a e {(xg, x), (x70, x[), (xa0, x), (x90, x), (w[, x), (w[, x[), (w, x/)};

"(a) =-1 if

a {(w8o, w), (x, w), (x3T, W3T), (X6T, W9T)};
and (a) 0 otherwise.

The blocks in the CCF are determined from the strong components of N. In
particular, the strong component (z consisting of {wf, w, wr3, xf, xf, x3} and 6 of
{wf, xr, x, xr, x6} correspond to the diagonal blocks of {2, 6} t. These two strong
components are extracted in Fig. 6.2, where the length /(a) is attached in parentheses
to each arc a.

Theorem 5.1 reveals that ( brings about nonzero fixed modes since it contains
a directed cycle of nonzero length. On the other hand G6, having no directed cycle
of nonzero length, introduces no nonzero fixed modes; G6 admits a potential function
r" 7r(x6r) 1, (w9r) 7r(x/)= 7r(x5) 7r(x6)=0. We also see by Theorem 4.2(1)
that A =0 is a fixed mode since D(0) is singular; furthermore, by Theorem 4.2(2),
)t =0 is simple (i.e., with multiplicity one).
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9

FIG. 6.1. Auxiliary network 1.

Example 6.2. Consider a scalar system in the state-space form (1.1) with A (0),
B =(b), C =(c), and K =(0). Obviously, this system has a simple fixed mode at A =0,
and no nonzero fixed modes. This fact is also revealed by Theorem 4.2(2) and (3). In
particular, we see that A =0 is a fixed mode since (C1) fails to hold, and that no
nonzero fixed modes exist since (C2) (or equivalently (C3) in Theorem 5.1) holds true.
In contrast, neither of the two conditions in Theorem 4 of Pichai, Sezer, and iljak
[33] is satisfied. This shows that the conditions in [33] do not separate the existence
of zero and nonzero fixed modes.

Example 6.3. Consider a decentralized system with three local stations described
in the state space form (1.1) with

0 a 0 0 0 0

0 0 0 0 0 0
a2 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

o o o
bl 0 0

0 0 0

0 b 0

0 0 0

0 0 b3
and C 16, where al, a2, b, b2, b are independent transcendentals; the feedback
structure is specified by

o o o :tK 0 0 k k4 0

0 0 0 0 ks k6
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(-I)

(0)

T
x2

Tx3
(o)

T
w2

(o)
(o)

(-I)
T

w3
(a)

Tx 5 (o)

(o)

(I)

T
w9 (-I)

Tx6

(1)
(o)

(b)

FIG. 6.2. Strong components of ,. (a) Strong component 2. (b) Strong component 6.

(See Example 4 of Reinschke [33] and the references cited therein.)
The matrix QD in (4.1) is given by

QA SI6
Q,- o

16

where

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 t
0 0 0

0 0 0

1 0 1
0 0 0

1 0 1
0 0 0

and satisfies (A2) with

(rl,"’, r15)= (1, 1, 1, 2, 1, 2; 0, 0, 0; 0, 0, 0, 1, 0, 1),

(cl, , c5)= (0, 0, 0, 1, 0, 1; 0, 0, 0; 0, 0, 0, 1, 0, 1
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Theorem 4.2 (as well as Theorem 5.1) reveals the fact that this system possesses the
only fixed mode at , 0. The graph-theoretic criterion of Pichai, Sezer, and iljak
[33] cannot detect this kind of fixed mode since 0 would no longer be a fixed mode
if the four unities in QA were replaced with independent variables.

7. Conclusion. The CCF of the matrix D of (3.2) provides a uniquely defined
hierarchical decomposition of the set of variables (x, y, u), where it is remembered that
those variables correspond to the columns of the matrix D. The decomposition thus
obtained is a generalization of the decomposition of the whole system into strongly
connected subsystems that has played fundamental roles in various situations and is
used, in particular, by Corfmat and Morse [8] in connection with the problem of pole
assignment. In fact, when the system is in the usual state-space form (i.e., F I, G =/,
H I in (3.2)) and all the nonzero entries of A, B, C, and K are regarded as independent
parameters (i.e., (A-- O, QB O, Qc O, and Q: O in (3.4)), the decomposition
of (x, y, u) by means of the CCF agrees with the decomposition with respect to strong
connectedness.

The hierarchical decomposition of (x, y, u) induced by the CCF of D reveals
which part of x depends on which part of the feedback loops. In particular, elimination
of the feedback loops represented by those elements of Y{" not contained in the diagonal
blocks Dk in (4.10) never gives rise to fixed modes.

It is left for future investigation to clarify the practical significance of the decompo-
sition by the CCF in relation to the pole assignment by dynamic compensation.

Acknowledgments. The author thanks Professor S. Shin of the University of
Tsukuba for discussion. The comments of the anonymous referees were also helpful
in revision.
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A REMARK ON SIMULATED ANNEALING OF DIFFUSION PROCESSES*

G. ROYER?

Abstract. It is proved that simulated annealing for Kolmogorov processes takes place, as expected, for
a cooling schedule corresponding to a fundamental constant of Wentzell and Freidlin.

Key words, diffusion, simulated annealing, large deviations
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1. Statement of the result. In their recent works Chiang, Hwang, and Sheu have
proved convergence in law for diffusion processes Zt on Ea ruled by

(1) dZt-- e(t) dWt-VU(Zt) dt,

(2) e(t)
log (t)

(say for > 2)

toward a precise distribution supported by the set where the function U attains its
global minimum. They get this result for c > A, A being a fundamental nonnegative
constant defined below, and conjectured that the condition c > A is sufficient. In this
note we prove this conjecture. Our method is just a patchwork combining estimates
by Chiang, Hwang, and Sheu and by Gidas, Davies, and Simon.

We make the following assumptions"

(3a) U is a C2 function such that U()=c, [v g[()=c, and IVUI2-AU is
bounded from below.

(3b) The set of stationary points of U has a finite number of connected components.

Let us describe how A appears. When e > 0 is fixed, the Kolmogorov process X7 ruled
by

(4) dX; e dWt V U(X;) dt

admit

(5) /z Z exp (-2Ue2)
as invariant and reversible probability measure (the normalization constant Z is finite
from hypothesis (3a)). SO we may view its transition semigroup P7 as a semigroup
of autoadjoint contractions in L2(/x). The corresponding infinitesimal generator is
characterized by its action on test functions with compact support q

2

L (q) :-- Aq V U. 7o,

and the hypotheses on U ensures that its spectrum is discrete [7, Vol. IV, p. 120]. Let
A (e) be the first positive eigenvalue of L and A limo e2 log (A (e)).

Under the preceding hypothesis, Hwang and Sheu have established in [6], by
e2 log (A e ))" they provedpurely probabilistic methods, the existence of A lim_o

that A-> 0 and also give a formula for A. These results have their prototype in the
book by Freidlin and Wentzell [3, p. 208].

Received by the editors May 11, 1988" accepted for publication (in revised form) January 29, 1989.
? Dpartement de Math6matiques et d’Informatique, Universit d’Orl6ans, BP 6759, 45067 Orleans

Cedex 2, France.
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Now we can state our slight improvement of the result of Chiang, Hwang, and
Sheu. Let I1" be the total variation of a measure and let Pz,x be the law of a process
satisfying 1 ), (2).

THEOREM 1.1. Ifc> A, for any x, then ]]Pz,x-/-t(t]] converges to zero when t-oo.
We note that in most cases it is easy to prove the convergence of when e -* 0.

2. Proof. Let us sketch the strategy that we will follow. For annealing processes
with finite or compact state space and discrete time, the annealing speed rate c (for a
kind of convergence such as those in the preceding theorem) is directly linked with
large deviations results for eigenvalues (see [4], [8]). On the other hand, the behavior
of U at infinity is, to some extent, irrelevant for the calculus of A as well as c. In
particular, in [1, p. 748], Theorem 1.1 is reduced to the "supernormal case," i.e., the
case where U(x) Ix]4 for Ix] greater than some fixed R0 and (accessory) inf (U) 0.
Fortunately, in this case some hypercontractive estimates of Nelson are available,
under a suitable control when e varies. We will therefore restrict ourselves to the
supernormal case in the sequel. To begin, we adapt a lemma of Gidas [4] to a
hypercontractive situation; we denote by Y, a nonhomogenous Markov chain with
arbitrary state space E and transition kernel N, from n to n+ 1 (i.e., E(f(Y,+I)[ Y,)=
(N,f)(Y,)).

LEMMA 2.1. Let (Y,, N,) defined for n >-_ no, obey the following hypotheses:
(1) N, admit reversible probabilities r, and these r, are mutually absolutely

continuous.

(2) For some constant K,, for all measurable functions f on E,

Nf 4(,,

(3) Let 1- r. =sup {llNfll2/llfll=; f La(r.) and jfdTr. =0}; then

eo r +.
(4) ere exist constants % < 1 and functions . such that

(a) +-1NY+.+, as an inequality between measures,
(b) %/r oO,

(5) Y. admit a density g. with respect to ., and g is square-integrable.
en PY. . converges to zero.

Proo Suppose that g. L2(.); then N.g, is defined in L2() and from the
reversibility of ., we easily get

(6)

Moreover, as %<1, r._-<((l+q.)/(1-%))r.+l. Let us denote in what follows by
[[" lip the norm in LP(r.). We have

<- (1 %)-1111 + . I111 N.g. II] (1 %)-IK2.II 1 + q. Ilallg. < .
Let y. = (1-g.): dw. =-1+g dw.; from (6) we get

y.+l= f
(N(1 -g,))2 d + % g+ d+l + ,(N,g)2 d

(1- r.)ay. + 3/.(1 + y.+l) + + y.)
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and finally

(7) Yn+l <- a,y, + b,,

where

a,(1-y,)=(1-r,)2+K2,[[o,[12, and

Hypothesis (3) yields I],,oa, =0 and b,/(1-a,)O, and from (7) we easily
deduce Yn 0 and a foiori the lemma.

To use this lemma, we will consider a process obtained by replacing in (1) the
function e (t) by a stepwise function that is constant on each interval of some sequence
[t,, t,+[ and that takes there the value e(n) e(t,) (sometimes denoted also e, below).
It happens that the simple choice t, n leads to processes that diverge too much from

n--1Z,; instead we use t, k= k-, where 0 < a < 1. Later the exponent a will be chosen
small enough. We have

(8) e2 (1-a)c log (n).

Precisely, we define inductively a process Y,, as follows, for n no less than an no to
be fixed later; for Y,+I we take the value at a certain time ’, of the Kolmogorov
process X7") with initial value Y, (and naturally we impose that the Wiener process
of (4) be independent of the Yk, k <= n). The value of ’, is chosen to easily compare
Z,,. to Y,: as in [1], by the time change /3(n, t) determined by

"" eZ(u)/e2(n) du t,

any annealing process (1) is transformed after t, into Zo,.t) owning the same martingale
e,) So to compare the transition from Z, to Zcomponent (in law) e(n)W as Xt

to the transition from Y, to Y,+I weset/3(n, ’,)= t,+ i.e. -, =’"+’ log(t,)/log(u) du"
it is easily seen that -,---n -. Now, we study why Lemma 2.1 applies to our Y,.

pe,) Using P7Hypothesis (1) is satisfied with r, =/e, given by (5) and N, ,..
2exp (tL), we see that r, 1 -exp (--, exp ((-A + p(n))/e,)), where lim p(n) 0; thus,

-l+(1-a)(1-A/c)(9)
and condition (3) reduces to c > A.

Explicit constants for hypercontractivity are established in [2]. We now deduce
K, from this article; let q be the groundstate of the SchrSdinger operator -A + V in
LZ(dx) that is unitarily equivalent to -_L =-2e-2L =-A+ 2e-2V U. V. We know (see
[2] that q is the density of and that V e-4lV UI- e-AU.

LEMMA 2.2. For some constant ko.and small enough positive e and 6, in the operator
sense -2 log (q)-<_ 6(-A+ V)+ koe-Z+(e2/46).

Proof We have -21og(d/)=2ue-Z+log(Z); as e21og(Z)0 when e0
(recall that inf (U)= 0), the corresponding term can be absorbed by ke -2.
(10) 2 U 6( e-zlv UI2 A U) -k- kl + e4/462.
For Ixl--> Ro, we have

U(x)=lxl4, VU(x)=4xlx[2, AU(x)=aZlxl2,
and for small 6 we may use 2U(x)+GAU(x)<--41x[4.

If Ixl_-->sup (Ro, e(46)-’/2), 41xl4<-Ge-lVUl(x) and (10)is valid.
If Ro<-Ix[<=e(46)-/, 4[x[4<-_e4/462 and (10)is also verified.
Finally, we can choose k large enough to majorize 2U-AU for Ixl smaller

than Ro.
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Lemma 2.2 provides us with the necessary estimate to apply Theorem 4.2 via
Theorems 4.6 and 5.1 of [2]. We get that if

(11) t= dp 6 log (2),

then

(12) e-’rf 114 =< e

with

24 b d log (3) + koe_2 +
3---5.(13) M= 2bp-2dp= and b=a-

4 4

This last formula corresponds to (5.2) in [2], where the constant c can be taken to be
zero, because -_L is positive in L2(). (A is a constant depending only on the
dimension d.) To get a hypercontractive estimate for N., we must use (12) for r.e/2,
so we choose 6 ’.e]/2 log (2), so (12), (13) gives a constant K. such that

(14) log (K.)-- k log (n)n2’ with k (1 c)
log2 (2)
2

To verify hypothesis (4), we recall the formula

0
(5) 0- ,(x)= -( U(x)- u),,(x)

for the density of probability urn(x) Z exp (-flU(x)), where / is the mean of U
with respect to ,, and/3 is a positive number (identified with 2e -2 below). We denote
by H. the compact set { U _-< n3}. As /. vanishes when/3 goes to infinity, using (15)
we see that, when restricted to the exterior of H., 7rn+l is smaller than 7r, for n large;
so (4)(a) holds on H =a_ H. if we let q. be the restriction of the density ’rrn/
to H,; then elementary Laplace theory yields log I]. ll2<,,)----((1-,)/c) log (n)n3.
This estimate, joined to (9) and (14) gives (4)(c). Let us study (4)(a) on H.; let x
belong to H. and/3. 2e2; from (15) we get, if n is large enough to ensure Ot n3’
for any/3 =>/3."

%+,(x)- ut3,, (x)[-<_ n3 (/3.+1-/3.) sup {u(x);/3. </3 </3.+1}.

On the other hand, for any x and /3.=</3_-</3.+1 ,t(x)/%(x)<=exp((.+l-
.)n3")/%,(H.); since .+l-..-2(1-a)/cn this last quantity con;eerges to one if
a <3. We select such an a and we see that (4)(a) holds with 3’. n3(fl.+l-/3.) And
the hypothesis (4)(b) is verified if we choose a small a, due to the estimate (9).

Finally, no will be chosen according to all the conditions "n large enough" that
appear above and in the sequel. For Y.o we take any variable whose law is the normalized
restriction of the law of Z(t.o) to a ball; all hypothesis of Lemma 2.1 are fulfilled and
therefore ]lPv,,-r.]] converges to zero. To prove the theorem, we must estimate
,a,,- IIPz(,,,)- P,v,, II. To begin with, e > 0 being given,we may realize A. =< e when we
build Y.o. For a given n, let us consider a process Z,, => t., with the same equation
as Zt but the same law at time t. as Y.. Clearly the law at time t.+l of and Z will
differ of a quantity less than A.; thus

(16) A.+I--< A. + d.+l where
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To bound dn+l, we must compare at time ’n two processes with the same initial law
Py,," X7) that obey (4), and , := t,, ,); the time change/3 has been defined so that

(17) d, e(n) dlYC,-V U(L)e2(n)e-2((n, t)) at.

Let us first study how the law of X, concentrates. From the proof of Lemma 2.1, we
know that the density g, has a norm bounded in L by a constant a" so we have
P( Y K) a((Kp)) 1/2 for any compact K, { U p}, and the last quantity is for
c’> c(1-a)- and n large majorized by n-2p/c’; as the exponent 1 +(a/2) reappears
below we call it s and we fix p so that

(18) P(Y,K)n-.
Let T be the exit time of the open’ball B centered at zero. For a Kolmogorov process
with parameter e(n), starting from a point x 6 Kp, we have for r suitably chosen and
n large

(19) P(n)(Trl)n-s for xGKp

it suffices to apply a result of Freidlin and Wentzell [3, p. 105], since the action

S=inf I(s)+Vg((s))l ds

,(0)g, s[0, 31(s)lr

can be made as large as we want (it is no less than inf,,,{2(U(y)-U(x))}).
Let X be the indicator function of the event {]X < r for 0s r,}, (X") is

shortened to X), and let be the analogous function relative to Z. We have the
Girsanov formula

(20) E($f(Z,,)-xf(X,,)) E((- )xf(X,,)).
Because X is present, we can modify U into U outside B to get a function with
gradient bounded by M, and use as the martingale =exp (A-B/2) with

A e-(n)V (X)q(u) dW, B e-(n)lV l(X)q(u)

q(u) e(n)e-(((n, u)))- 1 (log ((n, u))/log (t))- 1.

By a martingale argument we get (see [1] for details) (I-ll)N/((-I))
Ilexp (B)- ll and we have

cllBIl  log (n) q(u) du (taking (n, u)= as variable)

M (log ()--log (t))/log () d

M(n+ ln)3/3t log (t) M(1 -)n--/3 log (n)

(21) E(lcp-ll)-<n for large n.

Now we apply (20), when f-- 1, to the process conditioned to start at x Kp; due
to estimate (19) we have E(X)>= 1-n and thus E(2) -> 1-2n-S; and (20), (21) give
IIP=,,,).- Px,,,,.II <- 4n -. Actually, since the starting distribution verifies only (18) we

SO
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have dn < 6n -, and (16) gives An < e +n 6k_S Also if no is suitably chosen, An < 2e
for n->_ no; this proves the theorem since e is arbitrary (we have only proved the
convergence of the subsequence tn, but a last step from tn to t, [tn, tn+l[ can be
treated similarly).

Acknowledgment. I thank the referee for his effective help in rectifying the first
version of this article.

REFERENCES

1] T. S. CHIANG, C. R. HWANG, AND S. J. SHEU, Diffusion for global optimization in ", SIAM J. Control
Optim., 25 (1987), pp. 737-753..

[2] E. B. DAVIES AND B. SIMON, UItracontractivity and the heat kernelfor Schr6dinger operators, J. Funct.
Anal., 59 (1984), pp. 335-395.

[3] M. i. FREIDLIN AND A. D. WENTZELL, Random Perturbations ofDynamical Systems, Springer-Verlag,
Berlin, New York, 1984.

[4] B. GIDAS, Global minimization via the Langevin equation, in Proc. 24th IEEE Conference on Decision
and Control.

[5] C. R. HWANG AND S. J. SHEU, Large time behaviors ofperturbed diffusion Markov processes, preprint.
[6], The asymptotic behavior of the second eigenvalue ofperturbed Fokker-Planck operators, preprint.
[7] M. REED AND B. SIMON, Methods ofModern Mathematical Physics, Academic Press, New York, 1978.
[8] R. HOLLEY AND D. STROOCK, in Conference at "Colloque P. Levy," June 1987.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 27, No. 6, pp. 1409-1439, November 1989

1989 Society for Industrial and Applied Mathematics
011

ERGODIC THEOREMS FOR DISCRETE TIME STOCHASTIC SYSTEMS
USING A STOCHASTIC LYAPUNOV FUNCTION*

SEAN P. MEYN’

Abstract. Sufficient conditions are established under which the law of large numbers and related ergodic
theorems hold for nonlinear stochastic systems operating under feedback. It is shown that these conditions
hold whenever a moment condition is satisfied; this may be interpreted as a generalizaton of the martingale
property.

If, in addition, a stochastic controllability condition holds, then it is shown that the underlying
distributions governing the system converge to an invariant probability at a geometric rate.

The key assumption used is that a Markov chain with stationary transition probabilities exists that
serves as a state process for the closed loop system.

Key words, nonlinear systems, stochastic systems, Lyapunov functions, Markov chains
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1. Introduction. In this paper we study the asymptotic behavior of discrete time
nonlinear stochastic systems under feedback. Our principal assumption is that a Markov
chain with stationary transition probabilities exists that may serve as a state process
for the closed loop system.

In a large number of applications evolves on a subset X c Rn, and is generated
by a nonlinear difference equation

(1) (I)k+l F(dPk, Wk+l) kZ+
where the disturbance w is an independent and indentically distributed (i.i.d.) process
on R P. Under the appropriate smoothness conditions on the function F and the
distribution of w, it has been shown in Meyn and Caines (1988) that the asymptotic
behavior of is determined by invariant probabilities on X whenever a crude stability
condition is satisfied, and the weak stochastic controllability condition holds. In this
case there exist probabilities {Trx, ,’xX} such that for every initial condition
o=xX,

(2) N-,lim
1k’ f=lf(bk) fdx a.s. [Px],

(3) lim
1

rq-,- E Ex g dPk . g drx
k--1

for a large class of functions f and g on X. When (1) is viewed as a deterministic
input/output (i.o.) system with input w and output tb, weak stochastic controllability
is equivalent to the forward accessibility criterion used in nonlinear system theory (see
Jakubczyk and Sontag (1988)).

It is worth noting that the left-hand side of (2) will be in general a random variable,
and hence "x is a random probability (i.e., a countably additive function from (X)
to LI(xz/, (xZ+), Px) with the properties {A}->0 almost surely (a.s.) [P] for
A (X), and {X}- 1 a.s. [P]). With one or two exceptions (that will be brought
to the attention of the reader where they occur), in the present paper only ordinary
(deterministic) probabilities will be considered.

* Received by the editors June 13, 1988; accepted for publication (in revised form) January 30, 1989.
t This work was conducted at the Department of Systems Engineering, the Australian National Univer-

sity. Present address, University of Illinois, Coordinated Science Laboratory, 1101 W. Springfield Avenue,
Urbana, Illinois 61801.
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In the continuous time case, is typically a diffusion process and the theory of
stochastic Lyapunov functions has been a successful tool for assessing its stability
properties (see Kushner (1967), Kushner (1972), and Has’minski[ (1980)). The idea
is that if a positive function V:X- R+ exists such that V(k) is a super martingale
and hence decreases in an average sense, then under general conditions will converge
to a level set of the function V with probability one.

It is reasonable to expect that stochastic Lyapunov functions should be a useful
tool in the discrete time case as well, and this is indeed the case (see, for example,
Kushner (1967), Solo (1978), and Goodwin, Ramadge, and Caines (1981)). However
when is weakly stochastically controllable, the existence of a stochastic Lyapunov
function is all but ruled out. In many cases (for example, when V is a quadratic) the
level sets of V are sets of Lebesgue measure zero, yet weak stochastic controllability
implies that the set of limit points of the sequence

(4) {k: k6 7/+}

has nonempty interior with probability one for all initial conditions. In fact, for almost
every sample path, the set of limit points of (4) is equal to the support of the probability
-k,, that always has nonempty interior under the weak stochastic controllability
hypothesis.

In this paper we examine an alternative stochastic Lyapunov function that is
perfectly compatible with weak stochastic controllability, and that always exists for
stable, linear systems even when conventional stochastic Lyapunov functions do not
exist. If is weakly stochastically controllable, then the existence of this Lyapunov
function may be used to prove that (3) holds at an exponential rate for a large class
of functions g, and will allow us to establish generalizations of (2) and (3) even when
the weak stochastic controllability condition is not satisfied.

The existence of the limit (2) for general functions on X is closely connected to
a condition called Harris recurrence (see 2). The following result is taken from Meyn
and Caines (1988) (for the "if" part) and Athreya and Ney (1980) (for the. converse)
and is valid for general Markov chains on a general state space.

PROPOSITION 1.1. The Markov chain is positive Harris recurrent if and only if a
unique invariant probability r exists, and (2) holds with "Frx r for every positive Borel
function f:X R+ and every initial condition x X.

Hence if is not positive Harris recurrent then there will exist functions on X
for which (2) fails to hold, and it is natural to search for a restricted class of functions
for which the law of large numbers does hold.

Take, for example, a Markov chain defined by the linear model

(5) (I)k+l Ak q- BWk+I
where A and B are, respectively, n x n and n x p matrices, w {Wk:k_--> 1} is an i.i.d.
Gaussian stochastic process on P with wg---N(0, I) for all k, and the deterministic
initial condition on is given.

Suppose that the eigenvalues of A fall strictly within the unit disk in C. In this
case a unique invariant probability r exists that is supported on the controllability
subspace L c n. Hence if the pair (A, B) is not controllable, then r is supported on
a subspace of Rn whose dimension is strictly less than n. In the case where the matrix
A is full rank and the initial condition lies in the complement of the set L, the process

will approach the set L at a geometric rate, but never reach it. From these observations
it is obvious that the law of large numbers cannot hold for general measurable functions
on Rn when the initial condition lies outside of the set L. Take, for example, f= l t,
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the indicator function of L. In this case the average on the left side of the equality in
(2) is equal to zero for each N 7//, and the right-hand side of this equality is equal
to one. However it may be verified that (2) will hold for continuous functions (whenever
the right-hand side is meaningful) regardless of the controllability of (A, B).

In the theory of recurrent Markov chains, the set L would be regarded simply
as a set of measure zero on which the process is transient. In cases where does
not satisfy a recurrence condition, some other assumption must be used to connect
points in the state space together, and in. this paper we accomplish this by supposing
that evolves on a metric space and that the Feller property holds. When a certain
Lyapunov function exists, a complete generalization of the linear example will be
established.

2. Preliminaries. Let X be a locally compact separable metric space. We let C
denote the set of bounded and continuous functions f:X-E, and the set of
probabilities on (X), the Borel field on X. A sequence {/Xk k Z/} c ofprobabilities
converges weakly to/zoo J// if

(6) k-oolimffd--ffd’
weakly

for all f C, and this will be denoted /-/k /zoo as k- o. It is well known (see
Billingsley (1968)) that is a metrizable topological space and that a subset 4 c

is precompact if and only if it is tight, i.e., for all e > 0 there exists a compact set
K c X such that

{K}_>- 1- e, /.ted.
A function V:X-* [+ is called a moment if there exists a sequence of compact sets
K, ’ X such that

lim inf V(x) oo
n-oo K

where we adopt the convention that the infimum of a function over the empty set is
infinity. It is easily verified that 4 c is tight if and only if a moment V exists such
that

sup[ Vd<.
d

In Theorem 6.6 of Parthasarathy (1967) it is shown that there exists a sequence
of uniformly continuous functions {g. n Z+} C with the property that

weakly f f(7) k VnZ+, lim gdk= gd.
k

We let P denote a Feller Markov transition function on (X, N(X)). That is, for
all x X, A N (X), and f C,

P(x,. is a probability on N(X),

P(., A) is N(X)-measurable,

f(y)P(., dy) is continuous.

The k-fold iterates of P are defined inductively by pl& p, and

pk+I(x, A) f P(x, dy)pk(y, A),
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and forf C and/x we use the standard notation

pkf(. a__ f pk(., dy)f(y), ixpk(. a__ I I(dx)pk(x" )"

The majority of results in the theory of Markov chains on general state spaces,
as well as the results to be presented here, require the following hypothesis (see, for
example, Orey (1971) and Nummelin (1984)). We say is irreducible if the following
condition is satisfied The event { enters A} A Liook=0 {k A}, and the event {
A i.o.}--a (’1=o U--N {Ok A}.

Irreducibility Hypothesis. There exists a set A (X), an integer no, a number
ho> 0, and a probability q, such that

(i) Px{ enters A} > 0 for all x X;
(ii)

__
1P,,{dPkE}>-hop{E} for all xA, and E (X).

is called Harris recurrent if the following condition from Athreya and Ney
(1980) is satisfied.

Recurrence Hypothesis. # satisfies the irreducibility hypothesis, and for every x X,

Px{ enters A} 1.

A subset B c X is called absorbing if P(x, B) 1 for every x B. If B is absorbing,
then the Markov chain may be restricted to the set B, and B is called a Harris set
if the restricted process is Harris recurrent.

When is irreducible, the set A used in the irreducibility hypothesis will be called
petite. It may be verified that if is Harris recurrent and the set A is petite, then it
satisfies the smallness condition introduced in Nummelin and Tuominen (1982).

Many of the important limit theorems for Markov chains require the existence of
an invariant measure. That is, a g-finite measure r on (X) with the property

r{A} I 7r(dx)P(x, A) for all A (X).

It is shown in Nummelin (1984), and Orey (1971) that if the recurrence hypothesis
holds, then an essentially unique invariant measure 7r exists. If the invariant measure
is finite, then it may be normalized to a probability measure and in this case is
called positive Harris recurrent.

If is irreducible, then there exists an integer rn ’/ called the period of, and
a collection of sets {El,’’ ", E,,} with the property that

PIE,+=I, and P"I,=IE,
for each 1 =< =< m. If is Harris recurrent with invariant measure r, then 0r{(U E)} 0.

The following proposition shows that if is positive Harris recurrent and aperiodic
(m 1), then its underlying distributions converge to the invariant probability for all
initial conditions. If in addition, the distribution of the hitting time ’A -a-
rain {k >- 1" Ok A} to a petite set A possesses geometrically decaying tails, uniformly
for initial conditions lying in A, then the underlying distributions of converge to 7r

at a geometric rate.
Define the total variation norm Jlt- JJ for , t by

where the supremum is taken over all Borel functions f" X- [-1, 1].
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PROPOSITION 2.1. Suppose that is positive Harris recurrent and aperiodic with
invariant probability r. Then,

(i) For each initial condition distribution At

lim Atpk "It 0.
k-oo

(ii) If in addition the set A (X) defined in the recurrence hypothesis satisfies
(8) sup Ex[ra] <

xA

for some r> 1, then there exists p < 1, and an extended real-valued function M
LI(X, (X), r) such that for each x X,

IIxP 11 P(x, )- ,(" )11- M(x)P k, k 7/+.

(iii) Ifthe conditions of (ii) hold, and an initial condition distribution t.to satisfies
E,o[r’a] < oe,

then there exists p < 1 and M < oo such that

AtoPk r <-- Mp k, k Z+.
(iv) Suppose that the conditions of (iii) hold, andf:X-)R satisfies

sup E.o[lf()l+]
keT/+

for some 8 > O. Then there exists p < 1 and M < oo such that

Et,o[f(k)] f fdr <-_ Mp k, k 7+.

For a proof of Proposition 2.1(i) see Nummelin (1984). Results (ii) and (iii) may
be found in Nummelin and Tuominen (1982) and result (iv) follows from (iii) and
HSlder’s inequality.

An aperiodic positive Harris recurrent Markov chain is sometimes called ergodic.
If for all x X there exists p(x) < 1 and M(x) < oo such that

P*(x, )- (" )11 <-- Mp k, k 7/+,

then will be called geometrically ergodic. This is weaker then the notion of geometric
ergodicity introduced in Tweedie (1983), and stronger than that of Nummelin (1984).
In 3 we present sufficient conditions for geometric ergodicity using a stochastic
Lyapunov function.

The following stability conditions will be shown to be closely connected to Harris
(respectively, positive Harris) recurrence:

(S1) For each initial condition x X and each e > 0, there exists a compact subset
K X such that

Px{t e K i.o.} lim Px {b e K _--- 1 e.

($2) For each initial condition x e X and each e > 0 there exists a compact subset
K c X such that

lim inf Px{ k e K} >-_ 1 e.
k-eo

It may be shown that if a moment V exists such that

lira inf V(qk) < oo a.s. Px
k-oo
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for each x X then condition ($1) holds, and if

lim sup Ex[ V(k)] <
koo

for each x X then condition ($2) is satisfied.
It is evident that condition ($2) implies condition ($1). In Rosenblatt (1971) a

strengthening of condition (S1) is used to establish the existence of a o--finite invariant
measure for Feller Markov chains. Condition ($2) is called boundedness in probability
in Meyn and Caines (1988), and is simply the tightness hypothesis of Billingsley (1968).
In Bene (1968) a similar condition (among other assumptions) is used to establish
the existence of an invariant probability for a continuous time Feller Markov process,
and under the assumptions already made on , condition ($2) implies the existence
of an invariant probability (see 15oguel (1969)).

The following is a simple result, but it appears to be new.
PROPOSITION 2.2. Suppose that satisfies the irreducibility condition with an open

petite set A. Then is Harris recurrent if and only if condition ($1) is satisfied, and
is positive Harris recurrent if and only if condition ($2) holds.

Similar results may be found in Tuominen and Tweedie (1979). See, in particular,
Proposition 3.5 or Theorem 7.1 of that paper. Theorem 7.1 gives sufficient conditions
for a generalization of Harris and positive Harris recurrence. In this result it is assumed
that the state space is compact, which is much stronger than condition ($2). On the
other hand, the conditions that is Feller and an open petite set exist are stronger
than the remaining hypotheses of Theorem 7.1(i) and (ii).

The proof of Proposition 2.2 will be given below. It would be very useful if
Proposition 2.2 held without the assumption that the set A is open. However, this is
not the case as can be seen from the following simple example. Let X , and consider
the Markov transition function P defined by P(0, {0})= 1, and

P(x, {1/2x}) 2 -Ixl for x,
P(x, {0}) 1 -2-Ixl x 0

The corresponding Markov chain has the Feller property, satisfies condition
($2), and satisfies the irreducibility condition with A {0} and q 6o. However, is
not Harris recurrent since for any x e X, x 0,

Px{k 0 for all k} 2-1x12-1x/212-Ix/41.

2-21xl > O.

Let A X x (X) -+ [0, denote the function

(9) A(x, A) Px{ enters A} Px {k A}
=0

The following result is taken from Orey (1971) and Lemma 4.1 of Cogburn (1975).
LEMMA 2.1. Let be a Feller Markov chain on X, and B N(X).
(i) For each x X, limk_ A(k, B) 1{, i.o.) a.s. [Px].
(ii) If B is open then for each k 7/+ the functions

A(.,B) and pk(., B)
are lower semicontinuous.

One important consequence of Lemma 2.1(i) is that if the recurrence hypothesis
holds, then Px{6 B i.o.} for every set B (X) of positive q>measure, and every
initial condition xX. This is called q-recurrence in Orey (1971) and is, in fact, the
usual definition of Harris recurrence (see Nummelin (1984) for further details).
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LEMMA 2.2. Suppose that the irreducibility hypothesis is satisfied with an open petite
set A. Then we have the following:

(i) IfK (X) has positive -measure, then

A(x,K)>0 forallxX.
(ii) IfK is compact, then there exists To 7/+ such that for all x K,

TO 1 2T
2 pk(x,A) >-- and E Pg(x,’)-->P{’}
k:l 0 k=l To

Lemma 2.2 shows that when an open petite set exists, all compact sets of positive
q-measure are also petite. Conversely, in the common case where P:Co- Co, where
Co C denotes the set of continuous functions on X that vanish at infinity, it may be
shown that every petite set is precompact.

Proof of Lemma 2.2. Result (i) follows immediately from the irreducibility
hypothesis.

By Lemma 2.1 and the irreducibility hypothesis, the sets

form an open cover of K, and by compactness there exists To+ such that
ro pk (X, A) > 1/To for all x K. This establishes the first inequality in (ii)

The second inequality follows from the first by integrating over the set A and
using the irreducibility hypothesis. Assume that To is so large that

ro
E P(Y,’) aol,A6(’), yeX.
j=l

Then for every B (X) and x K,

P(x, B)> P= P (x,
i=

To

=kTo/P{B}.
ProofofProposition 2.2. If is Harris recurrent, then for all compact sets K that

have positive C-measure

Px{e K i.o.}
for all x X. This follows from the remark below Lemma 2.1. Hence Harris recurrence
implies condition (S 1).

If is positive Harris recurrent, then for each initial condition x X the invariant
probability may be decomposed

1
2= Pk

k=l
where A +, {: 1 N k N A } are probabilities on N(X), and for every set B N(X),

lim P{k,+ e B} {B}.
k

It follows that for all compact sets K,
lim inf P,{k K} >= min v’{K}
k- IiA

and this shows that positive Harris recurrence implies ($2).
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We now show that (S 1) implies Harris recurrence under the conditions of Proposi-
tion 2.2. Let x e X, e > 0, and choose a compact set K c X such that

(10) P,{eK i.o.)_>- 1 e.

By the irreducibility condition A(x, A)> 0 for all x e X, and by lower semicontinuity,
the sets

(78 A {x e X: A(x, A) > 8}

form an open cover of K. By compactness there exists 8 > 0 such that

(11) A(x, A)->_ 8 for all x e K.

From this, Lemma 2.1, and (10) it follows that

Px{lim A(, A) }= P{lim sup A(, A) }

Px{ K i.o.} 1 e.

Since e is arbitrary it follows that

l(.A.o. lim A(, A)= 1 a.s. [P]

and hence is Harris recurrent.
If condition ($2) holds then since this implies condition (S1), is Harris recurrent.

Since an invariant probability exists when ($2) holds it follows that is positive Harris
recurrent.

We now describe how the irreducibility condition may be established using ideas
from nonlinear control theory. For precise definitions and results see 5, and Meyn
and Caines (1988).

For a Markov chain of the form (1), suppose that X is a smooth n-dimensional
manifold, and that the disturbance process w evolves on an open set ffw C NP. We call
a point y eX attainable from x eX if for some T e T/+, and some sequence,

r=Y wheno =xand(wl,...,wr)=(wl*,...,w*r).

If for each x e X, the set of all attainable points from x has nonempty interior, then
is called forward accessible (see Jakubczyk and Sontag (1990)).
Suppose that the function F:XxNP-X defined in (1) is C, and that the

distribution of the disturbance process w possesses a lower semicontinuous density Pw
with ffw {x eNP:pw(X)> 0}. Under these conditions, the Markov chain is called
weakly stochastically controllable if it is forward accessible.

It is shown in Meyn and Caines (1988) that if is weakly stochastically control-
lable, for every x e X there exists an open set A, containing x, and a probability qx
such that condition (ii) of the irreducibility hypothesis holds.

Suppose now that there exists a distinguished point Xoe X such that for every
initial condition x eX and every e>0, there exists T0e;g+ and some sequence
(w*,..., w*)e ffw such that

[r-Xo[<e whenqo=xand(wl,...,wr)=(w*, ...,w-r), T>= To.
In this case @ is called asymptotically controllable to Xo. This is actually much weaker
than the standard definition but is sufficient for our purposes.

If is weakly stochastically controllable and there exists a point Xo e X such that
@ is asymptotically controllable to Xo, then the irreducibility condition is satisfied with
A A and q qxo, and is aperiodic.
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3. Stochastic Lyapunov functions. In this section we show how stochastic Lyapunov
functions may be used to verify the geometric ergodicity conditions of Proposition 2.1,
and to hence establish the exponential asymptotic stability of the flow of distributions
governing the process @.

Let V:X-->R+ be a positive measurable function. The following drift condition
was introduced in Kushner (1967) to compute estimates of the probability that a
Markov chain will leave a compact set before a given finite time (see Theorem 3, p. 86).

For some0<A<l, K>0, andallxX,

(12) PV (x) <= A V(x) + K.

In terms of the stochastic process th:s condition may be expressed as

E[ V(k/l) k] <= A V(k) / K

where k is the sigma algebra generated by past and present values of :
(13) k O’{o, ", k}.

There is a great deal of motivation for introducing this condition. First, it is a
natural generalization of the martingale property: in the degenerate case where A 1
and K 0 (12) becomes

(14) E[V(tk+l)Jk] V(tk).

Hence in this case (V(k), k) is a positive supermartingale, and by the martingale
convergence theorem (see Doob (1953)) for each initial condition xX there exists a
random variable V V(x) such that

lim V(k)= V a.s. [Px],
k->c

and furthermore Ex[ Voo] _<- V(x) < oe.
A positive function V:X- R+ satisfying (14) is called a super harmonic function

in Nummelin (1984) and Revuz (1975), and a stochastic Lyapunov function in the
stochastic systems theory literature.

As mentioned in the Introduction, if a Lyapunov function V satisfying (14) exists
whose level sets have zero Lebesgue measure, then cannot be weakly stochastically
controllable. Furthermore, if the irreducibility condition holds, then (14) implies that
the irreducibility measure (p must be singular with respect to the Lebesgue measure,
and this is ruled out in a large number of examples. On the other hand, (12) is extremely
useful when the irreducibility condition is satisfied.

PROPOSITION 3.1. Suppose that V is a continuous moment satisfying (12), and
is a Feller Markov chain. If the irreducibility hypothesis holds for an open set A c X, and
if is aperiodic, then is geometrically ergodic.

Similar results may be found in Nummelin (1984) and Nummelin and Tuominen
(1982), and the proof will closely follow Theorem 3.1 of that paper. The principal
difference between our result and these lies in our consideration of the topology of
the state space. Our result also differs in the form of the "test function" V.

A connected result may also be found in the dissertation of Chan (1986) for a
Markov chain of the form (1). However, this result relies on an exponential stability
hypothesis on the deterministic dynamical system obtained when the disturbance w is
set equal to zero, and a global Lipschitz condition on the function F.

The original inspiration for such test function methods for establishing positive
recurrence lies in the paper by Foster (1953).
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The hypothesis that V is a continuous moment is not crucial. This property is
assumed because it implies that the set Kt A {x X: V(x)<= t} is compact, and hence
by Lemma 2.2 petite for all sufficiently large. If this property can be established by
some other means for an arbitrary positive measurable function V, then the conclusions
of Proposition 3.1 still hold. In fact, in this case the Feller property is no longer needed.

We have recently discovered that, under the conditions of Proposition 3.1, the
Central Limit Theorem holds for measurable functions whose square is dominated by
V. This result will appear in a sequel to this paper.

The following result exhibits the close relationship between the existence of a
function satisfying (12), and the tail of the distribution of the first entrance time to a
compact set.

LEMMA 3.1. (i) Suppose thit V:X--) + is a positive measurable function satisfying
(12), and let r+ satisfy l>r-l>A. Then for each t>K/(r-l-A), there exists a
constant B > 0 such that for every x X,

Ex[ r’K,] <- B, V(x) + B1.

(ii) Let r >- and A (X). Then with

V(’)lA,(.)E(.)[r*A]
we have

PV<=r-V onA

and hence (12) holds if PV is uniformly bounded on A.
Proof The proof of (ii) follows along the same lines as the proof of Proposition

6.1 of Tweedie (1975).
To prove (i) observe that by (12) we have for every x X,

(15) rPV (x) <- V(x)-((1-Ar)V(x)-rK).

Let U(x)A(1-Ar)V(x)-rK for xX, ea--(1-Ar)t-rK>O, and observe that bythe
conditions of the lemma,

(16) l(,;(x)U(x)>-_ e l(;(x)

Equation (15) implies that for all x e X,

for all x X.

(17) rPlr,,; V(x) <- V(x)- U(x)

where the operator "rPll(’i" is defined for a positive function f: X-+ by

rPlK,;f (x) & r f P(x, dy)f(y).
.IK

Applying this operator to both sides of (17) gives

(rPlu,)2V<= V- U-

<= V- U- erPlu.;l,

and by induction we have for all x e X,

(18) e E (rPlr’;) kl (x)<-V(x)-U(x)
k=l
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The left-hand side of this equation may be transformed as follows:

(rPl)l (x)= 2 rP{’:, >k}
k=l k=l

r P{r,=i}
k=l i=k+l

P{r,=i r
i=2 k=l

1 r
2 P{’, i)r-P{r, > 1)

r-I =e r-1

1 r
< 1})-

r-1 r-1
Px{r, > 1}

1 r
Ex[r’K,]-
r-1 r--1

This together with (18) and the definitions of U and e proves the lemma.
Proof of Proposition 3.1. The existence of a moment satisfying (12) implies that

K
lim sup Ex[ V(Ok)] --<
keo 1 -A

for all initial conditions, and hence also the stability condition ($2). By Proposition
2.2, is positive Harris recurrent.

Since V is a moment and is continuous, for each +, the set K defined above
Lemma 3.1 is compact. By Lemma 2.2 we may choose so large that Kt is petite, and
so the proof follows from Proposition 2.1. l-1

In the following result we show that condition (12) is an extremely useful property
even when the irreducibility condition is not satisfied. Proposition 3.2 will be used in

4 and 5 to establish ergodic theorems for Markov chains that do not satisfy any
recurrence condition.

PROPOSITION 3.2. Suppose that V is a positive measurablefunction satisfying condi-
tion (12). Then the following inequalities are satisfied for every initial condition x X:

K
(i) pkv (x) <= A kV(x)+ k 7/+.

1-A’

(ii) lim sup- 2 /V(Ok)----< a.s. [Px].
rq--, k= 1 --Proof The result (i) follows immediately from (12) and induction.

To show that (ii) holds, fix x X, and let U x/f, a v/-, and L= x/. The
function U is a moment and by Jensen’s inequality,

PU(k) E[U(O+,)IO] a.s.

(19)
<=v/AV(Ok) + K

<-_aU(Ok)+L.
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It follows that for every N Z+,

1 N 1
E u(o) <m k= ---’ k=lX (U(Ok)- PU(Ok-1))

IvN 1 , aU(dpk)+L.
1

+N=
Let U()-PU(_), and observe that the second summand in the equation
above is a telescoping series. Hence,

1
(0) (-) E= = +]PU(o)-PU() + L.

It follows by result (i) of the theorem and a straight forward calculation that

E E IPU(*o)- PU(*u)I2 2 V(x) + 1.,
K 1

N=l =1

and hence by Chebyshev’s inequality and the Borel-Cantelli Lemma the second
summand in the right-hand side of (20) converges to zero asN a.s. P].

Another straightforward calculation yields

2K
sup E[n]2 sup E[V()]V(x)+
ke+ k+ 1

by inequality (i) of the proposition. Hence with ff defined in (13), the sequence
{(, ff): k Z+} is an L bounded maingale difference process. Applying Theorem
5.2 of Chapter 4 of Doob (1953), it follows that the first summand in the right-hand
side of (20) converges to zero as N. Taking "lira sup’s" on either side of (20)
yields (ii) of the theorem.

We now show how a moment satisfying (12) may be constructed. In the stable
linear case (5) with w= 0 such a construction was first carried out in Kalman and
Beram (1960). Corollary 3.2* of that paper implies that there exists a positive definite
matrix M with I M mI for some m 1, and

(2) lAxllx}
where lY[ &yrMy for y ", and A < 1. In fact, we can take

M& I+ ArA.
i=1

In the case where w#0, suppose that the i.i.d, process w defined in (5) satisfies
E[w] <, but is otherwise arbitrary, and let V be the moment on " defined by

V(x) & xrMx, x X.

Then for each x 6 X we have

PV(x) xVJvMAx + E[wSBvMBwo] V(x) + mIB[E[w],
showing that the function V satisfies (12). We remark that in general, no stochastic
Lyapunov function satisfying (14) exists in the linear case.

In the nonlinear case
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with X=R" and F:XxRp’’>X sufficiently smooth, it is possible to generalize this
construction (see Chan (1986) for the details). However this requires extremely restric-
tive stability conditions. The idea is to look atthe freely evolving system

dk+l Fk+l(x) -& F(dk, 0), k 7+
with do x X given. If there exists a fixed 0 < A < 1 and K > 0 such that

141 g lxl
for all k + and x X, then for fixed a (A, 1) we may define the moment V by

V(x) sup -lf(x)l
k0

where F(x) x. Under the appropriate conditions, V will satisfy condition (12).
Among the diculties with this approach is that to apply the Lyapunov function

for the freely evolving system to the original system, a global Lipschitz condition on
V is needed. Presently, the only way to obtain such a condition is by imposing a global
Lipschitz condition on F, and this is ruled out in many examples.

However, in all of the examples previously studied (see Guo and Meyn (1988)
and the examples in 5) a function satisfying (12) may be shown to exist by a reasonably
simple calculation even though no global Lipschitz condition is satisfied.

In the next section we drop the recurrence condition, and show that suitably
strong stability conditions (implied by the existence of a continuous moment V satisfy-
ing (12)) allow us to establish useful ergodic theorems for the class of continuous and
bounded functions on X.

4. Law of large numbers. Our main objective in this section is to find conditions
under which the law of large numbers (2) holds for all initial conditions.

To illustrate the diculties in finding such conditions when is not positive
Harris recurrent, suppose that an invariant probability exists. By a theorem of Doob
(1953), for each f L(X, (X), ) there exists a functionf L(X, (X), ) and a
Borel set Xy c X of full measure such that

(22) lim
1

f() =f(x) a.s. [P]

whenever x Xy. The function f is a version of the conditional expectation E[f[Z]
where is the -algebra of -invariant events in (X). Define the occupation
probabilities

(23) flu{A}
1= =I*A’ NZ+, A(X),

and let {g, n Z+} denote the bounded continuous functions defined in (7). It follows
from (22) that there exists a Borel set X1 c X, and bounded Borel functions {g,,: n
such that whenever x X1,

lim
k

for each n
It also follows from (22) that for a.e. [] x X the sequence of probabilities

P(x,.)" NZ+} is tight, and hence we may assume that these prob-
abilities are tight for each x X1. By the Dominated Convergence Theorem we have
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for each x 6 Xl and n 7/+,

lim
l fP’(x, dy)g,,(y)=g,,,(x)

N- N k=l

and taking any weak limit point of the probabilities

(24) 2 P(x, ): N+
k=l

it follows from this and (7) that for every x X there exists a probability w such that
g,,(x)=Ig, dx. Furthermore, for each xX, every weak limit point of (24) is
necessarily invariant (see, for example, the proof of Lemma 4.1) and hence is an
invariant probability for such x."

The following result follows from these observations.
Poposwoy 4.1. If the Feller Markov chain possesses an invariant probability, then there exists a Borel set X X and invariant probabilities { :x 6 X} such that

{X} 1. e invariant probabilities {x} have the property thatfor every initial condition
o x X, the occupation probabilities converge:

weakly
ask a.s.[e].

Observe that the limit on the right-hand side of (22) is nonrandom, and hence so
are the probabilities { :x X}. This result cannot be expected to hold for all initial
conditions in general. For example, when Doeblin’s condition (Condition D of Doob
(1953)) or a stochastic controllability condition is satisfied [Meyn and Caines (1988)],
it may be shown that there exists, at most, a countable collection of disjoint absorbing
sets {H: i Z+} on which the process is positive Harris recurrent. For every initial
condition x X,

weakly
(25) k 77x as k-oo,

where the invariant probability 77x is defined forf C by

(26) fdx l{,l, enters Hkt fdTr,
k=0

and for each Z+ the invariant probability is supported on H. When x H it
may be shown that x , but, in general, . will be a random probability.

In general, one of the main difficulties in establishing (25) is finding a candidate
limit probability . To this end suppose that an invariant Markov transition function
H exists (H is a Markov transition function and PH PH H) satisfying

1 N weakly
P(x,.) H(x,.) asN, xeX.

Then with defined in (13), the pair (H(, A), ff) is a convergent martingale, and
we then make the definition

(28) {A}& lim H(, A)
k

when o x X. For example, in the special case where Doeblin’s condition holds we
have II(k, A) - 7ri{A} on the event { enters Hi}, showing that this definition agrees
with (26).
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An interesting problem remains open. Suppose that is a Feller Markov chain
satisfying condition ($2). (i) Does an invariant Markov transition function satisfying
(27) exist? And if so, (ii) does the law of large numbers (25) hold with x defined in
(28) for every initial condition?

We do not see any way of answering this question, and so for the time being we
will have to settle for less general results.

At present, there are at least two possible routes to establishing the .law of large
numbers for continuous bounded functions. One is to assume that the Markov chain
is regular in the sense of Feller (1971). This together with condition ($2) implies that
an invariant Markov transition function satisfying (27) exists, and under general
conditions (ii) follows using the same argument to be presented below. Alternatively,
we may assume that a unique invariant probability 7r exists since if this is the case,
then the problem of finding a candidate limit probability in (25) is solved.

Below we present a result based on the second approach since the first requires
the introduction of additional definitions and preliminary results. The proof of the law
of large numbers for regular Markov chains will appear in a planned monograph
concerning Markov chains on topological spaces.

Below we state some assumptions that will be needed.

(A1) A unique invariant probability 7r exists.

(A2) The collection of probabilities on (X),

{1Pk(x,’)’xK,N7/+}=,

is tight for every compact set K X.

(A3) For all initial conditions x X there exists a sequence of compact sets K, ’ Xsuch that

N

limliminf y 1.K,, 1 a.s.[P,]
nc Nc N k=

Assumption (A3) is the condition that the occupation probabilities are almost surely
tight for each initial condition. This condition will hold if a moment V exists for which

1
lim sup V(k) a.s. [P]
N-> k

for each initial condition x X. Assumption (A2) will be satisfied if a moment V exists
with the property

sup E[ V(k)] < oO
k=>0
xK

for every compact set K X.
Hence applying Proposition 3.2, (A2) and (A3) will hold if a continuous moment

V satisfying (12) exists.
We may now state the main result of this section that is a generalization of the

result [Breiman (1960)] to noncompact state spaces.
PROPOSITION 4.2. Suppose that conditions (A1)-(A3) hold. Then for each initial

condition x X,

weakly

k 7r as k - c a. s. P



1424 SEAN P. MEYN

We remark that in the case where f is continuous but unbounded it is often still
possible to establish (2) under the conditions of Proposition 4.2. A sufficient condition
is for some > 0,

lim sup [fl 1+6 dfi,u -A lim sup - If(Ok) < 0(3,
N Nc =1

since this implies that the function f is uniformly integrable with respect to the
occupation probabilities {k" k7//} with probability one (see Theorem 5.4 of
Billingsley (1968)).

Under the conditions of Proposition 3.2,

when is an invariant probability. This implies that if V is a moment, the set of all
invariant probabilities is tight. IL in addition, a uniquely invariant probability
exists, then by Proposition 4.2,

ky
with probability one. A slight modifi-

cation of the proof of Proposition 3.2 shows that

1 N K p

limsup VP(k)<

for every p (0, 1), which by uniform integrability implies that

lim
1 N fN-o- y VP(dPk) Vp dTr a.s. [P,].

k=l

To prove Proposition 4.2 we will apply the following lemma.
LEMMA 4.1. If conditions (A1) and (A2) hold then for every f C,

1
2 pkf( ) fdTrN k=l

as N o, uniformly on compact sets.

Proof of Lemma 4.1. Suppose that (A1) and (A2) hold, and forfC, 8>0, and
N 7// define

A(f) a={xeX:
The proof is by contradiction. If the conclusion of the lemma is false, then there exists
f, 8, a compact set K c X, and a subsequence {Ni} of 7// such that

A,(f) (q K # b
for all 7/+.

For each e 7// let xi AN,(f) fl K, and consider the sequence of probabilities

1

? pk(xi, ). 7/+

This collection is tight by assumption, and hence by choosing a further subsequence
if necessary we may assume that a probability h exists for which

1 ’ weakly

-’-’’ pk(xi," h asi-c.
Ni "=1
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We will now show that A is an invariant probability. For each g C we have by
weak convergence,

IfP(x, dy)g(y)A(dx) lim
1 k f pk+l(xi, dy)g(y)

Applying Urysohn’s Lemma and using the fact that probabilities on (X) are regular,
it may be shown that characteristic functions of Borel sets may be approximated in
L’(A) and LI(AP) by elements of C. It follows that h is invariant, and applying (A1)
we conclude that , r. However by construction of ,, 6, and the function f,

lim _->6>0.

This contradiction proves the lemma. [3

Proof of Proposition 4.2. Fix f C and 0 x 6 X. For each N, n 7/+ we have

1 ., f(k) fdr - (PY(k-)--
N k=l i=o k=l

+-- ., P’f(k)-- fdcr
Nk=l

1 N

Z (P"f((Pk-,,)- P"f((Pk))+Nk=l
where we adopt the convention that (I) k (I)0 for k =< 0. For each M 7/+ we may average
the right-hand side of this equality from n 1 to M to obtain

I )1 1
E +lf(Ck-i-1))

a
L f(,)- fdr -,,=, =O’k=Nk=l

1 ( ) fn’f(k) fd+Nk=I n=l

+n=l k=l

The third term is a telescoping series, and hence letting l]fll & SUpxx lf(x)l we have

=1 i=o =1

(29)
1 ( M ) f 2M]]fH+ 2 P"f(Ok) fd +.

k=l n=l N

For each fixed 0 =< <-_ M- 1 the sequence

(Pf(cb_,) Pi+f((Pk_i_,) ,k-i), k>i,

is a bounded martingale difference process, where -k is defined in (13). Hence by
Theorem 5.2 of Doob (1953, Chap. 4), the first summand converges to zero almost
surely for every M 7/+. Let e > 0, and {k} be a sample for which the first summand
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converges to zero for each M. By (A3), for almost every sample path there exists a
compact set K c X such that

lim inflT 1*: >- 1 e.
N 1/ k=

Fix such a set K, and choose M so large that [1/MM P"f(x)-fdTrl<e on K.n=l

This is possible by (A1) and (A2), and Lemma 4.1. Hence by (29),

limsup - f(qk)-- fdr
N- k=l

_<-lim sup - nnf(OPk) fdr
N- k=l n=l

1
1{, K’}<= limN_sup IIf II- k=,

+ lim sup 1./
N k=l

E Pnf(k) fd-
n=l

and this shows that (2) holds for all f C and all x X.
Let {gn} be the continuous functions defined in (7). Then since (2) holds for each

bounded and continuous function,

P’{limlg"dfik=fg"dTrk
for each n Z+]. 1.

This together with (7) proves the theorem.
We now give alternative sufficient conditions to establish (2) for continuous and

bounded functions. Let d(.,. denote the metric on X, and define

d(x, E) & inf d(x, y) and B(E)
yE

for xX, E z 3(X), and 6>0.
In cases where a unique invariant probability r exists, the following conditions

are often satisfied.

(A4)

(A5)

There exists a closed set Hc X that supports 7r, and H is a Harris set.
Furthermore, the support of 7r has nonempty interior in H.

For all initial conditions 0 x X,

lim d(k, H)=0 a.s. [P,].
kc

PROPOSITION 4.3. Suppose that conditions (A1), ($2) and (A3)-(A5) hold, and
that the Markov chain restricted to H has period r >-_ 1. Then for each initial condition
xX,

weakly

t2k 7r a.s. [P],

weakly
pk+i(x 7r ask-->.

r=l
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The idea of the proof is basically the same as that of Proposition 4.2. We show
Pk/i(x,.) is close to 7r in thethat for any compact set K c X the probability 1/r Y i=

weak topology for all x in a neighborhood of K fq H, and all k 7/+ sufficiently large.
The proof then follows using the same martingale difference argument as in Proposition
4.2.

The following result follows from Corollary 4.1 and Theorem 2.1 of Cogburn
(1975).

LEMMA 4.2. If condition (A4) holds, then for every e > 0 and every compact set
K c X, there exists k k(K) 7/+ such that

for every x K f’l H.
ProofofProposition 4.3. Let e > 0, let K c X be a compact set, and fix f6 C. Under

(A4) we may apply Lemma 4.2 to find ko 7/+ such that

(30) f1 y pko+f(x fd,n"
ri=l

for all x Hf-I K, and by the Feller property it follows that for some 6>0, (30)
holds for all x B(H) f-I K.

For all n 7/+,

!ri:1 Pk+i+nf(x)"-Pn<lr i:l Pt’+f) (X)"

Hence by (30) for every x X,

lim sup lri=l Pt’+i+"f(x)- f fd’n"

_-<lim sup eP"(x, K VI B,(H))+ Ilflloo(P"(x, BC(H))+ P’(x, KC)).

By ($2) and (A5), and since e > 0 and K compact are arbitrary, this proves the first
assertion of the proposition.

By (29), (30), and applying the martingale difference argument used in the proof
of Proposition 4.2, we have

lim sup
Noo

1 N- + IIf Iloo limN_ooSUp =1 li:lltst:Kf-IB(H)

-<- + Ilflloo lim sup la,kzK + lim sup - l,kzZ(H)
Nc =1 Nc =1

Since we have assumed that converges to the set H with probability one, it follows
that

lim sup
Nc

1 N

--< II/Iloo limm_,ooSUp - =1 1>K + e.
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By (A3), and since e > 0 is arbitrary, it follows that

-oolim - f(k) J fdr a.s. [Px]
k=l

for each f C and, as was shown in the proof of Proposition 4.2, this implies that

weakly

// , 7r a.s. [Px]. E!

5. Examples. In this section we consider a number of examples to illustrate how
the results above may be applied to specific control problems. With the exception of
the example presented in 5.2 where slightly different techniques are used, we assume
that the Markov chain has the form

(1) /+, F(Cbk, Wk+l), kZ+.
For all k, k X, a d-dimensional manifold, Wk R P, and F" X x p X is continuously
differentiable C ).

We further assume that (o, w) are random variables on the probability space
(fl, if, Pa,o), o is independent of w, and that w is an independent and identically
distributed process.

We will also require the following conditions on the distribution/Zw of the random
variables Wk, k 7//, whenever the weak stochastic controllability condition is required:

(Wl) The distribution/Zw of Wk, k Z+, possesses a density that is lower semicon-
tinuous;

(W2) 0 supp/Xw

Condition (W1) implies that/Zw possesses a density that is strictly positive on an open
set w c EP and zero elsewhere, and hence supp/Zw w.

Before presenting the examples, we give some useful definitions from Meyn and
Caines (1988), and present a result from that paper that will be needed in the examples
that follow.

Here we give a precise definition of weak stochastic controllability. General
conditions for weak stochastic controllability involving a controllability matrix may
be found in Meyn and Caines (1988). Given two measures , and/z on (X) we say
that , is absolutely continuous with respect to/z (denoted u </z) if ,{A} 0 whenever
/z{A}=0. We let 1A/Z denote the measure defined for B(X) by (IA/z){B}&

DEFINrHON. The system (1) is called weakly stochastically controllable if for each
initial condition x X there exists T T(x) 7/+, and an open set x c X such that
Pr(x, >" 1., geb.

Hence if is weakly stochastically controllable, then the Radon-Nikodym deriva-
tive of the probability Pr(x,. (with respect to Lebesgue measure) is strictly positive
on an open set x c X.

We call the deterministic system

(31) dk+, F(dk, 0), k .+
with initial condition do X the freely evolving system. The system (1) satisfies condition
(GA) if there exists d* X that is globally attracting for the freely evolving system.
That is,

(GA) For each initial condition x X, lim dk d*.
koo
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Hence, if the disturbance sequence w is replaced by (0,. ., 0,. .) in (1) then (I) k "-)’ d*
as k oo for all initial conditions.

The following result will be used together with Proposition 3.1 in the examples
below.

PROPOSITION 5.1. Suppose that is a Markov chain of the form (1), and that
conditions (W1) and (W2) hold. If is weakly stochastically controllable and satisfies
condition (GA), then the irreducibility condition is satisfiedfor an open set A containing
d*, and is aperiodic.

We may now proceed with the first example.

5.1. Nonlinear control. Here we consider a linear single-input single-output
stochastic state space system with nonlinear feedback control law

(32) iik
a__ _qg(yk) for all k e 7/+

where the function q e C 1. We assume that q(0)- 0, and to simplify the analysis we
also take do/dt(O) O.

The closed loop system equations are

Xk+ AXk bq CrXk + k+ "+" Gk+1,

(33)
Yk C’rXk d- ’k+l, k 7/+,

and it is easily seen that if w --a () satisfies the conditions given at the beginning of
this section, then x is a Feller Markov chain of the form (1) with state space R n.

In fact, __a () will also be a Markov chain under the appropriate conditions
whose state space X----a Rn+l. However, we may show that almost any result of interest
obtainable for the process x will carry over to the joint process , and so we restrict
our analysis to the simpler Markov chain.

This is a popular example in nonlinear systems theory (see, e.g., Zames (1966),
Popov (1973), and Safonov (1980)) and is ideal for illustrating the general results
presented in the previous sections.

The following stability and controllability conditions will be needed-below. We
say that the control defined in (32) lies in the sector (a, r) (see Safonov (1980)) if
for all x ,
For a positive definite n x n matrix Q, a vector z n, and an n x n matrix F we let

Izl= zQz and lUll-sup IFzl
o I1

(NC1) E[Iwol/] < for some > 0:

(NC2) The control law lies in the sector (c, r), and for some positive definite
n x n matrix Q,

A a= [(A- abcr)lo + rlblolclo-’ < 1.

(NC3) The pair (A, [GIb]) is controllable;

(NC4) The distribution w of w0 satisfies conditions (Wl) and (W2).
Let P denote the Markov transition function on X n+ for the joint process ,

and let /2k, k Z/, denote the occupation probabilities defined in 4. The functions
x, u, and y on X are defined so that

Xk X(fk), ilk tl((k), Yk Y(k), k 7/+.
Our objective in this section is to prove Proposition 5.2.
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PROPOSITION 5.2. Suppose that conditions (NC1), (NC2), and (NC4) holdfor (33).
Then a unique invariant probability r exists, and the following limits holdfor each initial
condition x Nn+l

weakly
(34) pk(x, r,

weakly
(35) fig 7r a.s. [Px],

(36) _1lim ’ (x,+y,+ u,)= |(x:+y2+ u) dTr a.s. [Px],
N--->cx N k--=

(37) lim Ex[Xk + y] + u] I (x2 + y2 + u2) dTr.

Ifin addition (NC3) holds, then is geometrically ergodic, and (37) holds at a geometric
rate.

Proposition 5.2 will be proved in several steps. We first present sufficient conditions
for the Markov chain x to be weakly stochastically controllable.

5.1.1. Controllability. The generalized controllability matrix associated with x (see
Meyn and Caines (1988) and Meyn (1987)) is defined for an initial condition x Nn by

(38) Cr= [At-1""" AIBoIAr-’’" A2BI’’" IAr-lBr-21Br-1]

where, letting ak
a_ dq/ dt (yk ),

AkA[O] --A-akbCT
(xk,w+)

(39) for all k 7/+.

B A [0zz] =[Gl-ab]
(x,w+)

Observe that the generalized controllability matrix Cx is a function of the random
variables {y 0 -< k=< T- 1}, and hence is also random. By Theorem 2.1 of Meyn and
Caines (1988), x is weakly stochastically controllable if for each xn there exists
T 7’+ such that the matrix C7 has rank n with positive probability.

The following lemma greatly simplifies the computation of the rank of the matrix
C[. For an n x m matrix H let co-ker (H) denote the n-dimensional vector space

co-ker (H)--a {x Nn: xVH 0}.

C satisfiesLEMMA 5.1 The generalized controllability matrix 7-

(40) co-ker Cr) co-ker ([Ar-l[ G[cob]l’’’ I[A[ Glar-2b]l[ al cr-b]])
and hence x is weakly stochastically controllable under conditions (NC3) and (NC4) if
dq/ dt(O) # O.

Proof of Lemma 5.1. We will proceed by showing inductively that for k
0,...,T-1 andx[n,

Tx [AT-’’’AT-kBT-k-,I’’’IAT-IBT-21BT_,]=O

(41 if and only if

xV[J[Glar_k_lb]l IA[Glar_2bJ][G[ar_lb]]=O.
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For k 0, (41) becomes

x[G b 0: XT[G I--aT_ b] O,
and this is obvious. Suppose now that (41) has been established for k- n- 1 => 0. To
establish the implication (=:>) for k n observe that if x e " satisfies

(42) xT[A-_I AYr_,B_,_,I IAXT_IBXT_2I BXT_I] O

then by the induction hypothesis,

(43) xV[A"-’[Gl-b]l Ia[Glc-2b]l[Gl_b]]-O.
Furthermore, by (42) and (43) it follows that

0 xT[Ar_, Ar_,Br_._,]
xT(A aw_,bcT)(A ar_2bcT) (A-
xrA"[G -ar_l_.b ].

This and (43) establishes the implication (=:>) in (41) when k-n.
To establish the reverse implication suppose that x satisfies

(44) xTAi[GJa.__ib]=O for all 0<= i=< n,

so that by the induction hypothesis

(45) rx [AT_,’’" AT-.+,BT-.I’’" IBT-,]=O.
TO complete the proof of the lemma we are left to show that

Tx AT_I AT_nB T-n-1 0,
and this follows from (39) and (44)"

Tx AT_’’" AT-,+BT_
xr(A ar_,bcr)(A aT_bc-r) (A- aT_,bc-r)[ G --aT_,_,b]

x-rA’[GI-aT__,b]=O.
This establishes the first part of the lemma. If (NC3) and (NC4) hold, and if

dq/dt(O) 0, then by (40) it follows that the matrix Cg(0) has rank n. Here Cg(0)
denotes the generalized controllability matrix at time n evaluated along the output
sequence y--0. Hence by Corollary 4.4 of Meyn and Caines (1988), the Markov chain
x is weakly stochastically controllable.

5.1.2. Stability. We now show that a moment on En exists that satisfies (12). Let
Q be the matrix defined in (NC2), and let V(’)A--

LEMMA 5.2. Suppose that conditions (NC1) and (NC2) are satisfied. Then
(i) Condition (GA) holds with d* =0.
(ii) The moment V satisfies (12).
(iii) For all initial conditions

Oo (Xo) X:Yo
sup E,oElXkl2+a + lukl2+a
k7/+

lim sup l [xl 2+a + lul2+a + [y[2+a
Ncx3 J

1
A-limsup Y (Ix12+/lu12+/lyl=+)< a.s.[P(R)o]

N k=l

where > 0 is the constant used in condition (NC1).
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Proof Equation (33) and (NC2) imply that

-<-IA ,bdlQIxl o /
(46)

+ I1 11;+1 +161+1

It immediately follows that (GA) holds, and that

PV (x) A V(x)+ E[(a +
so that V satisfies (12).

Finally, if 6 > 0 is the constant used in (NC1), then (46) implies that for a constant
B1, and a random constant B2,

(x[Ix+,l+])’/+ < (x[Ixl+])’/+ + 1, k +,
and

N_i 2 [xkl -<A Ixk +U2, NeZ+.
k=l =1

By a geometric series argument, this shows that the third assertion of the lemma
holds.

We may now prove Proposition 5.2.

Proof of Proposition 5.2. We first suppose that (NC1)-(NC4) are satisfied. If this
is the case then by Lemmas 5.1 and 5.2 and Proposition 5.1, the conditions of Proposition
3.1 are satisfied and hence x is geometrically ergodic. This implies that the joint process

() is also geometrically ergodic since y is virtually a function of x.
Result (36) follows from this fact together with Proposition 1.1. To show that the

convergence result (37) holds at a geometric rate, apply Proposition 2.1(iv).
We now relax condition (NC3). If the pair (A, [GIb]) is not controllable, then

x may be decomposed into controllable and uncontrollable parts using a similarity
transformation M where

MAM-’= [All0 AJ’

M[G,b]=[G10 0

and (All GI[ bl]) is controllable.

Letting

x] Mxk and c-I= cTM-1

it follows that

Xk+ A,lXk + A12xk + b, cp C
\xOk] -- ’k+l -- G1Wk+l,x+, Az2x.

If x 0 then x, 0 for all k e ;+, and in this case (") becomes a Markov chain for
which the analysis above is valid.
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By condition (GA), for all initial conditions x X, xT,-* 0 as k-0, and it follows
that there exists a unique invariant probability 7r for under which Pr{X--- 0} 1.

This shows that a hyperplane H c En exists that is a Harris set for the Markov
chain x. This set is necessarily a closed subset ofn, and by weak stochastic controllabil-
ity (of x restricted to H) it follows that the support of 7r has nonempty interior in H.
Hence (A4) and (A5) hold, and applying Proposition 4.3 completes the proof. [3

5.2. Random linear system. Here we consider a randomly disturbed linear system

(47) Xk+l F(k)Xk + Wk+

where x evolves on En, : is a Feller Markov chain evolving on a compact m-dimensional
manifold M, the disturbance process w is i.i.d., and F" M - g/(n, ) is continuous.

We also require these further assumptions"

(RLS1)
(RLS2)
(RLS3)
(RLS4)

E[IwI[2+;] < CX3 for some 6 > 0;
The processes w and are independent;

is aperiodic and positive Harris recurrent;
There exists To Z+ and Ao < 1 such that
Eeo[F(sCo)v’’" F(ro)VF(:ro) F[(o)] < aoI
for each o M.

A similar example is treated in Feigin and Tweedie (1985), where geometric ergodicity
is established under the condition that is i.i.d., together with a nonsingularity
assumption on the distribution of Wo.

It is easy to see that under the present conditions, is a Feller Markov chain
with state space X--a n x M. Its Markov transition function P may be defined in terms
of the Markov transition function Q for j, and the system description (47).

Our main objective is to establish Proposition 5.3 below.
Let x" X-*E" denote the coordinate variable defined so that X(k)= Xk, and let

/2k, k 7/+, denote the occupation probabilities defined in 4.
PROPOSITION 5.3. Suppose that the Markov chain () defined in (47) satisfies

conditions (RLS1)-(RLS4). Then there exists a unique invariant probability 7r on x M,
and for each initial condition x X,

weakly
(48) pk(x, 7r as k-,

weakly
(49) /bk r as k - a. s. Px

1
(50) lim Ex[Xk]= lim Y x,= [ x2 dr <oz a.s. [Px].

k-oc Noc N k=l

Observe that the statistical assumptions (RLS2) and (RLS3) and the stability
assumptions (RLS1) and (RLS4) are all that is needed to establish the existence of a
unique invariant probability r for . The distributional assumptions (W1) and (W2)
and the stochastic controllability hypothesis are not needed, and hence does not
necessarily satisfy the irreducibility hypothesis.

We remark that under slightly stronger assumptions (conditions (W1) and (W2),
and the condition that the support of the invariant probability for has nonempty
interior in M) the Markov chain will be geometrically ergodic. This follows from
Lemma 5.3 below, and Proposition 3.1 applied to the sampled process {fkTo: k ;7+}.

To prove Proposition 5.3 we will require the following preliminary result.
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LEMMA 5.3. Under conditions (RLS1)-(RLS4) there exists a fixed constant B=
B(E[Iwll2]) < such that

E.o[lXTo+l2] <-- AolXol 2 + B

for every initial condition apo (Xo) X.
Proof. We have for all k ;+ by (RLS2),

Eo[iX/,]] TxoEo[F(o)v’’" F(k)VF(k) F(o)]Xo

+ E. W+lWk+, + E wT[F(, "F(k)F(k) F(i)]wi

Hence the conclusions of the lemma are satisfied with

B _#__a E[lw, l](TollFllTo),
where ]JEll denotes the supremum of the operator norm of F over the compact
manifold M. [3

We may now prove Proposition 5.3. We assume that an i.i.d. N(0, I) stochastic
process tl on Nn exists such that tl, w, and : are mutually independent. We then define
the perturbed process x for e [0, 1] by x; Xo, and

(51) k67/+Xk+l F(k)Xk + Wk+ + edk+,

To prove Proposition 5.3 we will show that for all e > 0, the perturbed process is
aperiodic and positive Harris recurrent, and that for e sufficiently small, the process
x approximates the process x, uniformly in k 7/+.

Proof of Proposition 5.3. When e >0, the conditional probability on (X)
defined by

P(xo,o){X,+, Ale:l,
possesses a density that is continuous and everywhere positive on 2, x M+. If A is
a petite set for , then it follows that A x K is petite for any compact set K of positive
Lebesgue measure. This together with an argument similar to the proof of Proposition
2.2 shows that is Harris recurrent. Since Lemma 5.3 implies that condition ($2)
holds, an invariant probability exists for all e > 0 and we conclude that is positive
Harris recurrent for all e > 0. The Markov chain is aperiodic for e > 0 by (RLS3),
and since the distribution of x possesses the same null sets as Lebesgue measure on

" for all k 1.
From (51) and Lemma 5.3 there exists a constant B < such that

e2B
1-Ao

for every initial condition o X, and it follows that

(52) lim sup E,o[]XT, Xk] 2] 0
e->0 k0

for all initial conditions.
Fixf C uniformly continuous. By (52) and Chebyshev’s inequality

(53) lim sup E(R)o[If(xT,)-f(x)l]-0,
e-->0

and since is aperiodic and positive Harris recurrent for each e > 0, there exists an
invariant probability r on (X) such that

(54) lim Eao[/(@ ,) [ fdr.
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Using Lemma 5.3 it may be shown that the invariant probabilities {Try" 0 < e =< 1}
possess uniformly bounded second moments, and hence are tight. We may therefore
find a subsequence ei- 0 as i, and a probability 7r on (X) such that

weakly
(55) 7r, 7r as i.

Combining (53)-(55) we have for all i7/+,

lim sup
koo

E[f(cI))]- I fd,rr

-< lim sup E.0[f(k )] Ea,o[f( ’ )]l
koo

+ lim sup
kcx3

Eoo[f(cI) 7,’) f fdTr,

<_- sup Ea,o[f() Eoo[f(;’) ]l +

Letting oo shows that

lim Eoo[f(k)] f fdTr.

This implies that zr is an invariant probability for the unperturbed process, and also
weakly

that 7r is the unique weak limit point of the probabilities {Try" e > 0}. Hence 7r 7r

as e0.
It follows that 7r is the unique invariant probability for (I), and that for all x X

the limit (48) holds. By a simple calculation

sup E.o[lXkl2+ <
k__>0

for each deterministic initial condition, and this together with (48) implies that

lim Ex[X2k] I X2 d,n" < .
kcx3

To complete the proof of Proposition 5.3 we show that conditions (A2) and (A3)
of 4 are satisfied. Since we have shown that (A1) holds, result (49) will follow from
Proposition 4.2. Since the proof is fairly routine, we will be brief.

By Lemma 5.3 there exists a constant B < such that

PolxlZ(x) AolX[z / B.

It is easily shown that the equation above implies condition (A2), and by a martingale
difference sequence argument it may be shown that

1 N

lim sup E IXk[2+/2 < a.s. [Pa,o]
Noo k=l

for all initial conditions, and in particular, condition (A3) holds.
This shows that the result (49) holds, and result (50) follows from (48), (49), and

the previous inequality that implies that the function x2 is uniformly integrable with
respect to the occupation probabilities with probability one. D
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5.3. Stochastic adaptive control. Consider the single-input single-output random
parameter system model

(56) Yk+l OkYk "]- Ilk " Dk+l, k Z+
where the parameter process 0 is the output of the (AR1) model

(57) Ok+l OlOk "4- ek+l k Z+
and a (-1, 1).

The parameter process 0 is assumed to be unknown, but is estimated by the
gradient algorithm

Yk (Yk+ OkYk Ilk)
(58) Ok+=aO,+a l+y

This is a simplified version of the example analyzed in Meyn and Caines (1987)
where is a version of the conditional expectation g=E[0]], with
o-{yo, , y}. The estimator (58) was obtained by setting the estimation error covari-
ance Pg in the algorithm of Meyn and Caines (1987) to a constant. Hence in the present
example the parameter estimates {0} have no simple interpretation.

Assume now that our goal is to choose a control ug e that makes the mean
square output error E[y] as small as possible. When we apply the certainty equivalence
control law

59) Uk OkYk, k 7+

and defining 0" ____a 0- 0, the closed loop system equations become

Ok--ykVk++ k.+.

It is evident that, under the appropriate conditions on the process w (;), the state
process is a Feller Markov chain of the form (1) with state space X N2.

We henceforth assume that w satisfies (W1) and (W2) that v and e are independent,
and that the following additional assumptions hold for some 6 > 0:

(61) E[w,] (00) E[,w,14+6] < oo, E[[e,,+] < l.

2A 2AThese conditions imply that O’e E[lel2] < 1, r E[IVl[] < o, and y4 a E[]Vll2] < o.
The state process is weakly stochastically controllable, and satisfies condition

(GA) with d*-0. By Proposition 5.1 we conclude that the irreducibility hypothesis
holds for an open petite set A X and that is aperiodic. Our next task is to find a
moment satisfying (12) so that we may apply Proposition 3.1.

Let y" X and O" X- denote the coordinate variables on X so that

Yk Y(dPk), O’k 3((I)k) for all k Z+,

and define the test function V on X by

(62) V(y, )= if4+ eoy+ egy
where Co> 0 is a small constant which will be specified below.
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Letting P denote the Markov transition function for we have by (60),

(63) py2 __/y2 + o.2v.
This is far from (12), but applying the operator P to the function ffZy2 gives

l+y2 -el

y--0" nt- O’eO’v-I E[( O yl)l)2( y-l.- Vl)2]

2ff2y2 2 9_ ce ff4y2 ~2 2 y,2 4 y 4e + ev+ + 0 42y2+ y + y],
l+y

and hence we may find a constant B1 < such that

(64) PyZ=e +BI( + +1).

From (60) it is easy to show that for some constant B2> 0

(6) e4 44+n(O+ 1).

Combining equations (63)-(65) we may find a constant K3<, such that for all
0<e<l,

e(ff4+ ffy+y (4+3)if4 +(+ )y+3(ff+ )
(66)

4 + (e + e)eY2 + 2K3/eN ( + 2eK3) if4
where the second inequality follows from the estimate ffN eft4+ 1/e. Fix 1 > A >
max (, a4). Then by (66) we may find Co> 0 sufficiently small, and a constant K > 0
sufficiently large such that (12) holds with V defined in (62).

A modification of (63) and (64) may be used together with (61) to show that

sup x[lyl+’] <,
k0

and applying Proposition 3.1 and Proposition 2.1 we obtain Proposition 5.4.
PROPOSITION 5.4. e Markov chain defined in (60) is geometrically ergodic,

and for all initial conditions x X,

lim E[y] [ y d
at a geometric rate, and

y= y d< a.s.
N N

6. Conclusions. The principal tool used in both stochastic and deterministic stabil-
ity theory is some form of Lyapunov function. In this paper we have taken a specific
Lyapunov function that at first sight appears to provide at most a very crude form of
stability, but in fact has broad implications to ergodic theory and implies stronger
stability results that might be expected.

We have shown that under general conditions its existence implies that the law
of large numbers holds for a large class of functions of the Markov chain and all
initial conditions. Furthermore, if a stochastic controllability condition is satisfied,
then the underlying distributions governing the system converge to an invariant
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probability at a geometric rate. This is known as geometric ergodicity in the Markov
chain literature, but may also be seen as a form of exponential asymptotic stability of
the Markov transition operator P acting on the set of all probabilities on (X).

There are at least two implications of these results that require further study. First
of all, it appears that the results presented here will find application to the ODE
(ordinary differential equation) method (see, for example, Kushner (1983)). One of
the key hypotheses of Kushner (1983) is the existence of limits of the form

N

lim ak(pk-nG ()-- t)
Nc k=

where ak is a square summable scalar sequence. We feel that geometric ergodicity is
an obvious route to proving that this limit exists and computing bounds on the limit.
if this is the case, then test functions satisfying (12) should be a powerful tool when
combined with the ODE method. This idea has already been pursued in Arapostathis
and Marcus (1988).

Another possible application is to the structural robustness of stochastic systems.
It is well known that the solutions of the ordinary differential equation

=f(x) + e(x, t)

will be uniformly bounded if the error term e is sufficiently small in some sense, and
the "ideal system" : =f(x) is sufficiently stable.

By considering the dynamical system on J// generated by a Markov transition
operator P, and using the fact that geometric ergodicity is simply a form of exponential
asymptotic stability for P, it may be possible to extend this result to the stochastic case.
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SIMULATED ANNEALING TYPE MARKOV CHAINS AND THEIR ORDER
BALANCE EQUATIONS*

DANIEL P. CONNORS? AND P. R. KUMAR$

Abstract. Generalized simulated-annealing type Markov chains where the transition probabilities are
proportional to powers of a vanishing small parameter are considered. An "order of recurrence," which

quantifies the asymptotic behavior of the state occupation probability, is associated with each state. These
orders of recurrence satisfy a fundamental balance equation across every edge-cut in the graph of the Markov
chain. Moreover, the Markov chain converges in a Cesaro-sense to the set of states having the largest
recurrence orders. These results convert the analytic problem of determining the asymptotic properties of
the time-inhomogeneous stochastic process into a purely algebraic problem of solving the balance equations
to determine the recurrence orders.

Graph theoretic algorithms are provided to determine the solutions of the balance equations. By applying
these results to the problem of optimization by simulated annealing, it is shown that the sum of the recurrence
order and the cost is a constant for all states in a certain connected set, whenever a "weak-reversibility"
condition is satisfied. This allows the necessary and sufficient condition for the optimization algorithm to
hit the global minimum with probability one to be obtained.

Key words, simulated annealing, optimization, Markov chains
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1. Introduction. We consider finite state Markov chains {x(t)} with transition
probabilities of the type

pij( t) Cije( t) vq,
where e(t) is a small parameter converging to zero. In a previous paper [7] we have
shown that if we define "orders of recurrence" by (more precise definitions are given
in 2)

/i :’-" sup c >- O" E e(t)%ri(t) +
t=O

then
(i) These recurrence orders satisfy a balance equation, maXiA,jA" (i--V/j)

maxiA,jA" (j-- Vii), for every subset A; and
(ii) The Markov process converges to the set of states with the largest orders of

recurrence.
This provides a novel approach to analyzing the asymptotic behavior of such

time-inhomogeneous Markov processes. Specifically, we use (i) to solve the balance
equations, and then (ii) provides the limiting behavior. Moreover, the Orders of
recurrence also provide information about the rates of convergence of the state
occupation probabilities. This approach via recurrence orders therefore converts the
analytic problem of determining the asymptotic behavior of the time-inhomogeneous
process into a purely algebraic problem of solving the balance equations.
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A significant motivation for studying such Markov chains lies in the fact that in
the method of optimization by simulated annealing, if { W} is the cost function whose
minimum is sought, then we obtain a Markov chain with

Pij CijE
O" lhc Wi

Thus simulated annealing is a special case where the powers V0 satisfy

V0 := max (0, W W/),

for some { W/}.
To pursue the above approach to analyzing such time-inhomogeneous Markov

chains, it is necessary to be able to solve the balance equations. However, there can
be nonunique solutions to the balance equations. We present graph-theoretic circulation
based algorithms to obtain a solution, as well as all solutions, to the balance equations.
We show by an example the interesting phenomenon that such nonuniqueness can
arise when the asymptotic properties of the Markov process, and the recurrence orders,
depend not just on the exponents Yij but also on the proportionality constants cij.

By applying these results to the Markov chain arising from the method of optimiz-
ation by simulated annealing when the "weak reversibility" condition of Hajek [1]
holds, we show that the sum of the recurrence order and the cost is a constant on sets
connected by recurrent arcs. This allows us to obtain the necessary and sufficient
condition for the optimization algorithm to hit the global minimum with probability
one. Our necessity result is a stronger sample path result than is found in [1] or [2].

Background. Tsitsiklis [2] has also investigated Markov chains with transition
probabilities proportional to powers of a small time-varying parameter. His analysis
was based on observing that due to the slow variation of { e(t)}, we can employ bounds
on the state occupation probabilities for stationary Markov chains, where e(t) is held
constant, to obtain bounds for the time-inhomogeneous case. His approach is quite
different from ours.

Based on an analogy to the physical process of annealing, the sequence e(t) is
called the "cooling schedule," and just as in the physical analogy it plays a key role
in determining asymptotic behavior. It has been shown by Geman and Geman [3],
Mitra, Romeo, and Sangiovanni-Vincentelli [4], and Gidas [5], that simulated annealing
converges in probability to a minimum of the optimization problem provided
t=oe(t)P=+oo for large enough p. Hajek [1] has determined the necessary and
sufficient conditions on the value of p for the algorithm to converge in probability to
the minimum when a "weak reversibility" assumption is satisfied.

2. Orders of recurrence and balance equations. Consider a Markov chain over a
finite state space X whose transition probabilities are proportional to powers of a
vanishing time varying parameter e(t); that is, the transition probabilities po(t):=
Pr (x(t+ 1)=jlx(t)= i) are given by

(1) pq(t) Cije(t vi.i for all i,j X, #j, and e Y+, and pu(t) 1 po(t)
j#i

where

(2)

(3) co>-O

0--< V/j=<+ for all i,jX, i#j,

for all i, j X, i# j, and co 1 for all i.
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Regarding the small parameter {e(t)}, we will assume that,

(4) 0<e(t)<l for all tLr+,
(5) ::IM < such that e(t) <- Me(s) whenever => s, and

(6) F_.(t) p <0 for some pc[l, +).
t=l

In what follows we will assume that in (1)-(3) we have

c 0:> v/ +,
which is clearly without any loss of generality. We shall denote by Ni the set of all
states j with co > 0. Finally, we will assume that the Markov chain is "connected;"
i.e., for every i, j e X, there exists a path io, , ip j, with it Ni,_, for 1 <= <- p.

Let 7ri(t):= Pr (x(t)= i) be the probability distribution of x(t), and let 7rij(t):=
Pr (x(t) i, x(t + 1) =j) be the probability of a transition from state to j at time t.

The following example motivates the notion of "orders of recurrence" introduced
in [7].

Example 1. Suppose, for a certain Markov chain (with more than two states!),
we have

-n-l(t) lit 1/3 7r2(t) lit2/3 e(t)= lit 1/3

Then note that Y,o e(t)%rl(t) is finite if c>/31:=2 and +o if c-</31. Similarly,
Yt=o e(t)%r2(t) is finite if c>/32:= 1 and + if c<-fl2. Now 7rl(t) converges to zero
more slowly than 7r2(t) and it is easy to see that this information is also captured by
the demarcation points /31 and/32, which thus provide a measure by which to rank
the rates at which 7rl(t) and 7r2(t) converge to zero.

Motivated by this we define the recurrence orders for the states and transitions of
the Markov process, as follows.

DEFINITION 1. The order of recurrence of a state i X, denoted fl, is- if E qT"i(t) < +c,
t=O

2 e(t)cTri(t) --’Fox3 and Y’, e(t)Pzri(t)<+o3,
=o =o

:=

p ifp=max c->O: Y, e(t)CTr(t)=+

/3 p ifp sup c >0:

t=0

We say a state is transient if fli =-oo; otherwise we say the state is recurrent.
In a similar manner we define the order of recurrence of the transition from o j.
DEFINITION 2. The order of recurrence of the transition from state to j, denoted

1, is - if E 17"ij < +o,
t=O

"2 e(t)%ro(t)=+ and e(t)PTrij(t)<+o3,
=0 =0

:=

p ifp=max c>-O: e(t)%rij(t)=+o

/3i p- ifp sup c>O

Again, we say the transition from to j is transient if -ee; otherwise we say
the transition is recurrent.
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It is also convenient to define p, the order of cooling of {e(t)}, as follows.
DEFINITION 3. The order of the cooling schedule {e(t)}, denoted p, is defined as

p:=p

P

The relationship between fl, fli, and p is given in the following lemma. It will
be convenient in the sequel to define the operation "" as follows:

a b :_
-co if a b,
a-b, if a>-_b.

LEMMA 1. 0 and fl are related by

[ij O Vij for all i, j X,

if e(t)<+,
t=0

ifp=sup c->O: 2 e(t)c=+oe and
=o =o

ifp=max c>__O: e(t)=+oe

max/i-- P.
ix

(7)
while p and i are related by

(8)

Proof. Ifj Ni, then it immediately follows that/i -oo. Ifj Ni, then application
of the Chapman-Kolmogorov equation

"rrij Tr pij

cije( t) vTri( t),

gives the first assertion. Similarly, since

Z t(t) p: E Z 6(t)PTri(t),
t=0 iX t=0

the second assertion also follows. [3

Knowledge of the/3i’s provides useful information about the asymptotic properties
of {x(t)}. The following theorem shows that the time-inhomogeneous Markov chain
converges in a Cesaro sense to the set of states having the largest orders of recurrence.

THEOREM 1. Let be the set of states with the largest orders of recurrence:

Then

J//:= {i 6 X" fli=p}.

1 N

(9) lim sup E Pr (x(t) ) 1.
Ncx3 1 t=l

Proof. Let us first consider the set defined by

J/ ifp=0,-orp-forsomep,p>0,
t_J{iX’/3i=p-} ifp=pforsomep,p>0.

Note that if p p, then may be slightly larger than since it includes states, if
any, whose recurrence orders are p-; otherwise it is the same as . We will first show
that

1
(10) lim sup Y Pr (x(t) ) 1.

N- t=l
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Consider first the case p > 0. Clearly, p =p or p- for some p , where p > 0. Let

Q {q " for some j//c, fli q or q-}.

Let 0 infq o (P q), where inf +. Let

0 if0<+c,
y=

p if 0 =+.

Consider the states in c and observe that for sufficiently small 6 > 0,

Pr(x(t)6l)e(t)P-V+a<+o,
t=0

since the state space is finite. An application of Kronecker’s Lemma (see Chung [6])
gives

N

lim e(N) P-V+a Z Pr (x(t) ,/c) 0;
Ncx3 t=l

that is,

(11)
N

lim (Ne(N) P-r+)
1
Z Pr (x(t) J/c) O.

Ncx " t=l

Now we claim that

(12) lim sup Ne(N) P-v+a > O.
N:

Suppose not. Then,

lim Ne(N) P-v+ O,
Ncx

and so

1INlim
N-oo e(N) p-r+

In particular, we have

u- e(N)P-r+a]

implying that

(1/N) (p-a)/(p-3’+a)

lim +c.
u--, e(N) p-

However, since ,0 e(t) p-= +cx3, this would imply that

N-1
+c for all small 6 > O,

which is false. Hence, (12) holds and from (11) we deduce that

(13) liminf
1 N

u-, " E Pr(x(t)J//) =0.
t=l
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But since
NN 1 Pr(x(t)c) 1,

1
Pr(x(t)d/l)+_t=lN t=l

the result (10) follows.
Now turn to the case p =0. Then clearly, Y,o Pr (x(t) dc)< +, and so (13)

is again true and the result (10) follows.
If p =-, the result (10) is trivial.
To proceed from (10) to (9), it is clearly sufficient to show that in the case p =p

for some p , p > 0,

lim Pr (x(t) { i’/3i p-}) 0.
t---

This involves some results on the structure of the recurrence orders and is demonstrated
in Lemma 5. I-1

Thus, knowledge of the recurrence orders {/3i} provides knowledge about the
asymptotic properties of the time-inhomogeneous Markov chain. In fact, as the reader
may see from Example 1, the recurrence orders also provide information about the
rates of convergence.

Our goal therefore is to determine the recurrence orders, and critical to that will
be the following result established in [7], which shows that there is a fundamental
balance of recurrence orders across every edge-cut in the graph of the Markov chain.

THEOREM 2 (Order Balance).
(14) max /3 max for every A

_
X.

iA,jA iA,jA

Equivalently, using the "" notation and (7),

(15) max fli V max Vi for every A
_
X.

iA,jA iA,jaA

Proof. We sketch the proof; see [7] for the precise proof. Choose A
_
X and note

that if {z(n)}=> is the sequence of random times at which the process moves from A
to A, while {tr(n)}=>l is the sequence of random times at which the process moves
from A back to A, then we have

z(n) < tr(n) < z(n + 1),
where we have assumed, without loss of generality, that x(0) A to give z(1)< tr(1).
Using this it follows from (5) that

Y e(t)I(x(t)a,x(t+l)a) Y e(tr(n))
t=O n=l

<- MC E e(z(n))

=MC Z e(t)CI(x(t)a,x(t+l) ac)
t=O

=MC E e(z(n+l))c+Mce(r(1))
n=l

+c

<= M2 y, e(cr(n)) + MZe(O)
n=l

+cx3

=M2c , e(t)I(x(t)AC, x(t+l)A)+M2ce(O)C.
t=O



1446 D.P. CONNORS AND P. R. KUMAR

By taking expected values and using the Monotone Convergence Theorem, it follows
that

e(t) 7rij(t) < +o:) e(t) "a’ij(t) < +o.
:0 iA,jA =0 iAC,jA

Hence both sides above converge or diverge together. Now if c is so large that every
term on the left-hand side with e A, j e A converges, then clearly c is also so large
that every term on the right-hand side converges. Thus,

c> max flip--c> max fl.
iA,jA iA,jA

Likewise if c is small enough so that some term on the left-hand side diverges, then
c is also small enough so that some term on the right-hand side diverges, and so

cN max cN max .
iaA,.jaA iA,jA

Note that through Theorems 1 and 2 we have conveed the problem of determining
the asymptotic propeies of the time-inhomogeneous Markov chain into an algebraic
problem of solving the balance equations (14). Note that (14) provides a maximum
of 2x equations, one for each edgecut.

3. The moflifie balance equations. Note that if (ill, ,’’’, fllxl) satisfy (15),
then (l-a,-a,"’,lxl-a) also satisfy (15) for every a, i.e., the solution set is
translation invariant. Thus (8), which fixes the maximum of the fl’s, also needs to be
taken into account.

However, (15), (8) together can still possess nonunique solutions for suciently
small values of p. In this section, we will show how we can obtain one solution to
(15), (8); in the next section we show how to obtain all solutions.

In cases where there is a unique solution to the order halance equations, the
algorithm of this section gives an O(]X]3) algorithm for determining it, compared to
the algorithm of 4 for obtaining all solutions (in the nonunique case), which is
exponential in [X[. Also, the results of this section are used in the analysis of the
simulated annealing algorithm in 5.

It is convenient to consider the following "modified" balance equations that, as
we show in the sequel, always possess a unique solution. Given p 0 and 0 for
i, j 1, , [X[ with j, consider the problem of determining h := (1, , h lxl) such
that

(16)

and

(17)

max A,-V0= max A-V, for everyA_{1,...,[XI},
iA,jA iA,jA

max h ]9.

We call (16), (17) the "modified" balance equations. Observe that (16) differs from
(15) in that the operation "-" is used in place of "." Also, the h’s can be negative
in (16).

We have introduced the modified balance equations to avoid the difficulties in
handling - that occur under the "" operation.

THEOREM 3 (Properties ofOrder Balance and Modified Balance Equations). (1) If
h satisfies the modified balance equations for a given p and V, then fl defined by

(18) [3i :-- ,i@O

satisfies the order balance equations (15), (8) for the given p and V..
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(2) For every given p and V, there exists a unique solution A to the modified balance
equations. Moreover, the solutions for different values of p are translates of each other.

(3) Whenever p is large enough, there exists a unique solution to the order balance
equations (15), (8). These unique solutions are all translates of the solutions for the
modified balance equations.

Proof. Suppose that for a fixed p and V, there exist two distinct solutions fl and
/ to the order balance equations. Define

A := {k X: [3k f3k}.

Then we claim that

and

max /3, ) V/j max flj @ V, -c
iA,jA iA,jA

max /i V/ max /3 V, -c.
iA,jA iA,jA

We need only consider the case where A # and A # X (otherwise the claim is trivially
true), and let us suppose to the contrary that both expressions are nonnegative. Then

max ,Vo= max ,> max ,= max , max ,,
iA,jA iA,jA iA,jA iA,jA iA,jA

which is a contradiction. The other two cases follow similarly, and so the claim is true.
This shows that solutions to the order balance equations do not differ arbitrarily;
specifically, all the arcs that separate A from A are transient.

Hence in particular, whenever we can show that

(19) fl, 0 for all i, with and < +,
there can only exist one solution to the order balance equations for the given (p, V).

Now we show that this is indeed the case when p is large, which will prove the
first pa of the asseion (3) above. Specifically, suppose now that p 2 .: v,<+ .

Let io e X be a state with fl p. For arbitrary s e X, let (i* io, il, , ip s) be
a path from i* to s such that _,. <+ for k 1,..., p and ik i for k m. Let
l(i) arg min E. With A {ik} and applying the Order Balance Theorem 2, it is easy
to see that

(20) fl, ,, fl i(, max (, E.).
j ik

To prove that fl max,: v, E < +, it is sucient to show that for k 1,..., p,
along the path from i* to s,

(21) #, - Eo.,, + E,..,,- E,.,+ E.., E_,., +
since fl p 2 .: v,.<+ .

We prove (21) by induction. For k 1, from (20) we see that

Clearly, the left-hand side of (22) is nonnegative, implying that the right-hand side is
also nonnegative. Thus, we can replace "" with "-" giving

Now assume (21) holds for k-1. From (20) we have
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The left-hand side of (24) is nonnegative and so

which completes the induction proof. This proves (19), and therefore.there exists a
unique solution whenever p is large enough, which is the first half of assertion (3) above.

Moreover, for the large enough p specified earlier, due to (19), we have fl @- V. Hence {i} itself satisfies the modified balance equations. In fact, this solution
is unique to the modified balance equations since, if h is any other solution, then we
can prove in a fashion similar to the above, that h for all j N, thus yielding
that h@ h- , which in turn proves that h is yet another solution to the order
balance equations, which is a contradiction.

Hence, at least for large enough values of p we have proved the existence of a
unique solution to the modified balance equations. However, it is easy to see that if
h satisfies the modified equations for a given (p, V), then h- satisfies the modified
balance equations for (p- , V), thus proving the existence of a unique solution to
the modified balance equations for all (p, V). This proves the asseion (2) as well as
the second half of the assertion (3) above.

Now we turn to the proof of assertion (1) above. Let A be arbitrary, and let {h}
be the solution of the modified balance equations, and define fl := h@0. Suppose

max h-<O.
iA,jA

Then by (16) we also have

max hj Vii < 0.
iA,jaA

However, then for each 6 A and j Ac,

Hence,

and so

[3, <-_ A, < Vj and flj <- Aj < Vj,.

[3i @ Vj -oo and fly @ V o

max /3i V max /3 Vi,
iA,jA iA,jA

thus satisfying the original order balance equations. If, however,

max
iA,jA

then by (16)

max - V=6->O.
iA,jA

Suppose that (il, jl) A x A and (i2, j_) A x A are such that

Then since

hi,-- V/I,Jl+I >--0 and Aj:= Vj2,i2"+’iO
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we have

and /322 h22
and so

Also, since hk k, we have

max /3, V,j_-< max hi @ Y/j
iA,jA iA,jA

_-< max
iA,jA

hi,- Vi,,j

Similarly, maxi,2./3 Vi =/32 V2,i, and so

max /,(R) v, max /
ieA,jeA ieA,jeA

This proves the assertion (1) and the theorem.
Remark 1. It is interesting to note that the existence of a solution to the modified

balance equations has been proved by relying on the existence of a solution to the
order balance equations, which in turn is guaranteed by the probabilistic arguments
of Theorem 2. A separate independent constructive proof of existence, which does not
use probabilistic arguments, can be found in [8].

We now give an algorithm for determining the unique solution to the modified
balance equations. An illustrative example is convenient.

Example 2. Let p 5 and

4 3 1

V=[V/2]=
6 r 3 7..
6 2 r
2 6 5

Our goal is to determine h (hi,""", h4), which satisfies (16), (17). We shall refer to

hi- Vo as the h-flow along the arc (i, j). Consider first the modified balance equation
for the edge cut A {i},

(25) max h V/j--max hj- Vji.
ji ji

Observe that the left-hand side of (25) can be written as

hi min Vi2,
j#i

and so the arc of maximum h-flow out of A {i} is the arc (i, l(i)) where

(i) arg min V2.
ji

(Note that l(i) may not be unique.)
We now construct the directed graph G1 V1, El), with V1 {{1}," , {4}} and

(i, j) E1 if j l(i). See Fig. 1.
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FIG. 1. The graph Gt of Example 2.

Note that G1 has two directed cycles {1} {4} {1} and {2} {3} {2}. Let us
examine the h-flows on the directed cycle { 1 } {4} { 1 }. Since A V14 is the maximum
h-flow out of {1}, it is not smaller than any h-flow into {1}, and so in particular

/ V14/4- V41o
Also, A4- V41 is the maximum A-flow out of {4} and so

A4 V41 A V14.
We thus observe that the A-flows along the directed cycle { 1} {4} { 1} are equal; that
is,

/1- Via "-/4- V41,

and so

(26) AI-1 A4-2.
Thus, we have determined the difference between )tl and A4o

In exactly the same way, from the directed cycle {2} {3} {2} we see that

(27) A2-3 =A3-2,
thus determining the difference between A2 and ’3"

At the next step of the algorithm, consider the modified balance equations for the
edge cut (A,Ac) where A={1,4} and AC-{2,3}. Observe that for A-{1,4}, the
left-hand side of the modified balance equation

(28)

can be written as

that is,

max /i- V/j max A- Vji
iA,jA ieA,jA

max (A,- V12 "’1-- El3, 4- V42, ’4-- V43);

max (A1-4, A-3, A4--6 A4--5).
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We have previously determined that A4-A1--1, and so the maximum is achieved by
A V13 A 3, and the arc of maximum A-flow out of (1, 4 is the arc (1, 3).

In a similar fashion, examining the right-hand side of the modified balance
equation (28), we determine that the maximum A-flow out of (2, 3} is achieved by
A V34-- A3-4, and so the arc of maximum A-flow out of (2, 3 is (3, 4).

We now consider the directed graph G2=(V2, E2), with V2= (1, 4}, (2, 3 and
E-{(1, 3), (3, 4)} shown in Fig. 2. Note that E2 is the set of the arcs of maximum
A-flow out of the edge cuts in V.

X3- ’34
FIG. 2. The graph G of Example 2.

Observe that G2 has a directed cycle {1, 4} {2, 3} {1, 4}. Now note that A1- V3
is the maximum A-flow out of {1, 4} and A3- V34 is the maximum A-flow out of {2, 3}
and so

that is,

(29)

A V13--A3- V34;

A1--3-- A3--4.
Combining (26), (27), and (29), we obtain

(30) A-3=AE-5=Aa-4=A4-4.
We now know the pairwise differences between all of the Ai’s, and so we do not need
to consider any additional edge cuts. To fix the values of {Ai}, we use the value of p
to give

max hi p 5.
iX

Since, from (30), A is the largest, we set A
modified balance equations:

5. We thus obtain the solution to the

A=3, A2--5 A3-- A4"- 4.

The principal idea used to solve the modified balance equations in Example 2 is
summarized in the following lemma.

LEMMA 2. (1) Given A Xfor which we know the pairwise differences between all
the Ai’s for states in A, we can determine the arc of maximum A-flow out ofA (without
knowing the A’s themselves).

(2) Let A, A2," ", Ap be a partition of X and suppose for each Ak we know all
the pairwise differences between the A’s for all states in Ak. Let (ik, jk) denote the arc

of maximum A-flow out of Ak. Construct the directed graph G- (V, E), with V=
{A1,"" ,Ap} and E={(il,jl),’’’,(ip, jp)}. There exists a directed cycle on G. If
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{An,,"" ", An,,,} is the list of vertices, in order, along the directed cycle, then the h-flow
on the directed cycle is constant; that is,

h V ,,,, =h,, V
and we can determine the pairwise differences between the alues of the h’s for all the
states in A

Proofi (1) Without loss of generality, suppose A is the set of states {1, 2, , r}.
Let a := h- hg. (We know the a’s.) Then

max A-E= max h-a-V0=h- min (a+).
iA,jaA iA,jA iA,jA

Thus, the arc

(i*, j*) := arg min (i + j)
iaA,jA

is an arc of maximum h-flow out of A.
(2) The out-degree of each vertex of G is at least one, and so from elementary

graph theory it follows that G has a directed cycle. Suppose

A, A A,,, An,
is such a directed cycle. Then we have the situation shown in Fig. 3. Now (i,, j) is
the arc of maximum h-flow out of A,, and so the h-flow on this arc is not less than
the h-flow of any arc into A. In particular,

>h -,, fork=l,...,m,Ai,, ., ,,,k_ ,J,,_

where, for convenience, we implicitly identify i with i,,, and Jo with j,,,. Thus,

?kin Jn

X/n

FIG. 3. A directed cycle of maximum h-flows in Lemma 3.
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Therefore, the A-flow on the directed cycle is a constant:

(31) A,n V/n ,J,,1--" Ain Vi,,2,Jn A into g/ j,

For each Ank in the directed cycle,.we know the pairwise differences between the hi’s
for states in Ank. Using (31) we can now easily determine the pairwise differences

’s for states in U km=l A,, r]between all the Ai
The algorithm for solving the modified balance equations is outlined below.

ALGORITHM TO SOLVE MODIFIED BALANCE EQUATIONS.
Step 1. Set A {i} for i= 1,..., ]X I. We call the Ak’s coalitions at step k. Note

that for every i, the pairwise differences between the h-values for all states
in A are (trivially) known. Set A := {AI, A,..., Axl}. Let N(1)= [All =: the
number of elements in the set A1= number of coalitions at Step 1.

Step k. Given Ak :-" {A, Ak2, Aku(k)}, where for each A Ak the pairwise
differences between all of the h’s for i’s in A are known, construct Ak+l as
follows. Using Lemma 2, identify the directed cycles in the graph. (There
exists at least one directed cycle.) The elements of Ak+l consist of the directed
cycles identified in the graph, and those A Ak that are not in any directed

Ak k kcycle. (More precisely, if{ n,, An2, , An,.} is a directed cycle, then U =1

is an element ofAk+.) Note that for everyA+1 Ak+l, the pairwise differences
between all of the Ai’s for i’s in A+1 are known. Furthermore, if N(k) := lAg[,
then S(k+ 1)< N(k).

Last Step. Stop when N(k)= 1. Note that the pairwise differences between all
A’s are known, and the A satisfying the modified balance equations can be
obtained by a translation by using the given value of p.

4. An algorithm to obtain all solutions of the order balance equations. We now
characterize all solutions to theorder balance equations, and describe an algorithm
for generating all these solutions. To do so we will use the coalitions {Ak} generated
by the algorithm of the preceding section. Let us call A- V0 and fli fl@ Vj as the
A-flow and -flow, respectively, along the arc (i, j).

LEMMA 3. (1) If (i, j) is an arc of maximum A-flow out ofA, then it is also an
arc of maximum -flow out ofa.

(2) If {Ak ", Akp} is a directed cycle obtained at step k, then the -flow along the
directed cycle is a constant.

(3) If the -flow along the directed cycle {Ak, Akp} obtained at step k is -oe,
then the -flow along any directed cycle obtained at step n > k containing A’ U P=I Ak

as a node, is also -oo.
(4) If the -flow along the directed cycle {Ak, Akp} obtained at step k is >=0,

then for every i,j Ak+l := UP,,,=I Akin there exists a path (i io, il, , iq =j) such that
i,, A/k+l and .,+, >_- 0 for 0<= m <- q 1.

Proof We will first prove (1)-(3) by induction. Consider k 1. Since A/k is then
just a singleton, say Ak {/}, an arc (l, m) of maximum A-flow out of {1} is just one
for which V/,, minn Vn. Clearly this is also an arc for which/3@ Vm min,/3@ V.
Now suppose that {Ak, , Apk} is a directed cycle of such maximum flows. Then an
application of the Order Balance Theorem to each A/k shows that fll [23 /pl.
Suppose now that fl=/323 flp =-oe. Then if (l, m) is an arc of maximum
/?-flow out of UP= Ak, clearly film <- [31.1+1 ---oo. Thus the assertion is true for k 1.

Now suppose that the assertion is true for 1, 2,..., k-1. Consider a coalition
A. If the fl-flow along some directed cycle {A’,..., Aq} at some step n < k with
A/k U q=l A’ was -oe, then clearly the maximum fl-flow out of A/k is -oo, and so any
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arc out of Ak is an arc of maximum fl-flow. On the other hand if the fl-flow along the
directed cycle {A’ Aq} is =0, then the differences between the fli’s for states
A are the same as the differences between the Ai’s, i.e.,

(32) fl,- flj A,- Aj for all i, j e Atk

and so the arc of maximum A-flow out from Ak is also an arc of maximum/3-flow out
from A/k. Moreover, if {Alk, Apk} is a directed cycle at step k, then an application
of the Order Balance Theorem to each Ak shows that the -flow along the directed
cycle is a constant. Finally, if this /3-flow is -ee, suppose that (r, m) is a maximum
flow arc out of U/’=1 A/k. Suppose that r A. Then clearly maxiAki,jA ij => rm and
so firm =--O0. This completes the induction and the proof.

Finally, to see (4), note first that from (1), (2), and (3), the fl-flow along any
directed cycles contained within Ak+l is =>0. Since Ak+l is formed as the union of such
directed cycles, the result follows. 13

Motivated by (3) and (4) above, we introduce the following definition.
DEFINITION 4. We shall say that is recurrently connected to j if there exists a

path (i io, il, iq =j) with fli >- 0 for 0_-< m _-< q 1.
We shall say that a set A c__ X is a recurrently connected set if for every i, j e A and

k Ac, is recurrently connected to j but not to k.
From Lemma 3 it follows that recurrently connected sets are precisely those A’s

for which the fl-flow out of At is -oo, while the fl-flows along the directed cycles
contained within A are =>0. Note also that the recurrently connected sets form a
partition of X.

We now proceed to determine which sets are possible candidates for being
recurrently connected sets. Consider a typical candidate A+1. Let denote the/3-flow
on the cycle {A,...,Ap}, where At+I=ULA. Then if (i,,j) is the arc of
maximum flow out of A (and, by construction, into Am+l)modp), we must have

=/,,- v,, ,, =/,- v,, /, v,,,,,,->_ 0,
max /’/3-V0<0, max /3-<p.

iAkl+l,jff:A iaA

We will now attempt to determine whether there exist {/3" e Ak/} that satisfy these
conditions. Note that if this is not feasible, then A/k+l cannot be a recurrently connected
set.

Let (x, y) denote the arc of maximum fl-flow out of Atk+l. Then/3x < Vxy. Fix m
to be an arbitrarily chosen state from Atk/. Then for every state h e A/k/ we know the
value of (flh-/3m) from Lemma 3 above. Let us define

Then

-Cx + ,1- 1

giving an upper bound on .
We must also satisfy the constraint max+, N p, and so let

0 := arg max ’.
iA
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Then it is clear that flo >=maxiA fli. Thus,

P>=o
=t+0

=/i- ’i, + ’0

Y+ ,,,- ,,+ o,
and so

9-< p v, ,, + ’,, ’o =: m=,
giving yet another upper bound on . (Note. If A+I= {i}, then M1 =minj V and
M2 p.)

Any choice of from the interval

l(At+’) := [0, M,) f3 [0, Mz]

will allow assignments for the recurrence orders of states in A’+ consistent with the
assumption that the coalition A+ is a recurrently connected set. If I(A+) then
then there is no assignment, and so A+ is not a recurrently connected set.

We still need to determine the set of all recurrently connected sets. To do this we
construct a rooted tree having the coalitions produced by the general procedure as

k+l k k+l Ak)nodes, and having a directed edge from coalition Ap to Ar if Ap Hence,
the root of the tree is X, and its leaves are the singleton sets {1}, {2},. , {n}. Let Di
be the set of the leaves of the tree that are descendants of the node in the rooted tree.

We say that a set E of nodes is a proper cover if

and

U DA=X
Aa

Da N DA,= Q forA#A’.

Now the algorithm to determine all the solutions of (15), (8) proceeds as follows.
Let a set E := {A1, A2, Ak} be a proper cover. Now we will determine whether ..
can be a set of all recurrently connected sets, as follows. First we determine l)(A) for
every Aae =. (Note that if we guess X to be a recurrently connected set, then
fI(X) [0, M2], since the M1 upper bound is +oo because there is no maximal flow
out of X. Also, if we guess the singleton {i} to be a recurrently connected set, then
({i}) =-ooU ([0, M1)N [0, M2]). If any of the f(Aj)’s is empty, then the guess "a- is
not a feasible set of recurrently connected sets. If every I)(Aj) is nonempty, then let. :-sup F(A). If this "sup" is not attained, then we cannot assign p to any state in

A. If this "sup" is attained, then we determine for each such A whether, with the
choice of , there is a state/ e A with/30 p. If no such state exists for any A, then
again .. is not a feasible set of recurrently connected sets. Finally, if there exist such
Aj’s then let a(..) be the set of all such A’s. Now, the set of all solutions corresponding
to .. is obtained by picking, in turn, an Aj from ag(..), fixing its flow as o%, and choosing
all other ’s arbitrarily from the (A.i)’s. By checking every proper cover .., we thus
determine all solutions to the order balance equations, as the following theorem shows.

THEOREM 4. All solutions to the order balance equations can be generated by using
the method described above.
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Proof Suppose /3 satisfies the order balance equations. Then for this solution
determine the set " of recurrently connected sets. This set must be a proper cover.
For this set E, there must be some A with corresponding /3-flow equal . Now
determine the/3-flows on the recurrently connected sets. We generate this solution/3
when we choose " as the set of recurrently connected sets, and A as the coalition
with maximum flow equal to , and assign the correct/3-flows on the other recurrently
connected sets. [3

This algorithm takes an exponential in IXI number of steps, due to the necessity
of checking all proper covers. However, the complexity issue is not the primary concern
here, since the problem of asymptotic analysis of the stochastic process is not a priori
known to be a problem resolvable by a finite algorithm.

We illustrate the procedure for determining all solutions tO the order balance
equations.

Example 3. We construct all solutions to the order balance equations for Example
2 when p 4. See Fig. 4 for the rooted tree. We check the proper covers:

(1) {X}" f(X) is empty, so X cannot be a recurrently connected set.
(2) E {{1, 4}, {2, 3}}" Using the method described above we obtain

/1 O, 2 4, /33 3, 4 1 + a

where 1 _<- a < 3.
(3) E {{1, 4}, {2}, {3}}" maxix/3i < 4, a contradiction.
(4) E {{1}, {4}, {2, 3}}"

/3 3’, /32=4, /3 3, 4 "" 0
where 3’ -o or 0 <_- 3’ < 1, and 0 - or 0 =< 0 < 2.

(5) E {{1}, {2}, {3}, {4}}: maxix/3 < 4, and so {{1}, {2}, {3}, {4}} is not a set of
recurrently connected sets.

FIG 4. The rooted tree of Example 3.

We have checked all proper covers. Hence the set of all solutions is {(a, 4, 3, 1 + a): 1 -<_

a<3}tO{(y, 4,3, 0): 3"=-ee orO<=3"<l and 0=-cor0_-_0<2}.
How can nonunique solutions to the order balance equations arise, and what is

the implication of such nonuniqueness? First let us consider the case where a unique
solution exists. Since such a solution is uniquely determined by the algorithm, it is
clear that the recurrence orders of the states, and thus the rates of convergence of the
transition probabilities, depend only on the V’s in the transition probabilities pu(t)=
cite(t) v’, and not on the proportionality constants {c0}. However, in the case of
nonunique solutions, the following example shows that the recurrence orders may even
depend on the proportionality constants {cij}.
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Example 4. Let X {1, 2, 3} and Vj max {0, j- i}. Let c13 c23 1, C31 1 c,
and c32 a, where a (0, 1). Set c0 =0 for all other i, j. See Fig. 5. Let the cooling
schedule be e(t)= 1/t. Then the complete set of order balance equations obtained by
using all edge cuts is:

]2@ V23--/3@ V32, #3@ 731-" #10 713,

max (#_@ V23 ,/1@ V13)=max (/3@ V32, #3@ V31),

with the maximum given by,

max #i-- 1.
iX

The assignments

#=1, /?=,, #3=-

satisfy the order balance equations for every y {-oe} U [0, 1). Thus any value of f12 < 1
gives a solution of the order balance equations.

However, a calculation that can be found in [8] shows that the correct order of
recurrence of state 2 is

Thus, the order ofrecurrence, and the rate ofconvergence ofthe probability Pr (x(t) 2)
to zero, depends on the proportionality constant c32 a involved.

Based on the above results, we obtain the following property of the orders of
recurrence of the states in a recurrently connected set.

LEMMA 4. Consider a recurrently connected set A.
(1) Ifi for some A, then #j for all j A.
(2) Iffor some A, i pZ, for some Pi :, then for every j A, flj pf for some

p.
Proof The proof follows immediately from (32). fq

P23(t)

(t) (tj

P31 (t)

)
FIG. 5. The Markov process of Example 4.



1458 D.P. CONNORS AND P. R. KUMAR

Thus all recurrence orders in a recurrently connected set are of the same type,
i.e., either they are all real numbers Pi, or they are all of the type p-, or they are all- (see Definition 1).

This gives us the following lemma, which completes the proof of Theorem 1.
LEMMA 5. Suppose the rate of cooling is p p 5, with p > 0, i.e., the maximum is

achieved in Definition 3. If there is a state Xfor which fli p-, then limt_ Pr (x(t)
i)=0.

Proof. Suppose A is the recurrently connected class to which belongs. Since all
arcs between recurrently connected sets are transient, it follows from the Borel-Cantelli
Lemma that along almost every sample path w there can only be a finite number of
transitions between different recurrently connected sets. Hence for almost every
{x(t, w)} converges to some recurrently connected set. Hence the limit lim,_oo Pr (x(t)
A) exists. Now we show that this limit is zero. Suppose not, i.e., suppose
lim,_Y;A r;(t)= 3 >0. Then it follows that Y,t=oe(t)PY;,A r;(t)= +oO. Hence for
some j A,/3 p. But then by Lemma 4,/3i , which gives a contradiction.

5. Weak reversibility and simulated annealing. We now turn our attention to the
special class of Markov chains arising from the method of optimization by simulated
annealing. Recall that the Markov chains in this class satisfy (1)-(6) with the special
choice of

V0 := max {0, V- W/}.

In [7] it was shown that under the "symmetric neighborhood" assumption, co > 0 if
and only if @ > 0, the orders of recurrence satisfy the following detailed order balance:

fl; flj for every i, j 6 X.

It is easy to see that the detailed order balance above is equivalent to the sum of the
order of recurrence of a state and its cost being constant on recurrently connected sets.

In this section we will show that this constancy property of the sum of the
recurrence order and cost on recurrently connected sets continues to hold under the
much weaker assumption of "weak reversibility" introduced by Hajek in [1].

DEFINITION 5. A state is said to be reachable from state j if there is a sequence
of states j io, ia, , ip such that Ck,k+ > 0 for 0 <= k <= p 1.

DEFINITION 6. A state is reachable at height H from j if there is a path from j
to as in Definition 5 for which Wk _--< H for 0-<_ k-< p.

ASSUMPTION 1(Weak Reversibility). For any real number H and any two states
and j, is reachable at height H from j if and only ifj is reachable at height H from i.

In what follows we assume weak reversibility.
THEOREM 5 (The Potential Theorem). Under Assumption 1, for every recurrently

connected set A there exists a constant a(A) such that i + Wi--a(A) for every A.
Proof We fix our attention on a particular recurrently connected set A. Assume

to the contrary that A can be partitioned into equipotential sets Ca, C2,"" ", Cr such
that fli + W a (Ck) for every Ck, where the a (Ck)’S are distinct constants. We will
show that there is only one equipotential set, namely, A.

For each equipotential set G, determine an arc of maximum/3-flow out of the
set. From Lemma 2, there exists a directed cycle of these equipotential sets, and the
fl-flow along the directed cycle is constant. Moreover, from Lemma 3, since A is a
recurrently connected set, these/3-flows are all nonnegative. Without loss of generality,
label the sets along the directed cycle Ca, C2," ", Cp such that the constant a(Ca)
associated with the set C1 is smallest. Let (is, is) be the arc of maximum fl-flow out
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of the set C.. By construction, is Cs and j. C(l+s)mod p and

[3i, ,Jl [i,j2 ip,jp O.

Knowing that/3i,,j, => 0 we consider the two cases: (1) W, _-> W,; or (2) W, < W,.
If case (1) is true then since jl is reachable at height W, from il, by the weak

reversibility assumption there exists a path from jl back to il that does not go through
any states with costs larger than W,. Let (k, l) be the particular arc of that path that
exits C2. Note that

il ,Jl /i2,J2

because i2,J2 is the arc ofmaximum fl-flow out of C2 If flkl >- 0 then flk flk + Wk Wl.
If kl 0 then fig + Wk- W < 0. In either case, since fli,,j, >- O, we have that

Now by the weak reversibility assumption, , , and so

,+ , + w;
that is,

(c,)->_ (c),

which is a contradiction.
If case (2) is true, then there is a path from jl to i that does not pass through

any states with costs larger than il. Again, identify the particular arc of that path that
exits C2 as (k, l). Note that

Using similar arguments as in case (1), since/3i, _-> 0 we have fl, >= k + Wk- Wl. Now
by the weak reversibility assumption W/, => Wt, and so a(C)=> a(C2), which is again
a contradiction.

Hence there is only one equipotential set, A. Vt
Since W +/3i a(A) for all i A, where A is a recurrently connected set, we

obtain the following necessary and sufficient condition for simulated annealing to hit
a global minimum with probability one from all states i X.

Let M := {i X: W <= W for all j 6 X} be the set of global minima. We now have
the following definition due to [1].

DEFINITION 7. Let d* be the smallest number with the property that for every
X there exists a path (i io, , ip) with Cik,ik+ > 0 for 0--< k _-< p 1 and ending in

a minimizer ip M such that

W-W/=<d* fork=l,...,p.

We shall call d* the depth of the minimization problem.
THEOREM 6 (Necessary and Sufficient Condition to Hit Global Minimum With

Probability One). Suppose that weak reversibility holds.
(1) If t= e(t)d*= +C), then for every initial condition x(O) X,

1
limsup- Pr (x( t) M) l,
Ncx t=l

and the global minimum is hit with probability one.
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(2) If t= e( t) d +oo, then there exists an initial condition x(O) Xfor which

Pr (x( t) MC for all t=> 1)>0.

Proof The proof is the same as in Theorem (4.6) in [7] except that if (i=
io,"’, ip =j) is a path from toj with Cik,ik+,>0 and W/k- W=<y for l<-_k<-_p, then
instead of using the reversed path (j= ip,..., io--i) given by the assumption of
symmetric neighborhoods, we use the path (j= lo,’", lq i) with Clk, lk+,>O and
W/k V-_< y for 1 =< k _-< q, guaranteed by the weak reversibility assumption.

The same condition Y= e(t)d*= c has been shown earlier by Hajek [1] to be
necessary and sufficient for lim_ Pr (x(t) M) 1, i.e., for convergence in probability.
Thus while result (1) above is weaker than his, since it involves Cesaro as opposed to
regular convergence, the result (2) is a stronger sample path result.

The above result has been proved earlier in [7] under the stronger assumption of
symmetric neighborhoods, c0 > 0<=> cji > 0. Moreover, under this assumption Connors
and Kumar [7] have proved a detailed balance result that we can obtain as a corollary
of Theorem 5, as we show below.

COROLLARY 1 (Detailed Balance). Under the symmetric neighborhood assumption,

for every i, j X.

Proof If and j are not neighbors, then/3 [3ji---oo.
If and j are neighbors and R and j 6 T, where R is the set of recurrent states

and T is the set of transient states, then

and so

[3jk =--00 for all k

-oo max/3k max/3k >--/3j,
kj kj

showing that flj flji -c. A similar argument holds if T and j R.
Finally, if and j are neighbors and i, j R, without loss of generality let us

assume that . Then j O, and so and j belong to a common recurrently
connected set. Hence by Theorem 5, fl+ =j+. Since flij=fl and flj,-
j +-, it follows that flj flj.

Note that by the above results, if.the order of recurrence of even one state in a
connected component is known, then the orders ofrecurrence for all the states belonging
to the connected component are determined. However, as Example 4 shows, it is not
always possible to determine the order of recurrence of even one state in a connected
component from the order balance equations alone. In that example, the connected
components of recurrent states are the sets {1} and {2}, and the detailed balance
equations do not determine the order of recurrence fl2 ofthe single state in the connected
component {2}. The reason for this inadequacy, as mentioned earlier in Example 4, is
that the orders of recurrence do depend on the propoionality constants c involved
in the transition probabilities. In any case, the fl-flows do satisfy Corollary 1.

6. Conclusions. The notion of order of recurrence provides a novel approach for
analyzing the class of Markov chains whose transition probabilities are proportional
to powers of a time-varying parameter e(t). These recurrence orders satisfy a set of
balance equations, and the Markov chain converges in a Cesaro sense to the set of
states with the largest recurrence orders. We have given an algorithm for generating
a solution to the order balance equations and have also provided a method for
characterizing all solutions to these equations. The algebraic methods presented in this
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paper for solving the order balance equations are not always sufficient for determining
the recurrence orders. In some situations where nonunique solutions exist, the orders
of recurrence can depend on the proportionality constants involved in the transition
probabilities, and not just on their orders of magnitude. This problem remains an open
issue. The method of optimization by simulated annealing falls within the framework
of this class of Markov chains. We have shown that if the Markov process is weakly
reversible, then the sum of the recurrence order and the cost are constants on each
sets of states connected by recurrent arcs. This allows us to determine the necessary
and sufficient conditions on the cooling rate for the optimization algorithm to hit a
global minimum with probability one from all initial states.
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Abstract. A robust stabilization problem in a state-space setting is treated. It is assumed that the states
are available for feedback. Using a fixed Lyapunov function approach (quadratic stability) it is shown that
an open loop stabilizability condition is equivalent to the existence of a stabilizing memoryless linear
state-feedback controller. As a consequence, it is shown that the existence of a quadratically stabilizing
nonlinear time-varying dynamic state-feedback controller implies the existence of a quadratically stabilizing
memoryless linear time-invariant state-feedback compensator.

Key words, robust stabilization, quadratic stability and stabilizability, control Lyapunov functions, H
control theory

AMS(MOS) subject classification. 93C35

1. Introduction. Consider the uncertain linear system
(;):

(11)
dx
d--- (t)= A(tS(t))x(t)+ B(tS(t))u(t) a.e.

where 8(t) is a vector of unknown parameters belonging to a compact set. In this
paper we will be particularly interested in the special case of "norm-bounded time-
varying uncertainty" given by

(1.2a)
dx
d--- t) Ax( t) + Bu( t) + Dw( t),

(1.2b) e(t) EIX(t) q- E2u( t),
(1.2c) w(t) A( t)e(t),
(1.2d) A(t)II.J:--{U[kxp’. IIUll_-<l) a.e. tl.

(For more precise and detailed descriptions, see 2 and 3.) Uncertain linear systems
of the form (1.2) have been investigated in [11], [15], [16], [18], and [23]. In this
paper we will explore the problem of robust stabilization of the uncertain system (E,u)
using state feedback. There are two somewhat ditterent but related approaches for
studying this problem: (a) using the small gain theorem in combination with H
control theory based synthesis procedures, and (b) using synthesis methods based on
quadratic Lyapunov functions also known as quadratic stabilization theory. In both
approaches, it is assumed that a linear time-invariant controller is to be designed.
Under the assumption that a linear time-invariant controller is to be designed, it has
been shown in [11] that these two apparently unrelated techniques are actually
equivalent. It also has been shown how a stabilizing compensator can be obtained by
solving an algebraic Riccati equation. Thus, under the assumption of linear time-
invariant (dynamic) state feedback, the problem of quadratic stabilization has been
completely resolved.
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There is, however, no compelling reason to restrict our attention to linear time-
invariant controllers. In fact, Petersen [14] gives an example of an uncertain system
of the form (1.1) that can be quadratically stabilized by nonlinear state-feedback but
for which there does not exist a stabilizing linear time-invariant state-feedback. On
the other hand, Hollot and Barmish [5] show that if the input matrix B in the system
(t.1) is fixed and known, then the system is quadratically stabilizable if and only if
there exists a stabilizing linear time-invariant controller. Also, Petersen and Barmish
[18] (for single input systems), and Petersen [16], show that if in (1.2) there is no
uncertainty in the state matrix A (i.e., E1- 0), the system is quadratically stabilizable
if and only if there exists a quadratically stabilizing linear time-invariant controller.
In view of Petersen’s example it is an interesting question whether for the uncertain
system (Enu) quadratic stabilizability implies the existence of a stabilizing linear
time-invariant controller. This open question was also mentioned in [23].

In this paper we take an "open loop" approach to the problem of quadratic
stabilization of the uncertain system (Eu) and, in particular, (En,). The concept of
"control Lyapunov function" is introduced as an open loop definition of quadratic
stabilizability. It is also a natural generalization, to the setting of uncertain systems,
of an elementary Lyapunov function characterization of the well-known concept of
stabilizability for finite-dimensional linear systems. Roughly speaking, for a positive
definite matrix P, the function v(x)- x’Px is called a control Lyapunov function if
for each x in R ", there exists a control input u (that may be a function of 3) such that
the derivative of v(x) along solutions to (1.1) is strictly negative. In 2 it is shown
that if the system (E) is quadratically stabilizable using nonlinear time-varying control-
lers, then it admits a control Lyapunov function. Of course, this last fact also applies
to the uncertain system (E,u).

The main result of this paper shows that the uncertain system (1.2) admits a control
Lyapunov function if and only if there exists a quadratically stabilizing linear titne-
intariant controller of the form u Kx. A consequence of this approach using control
Lyapunov functions is that if there exists a nonlinear time-varying quadratically
stabilizing controller, then there exists a quadratically stabilizing controller of the
form u Kx.

These results fit nicely into a collection of recent results on the possible advantages
of nonlinear time-varying controllers over linear time-invariant controllers for robust
and H optimal control. See, for example, [4], [7], [9], [10], [12], [13], and [20]. In
particular, our main results are consistent with the (qualitative) Plant Uncertainty
Principle of Khargonekar and Poolla that in the present context states the following.
In robust control problemsfor linear time-intariant plants, nonlinear time-varying control-
lers yield no advantage over linear time-intariant controllers if the plant uncertainty is

unstructured. It will be intuitively obvious that the uncertainty considered in this paper
is unstructured.

As mentioned above, if we restrict our attention to linear time-invariant controllers,
then it is shown in [11] that the quadratic stabilization problem is mathematically
equivalent to the standard problem in H control theory. It should be noted that this
equivalence between quadratic stabilization and H optimization is not known to be
true if we consider nonlinear time-varying controllers. Thus, our result on the
equivalence between nonlinear time-varying controllers and linear time-invariant con-
trollers cannot be obtained as a special case of earlier results of Khargonekar and
Poolla [9] on such an equivalence for H optimal control.

The organization of this paper is as follows. In 2 we discuss the concept of
control Lyapunov functions. In 3 we give the main results of the paper. It turns out
that we need to prove a matrix-theoretic result (Theorem 3.15) to establish the main
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results of this paper. Roughly speaking, if the "discriminant" of a quadratic form
involving a self-adjoint (second-order) polynomial matrix is always negative, then for
some choice of the independent variable the resulting matrix is sign definite. This result
appears to be unknown in the matrix theory literature and generalizes a previous result
of Petersen and Hollot (see, for example, [19]).

The notation used through this paper is fairly standard. N(X) and N(X) are used
to denote the range and null spaces of a linear operator (matrix) X. The empty set is
denoted by , and if k is a positive integer, we use _k to represent the set {1, 2, , k}.
The identity matrix is denoted by L For a constant real matrix X, X’ denotes its
transpose and IIxII the maximum singular value of X. Moreover, if X is symmetric,
Am(X) and 1(X) denote its minimum and maximum eigenvalues, respectively.

2. Lyapunov functions and uncertain systems. Let Z denote a continuous-time linear
time-invariant system

(2.1) td---?" Ax( t) + Bu( t),

where x(t)En is the state vector, u(t)Em denotes the input vector, and A and B
are real matrices of compatible dimensions. Let PE"n be a symmetric positive
definite matrix. We will say that the function v(x) := x’Px is a control Lyapunovfunction
for the linear system (Z) if there exists a > 0 such that for each x En there exists u
(that may depend on x) rn such that

L(x) := x’(a’P + Pa)x + 2x’PBu <- Ilxll 2,

Note that L(x) is the derivative of v(x) subject to (2.1).
LZMMA 2.2. The system () admits a control Lyapunov function if and only if it is

stabilizable.
The proof of this result is left as an easy exercise for the reader. Thus, we may

regard a control Lyapunov function as a Lyapunov stability type characterization of
stabilizability. It can also be thought of as an open loop characterization of stabiliz-
ability, although such a characterization is not the most elementary. We would like to
remark that this characterization of stabilizability is not new. In fact, Sontag in [22]
has already used the notion of a control Lyapunov function as a characterization of
asymptotic controllability for nonlinear systems. The central aim of this paper is to
generalize Lemma 2.2 to uncertain systems.

The uncertain systems under consideration are described by state equations of
the form

(2.3) td---?(t)=A(6(t))x(t)+B(8(t))u(t) a.e. t[

where x(t) n is the state vector, u(t) rn denotes the input vector, and the functions
A(.), B(.) are assumed to be continuous real-valued matrix functions. The vector-
valued function 8(.) represents the parameter uncertainty (possibly time-varying) and
it is assumed to be a Lebesgue measurable function that satisfies 8(t)U (compact
set in k), where [ almost everywhere. In the sequel such a function 8(.) will be
called an admissible uncertainty.
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As before, let P Enn denote a positive definite matrix. We will say that the
function v(x):= x’Px is a control Lyapunov function for the uncertain system (Eu) if
there exists a > 0 such that for each pair (x, 6) En U there exists u (that may depend
on x and 6) Em such that

(2.4) t(x, 3) := x’(PA(6)+ A’(6)P)x + 2x’PB(6)u <= IIxll 2.
We regard the existence of a control Lyapunov function as an open loop notion

of stabilizability for the uncertain system (Xu). In the remainder of this section we
shall show that the existence of a control Lyapunov function is a necessary condition
for the quadratic stabilizability (see, for example, [1] and [17]) of (X,) by a nonlinear
time-varying dynamic state feedback.

For the stabilization of the uncertain system (Z,), we will consider a nonlinear
dynamic state-feedback controller (Zc) described by

(x):

dxc(2.5a)
dt

(t) =f(x(t), xc(t), t),

(2.5b) u(t) h(x( t), x( t), t)
where , x(t) q denotes the state of the compensator, h(x, x, t) ’,f(x, x, t)
q, and the functions f(.) and h(.) are such that (2.5) is a well-defined dynamical
system. Note that the closed loop system (Ya) obtained from the feedback interconnec-
tion of the uncertain system (X,) and the compensator (X) can be described by the
following equations:

(X):
dz

(2.6a) d(t)=F(t)z(t)+G(t)p(z(t),t) a.e. t6

where z(t) "+q denotes the composite state [x’(t) x’(t)]’, and

(2.6b) F(t):=[A((t)) 0]0 0

(2.6c) G(t):=[B((t)) 0]0 I

[h(x(t),Xc(t),t)](2.6d) p(z, t):=
lf(x(t), x(t), t)

The stability of the closed loop system (Xt) will be studied using Lyapunov
stability theory. We will consider the case where the Lyapunov function is quadratic.
More precisely, we have the following definition (see also [1] and [17]).

The uncertain system (,) is said to be quadratically stabilizable if:
(i) There exists an integer q 0, a feedback control law p(.):R"+q x R __>[]m+q,

with p(O, t)=O for all teN, such that p(., t) is continuous and p(x, xc,.) is an
(essentially) bounded measurable function over ; and

(ii) A symmetric positive definite matrix P ,(n+q)x(n+q), and a constant a > O,
such that the following condition is satisfied. Given any admissible uncertainty 3(.),
the Lyapunov derivative, corresponding to the closed loop system (Zct) and the
Lyapunov function z’Pz, satisfies the inequality

(2.7) L(z, t):= z’(Pf(t)+f’(t)P)z+2z’Pa(t)p(z, t)-<-llzl[ a.e. t6[,

and for all z n+q.
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Finally, suppose that the system (Eu) is quadratically stabilizable and, in addition,
the stabilizing control law can be chosen to be u(t)= Kx(t), for some real matrix K;
then, (Eu) is said to be quadratically stabilizable via (memoryless) time-invariant linear
control.

Note that if the uncertain system (E) is quadratically stabilizable, then z’Pz is a
Lyapunov function for the closed loop system (2.6). As is well known, given any to
any initial condition Z(to) Zo, and an admissible uncertainty 8(.), there exists tl > to
such that (2.6a) admits a unique solution on to, tl], and such a solution is continuable
over [to, c). Moreover, in the view of (2.7), the equilibrium point z=0 will be
uniformly asymptotically stable in the large (see, for example, [1] and [17]).

Now we are ready to show the connection between the control Lyapunov function
concept and the notion of quadratic stabilizability.

PROPOSITION 2.8. Consider the uncertain system (,) defined by (2.3). If (,u) is

quadratically stabilizable, then (,) admits a control Lyapunov function.
Proof Suppose that the system (;,) is quadratically stabilizable. Then, there exists

an integer q >_-0, a control law p(.)’N"+q x N u"/q.. a symmetric positive definite
matrix P N(n/q)(n/q), and a constant a > 0, such that (2.7) holds for any admissible
uncertainty 8(.). If q =0, the conclusion is obvious. Indeed, v(x)= x’Px is a control
Lyapunov function for the system (E,). If q is nonzero, we proceed as follows.

Define the symmetric positive definite matrix S:= P-1 and let the change of
coordinates z Sw be applied to (2.7). Then, it follows that

(2.9) w’(F(t)S+SF’(t))w+2w’G(t)fi(w,t)-<_-,llwll = a.e. tI,

for all w ._"+q, and some c > 0, where fi(w, t) p(z, t). In particular, for w It’ 0]’,
r ", from (2.6), (2.9), and partitioning S as follows"

S=
S $3

where the dimension of S is n x n, the dimension of $2 is n x q, and the dimension of
$3 is q q, we obtain

(2.10) r’(A(8(t))Sl+S1A’(6(t)))r+2r’B(8(t))f(r, t)-<-cllrll a.e. t6R,

for all r", and any admissible uncertainty 6(.), where h(r, t)= h(Sr, $’2r, t).
Finally, considering (2.10) for a time-invariant uncertainty 6 U, setting t*

(any fixed time such that h(., t*) is well defined), and with the coordinate transforma-
tion x Sr, we conclude that there exists/3 > 0 such that

L(x, t):= x’(PA()+ A’(e3)P)x + 2x’P1B()h*(x) <=-flllxll ,
for all x e N" and t U, where P is a symmetric positive definite matrix given by
P1 := S- and h*(x)= fl(Px, t*). The proof is concluded observing that this last
inequality implies that the function v(x):= x’Px is a control Lyapunov function for
the uncertain system (Eu).

In 17], Petersen has obtained a result similar to Proposition 2.8, which states that
if an uncertain system (;,) (as defined in (2.3)) is quadratically stabilizable, then it
is quadratically stabilizable via memoryless nonlinear state feedback. Note that, in
general, the notion of control Lyapunov function is not equivalent to the notion of
quadratic stabilization via memoryless compensators. In fact, the former is much
weaker since the control input "u" is allowed to be a function of the uncertainty "6"
(see, for example, (2.4)).
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3. Control Lyapunov functions and stabilizability by linear feedback. In this section
the case of norm-bounded time-varying uncertainty is considered. Such an uncertainty
representation has already been used by Petersen 15] and 16], Zhou and Khargonekar
[23], and Khargonekar, Petersen, and Zhou [11], to develop necessary and sufficient
conditions for the existence of linear (quadratically) stabilizing compensators not only
for the state feedback case but also for output feedback. Here, we will show that those
conditions are actually necessary for the existence of a control Lyapunov function. As
a consequence, from Proposition 2.8 we conclude that, for the case of norm-bounded
time-varying uncertainty, nonlinear time-varying dynamic compensators are not better
than linear (memoryless) ones when the states are available for feedback and a single
quadratic Lyapunov function is sought to establish the stability of the closed loop
system.

A system (;nu) with norm-bounded uncertainty is better described by the model
given below rather than the general representation given in (2.3):

):

(3.1a) _, t) Ax( t) + Bu( t) + Dw( t),

(3.1b) e( t) Ex( t) + E2u( t),

(3.1c) w(t) A(t)e(t),

where 6 almost everywhere, x(t) R" is the state vector, u(t) 6 R denotes the input
vector, w(t) Nk, and e(t) NP. The real matrices A, B, D, El, and /2 are known and
of appropriate dimensions. As before, the matrix-valued function A(.) is assumed to
be Lebesgue measurable and satisfies

(3.1d) A(t)U::{UNkP: Ilull_-<l} a.e. teN.

Furthermore, to avoid trivial situations, it will be assumed that the dimension of the
input is strictly less than the dimension of the state (i.e., m < n).

The main result of this paper is the following theorem.
THEOREM 3.2. Consider the uncertain system (,) defined in (3.1). Then, the

following statements are equivalent:
(i) The uncertain system (,u) admits a control Lyapunov function.
(ii) The uncertain system (E,u) is quadratically stabilizable.
(iii) The uncertain system (,n,) is quadratically stabilizable via linear time-invariant

memoryless control.
It is obvious that (iii) implies (ii). In Proposition 2.8 it has been proved (in a

more general situation) that (ii) implies (i). We will prove that (i):::> (iii). The proof
is rather long and difficult. For ease of exposition, some intermediate results will be
developed, leading to a proof of Theorem 3.2.

First note that if the uncertain system (Eu) admits a control Lyapunov function,
it readily follows from (2.4) and (3.1) that there exists a symmetric positive definite
matrix P [n such that the following condition holds. Given any nonzero x n, if

(3.3a) (B+DAE2)’Px=O for some AU,
then

(3.3b) x’(A’P + PA)x + 2x’(PDAE1)x < O.

Let z Nn be given and define the set

(3.4) llrll<-l},
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and note that, when F(z) , it is a compact set. Then, from the discussion above we
conclude that given any nonzero z Rn, if F(z) , the following inequality holds"

(3.5) max {z’(AS + SA’)z + 2z’(DF’E1S)z" F F(z)} < 0

where S :- P-1 is a symmetric positive definite matrix. Indeed, making the change of
coordinates z Px in (3.3) it follows that ZX satisfies (3.3a) if and only if F A’ F(z).
Moreover, the left-hand side of (3.3b) is continuous in F--A’.

It should be noted that the situation F(z)= for all nonzero z e Rn is rather
uninteresting. Indeed, the latter will never occur when the dimension of the input
space (m) is less than the dimension of the state space (n). In the next lemma the set
F(z) is studied and the maximization problem introduced in (3.5) is solved.

For a matrix Wmxp the matrix W+epxm will denote the Moore-Penrose
inverse of W (see, for example [21, 3.3]). Note that W/ is the unique matrix that
satisfies

(3.6a) WW/W W, W/ W)’= W/ W,

(3.6b) W/ WW/ W/, WW/)’ WW/

Conditions (3.6) amount to the requirement that

(3.6c) II := W/ W and II2 := WW+,
be the orthogonal projections onto N(W’) and N(W), respectively.

LEMMA 3.7. Let W Rmp, W 0; d ", b Nm., and e NP be given matrices.

Define the following set"

(3.8) ][ :-- {F pxk. Wrd b, Ilrll <--

Then, F ifand only ifb e(W) and w/b <-Ildll, where W+ epm is the Moore-
Penrose inverse of W. Moreover, if F and II is the matrix defined in (3.6c), then

(3.9) max{e’Fd" Fer}=e’W+b+ll(-II1)ell{lldll-llW+bll}1/.

Proof. The proof is in two steps. First, we establish the necessary and sufficient
conditions for the nonemptiness of the set F.

(Necessity.) Suppose that there exists F such that WFd=b and
Obviously, b N(W), and, from (3.6), W+b IIiFd. Since II is an orthogonal projec-
tion and Ilrll =< 1, the latter implies W+bl] _-< [[I-Ill [Irl[ Ildl[ -< Ildll.

(Sufficiency.) Suppose that b (W) and W/bll--< Ildll. We now consider two
cases.

Case 1. d 0. Obviously F if and only if b 0. Now, from the assumptions
it follows that b (W) and b N(W/). When (3.6) is used, it follows that N( W/)
{(W)}. Hence, we conclude that b =0.

Case 2. d O. Consider the following matrices"

(3.10) Fo := W/bd+, d/ := (d’d)-ld ’.

It will be shown that Foe F. From (3.6) and since b (W) we obtain

WFod WW+b WW+ Wc, c P

Wc=b.

Moreover, [l oll-<-II W/btl IId/ll-<-II w/bll/lldll-<- 1. This concludes the first part of the
proof. We are now ready to establish (3.9).
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Note first that, when F , the right-hand side of (3.9) is well defined. We now
consider two cases.

Case 1. d 0. In this case F # implies b 0. The result follows by inspection.
Case 2. d O. In this case F # implies b E(W) and W+bll <= Ildll Let e 6 Ip

denote an arbitrary vector. First we show that the inequality

(3.11) eta <-_ e’ W+b + I1(I II1)e [[{ d 2- W+b 2} 1/2,
holds for any F F.

Let F e F be given. Then F satisfies the equation WFd b. Therefore, there exists
Z Npk such that (see, for example, [21, 2.3])

F Fo + Z II1Zdd+

where Fo and d/ were defined in (3.10). Thus, we obtain

(3.) ra= W/b+(Z-nl)za.

Moreover, for any Z e Rpk, it follows from (3.6) that

(3.13) W+b )’( ] H1)Zd O.

Hence, (3.12), (3.13), and the fact that IIFII-< , imply the following chain of
inequalities"

e’Fd e’W+b+ e’(I-II1)Zd

e’W+b+((t-II,)e)’(I-II1)Zd
<---- e’W+b+ II(I-n,)ell II(Z-I,)Zd

<= e’ W+b + II( t II,)eli{ll d 2 W+b ll2} l/2.
Since F e F is arbitrary, this last row implies inequality (3.11).

To complete the proof we must show that the upper bound given in (3.11) is
actually achieved. To that purpose we define

(3 14a) F*:= {F+ if (/-II,)e O,
Fo otherwise

where Fo and d / are as in (3.10), and

{11 d 2- w
(3.14b) Y:= II(I-rI)ell

Note first that F*e F. The case F*= Fo already has been done in the first part of
the proof. When (I-II1)e 0, a trivial computation using (3.6) and (3.14a) will show
that WF*d b. To show that F* is a contraction, we proceed as follows. Let x
be given. From (3.14a) we obtain

F*x W+bd+x + y(I-II1)ed+x

W+b + y(I- II1)e]d+x.
When we use (3.13) and (3.14b), it follows that

Since x is arbitrary we conclude that IIF*II
Finally, an easy calculation shows that e’F*d achieves the upper bound

(3.11).
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The next result generalizes a previous result of Petersen and Hollot [19], and it
will be used in the proof of Theorem 3.2. For the sake of clarity, its proof is given in
a separate Appendix.

THEOREM 3.15. Let A1 A, A2 A’2>=O, and A3--A’3 denote s x s real matrices.

Suppose that for all x # 0 such that x’A3x >= O, we have
(i) x’Alx < 0; and
(ii) (x):= (X’AlX)2-4(x’A2x)(x’A3x) > O.

Then, there exists fl > 0 such that fl2A +A1 + A3 < O.
We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. Consider the uncertain system (E,u) defined in (3.1) and

suppose that it admits a control Lyapunov function. It will be shown that (E,u) is
quadratically stabilizable via (memoryless) linear time-invariant control. Let us assume
first that E2 # 0. From the discussion below Theorem 3.2, it follows that there exists a
symmetric positive definite matrix seNnn such that given any nonzero zNn, if
F(z) (see (3.4)), then inequality (3.5) holds.

With reference to the notation of Lemma 3.7, we now make the following
association:

ow,
D’z <-- d,

-B’z.- b,

El Sz e,

F(z)F,

and (as before) let W+P" denote the Moore-Penrose inverse of W and 1-I1, FI2
be defined by (3.6c). It now follows from (3.5) and Lemma 3.7 that for each z 0,
such that

(3.16a) B’z(W) and IIW/B’zll<-llU’z[I,
the following inequality holds:

(3.16b) z’(AS + SA’)z-2(EISz)’W+B’z
/ 2ll(I-II,)E, Szll{llD’zll- W+B’z[12}1/2 < O.

Let Aonn be defined by

(3.17) Ao := A- BW+’E1,

and observe that from (3.6c) we obtain that (I-H) =(W). Hence, we may conclude
that (3.16b) holds for any z 0 such that W+B’z]] <= ]]D’zll and z ((I-II2)B’).

Let X denote a (full column rank) real matrix whose columns span [((I-H2)B’),
and define the following symmetric matrices"

A1 := X’(AoS+ SA’o)X, Ao defined in (3.17),

A2:-- X’SE(I-I-I1)E1SX,

A3 := X’(DD’- BW+’W+B’)X.

Note that A2>=0 (for I-H1 is an orthogonal projection). It follows from (3.16) that

y’Aly + 2{(y’A2y)(y’A3y)}1/2 < 0,
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for all y # 0 such that y’A3y >-_ O. Or equivalently, y’A1y < 0 and (y’Aly)2-4(y’A2y)
(y’A3y) > 0, for all y # 0 such that y’A3yO. Using Theorem 3.15 we may conclude
that there exists /3 > 0 such that/32A2 +/3A1 + A3 < 0. Hence, letting So :=/3S > 0 and
Eo := (I-II1)E1, it follows that

(3.18) z’(SoEEoSo+ AoSo+ SoA’o+ DD’- BW+’W+B’)z < O,

for any z # 0 such that z N((! 1-I2) B’).
Now,from (3.18), a standard argument using the Finsler Lemma (see, for example,

[6, 3.2.6]) shows that there exists e > 0 such that the matrix

Qo := -( SoE’oEoSo+aoSo+Soa’o+ DD’-BW+’ W+B --1B(I I-I2) B’,
\ /

is positive definite. Letting Po := S> 0 and Q:= PoQoPo>0, we conclude that the
following Riccati equation holds"

(3.19) aP+PA+EE+P(DD’-BW+’W+B’--el B(I II2)B’)Po+Q=O.
Consider the linear time-invariant memoryless feedback law given by

1
(3.20a) Y := (I II2)+2e W/’W/,

(3.20b) u p(x) := YB’Pox- W/’E1x.

We will next show that v(x) := x’Pox is a Lyapunov function for the closed loop system
resulting from the feedback interconnection of the uncertain system (2;,u) and the
controller (3.20). In fact, given any admissible uncertainty h(.), the derivative of v(x)
along the system (E,u) defined in (3.1) subject to the control law (3.20) is given by

(3.21) L(x, t):=x’(PoA+A’Po)x+2x’PoBp(x)+2X’PoDA(t)(Elx+E2p(x))

where A(t) U. Hence, from (3.21) we obtain

(3.22) L(x, t)<-_x’(PoA+A’Po)x+2x’Ponp(x)+2llD’Poxll IlElX/E=p(x)ll,

<= x’( PoA + A’Po)x + 2x’PoBp(x)+ IIO’Poxll 2

+ IIE,x + E2p(x)ll a.e. N.

Substituting (3.17) and (3.20) in (3.22), and using (3.6), it follows that

L(x, t) x’( Poao+ aoPo + E ’oEo + PoDD’Po PoBW+’W+B’Po
1
PoB(I 1-I2)B’Po] x

\ /

w/B’Pox = / W’ Yn’Pox =-
From (3.19) and this last inequality we may conclude that

3.23 t(x, <- x’Qx w/B’Pox 2 / w’ YB’Pox 2.

Finally, substituting (3.20a) in (3.23) and since W’Y= II1W/, we obtain that

<__ W+B,PoxllL(x, t) x’Qx W+B’Poxll2/ llII1
-x’Qx + (llII1 2-1)11 w+B’Poxll 2 <-- -am(Q) Ilx =,

where N almost everywhere, and for all x Nn. Since Am(Q)> 0, the proof for the
case E2 # 0 has been completed.
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Finally, suppose that E2=0. From (3.3) it follows that there exists a positive
definite matrix P R"n such that

(3.24) x’(A’P + PA)x + 2x’(PDAE)x < 0

for all nonzero x t(B’P) and for all A U. Maximizing (3.24) over all possible A U
as in [15] (see also [2]), we may conclude that there exist Po>0 and e >0 such that
the Riccati equation (3.19) holds, provided that we adopt W/ 0. The rest of the proof
remains the same as the case E_ 0. [’I

The next result gives a necessary and sufficient open loop condition to test whether
the uncertain system (3.1) is quadratically stabilizable. A restricted version of this
result was first given by Khargonekar, Petersen, and Zhou in [ 11 ], within the context
of linear time-invariant compensators. Consider the uncertain system (En,) defined in
(3.1) and set W:= E. Let W/, II, and 1-I2 be defined by (3.6) and define Ao :=
A- BW/’E1. If E2 0, we set W/ 0.

COROLLARY 3.25. The uncertain system (E,u) is quadratically stabilizable if there
exists e > 0 such that the Riccati equation

(3.26) AP+PA+P(DD’-BW+’W+B’-le B(I-II)B’)P+E(I-II1)E+eI=O
has a symmetric positive definite solution P Rnn. Furthermore, ifsuch a solution exists,

[1 W+, W+] B, W+(3.27) u:=- e’e (I- II2) + Px- Ex,

is a quadratically stabilizing linear time-invariant control law. Conversely, if the uncertain

system (.) is quadratically stabilizable, then there exists el > 0 such that for all e in
(0, e], the Riccati equation (3.26) has a unique positive definite solution Po such that
Ao+ DD’ BW+’ W+B’ (1/ e B(I II2) B’) Po] is asymptotically stable.

(A solution Po such that [Ao+(DD’-BW/’W+B’-(1/e)B(I-II2)B’)Po] is
asymptotically stable is called the stabilizing solution.)

Corollary 3.25 follows immediately from Theorem 3.2 and earlier results of
Khargonekar, Petersen, and Zhou in [11]. This corollary also leads to the following
conceptual algorithm for checking quadratic stabilizability.

(i) Set e to some starting value; i.e., e 1.
(ii) Find the unique stabilizing solution to the Riccati equation (3.26) using any

standard algorithm. If this solution exists and it is positive definite, stop; the system
is quadratically stabilizable (and a stabilizing compensator is given by (3.27)). Else go
to step (iii) below.

(iii) Replace e by e/2. If e is less than the computational accuracy, stop; the
system is not quadratically stabilizable. Else repeat step (ii) above.

Finally, it should be noted that to test whether the uncertain system (Eu) is
quadratically stabilizable, a one-parameter search must be performed. This is not the
case if EE2 is nonsingular. In fact, in this case W/= E2(E’E2)- and iI: L Further-
more, from the connection established in [11] between quadratic stability and the
Small Gain Theorem, and using the recent results of Doyle et al. [3], it follows that,
when EE is nonsingular, Corollary 3.25 can be strengthened to the following result.

COROLLARY 3.28. Consider the uncertain system (,,) defined in (3.1). Suppose
:= E’E is nonsingular, {(I-EE)-E’2)E, A-B-E’E1} is observable, and {A, B}
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is stabilizable. Then, the uncertain system is quadratically stabilizable if and only if the
Riccati equation

(3.29) (A-B(R)-IEE)’P+P(A-BO-1E’E1)+P(DD’-B(R)-B’)P

+ E(I- EO-’E’)E,=O

admits a (unique) symmetric positive definite solution Po[n such that [A-
BO-EEI + DD’-BO-B’)Po] is asymptotically stable. Furthermore, ifsuch a solution
exists,

(3.30) u := -(R)-I[B’Po+ E’E1]x,

is a quadratically stabilizing linear time-invariant control law.
Finally, the existence of the unique stabilizing solution Po in the above results

can be checked and, if it exists, Po can be computed using the associated Hamiltonian
matrix.

Appendix. First we establish the following weaker version of Theorem 3.15.
LEMMA A1. Let A A, A=A>0, and A3 A’3 denote s xs real matrices.

Suppose the following:
(i) For all x : O, t(x) :-- (x’Ax)-4(X’AEX)(X’Aax) > 0; and
(ii) For all x O, such that x’Aax >- 0, x’Ax < O.

Then, there exists fl > 0 such that

(A2) M(fl) := f12A2 q- flA1 h- A <-O.

Proof Without loss of generality we can assume A2 I. For, if this is not the case,
we can make the change of coordinates z A/Zx to reduce the problem to one with
A2 I. (Note that the symmetry of A and A3 as well as assumptions (i) and (ii) above
remain invariant under this coordinate transformation.)

Suppose that (A2) does not hold. Then, for each/3 > 0 there exists x(/3) 0 such
that

(A3) dp(fl)z= [32(x’()x(fl))+[3(x’(fl)Ax([3))+(x’(fl)Aax(fl))>O.
It will be shown later that x(/3) can be chosen to be a continuous function of/3 on
the interval (/30, m), for some/30<0 such that IIx(fl)l] 1 and (A3) holds for all/3>0.

Since for each x 0, 6(x) > 0 it follows that

(A4a) pl(fl) := 1/2(-x’(fl)Ax()-x/6(X(fl))),

(A4b) pE(fl) := 1/2(-x’(fl)AlX(fl)+x/6(x(fl))),

are real-valued functions and p(fl)> p(fl) for every/3 > 0. Moreover, the continuity
of the mapping fl- x(fl) implies the continuity of the mappings fl p(fl) and/3
p(fl) on the interval (/30, ). From (A3) and (A4) we must have

(A5) (-pl())(fl-p(fl))>O for all/3>0,

From (A5), it follows that given any/3*> 0, either/3*< p(fl*)< p2(fl*) or/3*>
p2(fl*) > p(fl*). Suppose first that for some /3* > 0 we have /3* < pl(/3*) < p(fl*).
Since/3- p(/3) is continuous on the interval (/30, c), we observe that this function
cannot change its sign over (0, ). For if this is not the case, (AS) would be contradicted.
Hence, it is concluded that fl p(fl) < 0, for all/ > 0 2/3 + x’(fl)Ax(fl) < 0, for all
/3 > 0 =:> 2/3 + A,,(A1) < 0, for all/3 > 0, which leads to the obvious contradiction 2 =< 0.
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Now suppose that for some /*>0 we have /3*> p2(/*)> pl(/*). Arguing as
before, we conclude that

/3-p2(/3)> 0, for all >O=>2fl+x’(fl)alx(fl)>V’6(x(fl)), for all fl>0

= x’oa,xo >- /8 (x0)

where Xo lim_o x(/3)#0. (Note that this limit exists for /3- x(fl) continuous on
(flo, oo), for some /3o negative.) From the last inequality it follows that for such a
nonzero Xo, x’oAxo>O and xA3xo>-O, which contradicts assumption (ii).

To complete the proof we must show that x(fl) can be chosen to be a continuous
function of/3. For each /3 e N, the matrix M(/3) defined in (A2) is symmetric, and
therefore has real eigenvalues and s real orthonormal eigenvectors. That is, for each
/3 e N we can write

(A6a) M(fl)= U(fl)A(fl) U’(fl),

(A6b) A(/3) =diag (Aj(fl); j e _s),

(A6c) U()=[Ul()u2()’" u,(/3)], U’(fl) U(fl) I.

Moreover, by suitable ordering, the mappings/3- Aj(/3) and/3--> uj(/3) can be chosen
to be continuous (in fact, analytic) for/3 N and j e_s (see, for example, [8, 2.6]).

From inequality (A3) it follows that for each/3 > 0

(a7)
0(/3) := max {x’M(fl)x: [Ixl[ 1}

=max {Aj(/3)" j e_s} > 0.

Clearly, q, is a continuous function of/3 for all/3 in N.
Let 0 </31 </2 <" </k <" denote the collection of exceptional points to the

right of/3 0 (i.e., points where the graphs of the functions Aj(.) may cross to each
other). For a more precise definition see 2.1.8 of [8]. Note also that the ordering of
the exceptional points given above makes sense, since there is always a finite number
of them in every compact set of N. It now follows that the function 0 defined in (A7)
can be written as

if O</3 -< i,
(A8) q(/3)

AJk(/3) if flk < fl <= ilk+l, k >-- 1

where jk _s for all k->0 and Ajo(fl) Ajk(fl); k-> 1, denote the maximum eigenvalues
of M(fi) on the intervals (0,/31] and (ilk, ilk+l], respectively.

From (A7) and (A8) we observe that for each k-> 1, there exists ek > 0 such that
both /Jk-l() and hjk () are strictly positive on ]fl--k] < ek. Let flo < 0 be given, let
eo 0, and define the following vector-valued function:

uj (fl) if fig + ek < fl <---- flk+l ek+l,

(A9) x(fl) := Zk()
if flk+l- ek+l < fl <- flk+ + ek+lIlzk( )ll

where k > 0 and the functions Zk(.) are defined by

(A10a) Zk ,8 := (1 gk fl Uj ,8 + gk ,8 Uj fl
1

(A10b) gk(/3) := (/3 --(flk+l- ek+l))
26k+1
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where the normal vector uk (/3) is an eigenvector corresponding to Ak (/3) (see equation
(A6)).

Observing the following, the proof is complete:
(i) The analyticity of/3 u(/3), the continuity of/3 gk(/3), and the fact that

zk(/3) 0 for all k =>0, implies that /3 x(/3), as defined in (A9), is continuous on
(/3o, o); and

(ii) A trivial computation using (A6)-(A10) shows that x()’M()x()> 0, for
all/3 > 0. Moreover, from (A9) it is clear that IIx(/3)l]-= for all/3 >/3o. [3

We are now ready to prove Theorem 3.15.
Proof of Theorem 3.15. Suppose first that A3 < 0, i.e., ,M(A3)< 0. In this case it

is straightforward to verify that there always exists/3 > 0 (sufficiently small) such that

2A2+AI+A3<O.
Now, we need to consider the case AM(A3)>0. The proof is in two steps. First,

we show that there exists e > 0 such that the symmetric matrices A1, A2 := A2 + el, and
m satisfy all the assumptions of Lemma A1. Indeed, from assumption (ii) of Theorem
3.15, it follows that

(All) /x := min {6(x)" Ilxll a, x’A3x >= 0} > 0.

(Note that 6 is continuous in x and that the intersection of the unit sphere with
x’A3x > 0 is a compact set.) Set e > 0 such that

(A12) 4AM(A3)e < tx.

Since/x is strictly positive, such an e can always be found. Now, consider the function:

(A13) g(x) := (x’alx)2-4(X’zX)(x’a3x),
and observe that since A2 _-> 0 and e > 0, it follows that A2 := A2 4- eI is positive definite.
Hence, from (A13) we conclude that 6(x) > 0 for all x 0 such that x’A3x < 0. On the
other hand, from (All) through (A13) we obtain,

g(x) (3(x)-4e(x’x)(x’a3x),

>= 6(x)-4eAM(A3)(X’X),
>= (tx -4eAM(A3))(x’x),

for all x 0 such that x’A3x >= O.
It follows that the matrices Al, A, and A satisfy all the assumptions of Lemma

A1. Therefore, there exists/3 > 0 such that/32(A2 + eI)+ A1 + A3 <= O, which certainly
implies A+A1 + A3 <= -e2I < O. V1
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Abstract. In this paper several assertions concerning viscosity solutions ofthe Hamilton-Jacobi-Bellman
equation for the optimal control problem of steering a system to zero in minimal time are proved. First two
rather general uniqueness theorems are established, asserting that any positive viscosity solution of the HJB
equation must, in fact, agree with the minimal time function near zero; if also a boundary condition
introduced by Bardi [SIAM J. Control Optim., 27 (1988), pp. 776-785] is satisfied, then the agreement is

global. Additionally, the HSlder continuity of any subsolution of the HJB equation is proved in the case
where the related dynamics satisfy a H6rmander-type hypothesis. This last assertion amounts to a "half-
derivative" analogue of a theorem of Crandall and Lions Trans. Amer. Math. Soc., 277 (1983), pp. 1-42]
concerning Lipschitz viscosity solutions.
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1. Introduction. In this paper we study the minimum time optimal control problem
for the system

(1.1)

where x R" and

(t)=f(x(t), u(t)) (a.e. t>O),

x(O)=x

f:R" x U--)"

are given, and U denotes a compact subset of, say, lm. The measurable function

u(.):[0, )- u
is a control, and

x(.):[o,)-"

is the corresponding state, sometimes written x(. x (.). We are interested in studying
the minimum time function

defined so that T(x) is the infimum over all controls u(.) of the time taken for the
solution of (1.1) to reach the origin.

It is known that under various controllability assumptions T is continuous and
thus is a solution of the appropriate Hamilton-Jacobi-Bellman (HJB) equation in the
viscosity sense (see, for example, [6], [9], 11 ], 15]). In addition, Hermes [6], Sussmann
15], and others have introduced methods for constructing optimal controls via feedback

synthesis from appropriate solutions of this HJB equation.
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Herein we prove two uniqueness results. The first asserts that if1 is a neighborhood
of zero and S is a positive viscosity solution of the HJB equation in 1)-{0} satisfying
S(0) =0, then there exists another neighborhood 1)’ of zero in which S equals the
minimal time function T. Quite recently we have seen a new paper of Bardi [2], who
has introduced a boundary condition and obtained a uniqueness theorem for the
resulting boundary value problem. Our second uniqueness result employs Bardi’s
boundary condition: If 1) is an open set containing 0 and S is a positive viscosity
solution of the HJB equation in 1)-{0} satisfying S(0)= 0 and

S(x) uniformly as x 0,

then S equals the minimum time function T in 12. Our proof differs from Bardi’s in
that we use a representation technique and thereby identify S with T.

These assertions that we prove without any controllability hypotheses, answer a
question posed by Hermes in [6]. The point is that if we can find, by any means
whatsoever, a positive viscosity solution S of the HJB equation in a region 1)-{0}
that vanishes at zero, then S must necessarily be the minimum time function, at least
near zero, and consequently the system must in fact be small time locally controllable.
Furthermore, if the above boundary condition is satisfied, then 1) coincides with the
set C of points controllable to the origin. We see therefore that the explicit solutions
constructed for various examples by Hermes in [6] are indeed the minimum time
functions.

The proof of these uniqueness assertions appears in 3, after some preliminaries
in2.

In 4 we discuss the regularity of a viscosity subsolution S of the HJB equation
in , for the special case that f has the form

(1.2) f(x, u) Y Ukfk(X)
k=l

where now

(1.3) U [-1, 1]’.

Imposing a simple Hirmander-type requirement concerning the Lie brackets of
the vector fields {f}m=, we show that S is locally H/51der continuous with exponent. This assertion is certainly clear near zero for viscosity solutions S, in view of 3
and known regularity theorems for the minimum time function (e.g., Stefani [12],
Liverovskii [10]). What we show, in fact, is that the HJB equation itself forces the
H61der continuity.

2. Preliminaries. We now restate our minimum time control problem more pre-
cisely as follows.

Let us assume that

f: I" x I"-"
is a given smooth function satisfying the Lipschitz condition

If(x, u)-f(y, u)] N Klx- y]

for all x, y e Nn and all u e U, where U c N" is compact. Then for any measurable
mapping

u(.) [0, )- c,
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and any point xn, problem (1.1) has a unique absolutely continuous solution
x(. x"(. ). We call u(. an admissible control and denote by the collection of all
admissible controls.

Now let )c n be open, with 0 ). We say that the system (1.1) is controllable
to the origin from x f if there exists a control u(. ) 0 and a time

0<"<
so that

x(x") =0.

and

Then

T(O) =0,

0<T(x)<-+oo forx-{0}.
Furthermore, Sussmann [15] has shown that T(.) is continuous at 0 if and only if
(1.1) is STLC at the origin.

The associated dynamic programming Hamilton-Jacobi-Bellman equation is the
partial differential equation

where the Hamiltonian

is

H(x, DS)=O in -{0}

(2.1) H(x, p) max {-f(x, u) p} I (x, p N").
uEU

3. Uniqueness. Our first uniqueness assertion is Theorem 3.1.
THEOREM 3.1. Assume S C() satisfies

(a) s(0) 0,

(3.1) (b) S(x) > O, x a-{0},
(c) H(x, DS)=0 in f-{0} in the viscosity sense.

Then there exists r > 0 such that

S(x) T(x) for x 6 B(O, r) a;
and, in particular, the system (1.1) is STLC at the origin.

Note carefully that our sole hypothesis is the existence of a function S C()
verifying (3.1)(a)-(c).

Define the following:

C(t)=-{xlthere exists a control u(.) o-g with z_-< t};
this is the set of states controllable to the origin within time t. The set of points controllable
to the origin is defined by

c-- U c(t).
t>0

We say that the system (1.1) is small time locally controllable (STLC) at the origin if

0intC(t) for each t>0.

Finally, define the minimum time function
T(x)=-inf{’,lu}.
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Proof (1) We start by fixing some bounded smooth open set fl’ fl with 0
Defining then

g(x) S(x) (x Of’),

we see that S e C(IT) is a viscosity solution of

(3.2) H(x, DS) 0 in a’-{0}, S g on 0f’.

Now set

(3.3) (r)-- -log (1 r) (r < 1),

(3.4) (s) -l(s) l-e-"

Write

(3.5) R(x)-- (S(x)) (x f’),

(3.6) h(x) (g(x)) (x Of’).

We note that clearly R C(f’) satisfies

(3.7) R(0) =0,

(3.8) R(x) h(x) (x e

In addition, we claim that

(3.9) R+H(x, DR)=0 in f’-{0} in the viscosity sense.

To see this we note that Crandall, Evans, and Lions [4, Prop. 1.2] imply that R (S)
solves

/(x, R, DR)=0 in f’-{0}(3.10)

in the viscosity sense, for

But since 0 <-R < 1, we have further that

(1 R)H(x, R, DR)= R + H(x, DR)=0 in l)’-{0}

in the viscosity sense, as required.
Note also now that R is the unique solution of (3.7)-(3.9), in view of Theorem

III.1 in Crandall and Lions [3].
(2) We now obtain a control theoretic representation formula for R (and thus

for S) in l)’. For each point x f’-{0} and control u(. ) o-// define

o’ inf { > 0Ix(t) {0} U O’}

where as usual x(. x( is the solution of system (1.1) corresponding to the control
u(.).

Now write the value function

(3.11) V(x)=- inf e-’ dt + e-’.;Xl(oa,lh(x(cr,))

We assert that then

(3.12) R(x) V(x) in
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This equality follows from almost exactly the same proofs as in Lions [9] or Evans
and Ishii [5, Thm. 4.1].

(3) We now claim that there exists r>0 such that

(3.13) R(x) inf

To verify this we set

s inf {lyl y oa’},

Ilfll=sup{If(x, )1 Ix a’,

Ilell-- sup {Ie(x)l lx[ <= r},

’,y-= inf {t> 01 x"(0)= x, x"(t)= y} =<
We denote by //x,y the set of admissible controls with -,y <.

Finally, let us write

U(x, y) inf {’,,y u(. x,y}.

Choose 0 < r < s so small that

B(O, r) c fY

and

1 s--r

We must verify (3.13). Let us choose x B(0, r), yR"-B(0, s), and suppose
U(x, y)< oe. Then we select a control u(. ) ,y satisfying

(3.15)

In view of (1.1) we have

U(x, y) <= 7",y <-_ U(x, y)+
s--r

y-x f(x(s), u(s)) ds;

whence

(3.16)

Consequently, (3.15) implies

s--r
(3 17) U(x, y)>- if Ixl < s.

211fll
-r, lyl

Now fix

(3 18) 0<6<-
2 211fll

Then if x B(0, r), there exists a control u(. with

[" e-’ dt + e-.Xx,.oa,h(x(o,))<- V(x)+
(3.19)

R(x)+ 6 by (3.12).
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First assume that

(3.20) y=-x(o’c)6Oa’.

Then since

it follows that

(s) 1- e-’= e-’ dt,

(o’)+ e-2h(x(cr,)) < R(x)+ <*( S., r)\21]fl

according to (3.14), (3.18). Since h >0 and is strictly increasing, it follows that

<= U(x, y) by (3.17),

a contradiction. Consequently, we must have

y-- x(rx) 0

in (3.19). Hence (3.11), (3.12), and (3.19) imply that if x B(0, r), then

R(x)= V(x)= inf e-’ dtlxU(r,)=O
u

inf {(r2)}.
u

This is formula (3.13).
(4) Finally, due to (3.5) and (3.13), we see

S(x) (R(x))

inf {r2}
u

=r(x)

if x B(0, r).
Now we turn to our second uniqueness result that incorporates the boundary

condition introduced by Bardi [2]. For S C() we say that

S(x) uniformly as x 0

provided that for all M > 0 there exists 6 > 0 such that

S(x)M

provided ]x[ 1/6 or dist. (x, 0) N 6.
TOM 3.2. Assume S C() satisfies

(a) s(0) 0,

(3.21) (b) S(x) > 0 (x -{0}),
(c) S(x) uniformly as x 0,
(d) H(x, DS)=0 in -{0} in the viscosity sense.
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S(x) T(x) for all x Ft,

and hence Ft C.
The proof is similar to that of Theorem 3.1, and so we indicate only the essential

changes.
Proof Defining

R(x) ,V(S(x)) (xea)

we see that R e C(f) satisfies

and also

R+H(x, DR)=O in f-{0} in the viscosity sense,

(3.22) R(0) 0, 0<R(x)< 1 (x 0Ft- {0}).

In view of the boundary condition (3.21)(c), R can be uniquely extended to a function
R BUC(f) by setting (cf. Bardi [2])

R(x) 1 (x OFt).

Employing the methods of Lions [9] or Evans and Ishii [5], we obtain the following
control theoretic representation. Define

r inf {t > 0Ix(t) E {0} 0};

then

R(x) inf e -t dt+
O?l

for all x .
In fact, we claim that

(3.23) R(x) inf {(’2)} for all x e Ft.

To see this, note that if x , then (3.22) implies

ce 1-R(x)> 0.

Choose u 0// such that

-’ < R(x)+-.(3.24) e -t dt + e Xx(/)om 2

Suppose now that x(cr2) OFt. Then (3.24) implies

1 e- dt + e-’- <-_ R(x) +-
2’

a contradiction. Consequently, x(cr) =0, and (3.23) follows. We conclude by noting
that

S(x) cI,(n(x)) r(x) (x e a). n
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4. Regularity.
Motivation. Let us now address the problem of the smoothness of solutions to

the HJB equation in the case that f has the explicit form

(4.1) f(x, u) Y Ukfk(X),
k=l

where

fk Nn - [Rn (k=l,...,m)

are given smooth functions, and

u-(u,,...,u,) U--I-I, 1] m.
In this case the corresponding HJB equation reads

(4.2) 2 [fk(x)" DSI 1 in a-{0}.
k=l

For heuristic purposes, let us for the moment suppose that S is a smooth solution
of (4.2). Then (4.2) implies

(4.3) ]f. DS]_-< 1 (k= 1,..., m)

in I’Z- {0}, so that the rate of change of S in the direction fk is bounded (k 1, , m).
Thus, if

(4.4) span {A(x) k 1,..., m}=
for some point x fl-{0}, then we can derive from (4.2) an estimate on IDS(x)l. On
the other hand, suppose (4.4) fails. Then we cannot generally hope to estimate IDS(x)]:
we can deduce from (4.2) estimates only on the components of DS(x) in the direction
fl(X), ,fro(X).

Let us now however assume the HSrmander condition instead of (4.4):

(4.5) span {f(x), [f,f](x) i,j, k 1,..., m} "
for each x e f-{0), where the pairing "[ ]" denotes the usual Lie bracket. It is then
well known from control theory that the minimum time function T(x) is HSlder
continuous with exponent 1/2. In view of 3 above it therefore seems reasonable to
expect that our solution S of (4.2) will have this same regularity.

Below we show, more generally, that if (4.5) holds and S satisfies, say, (4.3) in
the viscosity sense, then S is locally HSlder continuous with exponent 1/2. This is a kind
of "half-derivative" analogue of a theorem of Crandall and Lions [3] to the effect that
if S is a viscosity solution of the partial differential equation

(4.6) H(x, DS) 0 in f

where

lim H(x, p) +oo,

then S is Lipschitz.
THEOREM 4.1. Let C be a positive constant. Assume S C(f) satisfies

(4.7) ]f" DSI <= C in a
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in the viscosity sense (k 1, , m), where the smooth vector fields {fk} k’= satisfy
condition (4.5) for each point x . Then

r- O, 2/’"),S E loc

Remark. More precisely, our hypothesis is that for each smooth function

(4.8) If S- has a maximum at a point Xo, then [fk(Xo)" D&(xo)] C
fork=l,...,m.

Proof (1) We first regularize our function S by setting for each e > 0

(4.9) S(x) sup
y L

This is the Yosida-Moreau sup-convolution, the impoance of which for viscosity
solution is discussed by Jensen, Lions, and Souganidis [7] (cf. also Lasry and Lions
[8]). We easily check that

S W; ().

Additionally, for each open set ’c c, we have the estimate

c(n’)
(4.10) IDSI <

the constant C(’) depending only on S and dist (’, 0).
(2) We claim now that for each sufficiently small e > 0 we have the estimate

(4.11) IA(x). PS(x)l c(n’) a.e. in n’,

for some constant C(’) depending only on S and dist. (’, 0). To see this, choose
’c c "c c , and suppose that is a smooth function and that

(4.12) S- has a local maximum at some point Xo6 ’.

We then deduce as in [7] that

S- has a local maximum at Yo,

for

with Yo selected so that

dp(y)-- ch(y- yo+ Xo),

(4.13) S(xo) S(yo)_1 ixo_ yo12.

In view of (4.8) then

If(yo) D(yo)l If(yo) Dch(Xo)l C.

But now (4.12) implies

IXo Yo[ <-- CF I/2,
C depending only on S and fY’. Hence for each k= 1,..., m

IA(Xo) D0 (Xo)l--< C + If(yo) -f(xo)l ID6(xo)l
(4.14) <-- c + C’/lD4,(xo)l

-<_C,
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since (4.10) and (4.12) imply

C
]D4’ (xo)l <-- 1/2"

The constant C in (4.14) depends only on S and dist. (12’, 012), and so (4.11) is proved.
(3) Now fix any index k{1,..., m} and any point xf, and consider the

ordinary differential equation

(4.15) 2(s) fk(x(s)), x(O) x (s , x 12).

For later notational convenience, let us write

(4.16) x(s) Xk(s)x (s

to display the dependence on the vector field f and the initial point x.
(4) We now claim that if z fY, then

(4.17) ]Se(z)-Se(Xk(t)2)]<= CIt (k= 1,’’’, m)

for some constant C and all sufficiently small tl, e > 0. To see this, note that we may
as well assume fk(Z)# O, since otherwise (4.17) is obvious. Now since S is Lipschitz,
Rademacher’s Theorem implies that DS (y) exists for almost every y 12. Consequently
by the Coarea Formula, we can find a sequence of points

Z "> Z

and a sufficiently small time tl > 0 such that

(4.18) DS exists and (4.11) holds at x=X(s)zt for a.e.

the a.e. (almost every) taken with respect to one-dimensional Lebesgue measure. Now
for each the mapping

is Lipschitz, with

sS(X(s),)

d S(X’(s)z,)= DS(X’(s)z,) f(X’(s)z,)
ds

for a.e. -[tl<s<ltl, according to (4.15) and (4.18). Thus (4.18) and (4.11) imply

IS (zt) S (xk(t) z,)[--< fit I.
Let approach infinity to obtain (4.17).

(5) Now fix any point Xo 12’. Because of the H6rmander condition (4.5) we can
select 0=< d =<2m and indices kj {1,.. , m} (j 1, , d) such that the vectors

A,(Xo), ,A,(Xo), [A,+,,A,+J(Xo), [A._,,A.](Xo)

are a basis of R". On relabeling, if necessary, we may as well assume that

f(xo),""", jS(Xo), [+),ft+,)](Xo),""". [.),f.)](Xo)

form a basis, where 1 =< =< n and

(4.19) a, b:{/+l,..., n}{1,..., m}

are appropriate functions.
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(4.20) By continuity the vectors

f,(Y), ,ft(Y), [fa(l+l),fb(l+l)](Y), {fa(,),fb(,)](Y)
also form a basis of n, for each point y sufficiently close to Xo.

(6) Following Strichartz [13], let us now extend the notation introduced in (4.15),
(4.16) by writing

XI(--S1/2)xk(--S1/2)XI(s1/2)Xk(s1/2)X if S> O,
(4.21) xk’I(s)x X if s=O,

if s <0.

A lengthy but well-known calculation reveals that

d X,,(s)x =o [f,j](x).(4.22) d-7
Given now (tl, , t,) ", set

(4.23) y =(t)= X(a)"’b()(t,) X"l+l)’bl+l)(tl+l)Xl(h) X2(t2)xl(tl)xo,

the mappings a(. ), b(. as in (4.19). Then

is C 1, and

(0) Xo.

Additionally, using (4.20) and (4.22), we compute

det D(0) 0.

Invoking the Inverse Function Theorem, we deduce that is a C ditteomorphism of
some neighborhood U of =0 onto the open ball U(xo, ro) for some ro> 0. Further-
more, there exists a constant C such that

Itl<- c[(t)-Xol
(7) Now choose any y U(xo, ro) and set

(4.24) r -[y Xo[.

and

(tU).

By the above there exists a unique point U with

y =(t)

(4.25) ItlCr,

We inductively set

(4.26)

yo Xo
yl---xl(tl)Yo

Yt xl tl)Yl-1,
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(4.27)

Then for j 1,..., l,

Yi+l Xa(t+l)’b(l+)( tl+l)Yl

IS(yj)-S(y_,)lflt[ by (4.17)
(4.28)

<= Girl.
Now assume + 1 -<_j -<_ n. Then assuming for simplicity that tj > 0, let us write

b(()(tl/2)yyO. Xa((i)(_t)/2)Xb(,i)(_tj/2)xa((i)( t)/Z)X yj,j--1

y! =_ X(’( / ,(t/)y_-t )X"((t)/)X(

y X()( t/Z)X()( /)yj_,
1/ 4

In view of (4.17) again

[S(y.;) S( ,+, ,/y_ )l cl l
cltl/ (s =0,1, 2, 3).

Thus

(4.29) ]S (y.)- S(yj_,)l Cltl ’/2

for each fl’c c f. Since

as e % O, we deduce that

S oc ,""),

as required. [3
Remark. Our proof presumably extends to show that S is locally H/51der con-

tinuous with exponent k-, provided we suppose instead of (4.5) that the k-fold
interated Lie brackets of the vector fields {f./(x)}.i% span [ at each point x eli
(k 3, 4,. .). We have not, however, attempted to work out the relevant details.

for j 1+ 1,..., n. Combining at last (4.28) and (4.29) we find

IS(y) S(xo)[<-_ c([t[+ltl ’/)
(4.30)

<-- C]y- xol/ by (4.24), (4.25).

(8) Consequently S is HSlder continuous with exponent 1/2 at the point Xo.
Furthermore, an analysis of the proof shows that we can select the constant C in (4.30)
to hold also if Xo is replaced by any nearby point x. Consequently, S is H61der
continuous with exponent 1/2 in some neighborhood of Xo, and so by compactness

/,0,1/2S 6 oc (lq). Since the behavior of S enters the proof only via inequality (4.17),
where the constant C is independent of e, we have

sup S cO./(a,) < ee
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